

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Genome-wide association study identifies markers associated with carcass and meat quality traits in Italian Large White pigs

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Fabbri M.C., Zappaterra M., Davoli R., Zambonelli P. (2020). Genome-wide association study identifies markers associated with carcass and meat quality traits in Italian Large White pigs. ANIMAL GENETICS, 51(6), 950-952 [10.1111/age.13013].

Availability: This version is available at: https://hdl.handle.net/11585/853874 since: 2022-02-08

Published:

DOI: http://doi.org/10.1111/age.13013

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Fabbri, M.C., Zappaterra, M., Davoli, R. and Zambonelli, P. (2020), Genome-wide association study identifies markers associated with carcass and meat quality traits in Italian Large White pigs. Anim Genet, 51: 950-952.

The final published version is available online at:

https://doi.org/10.1111/age.13013

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

1	Genome-wide association study identifies markers associated with
2	carcass and meat quality traits in Italian Large White pigs
3	
4	Maria Chiara Fabbri ^{*,§} , Martina Zappaterra [*] , Roberta Davoli [*] , Paolo Zambonelli [*]
5	
6	*Department of Agricultural and Food Sciences (DISTAL), Bologna University, Viale G. Fanin 46,
7	40127, Bologna, Italy.
8	[§] Department of Agriculture, Food, Environment and Forestry (DAGRI), Via delle Cascine 5,
9	50144, Firenze, Italy.
10	
11	Maria Chiara Fabbri: mariachiara.fabbri@unifi.it
12	Martina Zappaterra: martina.zappaterra2@unibo.it
13	Roberta Davoli: roberta.davoli@unibo.it
14	Paolo Zambonelli: paolo.zambonelli@unibo.it
15	
16	To whom correspondence should be addressed: paolo.zambonelli@unibo.it, roberta.davoli@unibo.it
17	
18	

19 Summary

20	A GWAS was performed using the genotypes obtained by PorcineSNP60 v2 BeadChip and 11
21	phenotypic traits (carcass lean meat percentage; backfat thickness; Longissimus thoracis muscle
22	thickness; lightness; backfat thickness measured with caliper at the midline; meat pH measured at
23	about 1 h post mortem and 24 h post mortem; CIE L^* , a^* , and b^* color parameters; and water-
24	holding capacity). Three markers were associated with three of the phenotypic traits considered:
25	M1GA0009592 (SSC7) with backfat thickness and lean meat content, DIAS0002910 (SSC6) and
26	ALGA0109856 (SSC6) with water-holding capacity. The marker M1GA0009592, associated with
27	backfat thickness, lies in a QTL region near the gene JARID2, which is a transcription factor also
28	involved in the regulation of adipose-derived stem cell pluripotency. The results seem to indicate a
29	possible role of these genomic regions in the regulation of pig carcass fatness (i.e. backfat at last
30	rib) and water-holding capacity.
31	
32	Keywords
33	carcass traits, genetic markers, GWAS, meat quality, swine
34	
35	Running head
36	SSC7 is associated with pork quality
37	
38	Meat color, meat and carcass fat content and water-holding capacity (WHC) are parameters that
39	strongly influence pig product organoleptic quality and have significant economic value for the
40	meat processing industry (Ciobanu et al., 2011). Several candidate genes associated with color and
41	WHC have already been reported, but to date, the knowledge of associations with QTL regions
42	affecting these traits in the Italian Large White (ILW) pig breed is still lacking
43	(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index; Hu et al., 2019). A list of the significant

QTL for backfat thickness, lean meat content, meat pH, color and drip loss/WHC was reported in
the Pig QTLdb for Large White/Yorkshire breeds (Table S1).

This research aimed to identify genetic markers associated with carcass and meat quality traits in a
purebred population of 888 ILW pigs reared in the same environmental conditions at the Italian
National Association of Pig Breeders Sib-test station.
Animal care and slaughter were performed in compliance with the European rules (Council

50 Regulation (EC) No. 1/2005 and Council Regulation (EC) No. 1099/2009). All slaughter

51 procedures were monitored by the veterinary team appointed by the Italian Ministry of Health. The

52 ILW pigs were slaughtered at about 155 kg of live weight. A detailed description of the utilized
53 method is reported in Table S2.

