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Partial ML Estimation for Spatial Autoregressive Nonlinear Probit

Models with Autoregressive Disturbances
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bDepartment of Economics, Management, and Quantitative Methods, University of Milan, Italy

Abstract

In this paper, we propose a Partial MLE (PMLE) for a general spatial nonlinear probit model, i.e., SARAR(1,1)

probit, defined through a SARAR(1,1) latent linear model. This model encompasses both the SAE(1) probit

and the more interesting SAR(1) probit models, already considered in the literature. We provide a complete

asymptotic analysis of our PMLE as well as appropriate definitions of the marginal effects. Moreover, we address

the issue of the choice of the groups (couples, in our case) by proposing an algorithm based on a minimum

KL divergence problem. Finite sample properties of the PMLE are studied through extensive Monte Carlo

simulations. In particular, we consider both sparse and dense matrices for the true spatial model specifications,

and cases of model misspecification given wrong assumed weighting matrices. In a real data example, we finally

also compare our estimator with different MLE–based estimators and with the Bayesian approach.

Keywords: Spatial autoregressive–regressive probit model, Nonlinear modeling, SARAR, Partial maximum

likelihood, Marginal effects.

JEL codes: C13,C31,C35,C51.

1. Introduction

Estimation theory and inference for econometric models that deal with spatially–distributed data differ

substantially from the usual techniques of standard statistics/econometrics; see Whittle (1954), Besag (1972),

Besag (1974), Ord (1975), and Cliff and Ord (1981). Further, in spatial econometrics (Anselin, 1988), a large

number of theoretical papers highlight the added difficulties in deriving the asymptotic properties of a sequence

of extremum estimators, i.e., GMM, quasi–MLE, etc.; see Kelejian and Prucha (1998), Lee (2003), Lee (2004),

and Kelejian and Prucha (2010). The bidirectional nature of spatial dependence, leading to a simultaneous

specification rather than the conditional specification typical of spatial autoregressive models (Sain and Cressie,

2007), is one of the sources of these complications. Anyway, being that spatial dependence is simply a special
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case of cross–sectional dependence (Conley, 1999), the way by which spatial econometric models are typically

specified and parametrized is convenient as long as we can exploit the information gathered not only about the

observed values but also on the locations of the endogenous random variables.

Probabilistic choice theory and random utility models (RUM) have a long history in economics – see Manski

(1981) – with, in particular, the important Nobel contribution by McFadden (2001). Modeling spatial discrete

choice (and, in general, limited dependent) variables is becoming a challenging work in economics, see Wang

et al. (2013), Qu and Lee (2013), Qu and Lee (2012), Lambert et al. (2010), Smirnov (2010), and Xu and Lee

(2015). Nonlinear models, like probit/logit models, are useful to analyze endogenous dichotomous dependent

variables, but the specified functional form is nonlinear in parameters, and their estimation requires iterative

optimization procedures. To make matters worse, spatial dependence adds further complexity in the estimation

of parameters.

In fact, one issue is that the unknown form of spatial dependence produces inconsistent structural estimates

in a discrete choice framework; see, e.g., McMillen (1995) and Breslaw (2002). Indeed, the parametrization of

spatial autoregressive models with a finite unknown number of parameters (i.e., the autocorrelated coefficients)

implies at least (spatial) heteroskedasticity, which in turn leads to inconsistency of the standard probit estimator

because of misspecification of the functional form (i.e., Bernoulli distributions). First attempts to deal with

the implied heteroskedasticity are the contributions by Case (1992) and McMillen (1992). Within a generalized

method of moments (GMM) framework, we recognize the works by Pinkse and Slade (1998) as well as Klier and

McMillen (2008), where the latter proposed a linearized GMM estimator that is feasible even with moderate

to large sample sizes, but it is reasonable as long as the autocorrelated coefficient is relatively small.

From a computational point of view, two major problems must be dealt with. First, direct optimization

procedures require maximum simulated likelihood (MSL) estimators (Beron et al., 2003), which are time–

consuming in large data sets because of the implied computational burden in evaluating an n–dimensional

integral; see Fleming (2004). Second, the optimization of the objective function requires repeated calculations

of the inverses of n–dimensional matrices. These also preclude an easy extension to panel data applications,

whose diffusion is recently experiencing a massive increase; see, e.g., Smith and LeSage (2004), Lee and Yu

(2010), Kapoor et al. (2007), Lee and Yu (2016), and Baltagi et al. (2017). Approximate and conditional

maximum likelihood estimators – in the works by Pace and LeSage (2011), Mozharovskyi and Vogler (2016),

and Martinetti and Geniaux (2017) – are one way to cope with these problems. However, current computational

solutions do not provide an asymptotic analysis of their MLE–based estimators. Moreover, they heavily rely

on the sparsity of weight matrices, thus cutting out different spatial patterns. One of the aims of the present

paper is to fill this gap: on the one hand, we propose a likelihood–based estimator, whose implementation is

not subordinate to the sparsity of the weight matrix; on the other hand, we provide a comprehensive analysis

of its asymptotic properties.

Composite MLEs have been proved to be computationally tractable and statistically consistent; see Heagerty
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and Lele (1998), Gao and Song (2010), Bhat (2011), and Bai et al. (2014). In spatial econometrics, Wang

et al. (2013) have recently proposed a partial maximum likelihood estimator (PMLE) for a spatial (first–

order) autoregressive error probit (SAE(1) probit) model by dividing observations into several small groups

(i.e., couples of spatially distributed random variables) in which adjacent observations belonged to a single

group, and bivariate normal distributions were specified within each group; see Arbia (2014) in the linear case.

Two limits in the work of Wang et al. (2013) are worth mentioning. First, as Ibragimov and Müller (2010)

stressed, some a priori knowledge about the correlation structure is required to make a reasonable partition

(i.e., clustering) of the data in a finite number of groups. However, statistically speaking, the optimal choice of

groups is not known a priori. Second, a spatial (first–order) autoregressive probit (SAR(1) probit) model, i.e.,

with lagged dependent variables, is generally recognized to be a more interesting spatial model specification

because the autocorrelation coefficient enters in both the mean and the covariance structure when considering

the implied reduced form model. For instance, in empirical applications within social networks/interactions, a

SAR(1) probit is often preferable, because a direct information on interactions among economic agents’ choices

is measurable.

Therefore, another aim of our work is to address precisely these points. First of all, we generalize the

PMLE approach of Wang et al. (2013) to the wider family of spatial (first–order) autoregressive–regressive

probit models with (first–order) autoregressive disturbances (SARAR(1,1) probit), with a particular focus on

the SAR(1) probit nested specification. Further, we propose a Kullback-Leibler (KL) divergence approach for

the choice of couples aimed at reducing the expected loss of statistical information. The definition of this

criterion can be adjusted to apply to different models provided the error distribution is Gaussian. We point

out that, despite the fact that SARAR(1,1) probit has been known for a while in the specialized literature,

to the best of our knowledge, very little attention has been paid to it mainly because of theoretical and

computational complications. Nevertheless, it is not uncommon that real data suggest the presence of an

autoregressive structure both in the errors and in the latent dependent variable, as we show in our application

(see Section 8).

We assess the finite sample properties of our PMLE and derive asymptotic results under the increasing

domain assumption. In particular, we propose two direct estimation procedures of the asymptotic variance–

covariance matrix, and parametric bootstrap approaches. We also present proper definitions of the marginal

effects, discussed through extensive Monte Carlo simulations. In our simulations, we consider both sparse and

dense matrices for the specification of the true spatial models. Robustness checks on the misspecification of

the spatial weighting matrices are also included. Finally, a comparison between our PMLE and alternative

MLE–based estimators and the Bayesian approach of LeSage et al. (2011) is also included in the empirical

application. All these figures make our work substantially different from that proposed by Wang et al. (2013).

The rest of the paper is organized as follows. Section 2 specifies a SARAR(1,1) probit model, the

assumptions behind it, and its nested model specifications. Section 3 describes our PMLE based on bivariate
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distributions. In section 4, we propose our algorithm for the choice of couples. Section 5 reports the asymptotic

properties. Section 6 defines the marginal effects. Section 7 evaluates the finite sample properties of our PMLE

with respect to both the parameters and the marginal impacts. Section 8 proposes to replicate the empirical

application of business recovery in the aftermath of Hurricane Katrina by LeSage et al. (2011) and compare

our PMLE with different MLE–based and Bayesian estimators. Finally, section 9 concludes this study.

2. Model specification

Let yn be an n–dimensional stochastic vector of spatial binary variables located on a possibly unevenly

spaced lattice Z ⊆ <n. A spatial (first–order) autoregressive–regressive probit model with (first–order)

autoregressive disturbances (SARAR(1,1) probit) is defined as

y∗n = ρWny∗n + Xnβ + un, un = λMnun + εn, εn ∼ Nn
(
0n, σ

2
εIn
)

yn = In (y∗n > 0n) (1)

where y∗n is the n–dimensional vector of latent continuous dependent variables, yn is the n–dimensional

vector of observed binary dependent variables defined by the n–dimensional indicator function In (y∗n > 0) =

(I(y∗1 > 0), . . . , I(y∗n > 0))
′
, Xn is the n by k matrix of exogenous variables including a constant term, Wn and

Mn are n–dimensional spatial weighting matrices of known constants, θ =
(
β′, ρ, λ

)′
is a (k + 2)–dimensional

parameter vector with autoregressive coefficients ρ and λ, and εn is a multivariate normal vector of innovations

with zero mean and finite variance σ2
ε < ∞. Latent variables are then assumed to be linear functions of the

regressors, but only a binary transformation is observed that makes the overall model nonlinear in parameters.

The variance σ2
ε is usually set to 1 for identification. Additional conditions are needed for the identification

of (ρ, λ) in a SARAR(1,1) probit model. Specifically, Mn and Wn are assumed to be different, thus allowing

for different mechanisms to govern spatial correlation between shocks affecting the latent model and spatial

dependence of the latent variables themselves. Then the entire spatial dependence can be easily disentangled.

It is notable that when Wn = Mn, distinguishing among the two spatial effects may be difficult, with possible

identification problems of the autoregressive parameters. In this particular case, a necessary condition to

ensure identifiability of the linear model is that the covariates make a material contribution toward explaining

variation in the dependent variable, i.e., at least one coefficient βj j = 2, . . . , k is statistically significant.

The inclusion of spatially lagged dependent variables Wny∗n typically causes an endogeneity problem. This

problem is referred to the bidirectional nature of spatial dependence in which each site – say i – is a second–

order neighbor of itself, implying that spatial spillover effects have the important meaning of feedback/indirect

effects also on the site where the shock may have had origin. The problem also makes the overall model a

system of n simultaneous equations (one for each random variable in space), with the consequence that spatial

autoregressive models cannot be viewed as simple extensions of natural recursive time–series econometric
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models. These types of spatial models are then multivariate by definition, with the peculiarity of having

statistical information coming from one observation for each random variable in space in a cross–sectional

framework.

To ensure stable spatial processes, we must introduce some assumptions in line with Kelejian and Prucha

(2010). Let us first recall the following result (see Lemma 1 in Kelejian and Prucha (2010)).

Lemma 2.1. Let τWn and τMn denote the spectral radius of the square n–dimensional Wn and Mn matrices,

i.e.:

τWn
= max{|ω1|, ..., |ωn|} and τMn

= max{|m1|, ..., |mn|}, where ω1, ..., ωn and m1, ...,mn are the eigenvalues

of Wn and Mn, respectively. Then, Aρ := (In − ρWn) and Bλ := (In − λMn) are nonsingular for all values

of ρ in the interval (−1/τWn , 1/τWn) and λ in the interval (−1/τMn , 1/τMn).

Assumption 1. (a) All diagonal elements of Wn and Mn are zero. (b) ρ ∈ (−1/τWn
, 1/τWn

) and

λ ∈ (−1/τMn
, 1/τMn

).

Assumption 1(a) means that each spatial unit is not viewed as its own neighbor, Assumption 1(b)

defines the parameter spaces of the autoregressive coefficients as functions of the spectral radius defined by

Lemma 2.1. Under Assumption 1(b) the matrices Aρ and Bλ admit an infinite series representation (f.i.

A−1
ρ =

∑∞
k=0 ρ

kWk
n), whereas Assumption 1(b) and Lemma 2.1 ensure that the model in equation (1) has

a reduced form. Then if we interpret the model in (1) as an equilibrium relationship – see Billé and Arbia

(2019) – this choice of the parameter space rules out unstable Nash equilibria. Note that, if all the eigenvalues

of Wn (resp. Mn) are real, which is the case for symmetric weighting matrices, and (ω < 0, ω > 0), where

ω = min{ω1, ..., ωn} and ω = max{ω1, ..., ωn}, we are in the particular case in which ρ (resp. λ) lies in the

interval (1/ω, 1/ω) (see Kelejian and Prucha (2010), note 6). Let us now recall that row and column sum

norms of a matrix A are given, respectively, by ‖A‖∞ = maxi
∑
j |aij | and ‖A‖1 = maxj

∑
i |aij |.

Assumption 2. Matrices Wn and Mn and (In − ρWn)
−1

and (In − λMn)
−1

are uniformly bounded in both

row and column sum norms.

Assumption 3. Elements of Xn are uniformly bounded constants, Xn has full column rank, and

limn→∞ (X′nXn) /n exists and is nonsingular.

Assumption 3 assumes the regressors to be fixed bounded constant, which is not very common in

applications. The standard way to cope with randomness is to request the limit in Assumption 3 to be satisfied

in mean. In this case, all results must be read as conditional on a bounded realization X(ω) = {Xn}n≥1

of the multivariate spatial process. Assumption 2 is equivalent to Assumption 5 in Lee (2004) and plays a

fundamental role in the asymptotic properties of estimators, by guaranteeing, e.g., the boundedness of the

variances of the latent variables y∗n.
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Having both rows and columns of Wn and Mn uniformly bounded in absolute value as n goes to infinity

ensures that the correlation between two spatial units should converge to zero as the distance separating

them increases to infinity. This uniform boundedness assumption is generally a condition to limit the spatial

correlation to a manageable degree and to ensure that the spatial process is not explosive. It is further simply

a way to shrink some parameters of the variance–covariance matrix to zero, especially if a sparse matrix is

assumed to be the true one generating the underlying spatial process.

