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Spatial Autoregressive Nonlinear Models in R with an Empirical 

Application in Labour Economics 

Anna Gloria Billé1 

Department of Statistical Sciences, University of Padova, Padova, Italy 

1. Introduction to Spatial Microeconometrics 

Microeconomic data usually refer to individual-level data on the economic behaviour of 

individuals, firms or groups of them (e.g. households, industrial districts, etc.), and they are 

typically collected using cross-section or panel data surveys. The analysis of microeconomic data 

has a long history, both from a theoretical and an empirical point of view. There are several 

peculiarities that mark microeconomic data. First of all, data at a low disaggregated level are 

often discrete or censored/truncated by nature, leading to the use of nonlinear models such as 

probit/logit, Tobit, count data regressions, where the type of nonlinearity in the model 

specification refers to the nonlinearity in parameters, and for which iterative estimation 

procedure are necessary (McFadden 1984; Amemiya 1985; Maddala 1986). Secondly, 

disaggregation is often a source of heterogeneity that should be accounted for to obtain valid 

inferences in regression analyses. In addition, the growing availability of this type of data has 

brought out a number of additional problems, among which e.g. sample selection, measurement 
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errors, missing data, see the book by Cameron and Trivedi (2005) for an overview of methods in 

microeconometrics. Differently from macroeconomic data, microeconomic data are more affected 

by these issues, but at the same time they provide a greater flexibility in specifying econometric 

models and a larger amount of information. 

Adding spatial autoregressive processes to nonlinear models has increased the theoretical, 

methodological and computational problems in estimating the parameters and interpreting the 

results. Indeed, in a recent review, Billé and Arbia (2019) pointed out the main difficulties and 

the proposed solutions as well as the lack of a continuous development of this specific field in the 

econometric literature. Although spatial econometrics is now a consolidated discipline, most of 

the literature in spatial microeconometrics has only seen a growth of empirical applications with 

the use of micro data and spatial linear models, see e.g. Conley (2010), Arbia, Espa, and Giuliani 

(2018). In addition, to the best of my knowledge, methods e.g. to deal with measurement error 

problems have been developed only for spatial linear models (Le Gallo and Fingleton 2012). The 

argumentation and explanation of the different estimation procedures and their statistical 

properties according to different types of spatial limited dependent variable models is vast and 

somehow complicated. For a recent “state of the art” of the theoretical and methodological issues 

of spatial nonlinear models the reader is referred to Billé and Arbia (2019) and references 

therein. 

This chapter is devoted to the analysis of spatial autoregressive nonlinear probit models, with a 

detailed illustration of how to use available packages in R through an empirical application in 

Labour Economics. The rest of the chapter is organised as follows. Section 2 lays the foundation 

for spatial econometric models by defining the weighting matrices. Section 3 specifies a spatial 

autoregressive nonlinear probit model and explains the marginal effects (subsection 3.1). Finally, 



Section 4 describes how to fit and interpret these type of models in R. An empirical illustration on 

the employments rates in Europe is also included (subsection 4.1). 

2. Definition of Spatial Weighting Matrices 

There are several different ways in which the spatial weights can be defined. Actually, their 

definition is somehow arbitrary, leading to potential problems of model misspecification due to 

wrongly assumed weighting matrices. This has led to an interesting debate in the literature. Many 

researchers began to evaluate the sensitivity of the estimated parameters on the use of different 

types of spatial weighting matrices through Monte Carlo simulations, see e.g. Billé (2013) in a 

spatial probit context, among many others. Some others critized the exogeneity assumption 

behind its construction, highlighting the importance of including information coming from the 

economic theory, see e.g. B. Fingleton and Arbia (2008) and Corrado and Fingleton (2012), or 

estimating the elements of this matrix through an appropriate procedure, see e.g. Pinkse, Slade, 

and Brett (2002), Bhattacharjee and Jensen-Butler (2013), Ahrens and Bhattacharjee (2015) and 

references below. Finally, J. P. LeSage (2014) argued that “a Bayesian approach provides one way 

to introduce subjective prior information in choosing the weighting matrix”, while James LeSage 

and Pace (2014) stressed that if the partial derivatives defining the spatial marginal effects are 

correctly specified and the goal is to have approximately correct scalar summary measures (see 

subsection 3.1), then the weighting matrices have approximately no impact on estimates and 

inferences. 

Discussions on the definition on different spatial weighting matrices as well as model 

specifications can now be found in several spatial book references, see e.g. Anselin (1988), JP 

LeSage and Pace (2009), Elhorst (2014), Arbia (2014), Kelejian and Piras (2017). A first 



definition comes from the use of geographical information, as the spatial data are typically 

associated to georeferenced data, like e.g. firms, provinces, etc. Depending on the type of spatial 

units, i.e. points, lines or areas, distance-based definition or contiguity-based criteria to build the 

saptial weight matrix (geometric 𝑊) can be used, see e.g. Getis and Aldstadt (2004). Contiguity-

based criteria typically define a sparse weighting matrix, see also e.g. Pace and Barry (1997). The 

starting point is to define a Boolean matrix as in the following. Let 𝑊 = {𝑤𝑖𝑗} be the spatial 

weighting matrix with elements equal to the weights among pairs of random variables 𝑦𝑖 , 𝑦𝑗 for 

𝑖, 𝑗 = 1, . . . , 𝑛, with 𝑛 the sample size, then 

{
𝑤𝑖𝑗 = 1 𝑖𝑓𝑓 𝑦𝑗 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝑦𝑖, 𝑗 ≠ 𝑖

𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where the term “is close to” is justified by the adopted criterion. Several contiguity-based criteria, 

like e.g. queen and rook, fall within the above definition, as well as a distance-based approach 

called 𝑘-nearest neighbours that will be explained in the section devoted to the empirical 

application. The peculiarity of contiguity-based criteria is the use of borders or angles to select 

the neighbourhood of each spatial unit, and therefore they are particularly suitable for 

areal/polygon data. Distance-based weights define, instead, dense weighting matrices. In this 

case, the geographical information comes from the numerical value of the distance (measured in 

km, miles, etc.) between pairs of spatial units. A general distance-based weight matrix can be 

define in the following way 

𝑤𝑖𝑗 = 𝑓(𝑑𝑖𝑗), 𝑗 ≠ 𝑖 

where 𝑓(. ) can be any continuous monotonically decreasing function that ensures decreasing 

weights as distances 𝑑𝑖𝑗  increase. Examples of such functions are, for instance, the negative 



exponential or the inverse-distance. Figure 1 graphically shows the difference between sparse 

and dense matrices, with the non-zero elements in black. 

 

Figure 1 Sparse (left) and Dense (right) Weighting Matrices 

The cut-off approach is a particular type of distance-based definition that leads to sparse 

weighting matrices. The aim is to put at zero all the weights referred to distances greater than a 

pre-specified distance (radius, 𝑟), 

{
𝑤𝑖𝑗 = 𝑓(𝑑𝑖𝑗) 𝑖𝑓𝑓 𝑑𝑖𝑗 < 𝑟, 𝑗 ≠ 𝑖

𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 



Regardless the way of defining the spatial weights, all the spatial weighting matrices must be 

such that: (i) all the diagonal elements are zero, 𝑤𝑖𝑖 = 0  ∀𝑖, (ii) their row and column sums are 

uniformly bounded in absolute value. Assumption (i) is a simple normalization rule and means 

that each spatial unit is not viewed as its own neighbor, while (ii) limits the spatial correlation to 

a manageable degree and ensures that the spatial process is not explosive. Moreover, 

nonnegative weighting matrices are typically used, 𝑤𝑖𝑗 ≥ 0  ∀ 𝑖 ≠ 𝑗, as follows from the 

definition of distance (metric). For theoretical details see e.g. Kelejian and Prucha (1998), L.-F. 

Lee (2004), Kelejian and Prucha (2010). 

𝑊 is typically row-normalized such that ∑ 𝑤𝑖𝑗𝑗 = 1, ∀𝑖. This ensures that the autoregressive term 

of the model lies in the interval (−1,1). Indeed, the parameter space of the autoregressive term 

depends in general on the eigenvalues of 𝑊. Although the row-normalization rule provides an 

easy interpretation of the spatial model, i.e. each geo-located dependent variable depends on a 

weighted average of neighbouring dependent variables, it does not ensure the equivalence of the 

model specifications before and after normalizations of the weights, with the exception of the use 

of the 𝑘-nearest neighbour approach. To ensure this equivalence, an alternative normalization 

rule based on the spectral radius of 𝑊 has been proposed by Kelejian and Prucha (2010). Finally, 

although the definition of distance requires the symmetric property, the weighthing matrix can 

be in some cases an asymmetric matrix, whose definition can be particularly useful in the 

following cases. 

Spatial econometric methods can be also used to modeling, for instance, economic agents’ 

behaviours or financial data, see Catania and Billé (2017), since the aim is to easily capture cross-

sectional dependence through an appropriate parametrization. However, individual data of this 

type are not georeferenced, making difficult the connection between them. Economic definitions 



of distance can be useful in this case, see e.g. Case, Rosen, and Hines Jr (1993) and Anselin and 

Bera (1998). Moreover, the inclusion of spatially lagged dependent variables 𝑊𝑦, both in the 

linear and in the nonlinear model specification, adds an endogenity problem due to the 

simultaneity of 𝑛 equations. Therefore, the exogeneity assumption behind the geographical 

definition of the spatial weights has been criticized e.g. by Pinkse and Slade (2010), and proper 

estimation methods have been developed, see Kelejian and Piras (2014) and Qu and Lee (2015). 

For instance, Qu and Lee (2015) proposed the use of additional exogenous regressors, say 𝑋2, to 

control for potential endogeneity of the spatial weight matrix in a cross-sectional setting. The 

weights are defined as 

𝑤𝑖𝑗 = ℎ(𝑍𝑖𝑗, 𝑑𝑖𝑗), 𝑗 ≠ 𝑖 

where ℎ(. ) is a bounded function, 𝑍 is a matrix of variables, and 𝑑𝑖𝑗  is the distance between two 

units. Within a two-stage IV estimation, they first regress the endogenous matrix 𝑍 on 𝑋2 through 

the OLS estimator applied to the following equation 

𝑍 = 𝑋2𝛤 + 𝜀 

where 𝛤 is the matrix of coefficients and 𝜀 is a column vector of innovations. Then, they used 

(𝑍 − 𝑋2𝛤) as control variables in the linear spatial model to control for the potential endogeneity 

of 𝑊 in the second stage. Furthermore, the authors argued that the spatial weight matrix 𝑊 can 

be exogenous/predetermined, but the term 𝑊𝑦 remains endogenous due to the potential 

correlation among the error terms of the two equations. 