54 The genome-wide and chromosome-wide significant markers found by GWAS are reported in

Table 1 and Fig. 1. The protein-coding genes detected in the region ± 500 kb from each significant

56 marker are reported in Table S3. In Table 1 are reported the False Discovery Rate (FDR)-adjusted

57 *P*-values to correct for false positives. We decided to use FDR correction for multiple tests

according to information retrieved from the literature indicating that the Bonferroni method is very

restrictive in GWAS studies to correct for Type I errors (Brinster et al., 2018). The FDR adjustment

60 indicated that three SNPs had FDR-adjusted *P*-values <0.10. The markers DIAS0002910 and

61 ALGA0109856 are 105,366 bp apart, and are both located in SSC6 within a genomic region that

62 contains the genes *Cilia and flagella associated protein 20 (CFAP20)* and *Coiled-coil domain*

63 *containing 113 (CCDC113).* In the region spanning ± 500 kb apart from the two markers associated

64 with WHC there are 23 protein-coding genes. Interestingly, the function of some genes (*CCD113*,

65 *CFAP20*, *KIFC3*, *KATNB1*), all located in the same genomic region (Table S3), can be related to

cilia or microtubule functionality. In humans, primary cilia were recently reported to be involved in

67 muscle development and energy homeostasis (Fu *et al.*, 2014), and the expression levels of genes

related to these organelles were recently found to be associated with intramuscular fat deposition in

69 pigs (Zappaterra *et al.*, 2020). In pigs, these associations are poorly known and further studies are

needed to elucidate a possible role of cilia and/or microtubules in muscle tissue development and in
the cell functions related to WHC.

The most genome-wide significant SNP was located on SSC7 (M1GA0009592) near Jumonji, AT 72 rich interactive domain 2 (JARID2) gene. The marker M1GA0009592 and JARID2 gene are located 73 in a genomic region with two very large QTL related to porcine backfat thickness (Pig QTLdb: 74 ID=308, Rattink et al., 2000; ID=3768, Nagamine et al., 2003). Moreover, a refined OTL region 75 (Pig QTLdb: ID=9901) was reported by Nagamine et al. (2009) on the same populations used in the 76 previous experiment (Table S1). The gene JARID2 is a transcription factor that was found to be 77 expressed in human adipose-derived stem cells in response to thyroid hormone receptor actions 78 79 (Cvoro et al., 2016). The obtained results suggest new associations between these markers and genes that have been up 80 to now poorly studied with respect to traits important for heavy pig production. These associations 81 82 seem to indicate that molecular processes influenced by the identified genes may also have an effect on carcass fat content, lean meat production and WHC. These findings should be investigated in 83 more depth to better understand the hypothesized effects and, if validated, these markers could be 84 considered in pig selection. 85

86

87 Acknowledgements

This work was supported by PRIN 2015 national project (no. 201549TZXB001) and by Bologna
University RFO funds.

90

91 The authors declare that they have no competing interests.

92

93 Availability of data

94 The data are available after signing a Material Transfer Agreement with the corresponding authors.

96 **References**

97	Brinster R., Köttgen A., Tayo B.O., Schumacher M., Sekula P., CKDGen Consortium. (2018)						
98	Control procedures and estimators of the false discovery rate and their application in low-						
99	dimensional settings: an empirical investigation. BMC Bioinformatics 19, 78.						
100	Ciobanu D.C., Lonergan S.M., Huff-Lonergan E.J. (2011) Genetics of Meat Quality and Carcass						
101	Traits. In: The Genetics of the Pig (ed. by M.F. Rothschild & A. Ruvinsky), pp. 355–389. CABI						
102	Publishing, Oxfordshire, UK.						
103	Cvoro A., Bajic A., Zhang A., Simon M., Golic I., Sieglaff D.H., Maletic-Savatic M., Korac A.,						
104	Webb, P. (2016) Ligand Independent and Subtype-Selective Actions of Thyroid Hormone						
105	Receptors in Human Adipose Derived Stem Cells. PLoS One 11, e0164407.						
106	Fu W., Asp P., Canter B., Dynlacht, B.D. (2014) Primary cilia control hedgehog signaling during						
107	muscle differentiation and are deregulated in rhabdomyosarcoma. PNAS 111, 9151-9156.						
108	Hu ZL., Park C.A., Reecy J.M. (2019) Building a livestock genetic and genomic information						
109	knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids						
110	Research 47, D701–D710.						
111	Nagamine Y., Haley C.S., Sewalem A., Visscher P.M. (2003) Quantitative trait loci variation for						
112	growth and obesity between and within lines of pigs (Sus scrofa). Genetics 164, 629-635.						
113	Nagamine Y., Pong-Wong R., Visscher P.M., Haley C.S. (2009) Detection of multiple quantitative						
114	trait loci and their pleiotropic effects in outbred pig populations. Genetics, Selection, Evolution						
115	41, 44.						
116	Pig QTL Database, Available online https://www.animalgenome.org/cgi-bin/QTLdb/SS/index						
117	(accessed 12.5.19).						
118	Rattink A.P., De Koning D.J., Faivre M., Harlizius B., van Arendonk J.A., Groenen M.A. (2000)						

Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mammalian Genome 11, 656-661.