It must be pointed out that, if A has a row sum norm equal to 1, then ‖Ak‖∞ = 1, for every k ≥ 1,

and therefore, a standardized row sum norm of, e.g., Wn, readily implies the same property for A−1
ρ . This

is one of the reasons why the matrices Wn and Mn are often row–standardized, i.e., they are row–stochastic

matrices. Sometimes an alternative standardization rule based on spectral normalization could be preferable

because it guarantees the equivalence between the original spatial structural model and the model obtained

from normalizing the Wn and Mn weighting matrices; see Kelejian and Prucha (2010). However, it must be

pointed out that a matrix can be bounded in a spectral norm but unbounded in row or column sum norms,

which means that spectral normalization of Wn is not in general a sufficient condition for Assumption 2. In

our paper, we focus on row–standardized weight matrices, but we also consider spectral normalization. More

details on the definition of the weight matrices are given in section 7.

Given the aforementioned simultaneous nature of spatial autoregressive processes, spatial models are

typically specified in reduced forms. Under the above regularity conditions and assumptions, the structural

model in (1) can be written in reduced form as

y∗n = A−1
ρ Xnβ + A−1

ρ un = A−1
ρ Xnβ + A−1

ρ B−1
λ εn = A−1

ρ Xnβ + νn, νn ∼ Nn (0n,Σν)

yn = In (y∗n > 0n) (2)

where νn = A−1
ρ B−1

λ εn and Σν := Σν(ρ,λ) = E [νnν
′
n] = σ2

εA
−1
ρ B−1

λ B−1
λ

′
A−1
ρ
′

with σ2
ε = 1 for identification.

From the reduced form in equation (2), we finally obtain conditional expected value and variances, for all

i = 1, . . . , n:

E (yi) = P (yi = 1) = P
(
{νn}i > −

{
A−1
ρ Xnβ

}
i

)
= Φ

(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
)

Var (yi) = Φ
(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
) [

1− Φ
(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
)]

(3)

where {·}i is the i–th element of the vector in brackets and {·}ii is the i–th diagonal component of the matrix

in brackets.

2.1. Nested model specifications

Two widely used submodels can be specified starting from equation (1): the SAR(1) probit model by letting

λ = 0 and the SAE(1) probit model by letting ρ = 0.
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(SAR) y∗n = ρWny∗n + Xnβ + εn, εn ∼ Nn (0n, In) , yn = In (y∗n > 0n) (4)

(SAE) y∗n = Xnβ + un, un = λMnun + εn, εn ∼ Nn (0n, In) , yn = In (y∗n > 0n) (5)

The former is generally considered more interesting for several reasons. From a statistical point of view, the

autocorrelation coefficient ρ summarizes the information of a “direct” dependence/interaction structure among

the random variables of interest, whereas λ captures the intensity of the dependence structure implied by the

disturbances/shocks, so that they “indirectly” have an impact on the latent dependent variables. Moreover,

for linear specifications, ρ enters in both the mean and the variance–covariance structure of the model, whereas

λ enters only in the variance–covariance matrix. However, a SAE(1) probit model can possibly avoid the

inconsistency problem, which does not arise in the spatial linear case for the same model specification. Indeed,

apart from information that comes from the economic theory, a SAE(1) model produces only more efficient

estimates in the linear case. We refer to Appendix D for more details on this issue. Finally, it is worth noting

that alternative non–nested model specifications, e.g., spatial Durbin models, within nonlinear specifications

can be defined, and the reader is referred to Billé and Arbia (2019).

3. Partial ML estimation

The main problem in estimating the model in equation (1) – or its subspecifications – via MLE is the need

of numerical approximation of n–dimensional integrals, which are time–consuming even with moderate sample

sizes. In spatial linear autoregressive models, the GMM approach is preferred to MLE because of computational

tractability. However, current GMM approaches for spatial nonlinear models are either computationally

intractable (Pinkse and Slade, 1998) or based on a linear approximation (Klier and McMillen, 2008), which is

not feasible for higher autocorrelation coefficients. In this section, we develop the theory of the partial MLE

for a SARAR(1,1) probit model with a particular emphasis on the SAR(1) probit case, which is consistent

and computationally more feasible than the above numerical approximations. Computational issues on the

estimation procedure can be found in Appendix C. Throughout this section, all indices n in vectors and

matrices are omitted to ease the notation.

We start by considering the SARAR(1,1) probit model specified in equations (1) and (2) and show later

the results to the SAR(1) probit model in equation (4). As already pointed out in section 2, the major

difference relative to the model considered in Wang et al. (2013) consists of the fact that both the mean and

the variance of the bivariate distribution of the latent variables depend on the parameter ρ through the matrix
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A−1
ρ = (I− ρW)

−1
. Thus, the probabilities Pr (yg1 = d1, yg2 = d2 | X) for every couple g ≡ {g1, g2} and

d1, d2 ∈ {0, 1}2, depend in a much more complex way on the weight matrix and on the parameter. Although

we explicitly refer to partial loglikelihood based on bivariate marginals, most of the results of this section and

section 5 can be straightforwardly adapted to an r–dimensional partial distribution, with r > 2. The algorithm

presented in section 4 and the formulas of the score vectors given in the supplementary appendix are instead

specific to couples.

Throughout this section, we are assuming that the couples g = 1, . . . , G are given (for example, g1 = 2g−1,

g2 = 2g). We will discuss in more detail criteria for the choice of couples in section 4. Now consider groups

(couples) indexed by g = 1, . . . , G. From the model in equation (4), for the units (g1, g2) of a generic group g,

we have yg1 = I{y∗g1 > 0} and yg2 = I{y∗g2 > 0}, where

y∗g1 = {A−1
ρ Xβ}g1 + νg1

y∗g2 = {A−1
ρ Xβ}g2 + νg2

and where ν = A−1
ρ B−1

λ ε ∼ N
(
0,Σν(ρ,λ)

)
.

In the following, we write the shortened form Σ for Σν(ρ,λ), leaving the dependence on ν, and so on (ρ, λ),

implicit in the formula. Moreover, we denote by Σg the 2× 2 block corresponding to the variance covariance

matrix of νg:

Σg =

 σ2
g1 σg1,g2

σg1,g2 σ2
g2

 .

Further, we write Xρ = A−1
ρ X with rows xρ,· and Xρ,g = [x′ρ,g1 ,x

′
ρ,g2 ]′. It is now easy to find, for all

d1, d2 ∈ {0, 1}2, the probabilities:

pg(d1, d2) = P (yg1 = d1, yg2 = d2) = P (yg1 = d1)P (yg2 = d2 | yg1 = d1) .

For any g = 1, . . . , G, let us define the functions (implicit in ρ, λ, and β)

ϕ1,g(u) =
xρ,g1β + u

σg1,g2
σ2
g2√

σ2
g1 − σ2

g1,g2/σ
2
g2

and ϕ2,g(u) =
xρ,g2β + u

σg1,g2
σ2
g1√

σ2
g2 − σ2

g1,g2/σ
2
g1

, (6)

and sgi = 2(di − 1/2).

Theorem 3.1. The joint probabilities pg(d1, d2) are given by:

pg (d1, d2) =

∫
{sg1u>−sg1xρ,g1β}

1

σg1
φ

(
u

σg1

)
Φ (sg2ϕ2,g(u)) du

= Pr {sg1Zg1 > sg1xρ,g1β, sg2Zg2 > sg2xρ,g2β}
(7)

where Z = (Zg1 , Zg2) ∼ N (0,Σg).
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The proof of Theorem 3.1 can be found in the supplemental material. Using Theorem 3.1, we can write the

partial loglikelihood function of the spatial probit model as

`n (θ; y,X) =
1

G

G∑
g=1

log (pg (yg1yg2)) . (8)

The partial loglikelihood for estimating a SAR(1) probit model or the SAE(1) probit considered in Wang et al.

(2013) are also given by equation (8), with probabilities defined through equation (7) in the particular cases

of λ = 0 or ρ = 0, respectively. Specifically, in a SAR(1) probit model, the matrix Σ now depends only on ρ,

i.e., Σ := Σu(ρ) = A−1
ρ A−1

ρ
′
. The score vector is ∇ (θ; y,X) =

(
∇β (θ)

′
,∇ρ (θ) ,∇λ (θ)

)′
. In both cases, we

write ∇ (θ; y,X) = 1
G

∑
g∇

g
θ (θ; yg), where

∇gθ (θ) =
∂pg (yg1yg2) /∂θ

pg (yg1yg2)
, (9)

and where formulas for
pg(d1,d2)

∂β
,
pg(d1,d2)

∂ρ and
pg(d1,d2)

∂λ are can be found in the supplementary material for

both the SAR and SARAR–probit specifications.

Equations (7), (8), and (9) give the exact formulas for the bivariate probabilities, the partial loglikelihood,

and the score vector for the models in equations (1) or (4). By definition, they all depend on implicit functions

of the matrix A−1
ρ (and B−1

λ ) through both Xρ and the elements σg1 , σg2 , and σg1,g2 . It is a rather common

practice to approximate the inversion of Aρ (and Bλ) by a truncated sum: A−1
ρ ≈

∑q
k=0 ρ

kWk, q < ∞;

see, e.g., Kelejian et al. (2004). Despite that this has become one of the conventional approaches, no great

attention has been paid so far to conditions ensuring the computation of a finite sum approximation and

of the exact inverse to give (asymptotically) the same estimates. Intuitively, since the approximation error

‖A−1
ρ −

∑q
k=0 ρ

kWk‖ ≤ O(|ρτ̄W |q+1), if the number of terms q of the finite order approximation is large

enough, the difference between the estimates obtained by these two approaches should be negligible. We will

address this issue in more detail in section 5, where we study the asymptotic behavior of the PMLE.

4. The choice of couples of the spatial data

The choice of the G couples to be considered in the computation of the partial ML estimation is a potentially

critical part of the procedure. In fact, the definition of the partial MLE only exploits the limited information

of the two–dimensional distribution of the latent variables. Different associations of couples can, in principle,

determine relevant differences in terms of information loss. In principle, it is auspicable to select couples that

guarantee a minimal loss. However, since the number of possible ways to choose couples from n = 2G units

corresponding to different partial loglikelihood functions is huge (specifically, it is (2G − 1)!! = (2G)!/G!2G),

a brute force approach, based on comparing the partial loglikelihood for all different groupings, is clearly

unmanageable. The aim of this section is to propose an algorithm for the choice of G couples for which the

expected information loss is the lowest possible value. The procedure we propose is based on an algorithm
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from graph theory that is known to have a complexity equal, at most, to G3.

Any selection of couples can be seen as a permutation problem: instead of extracting without replacement

the elements of each couples, we can always choose the consecutive couples (2g − 1, 2g) but change their

composition through the permutation of the units. Then finding the best selection of couples amounts to

finding the best permutation of n units relatively to a specified optimality criterion. In line with this, it is

convenient to introduce the following notation. Let π : π (1, . . . , n) = (i1, . . . , in) be a permutation map. Each

π defines a unique set of couples by

{(π (1) , π (2)) , . . . , (π (2g − 1)π (2g)) , . . . , (π (2G− 1) , π (2G))} = {(i1, i2) , . . . , (i2g−1, i2g) , . . . , (i2G−1, i2G)}. (10)

We further denote by Pπ the permutation matrix corresponding to π, namely, Pπ = (eπ(1), . . . , eπ(n))
′,

where ej is the jth canonical column vector. Thus, Pπ transforms a vector z = (z1, . . . , zn)′ into Pπz =

(zπ(1), . . . , zπ(n))
′. Then the reduced model in equation (2) can be rewritten as

Pπy∗ = PπA−1
ρ Xβ + Pπν, ν ∼ Nn (0n,Σ)

Pπy = In (Pπy∗ > 0n) (11)

Note that from the assumptions of the model in equation (1) defined in section 2, we obtain Pπν ∼

N (0,PπΣP′π), where P′π = Pπ−1 = P−1
π , and we use the short notation Σ for the SARAR(1,1) probit

covariance matrix. Finally, we will use the notation Σπ for the diagonal block matrix with diagonal blocks of

size 2× 2 as in PπΣP′π.

In this section, we propose a criterion that gives us a (not necessarily unique) permutation map π∗ solving a

minimum KL divergence problem. Let Pθ be the conditional probability of the n–tuple (y1, . . . , yn) and Pπθ the

conditional probability obtained by assuming that consecutive couples from (10) are independent. Specifically,

using the notation introduced in Theorem 3.1,

Pθ(d) = Pr (y1 = d1, . . . , yn = dn) = Pr (s1Z1 > s1xρ,1β, . . . , snZn > snxρ,nβ) .

and Pπθ = pπ1,θ × pπ2,θ × · · · × pπG,θ, where each pπg,θ, consistently with equation (7), is equal to

Pr
{
sπ(2g−1)Z1 > sπ(2g−1)xρ,π(2g−1)β, sπ(2g)Z2 > sπ(2g)xρ,π(2g)β

}
.

In particular, we write P0 and Pπ0 if θ = θ0. Our idea is to find a permutation that minimizes the KL divergence

between Pπ0 and P0, namely, to minimize

KL(Pπ0 ‖P0) =
∑

d∈{0,1}n
Pπ0 (d) log

Pπ0 (d)

P0(d)
, (12)

over all the possible permutations π.

The computation of the term Pr(y = d) = P0(d) is unfeasible because it involves an n–dimensional

10



integration. Thus, we propose to minimize the KL divergence between the continuous Gaussian distributions

of the latent variables that generate Pπ0 and P0, which we denote by fπ0 (n–variate Gaussian density with

pairwise independent components) and f0 (the full n–variate Gaussian density from the model in equation (1)),

respectively. Let Πn be the set of all permutations of n units corresponding to distinct bivariate distributions.

Our algorithm is based on the following result:

Theorem 4.1. (i) For every π ∈ Πn and θ ∈ Θ, KL(Pπθ ||Pθ) ≤ KL(fπθ ||fθ).

(ii) For any θ = (β, ρ, λ) ∈ Θ, under model (1),

arg min
π
KL(fπθ ||fθ) = arg min

π∈Π

G∑
g=1

(b(π(2g − 1), π(2g))− log(σ̄(π(2g − 1), π(2g))) (13)

where b(i, j) = σ∗(i, j)σ(j, i) + σ∗(j, i)σ(j, i), σ̄(i, j) = σ(i, i)σ(j, j)− σ(i, j)σ(j, i), σ(i, j) is the (i, j)–th

component of Σ and σ∗(i, j) is the (i, j)–th component of Σ−1.