Still within the IV approach, Kelejian and Piras (2014) directly proposed estimating the elements 

of 𝑊 through a linear approximation with a finite set of parameters in a panel data setting. A 

recent alternative way to estimate the elements of the weighting matrix is based on exploiting the 



time information in a spatio-temporal model, see Billé and Catania (2018). This spatio-temporal 

model specification, combined with the generalized autoregressive score (GAS) procedure, is able 

to estimate via MLE the elements of the spatial weighting matrix 𝑊 = {𝑤𝑖𝑗} through a proper 

parametrization of the weights over time. In this way, the estimation procedure is able to identify 

the radius within which the spatial effects have their highest impacts. Finally, Otto and Steinert 

(2018) proposed the use of the least absolute shrinkage and selection operator (LASSO) 

approach to estimate the weighting matrix (with also structural breaks) in a spatio-temporal 

model. However, none of the above approaches for endogenous 𝑊 matrices have been yet 

developed for spatial nonlinear model specifications. 

3. Model Specification and Interpretation 

In this section we define one of the possible general specifications of the spatial probit model, 

and its nested-model specifications. For details on different spatial binary probit specifications 

see Billé and Arbia (2019). Then, we provide the model interpretation and in subsection 3.1 the 

definition of the marginal effects. 

Let 𝑦 be a 𝑛-dimensional vector of binary dependent variables. A spatial (first-order) 

autoregressive probit model with (first-order) autoregressive disturbances (SARAR(1,1)-probit) 

(Billé and Leorato 2019; Martinetti and Geniaux 2017) can be defined in the following way 

{
𝑦∗ = 𝜌𝑊1𝑦

∗ + 𝑋𝛽 + 𝑢 𝑢 = 𝜆𝑊2𝑢 + 𝜀 𝜀 ∼ 𝒩(0, 𝐼)

𝑦 = 𝟙(𝑦∗ > 0)
 

where 𝑦∗ is a 𝑛-dimensional vector of continuous latent dependent variables, typically associated 

to individual unobserved utility functions, 𝑊1 and 𝑊2 are (possibly) two different 𝑛-dimensional 

spatial weighting matrices to govern different spatial processes, 𝑋 is the 𝑛 by 𝑘 matrix of 



regressors, 𝑢 is the 𝑛-dimensional vector of autoregressive error terms, 𝜀 is a vector of 

homoskedastic innovations of the same dimension with 𝜎𝜀
2 = 1 for identification, and 𝟙(. ) is the 

indicator function such that 𝑦𝑖 = 1 ⇔ 𝑦∗ > 0  ∀𝑖. The terms 𝜌𝑊1𝑦
∗ and 𝜆𝑊2𝑢 capture the global 

spatial spillover effects in the latent dependent variables and among the shocks, respectively. The 

term “spillover effects” refers to the indirect effects due to the neighboring random variables. This 

concept will be clarified below. Two nested-model specifications can be easily obtained by setting 

𝜆 = 0 or 𝜌 = 0. The two models are called spatial (first-order) autoregressive probit (SAR(1)-

probit) model and spatial (first-order) autoregressive error probit (SAE(1)-probit) model, 

respectively. 

When we consider nonlinear binary models, we are generally interested in evaluating the 

changes in the probability of being equal to 1 by the binary dependent variables given the set of 

regressors of the model specification, i.e. 𝐸(𝑦|𝑋) = 𝑃(𝑦 = 1|𝑋). If we assume that the error terms 

are normally distributed, then a probit model can be considered and the above probabilities can 

be evaluated by using the normal cumulative density function, i.e. 𝑃(𝑦 = 1|𝑋) = 𝛷(. ), where the 

cdf 𝛷(. ) is a function of the unknown parametrs 𝜃 = (𝜌, 𝜆, 𝛽′)′ and the exogenous regressors 𝑋. 

Therefore, the estimated 𝛽 coefficients cannot be interpreted as the marginal effects anymore, 

due to both the nonlinearity in parameters and the presence of spatial dependence. In section 3.1 

we explain in details how to calculate proper marginal effects for these types of models. 

Due to the simultaneity of the model specification, reduced forms of the spatial models are 

typically derived. Under some regularity conditions, see e.g. Billé and Leorato (2019), the above 

model can be written in reduced form as 

{
𝑦∗ = 𝐴𝜌

−1𝑋𝛽 + 𝜈 𝜈 ∼ 𝒩(0, 𝛴𝜈)

𝑦 = 𝟙(𝑦∗ > 0)
 



where 𝜈 = 𝐴𝜌
−1𝐵𝜆

−1𝜀, 𝐴𝜌
−1 = (𝐼 − 𝜌𝑊1)

−1 and 𝐵𝜆
−1 = (𝐼 − 𝜆𝑊2)

−1, and 𝛴𝜈 = 𝐴𝜌
−1𝐵𝜆

−1𝐵𝜆
−1′𝐴𝜌

−1′. Now, 

the inverse matrices, 𝐴𝜌
−1 and 𝐵𝜆

−1, can be written in terms of the infinite series expansion as 

{
 
 