- 121 Zappaterra M., Gioiosa S., Chillemi G., Zambonelli P., Davoli R. (2020) Muscle transcriptome
- 122 analysis identifies genes involved in ciliogenesis and the molecular cascade associated with
- intramuscular fat content in Large White heavy pigs. PLoS ONE 15, e0233372.

Table 1 Significant markers identified with their location, adjusted *P*-value, and SNP position relative to the nearest gene.

126

SNP (variant ID)	SSC^1	Location (bp) ²	Pc1df	FDR	MAF	Phenotypic traits	SNP additive	Nearest genes ³	SNP position relative
						associated with	effect		to the nearest gene
						the marker			
DIAS0002910	6	19,956,188	2.22E-06	0.0646	0.43	WHC	0.009	CFAP20	Synonymous variant
ALGA0109856	6	20,061,554	2.86E-06	0.0646	0.24	WHC	NS [0.055]	CCDC113	Intron variant
M1GA0009592	7	10,907,559	8.34E-06, 3.71E-06	0.0377, 0.1677	0.37	BF, LM	0.005, 0.012	JARID2	Intergenic variant

- 127 The trait passing the genome-wide threshold is indicated in bold.
- 128 NS: not significant.
- 129 ¹ Sus scrofa chromosome.
- 2 SNP positions referred to *Sus scrofa* assembly Build 11.1, expressed in bp.
- ³ The genes closest to the identified SNP named with the official gene symbol.

Figure 1 Manhattan plot showing the GWAS significance for the associations between the SNPs
and the considered phenotypic traits. The red line indicates the genome-wide threshold of
significance while the blue line indicates the chromosome-wide threshold of significance calculated
for the chromosomes where the relevant markers map

- 143
- BF: backfat thickness measured with FOM between the third and fourth last rib at 8 cm off themidline.
- 146 LM: carcass lean meat percentage.
- 147 WHC: water-holding capacity.
- 148
- 149

15	0 Supporting Information
15	1
15	2 Figure S1. The population structure investigated with PCA
15	3
15	Table S1. List of the significant QTLs for backfat thickness, lean meat content, meat pH, color and
15	5 drip loss/water holding capacity reported in Pig QTLdb for Large White/Yorkshire breeds
15	6 (File TS1.xlsx)
15	7
15	8 Table S2. Supplementary Materials and methods
15	9
16	Table S3. Protein-coding genes included in the three significant chromosome regions
16	1

Figure S1. The population structure investigated with PCA

Phenotypes measurement

We used a FAT-O meat'er (FOM) device to measure carcass lean meat percentage (LM), backfat thickness measured between the third and fourth last rib at 8 cm off the midline (BF), *Longissimus thoracis* muscle thickness (MT), and lightness (RW). Backfat thickness was recorded with a caliber at the midline at the level of *Gluteus medius* muscle (BFT). Moreover, we also determined pH1 (meat pH measured 1 h *postmortem*) and pHu (meat pH measured 24 h *postmortem*), while CIE L*, a*, b* parameters were estimated with a Chroma Meter CR-300 (Konica Minolta Sensing Inc., Osaka, Japan). Finally, WHC was calculated with filter paper press method (Hofmann *et al.*, 1982).

DNA extraction and Genotyping

DNA was isolated from *Semimembranosus* muscle using the Genomic DNA Purification Kit (Promega Corporation, Madison, WI, USA). Genotyping was carried out using PorcineSNP60 v2 BeadChip (Illumina Inc., San Diego, California, USA) containing 61,565 SNPs, whose coordinates were updated to *Sus scrofa* genome assembly Build 11.1.

Statistical analyses

After PLINK (Purcell *et al.*, 2007) filtering according to Nicolazzi *et al.* (2015), and after removing SNPs unmapped or located on sex chromosomes, remained 38,147 SNPs. Following the filtering carried out using PLINK a PCA was performed with the same software using the – pca flag. To visualize the results, a scatterplot of the first and second principal components has been created using "car" and "devtools" R packages. The population structure investigated with PCA showed the homogeneity of the samples (Figure S1). A further quality control was performed with the GenABEL package in the R environment (Aulchenko et al., 2007): samples with call rate <90%, SNPs with a GENO <90%, SNPs with ah Hardy-Weinberg equilibrium *P*-value <0.001, and SNPs with minor allele frequency <5% were excluded. The remaining 885

individuals and 38,111 SNPs were used to perform the Genome-Wide Association study (GWA). The following additive polygenic model was fitted with a genomic relationship matrix in GenABEL:

 $Y_i = X_i \beta_i + Z_i a_i + e_i \\$

where Y_i is the observation vector for the ith trait; β is the vector of effects for three factors (sex: two levels for barrows and gilts; slaughtering date: 27 levels; age at slaughtering as a covariate). The random factors in the model were animal (a) and residuals (e). They were assumed to be normally distributed as $a_i \sim N(0,G\sigma_a^2)$ and $e_i \sim N(0,I\sigma_e^2)$, where G is the genomic relationship matrix and σ_a^2 and σ_e^2 the additive genomic and residual variances, respectively. Pc1df value was utilized according to Nicolazzi *et al.* (2015) and markers were considered genome-wide significant for *P*-adjusted <1.31E-06. The chromosome-wide threshold considering a *P*-adjusted <0.01 calculated for SSC6 is 4.13E-06 (2419 SNPs on SSC6). The correction for multiple tests was performed using the procedure MULTTEST using the SAS software v. 9.4 (SAS Inst., Cary, NC) and applying the False Discovery Rate (FDR) method.

The additive and dominant effects of the significant markers were calculated using the SAS software v. 9.4 (SAS Inst., Inc., Cary, NC) using General Linear Model (GLM) procedure with a model including sex, slaughtering date, age at slaughtering, and genotype as already carried out for the GenAbel analysis.

References

Aulchenko Y.S., Ripke S., Isaacs A., van Duijn C.M. (2007) GenABEL: an R library for genomewide association analysis. Bioinforma. Oxf. Engl. 23, 1294–1296.

Hofmann K., Hamm R., Blüchel E. (1982) Neues über die Bestimmung der Wasserbindung des Fleisches mit Hilfe der Filter papier preß methode. Fleischwirtschaft 62, 87–94.

Nicolazzi E.L., Biffani S., Biscarini F., Orozco Ter Wengel P., Caprera A., Nazzicari N., Stella A. (2015) Software solutions for the livestock genomics SNP array revolution. Animal Genetics 46, 343-353.

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81, 559-575. **Table S3.** Protein coding genes included in the three significant chromosome regions

SSC	SNP Location Gene symbol		Gene symbol	Gene name	Gene location
		(bp)			(from bp to bp)
			CCDC102A	coiled-coil domain containing 102A	19,437,169-19,456,905
			ADGRG5	adhesion G protein-coupled receptor G5	19,463,018-19,488,665
			ADGRG1	adhesion G protein-coupled receptor G1	19,546,950-19,570,893
			ADGRG3	adhesion G protein-coupled receptor G3	19,574,514-19,599,082
			DRC7	dynein regulatory complex subunit 7	19,603,399-19,629,174
			KATNB1	katanin regulatory subunit B	19,630,444-19,667,676
			KIFC3	kinesin family member C3	19,659,987-19,730,359
			CNGB1	cyclic nucleotide gated channel subunit beta 1	19,753,036-19,825,631
			TEPP	testis, prostate and placenta expressed	19,832,473-19,838,181
			ZNF319	zinc finger protein 319	19,842,582-19,851,288
			USB1	U6 snRNA biogenesis phosphodiesterase 1	19,852,011-19,874,021
6			MMP15	matrix metallopeptidase 15	19,890,884-19,918,244
	DIAS0002910	19,956,188	CFAP20	cilia and flagella associated protein 20	19,854,236-19,969,347
			CSNK2A2	casein kinase 2 alpha 2	19,976,931-20,016,741
	ALGA0109856	20,061,554	CCDC113	coiled-coil domain containing 113	20,052,651-20,088,822
			PRSS54	serine protease 54	20,083,930-20,099,885
			GINS3	GINS complex subunit 3	20,162,680-20,170,263
			NDRG4	NDRG family member 4	20,223,871-20,265,572
			SETD6	SET domain containing 6, protein lysine methyltransferase	20,266,552-20,270,694
			CNOT1	CCR4-NOT transcription complex subunit 1	20,318,946-20,372,280
			SLC38A7	solute carrier family 38 member 7	20,337,137-20,401,684
			ENSSSCG00000037660	protein coding gene	20,409,267-20,415,239
			GOT2	glutamic-oxaloacetic transaminase 2	20,407,198-20,432,068
7	M1GA0009592	10,907,559	JARID2	jumonji and AT-rich interaction domain containing 2	11,357,961-11,602,104