Theorem 4.1(i) suggests that (13) can be viewed as a minimax solution to the unfeasible problem of minimizing

(12). Theorem 4.1(ii) instead transforms the objective function into the sum of the contributions of all couples.

This helps define a procedure based on the solution of a maximum weighted matching problem in a general

graph. Such a matching is the set of edges of a graph, with no nodes in common, that maximizes the total

weights. Appendix F provides details on the maximum matching problem and briefly describes the blossom

algorithm used to solve it. Our procedure is based on the following steps:

1) Start from a guess for the value of (ρ, λ) (only ρ or λ in the case of a SAR(1) or SAE(1) probit model,

respectively),
(
ρ̃, λ̃
)

, and compute Σ̃ from it.

2) For all couples (i, j), i, j = 1, . . . , n, compute b (i, j), σ̄ (i, j) and u (i, j) = b (i, j)− log (σ̄ (i, j)) using Σ̃.

3) Build a complete weighted graph G, with n nodes and weights equal to −u(i, j), for edge {i, j}.

4) Use Edmonds’ blossom algorithm for the computation of the maximum weighted matching.

This procedure is a way to control the information loss, which tends to be higher (i) when the weight matrix is

dense and (ii) for large values of (ρ, λ) (in absolute value). For this reason, we expect the use of the algorithm

to improve the estimation in those cases. The algorithm requires the definition of a starting value for the

autocorrelation parameters. In the Monte Carlo section, we explore how sensitive the algorithm is to the

choice of the initial value, and finite sample performances do not seem to be affected by it. For this reason, we

suggest the rule of thumb of choosing the arbitrary value of 0.5 if the spatial autocorrelation is expected to be

positive (and −0.5 otherwise).
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5. Asymptotics

In this section, we study the asymptotic properties of the PMLE for the SARAR(1,1) probit model.

The analysis performed here enters in the context of the increasing domain asymptotics, consistent with

the literature. Throughout the section, the number of groups (couples) is denoted by Gn to make clear its

dependence on n. In what follows, the sequence of couples is considered as given. In line with Wang et al.

(2013), we need to add the following assumptions.

Assumption 4. ` = limn E`n exists, and ` attains a unique maximum over the compact set Θ at the interior

point θ0.

Assumption 5. (a) Every subset of the sampling area of size cn contains at most mn units, where

limnmn/cn < C <∞. (b) Moreover,

sup
1≤g≤Gn

∣∣∣∣∣∣
1∑

d1,d2=0

1

pg(d1, d2)

∣∣∣∣∣∣ <∞.
Assumption 6. supn,g,h |Cov(ygi, yhi)| ≤ α(dgh), where dgh is the distance between groups g and h and

α(c)→ 0 as c→∞.

Assumption 7. (a) There exists a sequence {qn}, with limn→∞ qn = ∞, such that the matrix
∑qn
h=0 ρ

hWh
n

is nonsingular (and
∑qn
h=0 λ

hMh
n is nonsingular) for all n and for all ρ ∈ (−1/τ , 1/τ) (and λ ∈ (−1/τ , 1/τ)).

(b) There exists a δ > 0 such that limn→∞ nδ/qn <∞.

Assumptions 4–6 are taken from Wang et al. (2013) and are used to prove consistency of the PMLE. The

first is a standard assumption for M–type estimators and is an implicit identification condition. Finding explicit

primitive conditions is an extremely difficult task, even for models simpler than those considered in this paper.

However, in section 5.2, we consider some special cases attempting to give some better understanding of the

implications of Assumption 4. Assumption 5 is the same as (iv) and (v) of Theorem 1 in Wang et al. (2013).

The first part guarantees that observations do not tend to concentrate in an infinitesimal area, and it is a

natural assumption within the increasing domain asymptotics. The second part rules out the possibility that,

for some couples, one (or more) of the four outcomes has a conditional probability equal to zero. Assumption 6

is the mixing condition given in Wang et al. (2013), ensuring that the dependence between observations rapidly

decays with their distance. We remark that since

Cov(y1, y2) ≤ O(Cov(y∗1 , y
∗
2)) (14)

(the proof of this claim may be found in the supplementary material), Assumption 6 (and Assumption 8,

defined below) can be conveniently related to the spatial structure of the latent Gaussian process. Consider,

e.g., a SAR(1) probit model, and let us assume that Wn is a sparse matrix such that all elements i, j of
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Wk
n are zero if the distance between units i and j is bounded below by d(i, j) > δ(k) and δ is a monotone

non–decreasing function.1 In this case, one can use the approximate bound Cov(yi, yj) = O(ρkij ), with

kij = min{k : δ(k) ≥ d(i, j)}.

Finally, Assumption 7 is added to assess the validity of the PML estimates obtained under the finite sum

approximation of the matrices A−1
ρ and B−1

λ . In particular, Assumption 7(a) guarantees invertibility of the

approximating sum
∑qn
h=0 ρ

hWh
n for all qn and is therefore necessary for identification. Assumption 7(b) defines

the minimum rate at which the number of approximating terms qn has to increase with the sample size. This

is a mild assumption since it basically requires the rate of qn to be faster than the log n.

Theorem 5.1. Under Assumptions 1–6, ‖θ̂n − θ0‖ = op(1). If further Assumption 7(a) holds, then the

estimator obtained by a finite sum approximation of A−1
ρ (and B−1

λ ) is asymptotically equivalent to θ̂n.

To prove asymptotic normality, we need the following further assumptions.

Assumption 8. For all fixed d > 0,

lim
k→∞

k2α(kd)

α(d)
= 0.

Assumption 9. The sampling area grows uniformly at a rate of
√
n in two non–opposing directions.

Assumption 10. The matrices J(θ0) = limnGnE
(
∂`n
∂θ

(θ0) ∂`n
∂θ′

(θ0)
)

and

H(θ0) = − lim
n→∞

EH(θ0) = − lim
n→∞

E
(

∂2

∂θ0∂θ
′
0

`n

)
are positive definite.

Theorem 5.2. Under Assumptions 1–6 and 8–10,

√
Gn(θ̂ − θ0)→ N

(
0,H(θ0)−1J(θ0)H(θ0)−1

)
(15)

If further Assumption 7 holds, then the same asymptotic distribution is obtained if A−1
ρ and B−1

λ are

approximated by a finite sum of qn terms.

Proofs of both Theorems 5.1 and 5.2 are in the supplemental material. Assumptions 8–10 are those used

by Wang et al. (2013) to prove Theorem 2. Assumption 10 is quite standard in an MLE framework, while

Assumptions 8 and 9 are necessary to apply Bernstein’s blocking method, used in McLeish’s central limit

theorem for dependent processes; see McLeish (1974).

1A typical example when this occurs is when Wn is built with a contiguity criterion, for which the elements of Wk
n are zero

whenever the number of steps necessary to go from unit i to unit j is larger than k.
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5.1. Estimation of the asymptotic variance-covariance matrix

Consistent estimation of H(θ0) and J(θ0) = limnGnE[∇(θ0)∇(θ0)′], yields a consistent estimator for the

covariance matrix of θ̂. The most difficult part is the estimation of J(θ0), because H(θ0) can be estimated

through the average of the negative Hessian matrix at θ̂. In the following, we propose two different approaches

to estimate J(θ0) and two parametric bootstrap approaches as alternatives to directly obtain the standard

errors.

Since we have the explicit formulas of the score vectors, the first approach consists of a direct estimation

approach similar to that suggested by Pinkse and Slade (1998), which is based on the computation of

1
Gn

∑Gn
g=1 E

[
∇gθ(θ̂)∇gθ(θ̂)′

]
. Let us define, for two different couple indices g 6= j, the 4 × 4 submatrix Σ[gj]

obtained by extracting from Σν the rows and columns (g1, g2, j1, j2), and let f[gj] (u1, u2, u3, u4) be the density

of the four–variate Gaussian N
(
0,Σ[gj]

)
distribution. By using the sign functions si = 2(di−1/2), i = 1, 2, 3, 4,

we can propose the following estimator:

Ĵ(θ̂n) = Gn E
∂`n
∂θ

(θ̂n)
∂`n

∂θ′
(θ̂n)

=
1

Gn

∑
(g,j):j 6=g

4∑
i=1

∑
di={0,1}

∂pg(d1, d2; θ̂n)

∂θ

∂pj(d3, d4; θ̂n)

∂θ′

p[gj]

(
d1, d2, d3, d4; θ̂n

)
pg(d1, d2; θ̂n)pj(d3, d4; θ̂n)

+
1

Gn

∑
g

2∑
i=1

∑
di={0,1}

∂pg(d1, d2; θ̂n)

∂θ

∂pg(d1, d2; θ̂n)

∂θ′
1

pg(d1, d2; θ̂n)
,

(16)

where

p[gj] (d1, d2, d3, d4; θ) = Pr
θ
{yg1 = d1, yg2 = d2, yj1 = d3, yj2 = d4} =

∫∫∫∫
V
f[gj](u1, u2, u3, u4)du1du2du3du4

and where V = {(u1, u2, u3, u4) : siui > sixρ,giβ, i = 1 . . . , 4}. In (16), we denoted the probabilities from

equation (7) by pg (d1, d2;θ), making explicit reference to the dependence on the parameter vector.

Theorem 5.3. Under Assumptions 1–6 and 8–10 and if, for all couples g = (g1, g2), j = (j1, j2), g 6= j, we

have

inf
(d1,...,d4)∈{0,1}4

p[gj] (d1, d2, d3, d4; θ0) > δ,

‖Ĵn(θ̂n)− J(θ0)‖ = op(1).

Note that the condition on the joint distributions p[gj](·;θ0) prevents the existence of too-strong dependences

between any couples g, j: if, for example, conditional on a particular couple – say, (yj1 , yj2) = (1, 0) – only the

value (yg1 , yg2) = (1, 0) could occur with probability 1, the condition would be violated, because of

p[gj] (d1, d2, 1, 0; θ0) = pj(1, 0;θ0) · Prθ0 {yg1 = d1, yg2 = d2 | yj1 = 1, yj2 = 0} = 0

for all (d1, d2) 6= (1, 0).
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A second approach consists in using the estimator of J(θ0) proposed by Conley (1999). Since we have the

pairs’ contributions to the score in equation (9), we can modify the Conley’s estimator of J(θ0) (equation 3.13

page 12 in his paper) in the following way

Ĵτ (θ̂) = 1
nτ

∑LM
j=0

∑M
m=j+1KM (j)

(
∇m

(
θ̂τ

)
∇m−j

(
θ̂τ

)′
+∇m−j

(
θ̂τ

)
∇m

(
θ̂τ

)′)
− 1

nτ

∑M
m=1∇m

(
θ̂τ

)
∇m

(
θ̂τ

)′
(17)

where

KM (j) =


(

1− |j|
LM

)
if |j| < LM

0 else

(18)

and where KM (j) are uniformly bounded weights such that KM (0) = 1 and KM (j)→ 1 as M →∞, nτ is the

random number of selected spatial units in the sample, see Conley (1999, page 5), LM = o
(
M1/3

)
, ∇m

(
θ̂τ

)
is the score of the m–th pair of the selected spatial units with m the mean coordinates, and the subscript τ

refers to the fact that nτ and θ̂τ depend on the dimension of the subsample region which increases in area as

τ →∞. The dimension of the subsample region depends on the values of M and LM . Our modification of the

Conley’s estimator is such that we directly work with pairs rather than single units in space.

A third approach, explored in the application, consists of using a parametric bootstrap procedure. Given

the estimator θ̂n and the matrices Wn and Xn, a procedure can be described as follows:

(1) For each b = 1, . . . , B, a vector y?b = {y?1, . . . ,y?g , . . . ,y?Gn} of Gn independent couples of binary variables

is generated through the distribution yg = (d1, d1), with probability pg(d1, d2; θ̂n), di = 0, 1, i = 1, 2.

(2) `?n = `n(θ; y?) is computed from equation (8), and its maximizer over Θ, θ̂
?

b is found.

(3) The variance Var?
(
θ̂
?
)

is the bootstrap estimator of the variance of θ̂n.

This approach provides consistent estimates of the sampling distribution of θ̂n, provided that all the

assumptions required for asymptotic normality of θ̂n are met.

Theorem 5.4. Under Assumptions 1–6 and 8–10, the parametric bootstrap described in steps (1)–(3) is

consistent for the distribution of θ̂n.

Finally, an alternative parametric bootstrap procedure can also be defined, relying on the Gaussian latent

model: (i) Generate iid Gaussian errors; (ii) Compute the bootstrap latent variables from (2) with θ = θ̂n and

Xn fixed and the corresponding bootstrap sample for the binary vector y?; (iii) Obtain the bootstrap estimate

θ̂
?

b by maximizing equation (8) w.r.t. θ; (iv) Repeat (i)–(iii) B times and use the sampling variance of θ̂
?

b ,

b = 1, . . . , B to estimate the variance of θ̂n.

5.2. Choice of couples and identification assumptions

For each fixed n, we can implement the procedure in section 4 and define the groups accordingly. This will

generate a sequence of groupings that potentially depend on the chosen initial values for (ρ, λ), and that in
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turn might affect some of the assumptions for the consistency of our PMLE. However, we claim this problem

is not likely to affect Assumption 4, which is the key identification condition.

To justify our claim, note that a necessary condition for Assumption 4 is clearly that θ must be equal to

θ0 if and only if

lim
n→∞

Eθ0
∂`n(θ)

∂θ
= lim
n→∞

Gn∑
g=1

∑
dg1 ,dg2∈{0,1}2

∂pg(d1, d2;θ)

∂θ

pg(d1, d2;θ0)

pg(d1, d2;θ)
= 0. (19)

While the if implication is trivially verified, because
∑
dg1 ,dg2

∂pg(d1,d2;θ0)

∂θ
= 0 by construction, identification

requires also proving that no θ 6= θ0 exists, for which the expected score in equation (19) is zero. Ensuring

this by finding primitive conditions is an unbelievably difficult problem, even under simple structures of the

weight matrices Wn and Mn, and it goes beyond the scopes of the present paper. However, we discuss two

very particular cases that might shed some light on situations when identification fails:

(i) Under a SARAR(1,1) probit specification, the identity Wn = Mn puts at risk the identification of

the spatial autocorrelation parameters, when the true regressor coefficients are near zero given that

`n (0, ρ, λ) = `n (0, λ, ρ).