 
 𝐴𝜌

−1 =∑𝜌𝑖
∞

𝑖=0

𝑊1
𝑖 = 𝐼 + 𝜌𝑊1 + 𝜌

2𝑊1
2 + 𝜌3𝑊1

3 +⋯+ 𝜌∞𝑊1
∞

𝐵𝜆
−1 =∑𝜆𝑖

∞

𝑖=0

𝑊2
𝑖 = 𝐼 + 𝜆𝑊2 + 𝜆

2𝑊2
2 + 𝜆3𝑊2

3 +⋯+ 𝜆∞𝑊2
∞

 

where, focusing on the first expansion, the first right-hand-side term (the identity matrix 𝐼) 

represents a direct effect on 𝑦∗ of a change in 𝑋 due to the fact that its diagonal elements are ones 

and its off-diagonal elements are zero. On the contrary, the second right-hand-side term (𝜌𝑊1) 

represents an indirect effect on 𝑦∗ of a change in 𝑋, also called spillover effects. The other terms 

are referred to the indirect effects of higher-orders, i.e. the spatial effects due to the neighbours 

of the neighbours, and so on. The term spillover effects is also referred to the autoregressive 

process in the error terms, focusing on the second finite series expansion, although the difference 

in the interpretation is that 𝐴𝜌
−1 enters both in the mean and in the variance-covariance matrix of 

the conditional distribution of 𝑦|𝑋, whereas 𝐵𝜆
−1 only in the variance-covariance matrix. 

Higher-order effects have also another meaning in spatial econometrics. Indeed, the higher-order 

effects can be also defined through the orders of the autoregressive processes, as is typically 

done in time-series econometrics (consider e.g. an ARMA(1,1) vs. an ARMA(2,2)). Nevertheless, 

the specification and interpretation for these types of spatial linear models is not obvious as in 

time, and none of these specifications have been found with limited dependent variables. For 

details the reader is referred to Elhorst, Lacombe, and Piras (2012), Arbia, Bee, and Espa (2013), 

Debarsy and LeSage (2018), among others. 



3.1. Marginal Effects 

Marginal effects of nonlinear models differ substantially from the linear ones. Indeed, in 

nonlinear specifications these effects depend both on the estimated parameters and the level of 

the explanatory variable of interest 𝑥ℎ. In addition, when considering spatial dependence, total 

marginal effects have inside two distinct source of information: (i) direct effects due to the direct 

impact of the regressor 𝑥𝑖ℎ in a specific region 𝑖 on the dependent variable 𝑦𝑖 and, (ii) indirect 

effects due to the presence of the spatial spillover effects, i.e. the impact from other regions 

𝑥𝑗ℎ∀𝑗 ≠ 𝑖, see J. P. LeSage et al. (2011). Note that the term region is a general definition of spatial 

data, and the observations 𝑖 = 1,… , 𝑛 can also be referred to individuals, like e.g. economic 

agents. 

In this way, the usual interpretation “a unit variation of a specific regressor determines a specific 

and constant variation in the dependent variable” is no more valid. To preserve the link between 

econometric models and economic theory, proper marginal effects should be always defined. In 

the following, we discuss the definition of the marginal effects for spatial probit models. 

Let 𝑥.ℎ = (𝑥1ℎ, 𝑥2ℎ, … , 𝑥𝑖ℎ, … , 𝑥𝑛ℎ)
′ be an 𝑛-dimensional vector of units referred to the ℎ-th 

regressor, ℎ = 1, … , 𝑘, and 𝑥𝑖. = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖ℎ, . . . , 𝑥𝑖𝑘)
′ be a 𝑘-dimensional vector of regressors 

referred to unit 𝑖. Billé and Leorato (2019), among others, propose the following specifications of 

the marginal effects 

𝜕P(𝑦𝑖 = 1 ∣ 𝑋𝑛)

𝜕𝑥.ℎ
′ ∣

𝑥
= 𝜙 ({𝛴}𝑖𝑖

−1/2
{𝐴𝜌

−1𝑋}
𝑖.
𝛽) {𝛴}𝑖𝑖

−1/2
{𝐴𝜌

−1}𝑖.𝛽ℎ, 

𝜕P(𝑦𝑖 = 1 ∣ 𝑋𝑛)

𝜕𝑥.ℎ
′ ∣

𝑥
= 𝜙 ({𝛴}𝑖𝑖

−1/2
{𝐴𝜌

−1𝑋}
𝑖.
𝛽) {𝛴}𝑖𝑖

−1/2
{𝐴𝜌

−1}𝑖.𝛽ℎ 



where 𝛴 is the variance-covariance matrix implied by the reduced form of the spatial probit 

model, 𝑋 is an 𝑛 by 𝑘 matrix of regressor means, { ⋅ }𝑖. is the 𝑖-th row of the matrix inside, and { ⋅ }𝑖𝑖 

is the 𝑖-th diagonal element of a square matrix. Note that 𝛴 depends on 𝜌 or 𝜆 if a SAR(1)-probit 

model or a SAE(1)-probit model is considered, respectively. 

The first specification of the above equations explains the impact of a marginal change in the 

mean of the ℎ-th regressor, i.e., 𝑥.ℎ, on the conditional probability of {𝑦𝑖 = 1}, i.e., P(𝑦𝑖 = 1 ∣ 𝑋𝑛), 

setting 𝑥.ℎ′ for all the remaining regressors, ℎ′ = 1,… , 𝑘 − 1. The second specification of the 

above equations considers instead the marginal impact evaluated at each single value of 𝑥.ℎ. This 

is particularly informative in space in terms of spatial heterogeneity due to the possibility of 

evaluating a marginal impact with respect to a particular region value 𝑥𝑖ℎ. The results are two 𝑛-

dimensional square matrices for {𝑦1, 𝑦2, … , 𝑦𝑛}. Finally, the average of the main diagonals 

provides a synthetic measure of the direct impact, while the average of the off-diagonal elements 

provide a synthetic measure of the indirect impact. 

4. Fitting Spatial Econometric Nonlinear Models in R 

In this section we explain how to fit spatial nonlinear (probit) models in R. There are at least 

three packages that one can use to estimate a SAR(1)-probit or a SAE(1)-probit model: (i) 

McSpatial, (ii) ProbitSpatial, (iii) spatialprobit. The first one has inside different 

functions to estimate a SAR(1)-probit model. The Linearized GMM proposed by Klier and 

McMillen (2008) and an MLE-based function. However, the linearized GMM approach is accurate 

as long as the true autocorrelation coefficient is relatively small. In addition, there is no 

discussion about the asymptotic behaviour of this estimator and no other forms of model 

specifications are allowed for. A recent variant of this GMM-based estimator is the one proposed 



by Santos and Proença (2019). The second package has the SpatialProbitFit function that fits 

both the SAR(1)-probit and the SAE(1)-probit model through an Approximate MLE approach, see 

Martinetti and Geniaux (2017). Although is computationally very fast for large datasets, see also 

Mozharovskyi and Vogler (2016) for a similar approach, this estimation procedure does not 

account for more general model specifications and the possible use of dense weighting matrices. 

In addition, there is no discussion about its asymptotic behaviour. Finally, the third one is based 

on the Bayesian approach, see e.g. J. P. LeSage et al. (2011). Alternative ML-based estimation 

approaches have been recently proposed by Wang, Iglesias, and Wooldridge (2013), Billé and 

Leorato (2019). Here, we focus the attention on the use of the SpatialProbitFit function in 

the ProbitSpatial package. 

A brief description of the Approximate MLE is as follows. First of all, one of the main problems in 

estimating both linear and nonlinear spatial models, especially with large dataset as it is typically 

the case in microeconometrics, is related to the repeated calculations of the determinats of 𝑛-

dimensional matrices, see e.g. Smirnov and Anselin (2001) and Pace and LeSage (2004). In 

addition, within spatial nonlinear probit models, a 𝑛-dimensional integral problem for the 

estimation of the parameters arises. In view of these features, there are two different approaches 

that has been proposed by Martinetti and Geniaux (2017): (i) maximization of the full log 

likelihood function by means of a multi-dimensional optimisation algorithm (ii) maximisation of 

the log likelihood conditional to 𝜌. They propose to approximate the multidimensional integral 

by the product of the univariate conditional probabilites 𝛷𝑛(𝑥1 ∈ 𝐴1, … , 𝑥𝑛 ∈ 𝐴𝑛) = 𝒫(𝑥1 ∈

𝐴1)∏ 𝒫𝑛
𝑖=2 (𝑥𝑖 ∈ 𝐴𝑖 ∣ {𝑥1 ∈ 𝐴1, … , 𝑥𝑖−1 ∈ 𝐴𝑖−1}). Then, by considering the Cholesky decomposition 

of the variance-covariance matrix 𝛴𝜈(𝜌,𝜆) = 𝐶𝐶
′, the interval limits are transformed 𝑆𝑖 = (𝑎𝑖

′, 𝑏𝑖
′) 

by taking advantage of the lower triangular matrix 𝐶. The algorithm iteratively substitutes the 



univariate conditional probabilities with the quantities �̃�𝑖 =
𝜙(𝑎𝑖

′)−𝜙(𝑏𝑖
′)

𝛷(𝑏𝑖
′)−𝛷(𝑎𝑖

′)
 and it ends when the 

probability of the last random variable is computed and the approximation 𝛷𝑛(𝑥1 ∈ 𝐴1, … , 𝑥𝑛 ∈

𝐴𝑛) ≈ ∏ (𝛷(𝑏𝑖
′) − 𝛷(𝑎𝑖

′))𝑛
𝑖=1  is reached. 

The algorithm starts with the computation of 𝑋∗ =
(𝐼−𝜌𝑊𝑛)

−1𝑋

√(∑ 𝛴𝑖𝑖
𝑛
𝑖=1 )

 where the matrix (𝐼 − 𝜌𝑊𝑛)
−1 is 

computed by a truncation of its Taylor approximation and a starting value of 𝜌. Then, the interval 

limits (𝑎𝑖, 𝑏𝑖) and (𝛷 (
𝑏𝑖

√(𝛴𝑖𝑖)
) − 𝛷 (

𝑎𝑖

√(𝛴𝑖𝑖)
)) are computed for each conditional probabilities 

starting from a random variable. By using the lower triangular matrix of 𝛴 they compute the 

transformed interval limits (𝑏𝑖 , 𝑎𝑖) and the quantities 𝑈𝑖 = 𝛷 (𝑏𝑖) − 𝛷(𝑎𝑖). Finally, the log 

likelihood function is simply the sum of each contribution log(𝑈𝑖). 

In the following subsection we implement the above estimation procedure in R to fit spatial 

probit models and to empirically explain their spatial marginal effects. 

4.1. Empirical application in Labour Economics 

The analysis of employment/unemployment rates at a more disaggregated geographical level has 

begun at least 20 years ago, see e.g. Pischke and Velling (1997). Not too long after, several 

researchers started to introduce in Labour Economics the concept of socio-economic distance and 

to use the spatial and spatio-temporal econometric techniques to deal with interdependences 

between countries/regions of the employment/unemployment rates, see Conley and Topa 

(2002), Patacchini and Zenou (2007), Schanne, Wapler, and Weyh (2010), Cueto, Mayor, and 

Suárez (2015), Halleck Vega and Elhorst (2016), Watson and Deller (2017), and Kosfeld and 

Dreger (2019), among others. 