(ii) Consider a SAR(1) probit model with a single regressor and assume that each unit has a unique neighbor,

so that Wn is a Boolean matrix. By choosing the appropriate couples (w.l.o.g. consecutive couples),

equation (8) coincides with the log–likelihood, Aρ and Σ are block diagonal with the same 2× 2 blocks,

and further, x′ρ,2g−1 = (1, (1− ρ)x2g−1 + ρx2g) = x′1−ρ,2g. In this setting, the parameter ρ > 0 fails to be

identified if there is no variability in the regressors X within each correlated couple – i.e., if x2g−1 = x2g,

for all g = 1, . . . , n/2 – because in this case, E0`n (β0, ρ0) = E0`n (β0, 1− ρ0).

The above–explained two examples are only very special cases, but from both of them, we understand that

the failure of the identification assumption is possible when there is a pathological behavior of the partial

loglikelihood function that is invariant under permutations of the units. In particular, in (i), the elements of

Wn and Mn coincide for all units, whereas, in (ii), the identity E0`n (β0, ρ0) = E0`n (β0, 1− ρ0) depends on

the fact that the values of the regressor X at all spatially correlated locations is the same.

Among the assumptions necessary for the consistency of the estimator, Assumption 5(b) seems to be

another condition potentially affected by the couple selection criterion. It is, however, rather easy to

guarantee that it holds for all possible permutations by replacing it with the following stronger condition:

supi,j |
∑
di,dj

(Prθ0 (yi = di, yj = dj))
−1 | < ∞. This condition is clearly stronger than Assumption 5(b), and

it basically excludes correlations that are too strong between couples of units.
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6. Marginal effects

In nonlinear regressions, the interpretation of the marginal effects in terms of the change in the conditional

mean of y when regressors X change by one unit is no longer possible. The effects arising from changes in the

explanatory variables depend in a nonlinear way on the levels of these variables, i.e., changes in the explanatory

variable near the mean have a very different impact on decision probabilities than changes in very low or high

values. For spatial autoregressive probit models, the nonlinearity increases in the evaluation of the marginal

effects; see Beron and Vijverberg (2004) and LeSage et al. (2011). Recently, Billé (2014) has also pointed out

the main consequences in evaluating marginal effects with and without the consideration of heteroskedasticity

implied by the spatial autocorrelation coefficient.

Let x.h = (x1h, x2h, ..., xih, ..., xnh)
′

be an n–dimensional vector of units referred to the h–th regressor,

h = 1, . . . , k, and xi. = (xi1, xi2, ..., xih, ..., xik)
′

be a k–dimensional vector of regressors referred to unit i. By

considering the equations in (3), we propose the following specifications of the marginal effects

∂P (yi = 1)

∂x′.h
|x̄ = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X̄

}
i.
β
)
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ }i.βh

∂P (yi = 1)

∂x′.h
|x = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X

}
i.
β
)
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ }i.βh (20)

where Σν(ρ,λ) is the variance–covariance matrix implied by the reduced form of a SARAR(1,1) probit model,

X̄ is an n by k matrix of regressor means, { · }i. is the i–th row of the matrix inside, and { · }ii is the i–th

diagonal element of a square matrix. Note that Σν(ρ,λ) reduces to Σu(ρ) for a SAR(1) probit specification as

in equation (4) with u = A−1
ρ ε.

The first specification of the equations in (20) explains the impact of a marginal change in the mean of

the h–th regressor, i.e., x̄.h, on the conditional probability of {yi = 1}, i.e., P (yi = 1), setting x̄.h′ for all the

remaining regressors, h′ = 1, . . . , k − 1. The second specification of the equations in (20) considers instead

the marginal impact evaluated at each single value of x.h. This is particularly informative in space since the

possibility of evaluating a marginal impact with respect to a particular value xih has the same meaning of

considering a marginal impact in a particular region/site for regressor h. The results are two n–dimensional

square matrices for {y1, y2, . . . , yn}. Both the specifications should be evaluated with consistent estimates of

the spatial autocorrelation coefficients
(
ρ̂, λ̂
)

. In section 7.2.1, we report results on the robustness of the

marginal effects in the case of model misspecification implied by wrong assumed weighting matrices.

Spatial marginal effects are then split into an average direct impact and an average indirect impact. The

average of the main diagonal elements of the n–dimensional matrix in both the equations is the average direct

effect (i.e., the impact from the same region). The average of the cumulated off–diagonal elements is the average

indirect effect – due to spatial spillover effects (i.e., the impact from other regions). Finally, the average total

effects is the sum of these two (LeSage and Pace, 2009). Changes in the value of an explanatory variable in a

single observation (i.e., a spatial unit) i may influence all the other n − 1 observations. The scalar summary
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measure of indirect effects cumulates the spatial spillovers falling on all other observations, but the magnitude

of impact will be greatest for nearby neighbors and declines in magnitude for higher–order neighbors. This

comes out from the infinite series expansion. LeSage et al. (2011) pointed out the need to calculate measures

of dispersion for these estimates. In section 7, we give some results on the marginal effects and their measures

of dispersion based on our Monte Carlo simulations.

Observation–level total effects estimates, sorted from low to high values of each regressors, can be also

viewed as an important measure of spatial variation in the impacts (Lacombe and LeSage, 2013). This kind of

interpretation permits also to account for spatial heterogeneity given the variation over space of the marginal

impacts with respect to the spatial distribution of the regressors. See Billé et al. (2017) for a two–step approach

specifically thought to account for unobserved groupwise (discrete) spatial heterogeneity in the β coefficients

via iterated local estimation procedures. We show some results on this issue in the empirical application in

section 8. Finally, note that the specification of our marginal effects are different compared with those proposed

by LeSage et al. (2011) and Beron and Vijverberg (2004).

7. Finite sample properties

In this section, we study the finite sample properties of our PMLE for the SARAR(1,1) probit model specified

in equation (1) and the SAR(1) probit model specified in equation (4). For the finite sample properties of the

linear SAR(1) model, see, e.g., Bao and Ullah (2007).

We plan different Monte Carlo experiments. All the DGPs are based on a fixed matrix X = [x.0,x.1,x.2] of

dimension n×3, which is composed of two regressors x.1, x.2 and a constant x.0, with xij = (x1j ,x2j , . . . ,xnj)
′

and j = 0, 1, 2. The regressor x.1 is drawn from a U (−1, 1) distribution, and x.2 is drawn from a N (0, 1),

whereas the true beta vector of the parameters is fixed to β = (0, 1,−0.5)
′
. The autoregressive parameter

ρ in the SAR(1) probit experiment takes the values {−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8}, and Wn is a

nonnegative weight and then normalized n–dimensional weight matrix. Finally, the number of simulation runs

is 1, 000 each.

7.1. Weighting matrices

In our Monte Carlo experiment, we consider both sparse and dense matrices. The former is a k–nearest

neighbor matrix built on regular square lattice grids of dimensions (a) 10× 10 with n = 100, (b) 30× 30 with

n = 900, and (c) 50 × 50 with n = 2, 500. The latter is an inverse distance–based matrix built on randomly

generated coordinates from U (0, 50) and U (−70, 20), for n = 900 only. The coordinates are then used to define

(Euclidean) distances among couples of units, and they can also be interpreted as centroids of areal units in

the case of a discrete space.

It is worth noting that in the case of the k–nn criterion, the spatial information does not depend on how
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much units are distant from each other, but it guarantees a constant spatial statistical information, ensuring no

difference between simulations built on regular/irregular grids and randomly generated coordinates. Regular

grids are also suitable to avoid the problem of selecting more distant observations in the neighboring set Nk
since they are somehow realistic for homogeneous point patterns.

The weighting matrix Wn must be normalized to obtain a proper parameter space of its corresponding

autoregressive coefficient ρ. In the majority of the experiments, we consider the row normalization rule (i.e., Wn

is a row–stochastic matrix). Row normalization has the appealing role of interpreting the spatial lag function as

a weighted average of the (first–order) neighbors for each site in space. With inverse distance–based matrices,

the row normalization does not lead to an easy economic interpretation of the spatial impacts. In particular,

when considering distance decay or negative exponential functions rather than first–order contiguity matrices

(e.g., queen criterion), the interpretation of the absolute role of the distance metric is usually lost. Moreover,

as emphasized by Kelejian and Prucha (2010), the model with row–normalized weight matrices is no more

equivalent to the original spatial one, with the exception of the k–nn approach.

For some experiments, we then consider the spectral normalization rule by rescaling the weighting matrix

using its largest eigenvalue in absolute value, to ensure the following: (i) a proper parameter space for ρ (see

lemma 2.1), and (ii) the equivalence of the spatial models before and after normalization of the weights.

7.2. Finite sample results: the SAR(1) probit model

In this section, we show the finite sample properties of the PMLE and the marginal effects calculated as in

equation (20). The DGPs are built on the SAR(1) probit model with a fixed k–nn weighting matrix (k = 11),

distinguishing between different true values of ρ and sample sizes n. Results are reported in Tables A.1 and

A.2 and Figure B.1.

Table A.1 reports the summary statistics of our PMLE. The estimates of the β vector are good in terms

of both unbiasedness and consistency in finite samples, aside from the different true values assumed by the

autocorrelation ρ. We slightly underestimate the autocorrelation parameter ρ, especially as the true value

approaches its upper limit, while the standard deviation (sd) and RMSE decreases as ρ increases. Figure B.1

shows the Gaussian kernel density functions for different sample sizes. The empirical distributions for all the

parameters highly improve as the sample size increases. The Monte Carlo distribution of the estimators of the

β parameters is approximately bell–shaped, whereas the distribution of ρ̂ is quite asymmetric for n = 100,

although the asymmetry rapidly tends to disappear for larger sample sizes.

Table A.2 shows the direct, indirect, and total impacts for n = 900 calculated as in the equations in (20)

with regard to the mean value and to each observation, respectively. In both cases, estimated mean impacts,

m (ρ̂), are highly close to their true values m (ρ) for different values of ρ. Slight differences can be found as the

value of ρ increases in absolute value, manly because of differences in the indirect effects.

Table A.3 reports the finite sample properties of our PMLE when the sample size is fixed to n = 658 (the

19



same as the empirical application in section 8) and ρ = (0.4, 0.8). A comparison among the empirical standard

deviations, i.e., sd, based on 1,000 Monte Carlo replications, the asymptotic standard deviations estimated

through equation (16), and the average of the negative Hessian matrix at θ̂, i.e., ŝda, and the true asymptotic

standard deviations, i.e., sda, is reported. We can observe that the values of the estimated asymptotic standard

deviations ŝda are very closed to the true values, especially when ρ = 0.4.

7.2.1. Misspecification of W

In this section, we provide some Monte Carlo results to check the robustness of our PMLE with a

misspecification of the SAR(1) probit model by assuming a sparse weighting matrix rather than a dense

one. We fixed n = 900, while ρ ∈ {−0.6, 0.6} and β = (0, 1,−0.5)
′
. The true dense matrix is built on inverse

distance–based functions, distinguishing between the row normalization (Wrn) and the spectral normalization

(Wsn) cases, whereas the assumed sparse weighting matrix is based on a k–nn approach, with k = 11 as before

(Wknn).

Results are reported in Tables A.4 and A.5 and Figure B.2. Table A.4 shows that the PML estimates of

the β coefficients are quite robust with misspecified Wn matrices. The misspecification of the ρ coefficient

is more evident, as expected. Table A.5 reports the main empirical results on the robustness of the marginal

impacts. The indirect effects are not well accounted for because of the estimation of ρ, but the direct effects

are robust. Finally, Figure B.2 shows the Gaussian kernel density functions for both types of misspecification,

which are quite symmetric around the true values, with the exception of ρ. There seem to be no significant

differences in terms of the distributions when considering the two types of normalization rules, i.e., Wsn and

Wrn. One notable exception is the case of β1, where the row normalization has higher probability density on

the true value of the parameter, while the spectral normalization is more symmetric around its mean.

7.2.2. The choice of couples and sparsity of W

We run some Monte Carlo experiments aimed at assessing the performance of the algorithm introduced

in section 4. We use the R library called Rpython to run a program able to create and manipulate graphs

and networks by exploiting the function networkx.max weight matching inside the package networkx. Data

are simulated from a SAR(1) probit with β = (0, 1,−0.5)
′

and ρ = 0.6, using either a k–nn matrix with

k = 11, 25, 50, 100 or an inverse distance matrix. We compute the PML estimates using an initial guess for

the parameter ρ̃ equal in sign to the true value ρ and then compare these estimates with the PML estimates

obtained without the application of the maximum matching algorithm (the default pair choice corresponds to

coupling units (2g − 1, 2g) for all g). In the case of distance weight matrices, to determine the sensitivity of

the procedure to the initial guess, we use two different values of ρ̃, both equal in sign to the true value ρ, one

exactly equal to ρ and the other significantly smaller.
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We expect the impact of the pair choice to increase as Wn becomes denser. Indeed, in the k–nn case, the

maximum matching method proves to be slightly inefficient compared to the default pair choice until k = 50,

when they are pretty much the same in terms of both sd and RMSE. For k = 100, the situation is reversed,

with the maximum–matching sd and RMSE about 10% smaller relative to the default case. However, as k

increases, the sd of both the estimators increases rapidly. The tables are available upon request.

Table A.6 reports the main summary statistics of the MC distribution of the default and maximum–matching

estimators when Wn is an inverse distance weight matrix. The gain in terms of sd is quite relevant (−36% for

the sd of ρ̂ in the case of the spectral normalization), while a smaller increase of negative bias occurs, with an

overall variation of RMSE of −30%. This seems to be a consequence of better behavior of the loglikelihood

function that reduces drastically the occurrence of an optimum value ρ̂ near the boundary (ρ̂ ≈ 1). There

exists a slight improvement in the sd of the β̂s and no effect on their means. The initial guess ρ̃ appears to

have a negligible effect.

7.3. Finite sample results: the SARAR(1,1) probit model

We conclude our simulation analysis by showing some results of the estimation of 200 repeated draws of

SARAR(1,1) probit samples of medium size (n = 900). We draw samples from the model in equation (1),

assuming β = (0, 1,−0.5)
′

and ρ = 0.6 fixed. The weight matrix Wn is a k–nn with the number of nearest

neighbors equal to 11. For the weighting matrix Mn, we choose a queen contiguity criterion to define the

weights inside, and then we row–standardize. The choice of the two very different weighting matrices prevents

potential problems of identification.

Table A.7 presents the results, for different values of the parameter λ, namely, λ ∈ {0.8, 0.6, 0.4, 0.2}.

Similar to what happens in the SAR case, the estimates of the β parameters are quite precise, while both the

autocorrelation coefficients tend to be downward biased. The bias of ρ seems to be slightly increasing with λ;

similarly, the lower the true value of λ, the lower the bias of λ̂.

The standard deviation of the estimators of all the parameters (except λ itself) is monotonically increasing

with λ: the relative increment of the standard deviations from case λ = 0.2 to λ = 0.8 is between 70% and

242%. Further, a comparison of the RMSE from Table A.1 (case ρ = 0.6) shows that ρ̂ and β̂0 are particularly

sensitive to the introduction of spatial autocorrelation in the errors, showing an increment of about 50% in

the case of minimum autocorrelation (λ = 0.2), whereas the RMSE of the other estimators remains almost

unchanged.

Finally, to get an intuition of the behavior in the case of the dense weight matrix, we make some simulations

by using an inverse distance matrix Mn. Although the performance of λ̂ dramatically worsens in terms of RMSE

(mainly because of a boost in sd), switching from a sparse to a dense weight matrix governing the error spatial

correlation structure has almost no effect on all the other parameters both in terms of bias and sd. This also

implies that the estimation of the marginal effects is not affected by this change. Results are available upon

21



request.

8. Empirical application

In this section, we propose to replicate the empirical application in LeSage et al. (2011) by estimating the

parameter sets θ =
(
β′, ρ

)′
with our PMLE. The model specification is referred to a SAR(1) probit in equation

(4). The data set used for this exploration entails 673 establishments tracked weekly during the year following

Hurricane Katrina and then seasonally and annually in subsequent years. The data set is freely available in

the R package ProbitSpatial (Martinetti and Geniaux, 2016), and details are referred to LeSage et al. (2011).

We have found some points/units with the same coordinates. To avoid “zero distance” problems, we eliminate

15 observations from the data set, with a final sample dimension of n = 658.

The economic aim was to evaluate which factors have influenced decisions of establishments in reopening

in the aftermath of Hurricane Katrina. A probabilistic decision mechanism is then easily described by a probit

model, where each decision to reopen is defined by the event {yi = 1}. Spatial effects are accounted for to

consider potential endogenous network effects among these decisions so that the utility associated with an

establishment reopening directly depends on the neighboring utilities, which in turn have effects on reopening

decisions.

Coherently with their analysis, a SAR(1) probit model is estimated for three different time horizons: (a)

0–3 months, (b) 0–6 months, and (c) 0–12 months. The weighting matrix is built on a k–nn criterion, with

k = 11 for time horizon (a) and k = 15 for time horizons (b) and (c). In each time horizon the firms’

decisions are supposed to be simultaneous. Explanatory variables are the flood depth (measured in feet) at the

location of the individual establishments, (log) median income for the census block group in which the store

was located, two dummy variables reflecting small and large firms (with medium size firms representing the

omitted class), two dummy variables reflecting the low and high socioeconomic class of the store clientèle (with

the middle socioeconomic class excluded), and two dummy variables for type of store ownership, one reflecting

sole proprietorships and the other representing national chains (with regional chains representing the excluded

class).

Table A.8 shows the PML estimates and their standard errors to be compared with those in Table 3 in

LeSage et al. (2011). As we can observe, the bootstrap standard errors are close to the Bayesian ones, and most

of the time our standard errors are slightly smaller. We obtain standard errors of our PML estimates by using

the first parametric bootstrap approach proposed in subsection 5.1, which we call for convenience the “probit”

bootstrap. As a comparison, we also include alternative MLE–based estimators and their standard errors

(if available): (i) the approximate MLE (AMLE) by Martinetti and Geniaux (2017) and (ii) the composite

(univariate) MLE (CMLE) by Mozharovskyi and Vogler (2016). The estimates from the CML estimator

are quite different, while the ones from the AMLE are very close to the others. Finally, we also estimate a
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SARAR(1,1) probit model with our PMLE finding that the λ coefficient is negative and statistically significant,

while the ρ coefficient is increased. Our estimates of the SARAR(1,1) probit model thus evidence a residual

spatial correlation unaccounted for by the spatial autoregressive component on the latent variables.

Table A.9 provides marginal effects – see the equations in (20) – for each time horizon to be compared

with the effects reported in Tables 4, 5, and 6 in LeSage et al. (2011). All tables show that PML estimates

are consistent with Bayesian estimates; in particular, the PML estimate of the spatial correlation coefficient

ρ is positive and significant as well as higher than the corresponding Bayesian estimate, for all the three

time horizons. As a consequence, our estimates of the indirect effects are generally higher, in absolute value,

compared to the corresponding indirect effects reported by LeSage et al. (2011). As stressed in section 6,

potential spatial heterogeneity in terms of the marginal effects should be accounted for in empirical applications.

Figure B.3 shows an interesting variability of the total impacts for the first time horizon, revealing that the

total marginal impacts is even around zero for some spatial units. The same figures for the second and third

time horizons can be found in supplementary material.

Finally, we computed in Table A.10 alternative estimates of the standard deviations of β̂: we obtained

estimates of the variances by using the two asymptotic estimators presented in section 5.1 as well as the second

bootstrap estimator based on the reduced form latent model described after Theorem 5.4, which we call for

convenience the “latent” bootstrap. The two asymptotic estimators are very similar, and tend to have values

higher than the bootstrap, especially for the intercept and (particularly in the case of Conley’s formula) for ρ̂.

The “latent” bootstrap estimates are all slightly higher than the “probit” bootstrap ones, but lower than the

asymptotic values.

9. Conclusions

In this paper, we derive the asymptotic properties and evaluate the finite sample properties of a partial

maximum likelihood estimator (PMLE) for the spatial (first–order) autoregressive probit model with (first–

order) autoregressive disturbances, i.e., an SARAR(1,1) probit model. Different from Wang et al. (2013), we

consider the more general and interesting case of direct correlation among the dependent variables, which

specifies at least the SAR(1) probit rather than a simple SAE(1) probit model. We propose a Kullback–

Leibler approach for choosing the couples that maximize the partial loglikelihood function, and we suggest

exact formulas for defining the marginal effects in spatial binary contexts. Cases of model misspecifications

are also included. In addition, methods for estimating the asymptotic variance–covariance matrix and directly

obtaining the standard errors through bootstrap approaches are also reported. Finally, the derivation of explicit

expressions of the score vector (given in the supplementary material) can also be of interest in itself, for example

used in the approach of Mozharovskyi and Vogler (2016) to improve the computations.

The PMLE is consistent given some regularity conditions. Unlike Wang et al. (2013), our simulations
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suggest that the estimator performs very well even with small sample sizes. The results substantially improve

as the sample size increases both in terms of bias and standard deviation. All the distributions are bell–

shaped from moderate to large samples and for all the values of correlations considered. The marginal effects

calculated on the simulated data with respect to the mean and with respect to individual observations are also

consistent and quite near the true values. In the SARAR(1,1) probit case, the estimator performs reasonably

well, although a slight loss in efficiency exists, in particular for ρ̂ and β̂0. However, this efficiency loss relative

to the estimates from the SAR(1)-probit specification is not found in the empirical application.

We consider model misspecification given the assumption of an incorrect weighting matrix: in these cases,

the estimator properties and the direct marginal effects are robust in terms of the β coefficients. This analysis

confirms that an incorrect choice of the spatial weighting matrix greatly impacts on the estimation of the

autocorrelation coefficient and, as a consequence, of the indirect effects, thus suggesting that great care

must be paid to model selection. In our empirical application, results suggest that our PMLE estimator

gives parameter estimates and standard deviations quite similar to those obtained by the Bayesian (LeSage

et al., 2011) approach and by the AMSLE (Martinetti and Geniaux, 2017), but it tends in general to give

higher estimates for ρ. Moreover, a comparison with other MLE–based estimators in terms of the estimated

parameters is also included. Finally, the KL–based criterion proposed for choosing the couples deserves further

investigation since it proves to be a promising method that could be applied to approximate a complex models

with a simpler one, controlling the information loss.
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Appendix A. Tables

n = 100 n = 900 n = 2,500

True Value Mean Median sd RMSE MAD Mean Median sd RMSE MAD Mean Median sd RMSE MAD

β0 = 0.0 -0.016 -0.007 0.323 0.323 0.145 -0.003 -0.003 0.066 0.066 0.043 0.002 0.002 0.037 0.037 0.024

β1 = 1.0 1.058 1.043 0.289 0.294 0.189 1.009 1.003 0.093 0.094 0.065 1.007 1.002 0.054 0.054 0.031

β2 = −0.5 -0.526 -0.517 0.161 0.164 0.108 -0.503 -0.503 0.052 0.052 0.034 -0.499 -0.496 0.034 0.034 0.021

ρ = −0.8 -0.996 -0.927 0.737 0.763 0.547 -0.867 -0.866 0.262 0.270 0.170 -0.833 -0.823 0.159 0.162 0.121

β0 = 0.0 -0.009 -0.005 0.300 0.300 0.127 -0.001 0.001 0.061 0.061 0.039 0.003 0.001 0.036 0.037 0.022

β1 = 1.0 1.056 1.042 0.286 0.292 0.190 1.010 0.999 0.094 0.094 0.062 1.006 1.003 0.054 0.054 0.033

β2 = −0.5 -0.528 -0.519 0.163 0.165 0.104 -0.503 -0.500 0.051 0.051 0.032 -0.499 -0.498 0.033 0.033 0.022

ρ = −0.6 -0.785 -0.664 0.747 0.769 0.537 -0.644 -0.640 0.258 0.262 0.169 -0.624 -0.619 0.156 0.158 0.102

β0 = 0.0 -0.008 -0.008 0.279 0.279 0.118 0.001 -0.001 0.056 0.056 0.037 0.003 0.001 0.034 0.034 0.022

β1 = 1.0 1.055 1.046 0.279 0.284 0.181 1.008 1.000 0.091 0.091 0.060 1.005 1.003 0.054 0.054 0.033

β2 = −0.5 -0.528 -0.522 0.161 0.163 0.099 -0.503 -0.501 0.052 0.052 0.034 -0.498 -0.500 0.033 0.033 0.024

ρ = −0.4 -0.601 -0.447 0.733 0.760 0.479 -0.437 -0.421 0.242 0.245 0.149 -0.416 -0.403 0.147 0.148 0.093

β0 = 0.0 -0.004 -0.007 0.259 0.259 0.104 0.001 -0.000 0.052 0.052 0.032 0.003 0.001 0.031 0.031 0.018

β1 = 1.0 1.056 1.058 0.283 0.288 0.185 1.007 0.996 0.090 0.090 0.059 1.006 1.002 0.054 0.054 0.033

β2 = −0.5 -0.527 -0.521 0.162 0.164 0.100 -0.503 -0.501 0.051 0.051 0.033 -0.498 -0.498 0.034 0.034 0.023

ρ = −0.2 -0.397 -0.223 0.688 0.716 0.426 -0.232 -0.214 0.223 0.225 0.140 -0.215 -0.209 0.132 0.133 0.093

β0 = 0.0 -0.001 -0.007 0.243 0.243 0.097 0.002 -0.000 0.047 0.048 0.029 0.002 -0.002 0.028 0.028 0.017

β1 = 1.0 1.059 1.053 0.287 0.293 0.190 1.007 1.001 0.100 0.100 0.058 1.005 1.002 0.053 0.053 0.035

β2 = −0.5 -0.529 -0.524 0.163 0.165 0.103 -0.501 -0.501 0.057 0.057 0.033 -0.497 -0.496 0.032 0.032 0.022

ρ = 0.0 -0.209 -0.026 0.659 0.691 0.354 -0.030 -0.003 0.200 0.202 0.132 -0.012 -0.008 0.112 0.113 0.081

β0 = 0.0 0.002 -0.007 0.220 0.220 0.093 0.002 0.001 0.042 0.042 0.028 0.003 0.000 0.025 0.025 0.016

β1 = 1.0 1.061 1.050 0.289 0.296 0.183 1.008 1.002 0.088 0.089 0.058 1.004 1.000 0.054 0.054 0.033

β2 = −0.5 -0.536 -0.524 0.165 0.169 0.104 -0.501 -0.497 0.053 0.053 0.032 -0.498 -0.498 0.032 0.032 0.020

ρ = 0.2 0.020 0.178 0.574 0.601 0.280 0.175 0.188 0.165 0.167 0.111 0.190 0.200 0.100 0.100 0.072

β0 = 0.0 0.001 -0.005 0.236 0.236 0.090 0.001 -0.001 0.040 0.040 0.025 0.003 0.002 0.023 0.024 0.016

β1 = 1.0 1.085 1.069 0.298 0.310 0.199 1.009 1.010 0.089 0.090 0.055 1.005 1.000 0.057 0.057 0.036

β2 = −0.5 -0.544 -0.535 0.172 0.177 0.109 -0.500 -0.502 0.054 0.054 0.038 -0.498 -0.498 0.031 0.031 0.020

ρ = 0.4 0.217 0.376 0.537 0.568 0.213 0.378 0.396 0.131 0.133 0.088 0.392 0.400 0.080 0.080 0.056

β0 = 0.0 0.004 -0.009 0.236 0.236 0.082 0.001 0.000 0.036 0.036 0.025 0.002 0.001 0.022 0.022 0.014

β1 = 1.0 1.116 1.097 0.329 0.349 0.220 1.009 1.010 0.098 0.098 0.068 1.007 1.005 0.059 0.060 0.041

β2 = −0.5 -0.557 -0.543 0.194 0.202 0.123 -0.503 -0.501 0.059 0.059 0.041 -0.498 -0.500 0.032 0.032 0.023

ρ = 0.6 0.444 0.572 0.444 0.470 0.150 0.574 0.580 0.095 0.098 0.060 0.586 0.591 0.061 0.063 0.040