In this section we analyse a data set that contain several information free available at the 

Eurostat website https://ec.europa.eu/eurostat/data/database. After some data 

manipulation, the data set consists of 312 observations (European regions at NUTS2 level) 

referred to 2016 year, with information on employment rates (employment, in %), GDP at current 

market price (gdp, measured in Euro per Inhabitant), education level of population aged 25-64 

(in %) for three different levels: (i) secondary school or lower (isced_02), (ii) high school or lower 

(isced_34), and (iii) degree, post degree, Ph.D. (isced_58). The involved countries are the 

following: Austria (AT), Belgium (BE), Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Germany 

(DE), Denmark (DK), Estonia (EE), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia 

(HR), Hungary (HU), Ireland (IE), Italy (IT), Lithuania (LT), Luxembourg (LU), Latvia (LV), 

Montenegro (ME), Macedonia (MK), Malta (MT), Netherlands (NL), Norway (NO), Poland (PL), 

Portugal (PT), Romania (RO), Serbia (RS), Sweden (SE), Slovenia (SI), Slovakia (SK), Turkey (TR), 

United Kingdom (UK). The aim of this section is to study the impact of the above-mentioned 

explanatory variables on a new binary variable, i.e. the employment status (bin.emp), at a 

regional level in 2016. In a recent study (Gazzola and Mazzacani 2019), the impact of language 

skills on the individual employment status within some European countries has been analysed 

through a probit model. In their paper there are also details on the use of the isced levels for 

education. 

Once the data from the Eurostat website have been read in R and after some data manipulation, 

we saved a dataframe with extension .RData. The function load is able to load the dataset called 

“Dataset.RData” specifying the right directory (path), while the function nrow calculates the 

number of rows of the dataframe that corresponds to the sample size 𝑛. The output can be seen 

by using the function head, which shows the first six rows. 



load("C:/Users/Anna Gloria/Dropbox/Handbook/Data/Dataset.RData") 
n <- nrow(data) 
n 

## [1] 312 

head(data) 

##   nuts_id country_id employment   gdp isced_02 isced_34 isced_58  long 

## 1    AT11         AT       74.1 28600     16.5     55.7     27.9 16.52 

## 2    AT12         AT       77.4 33300     14.7     55.1     30.2 15.75 

## 3    AT13         AT       69.7 49200     16.9     43.2     39.9 16.39 

## 4    AT21         AT       73.6 34200     10.6     60.0     29.4 13.88 

## 5    AT22         AT       75.3 36500     14.0     58.6     27.4 14.98 

## 6    AT31         AT       79.3 41600     15.7     55.3     29.1 13.95 

##     lat 

## 1 47.53 

## 2 48.24 

## 3 48.19 

## 4 46.77 

## 5 47.26 

## 6 48.15 

The dataset data already contains the spatial coordinates, i.e. longitude (long) and latitude (lat), 

of the spatial polygons (European regions). Since the spatial observations are polygons/areas, 

then the spatial coordinates correspond here to their centroids. After having installed a package 

through the code install.packages("name of the package"), we can easily upload it 

through the use of the function library. The function readOGR in the package rgdal is 

particularly useful to read and transform different types of OGR vector maps (shapefiles) into 

Spatial objects. Then, the function coordinates into the package sp is able to calculate the 

centroids from a Spatial (polygon) object as in the following 

library(rgdal) 
eu               <- readOGR("C:/Users/Anna 
Gloria/Dropbox/Handbook/Data/Shapefile/EU_reg.shp") 

## OGR data source with driver: ESRI Shapefile  

## Source: "C:\Users\Anna 

Gloria\Dropbox\Handbook\Data\Shapefile\EU_reg.shp", layer: "EU_reg" 

## with 312 features 

## It has 5 fields 



coords           <- coordinates(eu) 
colnames(coords) <- c("long","lat") 
head(coords) 

##        long      lat 

## 0  4.583496 50.66619 

## 1  4.028426 50.44180 

## 2  5.744833 50.51087 

## 3  5.529503 49.95737 

## 4 16.523298 47.53059 

## 5 15.747114 48.24467 

Finally, the function colnames provides column names. Figure 2 shows the employment rates 

(%) in 2016 for all the considered European regions. As we can observe, the majority of the 

highest values of the employment rates are associated to Northern and Central Europe, especially 

Germany, UK, Scandinavia. 

 



Figure 2 Employment Rates (%) in 2016 

Let us now move to the estimation procedure. To estimate a SAR(1)-probit model and a SAE(1)-

probit model of section 3, we consider the function SpatialProbitFit in the ProbitSpatial 

package. The dependent variable employment is a continuous variable, so we need to create a 

dicothomous dependent variable before estimating the spatial models. To this purpose, we use 

the mean of the European Area employment rate (EA19) as a threshold, that was equal to 70% in 

2016. So, if the employment rate in one European region is greater of equal than the EA19 mean 

value, then its binary dependent variable takes the value 1, otherwise 0. The definition of the 

binary variable (bin.emp) can be easily obtained by using the function ifelse in R. 

bin.emp <- ifelse(data$employment >= 70, 1, 0) 
data    <- data.frame(data,bin.emp) 

We first regress a standard probit model without the intercept by using the glm function and see 

the output through the function summary. 

fit     <- glm(bin.emp ~ gdp + isced_02 + isced_34 + isced_58 + 0,  
               family = binomial(link="probit"),data=data) 
summary(fit) 

##  

## Call: 

## glm(formula = bin.emp ~ gdp + isced_02 + isced_34 + isced_58 +  

##     0, family = binomial(link = "probit"), data = data) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -3.7458  -0.1808   0.2046   0.5790   2.4590   

##  

## Coefficients: 

##            Estimate Std. Error z value Pr(>|z|)     

## gdp       6.697e-05  1.110e-05   6.036 1.58e-09 *** 

## isced_02 -4.707e-02  6.361e-03  -7.401 1.36e-13 *** 

## isced_34  2.503e-03  4.219e-03   0.593    0.553     

## isced_58  2.832e-03  1.069e-02   0.265    0.791     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 



##  

##     Null deviance: 432.52  on 312  degrees of freedom 

## Residual deviance: 203.84  on 308  degrees of freedom 

## AIC: 211.84 

##  

## Number of Fisher Scoring iterations: 7 

Now consider the spatial probit model specifications. In order to fit a spatial model, we need to 

build our spatial weighting matrix. In this case we exploit the information of the geographical 

coordinates (centroids) of the spatial polygons, i.e. of the European regions. For this application 

we use the 𝑘-nearest neighbor criterion defined as follow. Let 𝑊 = {𝑤𝑖𝑗} be the spatial weighting 

matrix with elements equal to the weights among pairs of random variables 𝑦𝑖, 𝑦𝑗  for 𝑖, 𝑗 =

1, . . . , 𝑛, with 𝑛 the sample size, then 

{
𝑤𝑖𝑗 = 1 𝑖𝑓𝑓 𝑦𝑗 ∈ 𝒩𝑘
𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝒩𝑘 is the set of nearest random variables 𝑦𝑗  to 𝑦𝑖 defined by 𝑘. Finally, 𝑊 is row-

normalized such that ∑ 𝑤𝑖𝑗𝑗 = 1, ∀𝑖. 

To build our weighting matrix 𝑊 we first load the package spdep, see Bivand and Piras (2015). 

The function knearneigh provides a list of class 𝑘𝑛𝑛 with the information into the first member 

of the region number ids to define the nearest neighbours for each random variable (in this case 

𝑘 = 11). The knn2nb function transforms the object of class 𝑘𝑛𝑛 into an object of class 𝑛𝑏 

(neighbour list). The argument sym=T forces the weighting matrix to be symmmetric. The 

nb2mat function transforms, instead, an object of class 𝑛𝑏 into an 𝑛-dimensional weighting 

matrix. The argument style = "W" directly row-normalizes the weights, while the function 

as(,"CsparseMatrix") defines the weighting matrix to be sparse. Finally, the function dim 

provides information about the dimension of the spatial weighting matrix. 



library(spdep) 
knn11       <- knn2nb(knearneigh(cbind(data$long,data$lat), k=11),sym=T)    
Wknn_sparse <- as(nb2mat(knn11,style="W"),"CsparseMatrix") 
dim(Wknn_sparse) 

## [1] 312 312 

We can now load the package ProbitSpatial and use the function SpatialProbitFit inside. 

This function is able to fit the SAR(1)-probit model or the SAE(1)-probit (also SEM-probit) model 

defined in section 3. The argument DGP= specifies the type of model, while W= and method= 

provide information on the weighting matrix and the estimation method, respectively. For details 

use the help function in R as ?SpatialProbitFit. 

library(ProbitSpatial) 
fit.sp1 <- SpatialProbitFit(bin.emp ~ gdp + isced_02 + isced_34 + isced_58 + 0,  
                            data=data, W=Wknn_sparse, DGP='SAR', method="full-
lik")  

## St. dev. of beta conditional on rho and Lik-ratio of rho  

##               Estimate   Std. Error    z-value     Pr(>|z|) 

## gdp       3.754825e-05 6.839877e-06  5.4896086 4.028254e-08 

## isced_02 -3.114469e-02 4.231689e-03 -7.3598718 1.840750e-13 

## isced_34 -1.523355e-03 2.993939e-03 -0.5088129 6.108834e-01 

## isced_58  9.102693e-03 7.938271e-03  1.1466846 2.515120e-01 

## lambda    5.084473e-01           NA 19.6485634 9.307326e-06 

fit.sp2 <- SpatialProbitFit(bin.emp ~ gdp + isced_02 + isced_34 + isced_58 + 0,  
                            data=data, W=Wknn_sparse, DGP='SEM', method="full-
lik") 

## St. dev. of beta conditional on rho and Lik-ratio of rho  

##               Estimate   Std. Error    z-value     Pr(>|z|) 

## gdp       7.476664e-05 1.414341e-05  5.2863230 1.247994e-07 

## isced_02 -5.220912e-02 7.059491e-03 -7.3955937 1.407763e-13 

## isced_34  1.445296e-02 4.171657e-03  3.4645615 5.310968e-04 

## isced_58 -9.685959e-03 1.192018e-02 -0.8125681 4.164657e-01 

## rho       6.372373e-01           NA 13.5257220 2.353158e-04 

Table 1 shows the estimation results of the standard probit model, the SAR(1)-probit model and 

the SAE(1)-probit model, respectively. Regardless of the specific European region, the variables 

gdp and isced_02 are statistically significant at 𝛼 = 0.001 significance level for all the three model 

specifications. This reflects on an higher probability of being employed for higher values of gdp 



due to the positive sign of its coefficient and a lower probability of being employed for higher 

percentage values of people with a secondary school education level at most due to its negative 

coefficient. 