β0 = 0.0 0.004 -0.013 0.226 0.226 0.076 0.001 0.001 0.034 0.034 0.023 0.001 0.001 0.020 0.020 0.012

β1 = 1.0 1.198 1.161 0.428 0.472 0.279 1.013 1.007 0.110 0.111 0.073 1.011 1.004 0.075 0.076 0.048

β2 = −0.5 -0.610 -0.576 0.397 0.412 0.149 -0.508 -0.502 0.070 0.071 0.049 -0.498 -0.500 0.039 0.039 0.026

ρ = 0.8 0.659 0.743 0.306 0.337 0.095 0.738 0.747 0.065 0.090 0.040 0.748 0.750 0.041 0.066 0.025

Table A.1: Summary statistics of the PML estimates for the SAR(1) probit coefficients, considering different n sample sizes for

the simulated spatial series of observations on regular grids. The weighting matrix Wn is a row–normalized k–nn matrix with

k = 11. The number of Monte Carlo replications are fixed to 1,000. The rows sd, RMSE and MAD report the empirical standard

deviations, empirical root mean square errors of the estimated coefficients from the true values, and empirical median absolute

deviations, respectively.
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ρ = −0.8 ρ = −0.6 ρ = −0.4 ρ = −0.2 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

Regressors m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂)

X̄ , x.1

Direct

Mean 0.392 0.394 0.395 0.397 0.397 0.400 0.398 0.401 0.398 0.400 0.394 0.396 0.384 0.387 0.351 0.367

sd 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.038

Indirect

Mean -0.184 -0.189 -0.154 -0.155 -0.117 -0.116 -0.067 -0.066 0.098 0.103 0.251 0.258 0.530 0.523 1.207 0.980

sd 0.041 0.047 0.054 0.063 0.095 0.125 0.185 0.304

Total

Mean 0.208 0.205 0.240 0.242 0.280 0.283 0.331 0.335 0.496 0.504 0.646 0.654 0.914 0.911 1.558 1.347

sd 0.039 0.047 0.055 0.066 0.101 0.133 0.196 0.318

X̄ , x.2

Direct

Mean -0.196 -0.197 -0.197 -0.198 -0.198 -0.199 -0.199 -0.200 -0.199 -0.200 -0.197 -0.197 -0.192 -0.194 -0.176 -0.184

sd 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.024

Indirect

Mean 0.092 0.094 0.077 0.077 0.058 0.058 0.034 0.033 -0.049 -0.052 -0.126 -0.128 -0.265 -0.262 -0.603 -0.492

sd 0.021 0.024 0.027 0.032 0.048 0.063 0.095 0.155

Total

Mean -0.104 -0.103 -0.120 -0.121 -0.140 -0.142 -0.165 -0.167 -0.248 -0.251 -0.323 -0.326 -0.457 -0.456 -0.779 -0.676

sd 0.021 0.025 0.030 0.035 0.054 0.070 0.103 0.166

X , x.1

Direct

Mean 0.311 0.311 0.313 0.313 0.315 0.315 0.315 0.316 0.315 0.315 0.311 0.312 0.303 0.304 0.277 0.287

sd 0.021 0.021 0.021 0.021 0.020 0.021 0.022 0.023

Indirect

Mean -0.146 -0.149 -0.122 -0.122 -0.093 -0.091 -0.053 -0.052 0.077 0.081 0.198 0.202 0.419 0.410 0.953 0.765

sd 0.031 0.036 0.042 0.049 0.074 0.097 0.140 0.222

Total

Mean 0.165 0.162 0.191 0.191 0.222 0.223 0.262 0.264 0.392 0.396 0.510 0.514 0.722 0.714 1.231 1.052

sd 0.030 0.036 0.042 0.051 0.076 0.100 0.143 0.225

X , x.2

Direct

Mean -0.156 -0.155 -0.157 -0.157 -0.157 -0.157 -0.158 -0.158 -0.157 -0.157 -0.156 -0.155 -0.152 -0.152 -0.139 -0.144

sd 0.014 0.013 0.013 0.013 0.014 0.014 0.014 0.016

Indirect

Mean 0.073 0.074 0.061 0.061 0.046 0.045 0.027 0.026 -0.039 -0.041 -0.099 -0.101 -0.209 -0.205 -0.477 -0.384

sd 0.016 0.018 0.021 0.025 0.037 0.049 0.072 0.113

Total

Mean -0.083 -0.081 -0.095 -0.096 -0.111 -0.112 -0.131 -0.132 -0.196 -0.198 -0.255 -0.256 -0.361 -0.357 -0.615 -0.528

sd 0.016 0.020 0.023 0.027 0.041 0.053 0.076 0.118

Table A.2: Marginal effects summary statistics for different estimated coefficients ρ̂. X̄ and X are referred to the first and second

specifications of the marginal impacts in equation (20), respectively. The total impacts are split into the direct and indirect effects

and compared with the true ones m (ρ). The simulated spatial series are referred to Table A.1 with n = 900, Wn = Wk−nn, and

the regressors are x.1 ∼ U (−1, 1), x.2 ∼ N (0, 1).
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True Value Mean Median sd ŝda sda RMSE MAD

β0 = 0.0 0.000 -0.001 0.049 0.041 0.045 0.049 0.030

β1 = 1.0 1.016 1.013 0.104 0.105 0.107 0.105 0.069

β2 = −0.5 -0.509 -0.508 0.066 0.063 0.064 0.067 0.044

ρ = 0.4 0.360 0.396 0.178 0.102 0.114 0.183 0.105

β0 = 0.0 0.002 0.002 0.041 0.040 0.054 0.041 0.026

β1 = 1.0 1.028 1.023 0.145 0.149 0.169 0.148 0.090

β2 = −0.5 -0.516 -0.515 0.090 0.087 0.099 0.092 0.060

ρ = 0.8 0.730 0.736 0.059 0.046 0.068 0.092 0.037

Table A.3: Summary statistics of the PML estimates for the SAR(1) probit coefficients with the data set Katrina (first horizon)

in section 8 and n = 658. The weighting matrix Wn is a row–normalized k–nn matrix with k = 11. The number of Monte

Carlo replications are fixed to 1,000. The rows sd, ŝda, sda, RMSE and MAD report the empirical standard deviations, estimated

asymptotic standard deviations, true asymptotic standard deviations, empirical root mean square errors of the estimated coefficients

from the true values, and empirical median absolute deviations, respectively.

True Matrix/Value β0 = 0 β1 = 1 β2 = −0.5 ρ = 0.6 β0 = 0 β1 = 1 β2 = −0.5 ρ = −0.6

Wsn

Mean 0.007 1.177 -0.502 0.014 0.002 0.978 -0.499 -0.104

Median 0.003 1.175 -0.501 0.039 -0.002 0.902 -0.496 -0.058

sd 0.065 0.339 0.057 0.279 0.045 0.299 0.054 0.306

RMSE 0.066 0.382 0.057 0.649 0.045 0.300 0.054 0.583

MAD 0.038 0.152 0.034 0.165 0.024 0.191 0.033 0.216

Wrn

Mean 0.011 1.205 -0.505 0.071 0.002 0.936 -0.498 -0.116

Median 0.005 1.117 -0.503 0.136 -0.001 0.879 -0.494 -0.077

sd 0.086 0.439 0.053 0.324 0.043 0.288 0.055 0.311

RMSE 0.087 0.485 0.053 0.620 0.043 0.295 0.055 0.575

MAD 0.047 0.256 0.034 0.198 0.023 0.197 0.035 0.214

Table A.4: Summary statistics of the PML estimates for the SAR(1) probit coefficients when Wn is misspecified. The weighting

matrix used to estimate the model is Wn = Wk−nn with k = 11. The sample size is fixed to n = 900 and ρ = (−0.6, 0.6).
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Wsn Wrn

ρ = 0.6 X̄ X X̄ X

Regressors m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper

x.1

Direct

Mean 0.399 0.467 0.242 0.731 0.301 0.350 0.184 0.557 0.398 0.477 0.240 0.864 0.294 0.349 0.177 0.635

sd 0.133 0.099 0.173 0.125

Indirect

Mean 0.329 0.009 -0.264 0.217 0.252 0.005 -0.207 0.165 0.595 0.032 -0.349 0.267 0.439 0.023 -0.260 0.198

sd 0.135 0.101 0.168 0.124

Total

Mean 0.728 0.476 0.351 0.616 0.553 0.355 0.284 0.419 0.993 0.508 0.423 0.591 0.732 0.373 0.333 0.410

sd 0.067 0.035 0.043 0.020

x.2

Direct

Mean -0.199 -0.199 -0.240 -0.160 -0.151 -0.149 -0.176 -0.120 -0.199 -0.199 -0.239 -0.160 -0.147 -0.146 -0.170 -0.119

sd 0.023 0.016 0.021 0.013

Indirect

Mean -0.165 -0.018 -0.165 0.076 -0.126 -0.013 -0.125 0.057 -0.297 -0.038 -0.219 0.084 -0.219 -0.028 -0.163 0.063

sd 0.063 0.048 0.078 0.057

Total

Mean -0.364 -0.217 -0.372 -0.108 -0.276 -0.162 -0.276 -0.086 -0.496 -0.237 -0.427 -0.107 -0.366 -0.174 -0.311 -0.081

sd 0.067 0.049 0.080 0.058

ρ = −0.6

x.1

Direct

Mean 0.399 0.389 0.215 0.651 0.325 0.315 0.169 0.530 0.399 0.467 0.242 0.731 0.301 0.350 0.184 0.557

sd 0.118 0.093 0.133 0.099

Indirect

Mean -0.123 -0.040 -0.300 0.129 -0.101 -0.032 -0.250 0.106 0.329 0.009 -0.264 0.217 0.252 0.005 -0.207 0.165

sd 0.111 0.090 0.135 0.101

Total

Mean 0.276 0.349 0.287 0.421 0.224 0.283 0.240 0.323 0.728 0.476 0.351 0.616 0.553 0.355 0.284 0.419

sd 0.034 0.022 0.067 0.035

x.2

Direct

Mean -0.199 -0.198 -0.242 -0.158 -0.162 -0.161 -0.190 -0.134 -0.199 -0.199 -0.240 -0.160 -0.151 -0.149 -0.176 -0.120

sd 0.022 0.014 0.023 0.016

Indirect

Mean 0.061 0.006 -0.136 0.088 0.050 0.005 -0.111 0.070 -0.165 -0.018 -0.165 0.076 -0.126 -0.013 -0.125 0.057

sd 0.055 0.045 0.063 0.048

Total

Mean -0.138 -0.192 -0.347 -0.101 -0.112 -0.156 -0.278 -0.083 -0.364 -0.217 -0.372 -0.108 -0.276 -0.162 -0.276 -0.086

sd 0.058 0.046 0.067 0.049

Table A.5: Marginal effects when Wn is misspecified. The Table reports results related to two true weighting matrices: (i) based

on inverse distance with spectral normalisation Wsn, (ii) based on inverse distance with row normalisation Wrn. The total

impacts are split into the direct and indirect effects and compared with the true ones m (ρ). The simulated spatial series are

referred to Table A.1 with n = 900, a k–nn weighting matrix Wk−nn, ρ = (−0.6, 0.6), and the regressors are x.1 ∼ U (−1, 1),

x.2 ∼ N (0, 1).
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n = 900 Default pairs quasi-max-matching pairs max-matching pairs

Wn = Wsn β0 β1 β2 ρ β0 β1 β2 ρ β0 β1 β2 ρ

Mean 0.004 1.091 –0.497 0.433 0.004 1.088 -0.499 0.397 0.004 1.088 -0.498 0.401

Median -0.003 1.044 -0.496 0.591 -0.003 1.071 -0.497 0.505 -0.003 1.065 -0.497 0.504

sd 0.076 0.181 0.054 0.528 0.061 0.140 0.054 0.339 0.059 0.139 0.054 0.338

RMSE 0.076 0.203 0.054 0.554 0.061 0.165 0.054 0.395 0.059 0.164 0.054 0.392

Wn = Wrn β0 β1 β2 ρ β0 β1 β2 ρ β0 β1 β2 ρ

Mean 0.006 1.129 –0.500 0.483 0.005 1.119 -0.499 0.468 0.005 1.119 -0.499 0.469

Median -0.003 1.051 -0.498 0.711 -0.002 1.082 -0.499 0.561 -0.002 1.082 -0.499 0.568

sd 0.083 0.241 0.055 0.558 0.073 0.196 0.054 0.459 0.074 0.198 0.054 0.463

RMSE 0.083 0.273 0.055 0.570 0.074 0.229 0.054 0.478 0.074 0.231 0.054 0.481

Table A.6: Summary statistics of the PML estimates for the SAR(1) probit coefficients using alternative choices of pairs. The first

columns correspond to the default choice, i.e. g ≡ (2g − 1, 2g); the other two sets of estimates refer to the algorithm proposed in

Section 4, with different initial guess of the parameter ρ (namely, ρ̃ = 0.2, in the quasi–max–matching, ρ̃ = 0.6 in the max-matching

case). Here, θ0 = (0, 1,−0.5, 0.6) and the two panels refer to Wn = Wsn (inverse distance matrix with spectral normalization)

and Wn = Wrn respectively (inverse distance matrix with row normalization).

True Value Mean Median sd RMSE MAD True Value Mean Median sd RMSE MAD

β0 = 0.0 0.006 -0.001 0.178 0.178 0.145 β0 = 0.0 0.010 -0.002 0.115 0.116 0.058

β1 = 1.0 0.983 0.992 0.198 0.199 0.189 β1 = 1.0 1.008 1.001 0.144 0.145 0.086

β2 = −0.5 -0.488 -0.484 0.106 0.106 0.108 β2 = −0.5 -0.498 -0.484 0.085 0.085 0.054

ρ = 0.6 0.527 0.611 0.323 0.332 0.547 ρ = 0.6 0.542 0.583 0.255 0.261 0.153

λ = 0.8 0.658 0.717 0.246 0.284 0.547 λ = 0.6 0.531 0.561 0.220 0.231 0.137

True Value Mean Median sd RMSE MAD True Value Mean Median sd RMSE MAD

β0 = 0.0 0.005 0.002 0.071 0.071 0.039 β0 = 0.0 0.003 -0.000 0.052 0.052 0.034

β1 = 1.0 1.014 1.010 0.123 0.123 0.082 β1 = 1.0 1.019 1.008 0.112 0.113 0.067

β2 = −0.5 -0.501 -0.489 0.074 0.074 0.049 β2 = −0.5 -0.501 -0.497 0.062 0.062 0.042

ρ = 0.6 0.557 0.589 0.192 0.197 0.109 ρ = 0.6 0.564 0.592 0.150 0.155 0.089

λ = 0.4 0.355 0.376 0.224 0.229 0.156 λ = 0.2 0.165 0.162 0.233 0.236 0.151

Table A.7: Summary statistics of the PML estimates for the SARAR(1,1) probit coefficients from simulated spatial series of

observations on regular grids. The weighting matrix Wn is a row–normalized k–nn matrix with k = 11, while Mn is a row–

normalized weighting matrix based on the Queen contiguity criterion. The number of Monte Carlo replications are fixed to 200.

The rows sd, RMSE and MAD report the empirical standard deviations, empirical root mean square errors of the estimated

coefficients from the true values, and empirical median absolute deviations, respectively.
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First Horizon SAR(1)–probit SARAR(1)–probit

Regressors Bayes sd AMLE sd CMLE sd PMLE sd PMLE sd

constant -7.616 2.595 -7.111 1.868 -3.069 − -5.272 2.435 -2.539 1.033

flood depth -0.168 0.044 -0.185 0.030 -0.071 − -0.136 0.048 -0.062 0.026

log(median income) 0.733 0.252 0.691 0.181 0.281 − 0.510 0.238 0.243 0.099

small size -0.276 0.140 -0.318 0.138 -0.323 − -0.340 0.147 -0.428 0.144

large size -0.329 0.321 -0.321 0.312 0.024 − -0.361 0.328 -0.472 0.334

low status customers -0.329 0.166 -0.486 0.147 -0.351 − -0.453 0.154 -0.301 0.127

high status customers 0.085 0.131 0.057 0.127 -0.003 − 0.034 0.125 0.041 0.116

sole proprietorship 0.551 0.196 0.562 0.194 0.610 − 0.560 0.202 0.528 0.174

national chain 0.068 0.378 0.085 0.356 0.116 − 0.059 0.385 0.058 0.415

Wy 0.382 0.094 0.346 − 0.783 − 0.515 0.143 0.802 0.074

Mu − − − − − − − − -0.579 0.130

Second Horizon SAR(1)–probit SARAR(1)–probit

Regressors Bayes sd AMLE sd CMLE sd PMLE sd PMLE sd

constant -2.978 2.730 -3.604 1.798 -0.927 − -2.069 1.886 -0.898 1.031

flood depth -0.110 0.035 -0.159 0.021 -0.080 − -0.112 0.038 -0.060 0.031

log(median income) 0.311 0.268 0.402 0.176 0.125 − 0.238 0.190 0.114 0.104

small size -0.109 0.149 -0.174 0.140 -0.222 − -0.223 0.142 -0.283 0.133

large size -0.372 0.332 -0.456 0.291 -0.442 − -0.442 0.321 -0.356 0.265

low status customers -0.342 0.161 -0.524 0.133 -0.382 − -0.446 0.133 -0.271 0.120

high status customers 0.041 0.153 0.026 0.141 -0.029 − -0.006 0.136 -0.025 0.117

sole proprietorship 0.359 0.181 0.264 0.175 0.188 − 0.289 0.180 0.230 0.158

national chain 0.295 0.381 -0.027 0.347 -0.486 − -0.099 0.365 -0.481 0.363

Wy 0.578 0.084 0.433 − 0.768 − 0.621 0.129 0.833 0.092

Mu − − − − − − − − -0.445 0.186

Third Horizon SAR(1)–probit SARAR(1)–probit

Regressors Bayes sd AMLE sd CMLE sd PMLE sd PMLE sd

constant -4.336 2.723 -3.240 1.658 0.348 − -2.198 2.262 -0.898 1.122

flood depth -0.089 0.034 -0.126 0.017 -0.040 − -0.102 0.034 -0.060 0.024

log(median income) 0.484 0.268 0.403 0.163 0.044 − 0.287 0.233 0.114 0.115

small size -0.214 0.154 -0.205 0.142 0.037 − -0.240 0.148 -0.283 0.130

large size -0.357 0.298 -0.439 0.288 -1.157 − -0.424 0.311 -0.356 0.309

low status customers -0.321 0.162 -0.586 0.125 -0.602 − -0.512 0.141 -0.271 0.135

high status customers -0.101 0.165 -0.233 0.143 -0.641 − -0.241 0.146 -0.025 0.130

sole proprietorship 0.146 0.189 0.039 0.170 -0.257 − 0.078 0.169 0.230 0.152

national chain -0.120 0.389 -0.532 0.347 -2.365 − -0.621 0.401 -0.481 0.376

Wy 0.584 0.093 0.554 − 0.963 − 0.664 0.127 0.833 0.080

Mu − − − − − − − − -0.445 0.197

Table A.8: Alternative ML–based and Bayesian estimates and empirical standard deviations for the first, second and third time

horizons of the data set Katrina. A SAR(1)–probit model is assumed. The column PMLE refer to our estimator, Bayes refers to

LeSage’s Bayesian estimates, the column AMLE refers to the approximate MLE by Martinetti and Geniaux (2017) and the column

CMLE refers to the composite (univariate) MLE by Mozharovskyi and Vogler (2016). The last column shows the estimates and

standard deviations of our PMLE for a SARAR(1)–probit specification. Our sd are based on the ”probit” bootstrap approach.
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PMLE Bayes

Impacts First Second Third First Second Third

Direct

flood depth -0.038 -0.027 -0.022 -0.048 -0.028 -0.020

log(median income) 0.141 0.058 0.062 0.212 0.078 0.111

small size -0.094 -0.054 -0.052 -0.080 -0.028 -0.050

large size -0.100 -0.107 -0.092 -0.095 -0.094 -0.082

low status customers -0.126 -0.108 -0.111 -0.095 -0.086 -0.074

high status customers 0.009 -0.002 -0.052 0.025 0.010 -0.023

sole proprietorship 0.155 0.070 0.017 0.160 0.091 0.033

national chain 0.016 -0.024 -0.134 0.020 0.074 -0.029

Indirect

flood depth -0.037 -0.041 -0.040 -0.030 -0.034 -0.027

log(median income) 0.140 0.088 0.113 0.128 0.097 0.154

small size -0.093 -0.082 -0.094 -0.050 -0.035 -0.072

large size -0.099 -0.163 -0.167 -0.061 -0.121 -0.116

low status customers -0.125 -0.164 -0.202 -0.058 -0.110 -0.102

high status customers 0.009 -0.002 -0.095 0.015 0.012 -0.034

sole proprietorship 0.154 0.107 0.031 0.099 0.118 0.050

national chain 0.016 -0.036 -0.244 0.012 0.100 -0.037

Total

flood depth -0.075 -0.068 -0.062 -0.078 -0.062 -0.048

log(median income) 0.282 0.146 0.175 0.340 0.174 0.265

small size -0.188 -0.136 -0.146 -0.130 -0.063 -0.122

large size -0.200 -0.270 -0.259 -0.156 -0.251 -0.199

low status customers -0.250 -0.272 -0.313 -0.153 -0.195 -0.176

high status customers 0.019 -0.004 -0.147 0.040 0.023 -0.057

sole proprietorship 0.309 0.176 0.048 0.259 0.209 0.083

national chain 0.033 -0.060 -0.378 0.032 0.174 -0.067

Table A.9: Marginal effects with respect to X (second specification of equation (20)) for the first, second and third time horizons

of the data set Katrina. The column Bayes refers to LeSage’s Bayesian estimates, while the column PMLE refers to our PML

estimates.
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First Second Third

Regressors Estimates sdb1 sdb2 sda sdc Estimates sdb1 sdb2 sda sdc Estimates sdb1 sdb2 sda sdc

constant -5.272 2.435 3.246 4.672 4.299 -2.069 1.886 3.762 4.838 3.359 -2.198 2.262 3.523 5.461 3.830

flood depth -0.136 0.048 0.062 0.059 0.045 -0.112 0.038 0.095 0.050 0.027 -0.102 0.034 0.097 0.038 0.018

log(median income) 0.510 0.238 0.319 0.456 0.423 0.238 0.190 0.368 0.486 0.342 0.287 0.233 0.345 0.556 0.395

small size -0.340 0.147 0.163 0.158 0.147 -0.223 0.142 0.179 0.178 0.173 -0.240 0.148 0.192 0.187 0.143

large size -0.361 0.328 0.368 0.380 0.379 -0.442 0.321 0.433 0.398 0.293 -0.424 0.311 0.435 0.399 0.218

low status customers -0.453 0.154 0.186 0.167 0.126 -0.446 0.133 0.198 0.154 0.131 -0.512 0.141 0.219 0.168 0.106

high status customers 0.034 0.125 0.149 0.148 0.155 -0.006 0.136 0.156 0.184 0.224 -0.241 0.146 0.175 0.208 0.181

sole proprietorship 0.560 0.202 0.236 0.217 0.168 0.289 0.180 0.261 0.217 0.164 0.078 0.169 0.298 0.246 0.173

national chain 0.059 0.385 0.412 0.408 0.383 -0.099 0.365 0.443 0.502 0.307 -0.621 0.401 0.498 0.530 0.279

Wy 0.515 0.143 0.158 0.212 0.504 0.621 0.129 0.146 0.236 0.509 0.664 0.127 0.130 0.223 0.508

Table A.10: Estimates and standard deviations for the first, second and third time horizons of the data set Katrina with the

PMLE. A SAR(1) probit model is assumed. sdb1 refers to the standard deviations from the first parametric bootstrap approach

(”probit” bootstrap), sdb2 refers to the standard deviations from the second parametric bootstrap approach (”latent” bootstrap),

sda refers to the standard deviations from the estimation of the asymptotic variance–covariance matrix, and sdc refers to the

standard deviations from the Conley’s approach (Conley, 1999).
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Appendix B. Figures
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Figure B.2: Gaussian Kernel density for the PML estimated coefficients of the SAR(1) probit model when Wn is misspecified. Two

cases of misspecification: (i) Wtrue = Wsn (in blue), (ii) Wtrue = Wrn (in red), where sn and rn refer to spectral–normalization

and row–normalization, respectively. The assumed weighting matrix is based on a k–nearest neighbor approach Wk−nn, with

k = 11, whereas n = 900 and ρ = 0.6 are fixed. Red (blue) vertical and red dashed (blue dashed) vertical lines are the mean

values, respectively. Vertical black lines are the true values of the parameters.
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Figure B.3: Spatial heterogeneity of the total marginal impacts for each regressor during the first time horizon. Blue lines represent

marginal impacts relative to the mean value.
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Appendix C. Computational aspects

The computational optimization procedure is based on unconstrained minimization of the negative log–

likelihood function with respect to the vector of parameters as in Catania and Billé (2017). So let h : <k+2 → Ω

be a measurable vector valued mapping function such that h ∈ C2 and h

(
◦
θ

)
= θ, where

◦
θ=

(
◦
β
′
,
◦
ρ,
◦
λ

)′
is the

unconstrained vector of parameters defined in <k+2. Given the necessary conditions on the parameter spaces

for ρ and λ, we define the following mapping functions

h

(
◦
θ

)
:



ρ = ω−1
ρ +

ω−1
ρ −ω

−1
ρ

1+exp

(
−
◦
ρ

) ,
λ = ω−1

λ +
ω−1
λ −ω

−1
λ

1+exp

(
−
◦
λ

) ,
β = hβ

(
◦
β

)
, for j = 1, . . . , n

(C.1)

where
(
ωρ, ωρ

)
and (ωλ, ωλ) are the minimum and maximum eigenvalues of the weighting matrices W and

M, respectively. To obtain working parameters
◦
θ from initial starting values of the natural parameters θ,

inverse functions h−1 (θ) are used. In the same way, let ∇ (θ; y,X) be the score vector of a specified log–

likelihood function. By exploiting the chain rule we can define,
◦
∇
(
◦
θ; y,X

)
= J

(
◦
θ; y,X

)′
∇ (θ; y,X), where

J
(
◦
θ; y,X

)
=

(
J
(
◦
β

)′
,J
(◦
ρ
)
,J
(◦
λ
))′

is the Jacobian matrix with respect to the working/unconstrained

parameters, and it is equal to

J
(
◦
θ

)
:



J
(◦
ρ
)

=
(ω−1
ρ −ω

−1
ρ ) exp

(
−
◦
ρ

)
(

1+exp

(
−
◦
ρ

))2 ,

J
(◦
λ
)

=
(ω−1
λ −ω

−1
λ ) exp

(
−
◦
λ

)
(

1+exp

(
−
◦
λ

))2 ,

J
(
◦
β

)
= J (β) , for j = 1, . . . , n.

(C.2)

Appendix D. The problem of inconsistency

Maximum likelihood estimators are consistent if the density of y∗n is correctly specified. Misspecification

of the functional form in a probit context is equivalent to have misspecification each conditional probability of

yi = 1, 1 ≤ i ≤ n.

In a SAE(1) probit setting, heteroskedasticity will arise whenever the weights Mn induce non–constant

diagonal terms of the matrix Σu = [B′λBλ]
−1

. Indeed, this usually happens even for rather simple choices

of Mn, such as a k–nearest neighbor matrix. Heteroskedastic probit estimators (Case, 1992) that explicitly

consider the diagonal elements of the variance–covariance matrix, i.e. diag (Σu) = diag [B′λBλ]
−1

, remain

consistent. However, the form of heteroskedasticity is generally unknown if it is implied by the spatial
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autocorrelation coefficient, see McMillen (1995) and Pinkse and Slade (1998). Note that, if the true model

includes spatial effects in the endogenous variables y∗n, the SAE(1) probit model still produces inconsistent

estimates. For nonparametric estimation and general specifications of spatial error processes see Kelejian and

Prucha (2007) and Kelejian (2016). See also Wooldridge (2014) for a Quasi–MLE in nonlinear models with

endogenous regressors.