Table 1 Estimation Results 

 Standard probit SAR(1)-probit SAE(1)-probit 

gdp 0.00007 0.00004 0.00007 

s.e. 0.00001 0.00001 0.00001 

isced_02 -0.04707 -0.03114 -0.05221 

s.e. 0.00636 0.00423 0.00704 

isced_34 0.00250 -0.00152 0.01445 

s.e. 0.00422 0.00299 0.00415 

isced_58 0.00283 0.00910 -0.00969 

s.e. 0.01069 0.00794 0.01186 

rho NA 0.50845 NA 

s.e. NA NA NA 

lambda NA NA 0.63724 

s.e. NA NA NA 

loglik -101.92212 92.09784 95.15926 

Specifically for the spatial models, both the estimated autoregressive coefficients (�̂� , �̂�) are 

significant. Their estimates are quite high with respect to the upper bound 1, highlighting an 

important role played by spatial dependence. Moreover, due to their positive signs, both the 



autoregressive processes in the dependent variables and in the error terms are not inhibitory, 

leading to a positive interconnection (clustering process) between units over space. From an 

economic point of view, the higher is the probability of being employed in one region the more is 

the probability of being employed in its neighbourhood, and viceversa. Then, these effects 

propagate with a decreasing magnitude through all the other regions. 

Let now consider the marginal effects. As explained in subsection 3.1, one way to calculate the 

marginal effects in probit models consists in evaluating the average of the individual (local) 

marginal effects with respect to each regressor of interest. In a spatial context, these local effects 

depend on the estimated coefficients (�̂� , 𝜌 , �̂�), according to the type of model specification. The 

result with respect to each regressor is a square matrix of impacts, where the diagonal elements 

are the direct effects whereas the off-diagonal elements are the indirect effects. The average of 

these elements provide a summary measure of the impact due directly to the regressor and a 

summary measure due to the neighbouring dependent variables, respectively. In the following 

we can observe these average effects for the SAR(1)-probit model with respect to each 

regressors. 

m.effects.sar <- rbind(av.dir.eff,av.ind.eff,av.tot.eff) 
rownames(m.effects.sar) <- c("direct","indirect","total") 
colnames(m.effects.sar) <- c("gdp","isced_02","isced_34","isced_58") 
m.effects.sar  

##                   gdp     isced_02      isced_34    isced_58 

## direct   5.836276e-06 -0.004840945 -0.0002367812 0.001414868 

## indirect 5.699937e-06 -0.004727858 -0.0002312499 0.001381816 

## total    1.153621e-05 -0.009568804 -0.0004680311 0.002796685 

There is a clear balance between average direct and average indirect effects for all the considered 

regressors, while the greatest total impact in absolute value is due to isced_02. Note that, 

although some regressor coefficients are not significant, like isced_34 and isced_58 in this case, 



the average direct, indirect and total impacts should be considered since that the autoregressive 

coefficent 𝜌 is instead significant and directly affects all the marginal effects. 

 

Figure 3 Local Marginal Effects from the SAR(1)-probit model 

The same occurs for the SAE(1)-probit specification, where in this case the impacts due to the 

spillover effects seem to be more pronounced. 

m.effects.sae <- rbind(av.dir.eff,av.ind.eff,av.tot.eff) 
rownames(m.effects.sae) <- c("direct","indirect","total") 
colnames(m.effects.sae) <- c("gdp","isced_02","isced_34","isced_58") 
m.effects.sae 



##                   gdp     isced_02     isced_34      isced_58 

## direct   3.985610e-06 -0.002783129 0.0007704489 -0.0005163326 

## indirect 6.395970e-06 -0.004466270 0.0012363899 -0.0008285928 

## total    1.038158e-05 -0.007249399 0.0020068387 -0.0013449255 

 

Figure 4 Local Marginal Effects from the SAE(1)-probit model 

Figures 3 and 4 show the local (total) marginal effects from a SAR(1)-probit model and a SAE(1)-

probit model, respectively, sorted from low to high values. In this way, we are able to evaluate 

the range of variation of the total marginal effects for different regions and compare these values 

with the average one (blue line). For instance, it is interesting to note that in Figure 4 the 

distributions of the marginal effects are more asymmetric than the ones in Figure 3. 



Figures 5 and 6 show, instead, the local marginal effects from a SAR(1)-probit model and a 

SAE(1)-probit model, respectively, on the different European regions. The point in this case is to 

geographically identify regions with greater or lower marginal impacts. As we can observe from 

Figure 5, the positive total impact of the gdp on employment rates reach its lowest values in the 

regions within Scandinavia, UK, Germany and Turkey. Although the magnitude is different 

according to different regressors, the same occurs for the variable isced_58. On the contrary, quite 

the opposite can be found for the variable isced_02 and isced_34, because of the negative sign in 

these cases. A plausible conclusion might be that both the direct effects from the regressors and 

the indirect effects due to neighboring regions have generally a lower impact in Scandinavia, UK, 

Germany and Turkey, with respect to the other European countries. It is finally worth noting that, 

one can be interested in evaluating only the direct or the indirect effects, although both of them 

depend on the spatial dependence coefficient. Careful attention should be paid on the proper 

interpretation of the marginal effects, since they are the link between estimation results and 

policy interventions. 



 

Figure 5 Local Total Marginal Effects from the SAR(1)-probit model in Europe: (a) gdp, (b) isced_02, 

(c) isced_34, (d) isced_58. 



 

Figure 6 Local Total Marginal Effects from the SAE(1)-probit model in Europe: (a) gdp, (b) isced_02, 

(c) isced_34, (d) isced_58. 
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