In order to briefly explain, let Aρ = (In − ρWn) and Bλ = (In − λMn), as above, we get

y∗n = λMny∗n + ρBλWny∗n + BλXnβ + εn, εn ∼ Nn (0n,Σε) (D.1)

which is known as the Cochrane–Orcutt type transformation (Cochrane and Orcutt, 1949), a model in which

the resulting disturbances are innovations. Even after the Cochrane–Orcutt transformation, both Wny∗n and

Mny∗n are correlated with εn because

E [y∗nε
′
n] = A−1

ρ E [unε
′
n] = A−1

ρ B−1
λ (D.2)

and these correlations rule out the use of nonlinear least squares methods due to their inconsistency. Therefore,

consistency can only be achieved by correctly specifying the conditional expected value of model in equation

(1).

Appendix E. Proof of Theorems

Appendix E.1. Proof of Theorem 4.1

(i) For all 2ntuple d = (d1, . . . , d2n), di ∈ {0, 1}, we denote by E(d) = {y∗ = (y∗1 , . . . , y
∗
2n) : 2(dj −0.5)y∗j < 0}.

The 22n sets E(d) for a partition of R2n, and we can thus write

KL(fπ||fθ) =

∫
R2n

fπ(y∗) log
fπ(y∗)

fθ(y∗)
dy∗

=
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fπ(y∗)

fθ(y∗)
dy∗

=
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fπ(y∗)/Pπ(d)

fθ(y∗)/Pθ(d)
dy∗ +

∑
d

Pπ(d) log
Pπ(d)

Pθ(d)

= −
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fθ(y
∗)/Pθ(d)

fπ(y∗)/Pπ(d)
dy∗ +

∑
d

Pπ(d) log
Pπ(d)

Pθ(d)

≥ −
∑
d

Pπ(d) log

∫
E(d)

fπ(y∗)

Pπ(d)

fθ(y
∗)/Pθ(d)

fπ(y∗)/Pπ(d)
dy∗ +KL(Pπ||Pθ)

= KL(Pπ||Pθ)

where we used convexity of the map f(x) = − log x and Jensen’s inequality.
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(ii) For any given permutation π ∈ Πn and its permutation matrix Pπ, the densities fπ0 and f0 are n–variate

Gaussian random vectors,

fπ0 ∼ N
(
Pπ (I− ρWπ)

−1
Xβ,Σπ

)
f0 ∼ N

(
Pπ (I− ρWπ)

−1
Xβ,PπΣPπ

)
where

Σπ =

G∑
g=1

EgPπΣP′πEg,

with Eg is the n× n matrix with all zero row vectors, except for rows 2g − 1, 2g, that are equal to e′2g−1 and

e′2g respectively.

From the formula of the KL–divergence of two multivariate Gaussian distributions with the same mean, and

by using the properties tr(AB) = tr(BA), |AB| = |A| · |B| and the fact that log |A| = tr log(A), we have:

KL (fπ0 ||f0) =
1

2

[
tr
(
PπΣ−1P′πΣπ

)
− n− log

|PπΣ−1P′π|
|Σπ|

]
=

1

2

[
tr
(
PπΣ−1P′πΣπ

)
− log

∣∣PπΣ−1P′πΣπ

∣∣]− n

2

=
1

2

[
tr
(
A−1

)
+ log |A| − n

]
(E.1)

with A = PπΣP′πΣ−1
π = Pπ(Aρ)

−1P′πPπ(A′ρ)
−1P′πΣ−1

π . Since that tr (AB) = tr (BA), we can compute the

trace of A−1 as:

tr(A−1) = tr(PπΣ−1P′πΣπ) =

G∑
g=1

tr
(
EgPπΣ−1P′πΣπEg

)
and for each g, the trace is equal to the sum c(2g − 1, 2g − 1) + c(2g, 2g), where c(i, j) is the i, j–th term of

P′πΣ−1PπΣπ, since that Σπ is block diagonal,

c(2g − 1, 2g − 1) = σ∗(π(2g − 1), π(2g − 1))σ(π(2g − 1), π(2g − 1)) + σ∗(π(2g − 1), π(2g))σ(π(2g), π(2g − 1))

c(2g, 2g) = σ∗(π(2g), π(2g))σ(π(2g), π(2g)) + σ∗(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))

where σ∗(i, j) and σ(i, j) are the (i, j)–th components of Σ−1 and Σ, respectively. The term log |A| can be

written as a sum of G components as well: log |A| = log |Σ| + log |Σ−1
π | = log |Σ| − log |

∑
g EgPπΣP′πEg|.

Since the matrix Σπ =
∑
g EgPπΣP′πEg is a block diagonal matrix, its determinant is equal to the product of

determinants of blocks in the main diagonal, namely,

log |
∑
g

EgPπΣP′πEg| = log
∏
g

|E′g,gPπΣP′πEg,g| =
∑
g

log |E′g,gPπΣP′πEg,g| =
∑
g

log |C(π(2g − 1), π(2g))|

with Eg,g = (e2g−1, e2g), the (2g− 1, 2g)–th columns of Eg, while the determinant of log |Σ| is invariant under

permutations. Finally, we obtain

arg min
π
KL(fπ0 ||f0) = arg min

π

∑
g

(b(π(2g − 1), π(2g))− log |σ̄(π(2g − 1), π(2g))|) ,
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where b(i, j) = c(i, i) + c(j, j) and σ̄(i, j) = σ(i, i)σ(j, j)− σ(i, j)σ(j, i). Now, because of

∑
g

[σ∗(π(2g − 1), π(2g − 1))σ(π(2g − 1), π(2g − 1)) + σ∗(π(2g), π(2g))σ(π(2g), π(2g))] =

n∑
i=1

σ∗(i, i)σ(i, i)

for all π, we can write

arg min
π
KL(fπ0 ||f0)

= arg min
π

∑
g

[
σ∗(π(2g − 1), π(2g))σ(π(2g), π(2g − 1)) + σ∗(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))

− log (σ(π(2g − 1), π(2g − 1))σ(π(2g), π(2g))− σ(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))
]
.

(E.2)

Appendix E.2. Proof of Theorem 5.3

Note that

Ĵn(θ̂n)− J(θ̂n) =
1

G

∑
g

∑
j 6=g

4∑
i=1

∑
di={0,1}

∇gθ(θ̂n; d1, d2)∇jθ(θ̂n; d3, d4)′
(
p[gj](d1, d2, d3, d4; θ̂n)− p[gj](d1, d2, d3, d4; θ0)

)

+
1

G

∑
g

2∑
i=1

∑
di={0,1}

∇gθ(θ̂n; d1, d2)∇gθ(θ̂n; d1, d2)′
(
pg(d1, d2; θ̂n)− pg(d1, d2; θ0)

)
where ∇gθ(θ̂n; d1, d2) is defined in equation (9). We then have,

‖Ĵn(θ̂n)− J(θ̂n)‖ ≤ sup
1≤g,j≤G

sup
d1,...,d4

∣∣∣∣∣p[gj](d1, d2, d3, d4; θ̂n)

p[gj](d1, d2, d3, d4; θ0)
− 1

∣∣∣∣∣
∥∥∥∥∥∥Eyg,yj

1

G

∑
g

∑
j 6=g

∇gθ(θ̂n; yg1 , yg2)∇jθ(θ̂n; yj1 , yj2)′

∥∥∥∥∥∥
where

Eyg,yj ∇
g
θ(θ̂n; yg1 , yg2)∇jθ(θ̂n; yj1 , yj2)′ =

4∑
i=1

∑
di={0,1}

∇gθ(θ̂n; d1, d2)∇jθ(θ̂n; d3, d4)′p[gj](d1, d2, d3, d4; θ0)

and we write p[gj](d1, d2, d3, d4; θ) = pg(d1, d2;θ)I(d1 = d3)I(d2 = d4) whenever g = j. Clearly, because of
√
G∂`n(

ˆθn)

∂θ
→d N (0, J (θ0)), we have that

Eyg,yj

1

G

∑
g

∑
j 6=g

∇gθ(θ̂n; yg1 , yg2)∇jθ(θ̂n; yj1 , yj2)′ = Ey

√
G
∂`n(θ̂n)

∂θ

√
G
∂`n(θ̂n)

∂θ′
= Op(1)

while

sup
1≤g,j≤G

sup
d1,...,d4

∣∣∣∣∣p[gj](d1, d2, d3, d4; θ̂n)

p[gj](d1, d2, d3, d4; θ0)
− 1

∣∣∣∣∣ = op(1)

from the continuity of p[gj](·;θ) in θ and because of the assumption p[gj](d1, d2, d3, d4; θ0) > δ for all g, j and

d = (d1, d2, d3, d4). The claim ‖Ĵn(θ̂n)−J(θ0)‖ = op(1) finally follows if we prove that ‖J(θ̂n)−J(θ0)‖ = op(1).

This is a consequence of the continuous mapping theorem, implying that J (θ0)
−1/2

Ĵn

(
θ̂n

)
J (θ0)

−1/2 →d

W (I, 1), where W is a (k + 1)–dimensional (k + 2 in the SARAR probit case) Wishart distribution with scale

matrix I and 1 d.f., and J
(
θ̂n

)
= Eθ0Jn

(
θ̂n

)
, which implies that J

(
θ̂n

)
→p J (θ0)E (W (I, 1)) = 1.
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Appendix E.3. Proof of Theorem 5.4

The proof follows by adapting Theorem 2 in Mammen (1992). Let (Z1, . . . ,ZG) be a vector of random

independent couples of binary variables Zg = (zg1 , zg2) with distributions pg(·, ·;θ0), that is, the same marginal

distributions as in equation (7), corresponding to the true parameter vector. We can imagine the vector Z as

a random sample from a fictitious DGP, where all couples of binary variables are actually independent. Its

corresponding exact likelihood function would be, using equation (8), `n (θ; Z) = G−1
∑
g log (pg (zg1 , zg2 ;θ)).

Let us denote θ̂n (Z) the maximizer of `n (θ; Z), to distinguish it from θ̂n. We refer to the notation in Mammen

(1992) and define the triangular array of vectors:

Yn,g = H (θ0)
−1 1

G

∂pg

(
zg1 , zg2 ; θ̂n

)
pg

(
zg1 , zg2 ; θ̂n

) , g = 1, . . . , G.

Note that Assumptions 1–10 hold if the data come from Z (the only Assumptions that have to be checked are

Assumptions 6 and 8, that are trivially satisfied). Therefore, all conclusions drawn for θ̂n hold for θ̂n (Z) too,

and we have:
√
n
(
θ̂n (Z)− θ0

)
=
∑
g

Yn,g + op(1)

and
√
n
(
θ̂n (Z)− θ0

)
J−1/2 (θ0) is asymptotically standard normal (multivariate). Due to the independence

of Zg’s, we can exploit a bivariate version of Mammen’s Theorem 2, by concluding that

d∞

(
L?z
(√

n
(
θ̂
?

n − θ̂n (Z)
))

,Lz
(√

n
(
θ̂n (Z)− θ0

)))
→p 0

where we denoted by Lz the sampling probability distribution of the statistic induced by the DGP of the Z

vector and by L?z the distribution conditional on the sample Z. Further, we have

d∞

(
Ly
(√

n
(
θ̂n − θ0

))
,Lz

(√
n
(
θ̂n (Z)− θ0

)))
→p 0,

because they share the same limiting Gaussian distribution (clearly, the MLE estimator θ̂n(Z) and the PMLE

estimator θ̂ are algebraically the same if the observed values of Z and y coincide). It remains to prove that

the bootstrap distribution L?y
(√

n
(
θ̂
?

n − θ̂n
))

conditional on the sample y, is asymptotically the same as

L?z
(√

n
(
θ̂
?

n − θ̂n (Z)
))

. By noting that the distribution of θ̂
?

n conditional on the sample does not directly

depend neither on y nor on Z, but it is completely determined by θ̂n or θ̂n(Z), we have that, for any θn ∈ Θ,

L?z
(√

n
(
θ̂
?

n − θn
))

= L?y
(√

n
(
θ̂
?

n − θn
))

because of

Pr
{√

n
(
θ̂
?

n − θn
)
≤ t | Z : θ̂n (Z) = θn

}
= Pr

{√
n
(
θ̂
?

n − θ̂n
)
≤ y | y : θ̂n (y) = θn

}
.

This, together with consistency of both θ̂n and θ̂n(Z) for θ0, implies that

d∞

(
Ly
(√

n
(
θ̂
?

n − θ̂n
))

,Lz
(√

n
(
θ̂
?

n − θ̂n (Z)
)))

→p 0.
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Appendix F. Maximum matching

Maximum matching is a problem in graph theory consisting in finding the best way to match two nodes in

a (weighted or unweighted) graph. Given a graph G = (V,E), a matching is a set M of pairwise non–adjacent

edges, such that no couple of edges shares the same vertex. A maximum matching is a set M that is not a

subset of any other matching of the same graph. If the graph is weighted, we can define a weighted maximum

matching as a set M that produces a matching of maximum (minimum) total weight. The maximum matching

problem has been solved by the Edmonds’ blossom algorithm for unweighted matchings and later extended to

weighted matchings, see Edmonds (1965b) and Edmonds (1965a). To explain the main ideas of the blossom

algorithm, it is necessary to introduce some concepts from graph theory. A vertex v is exposed if there is

no edge in M that is incident with v. A path P is called an M–augmenting path if it is a path that starts

and ends in two exposed vertices and its edges are alternatively in and outside M . The maximum matching

algorithm exploits a result, known as Berge’s lemma: a matching M is maximal if there is no augmenting path

in G. The algorithm proceeds by starting from an initial matching and looking for an augmenting path. If the

augmenting path P exists, then the matching is updated. If it does not exists, then the algorithm stops, see

Figure F.4. The core of the blossom algorithm is a particular structure called “blossom”, and contractions.

M = ∅

∃ an M−augmenting path P?

Yes

No

return M

M = M ⊕ P

Figure F.4: Flow chart of a maximum matching algorithm

Given a graph G, and a matching M of G, a blossom B is a cycle of 2k+ 1 edges k of which belong to M , and

such that there is one vertex v of the cycle (called the base) that has an alternating path of even length to

an exposed vertex u. Blossoms are used to contract the graph: whenever a blossom is found in G, the whole

blossom is contracted into the base vertex v and this results into e new (smaller) graph G′ and matching M ′.

Then, finding M–augmenting paths in G is transformed into the problem of finding M ′–augmenting paths in

the reduced graph G′. Readers can refer to Galil (1986) (and references therein) for a deeper introduction to

maximum matching algorthms.
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