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Abstract

Modeling individual choices is one of the main aim in microeconometrics. Discrete choice models have been

widely used to describe economic agents’ utility functions and most of them play a paramount role in applied

health economics. On the other hand, spatial econometrics collects a series of econometric tools which are

particularly useful when we deal with spatially–distributed data sets. Accounting for spatial dependence can

avoid inconsistency problems of the commonly used statistical estimators. However, the complex structure of

spatial dependence in most of the nonlinear models still precludes a large diffusion of these spatial techniques.

The purpose of this paper is then twofold. The former is to review the main methodological problems and their

different solutions in spatial nonlinear modeling. The latter is to review their applications to health issues,

especially those appeared in the last few years, by highlighting the main reasons why spatial discrete neighboring

effects should be considered and suggesting possible future lines of development in this emerging field. Particular

attention has been paid to cross–sectional spatial discrete choice modeling. However, discussions on the main

methodological advancements in other spatial limited dependent variable models and spatial panel data models

are also included.

Keywords: Spatial Econometrics; Nonlinear Modeling; Limited Dependent Variable Models; Peer Effects;

Health Economics.

1. Introduction

Discrete choice models with an explicit consideration of spatial neighboring effects have received less

attention in the econometrics literature. Nevertheless, the role of space is becoming paramount in health

economics as it is witnessed by the large and increasing amount of publications found in the literature on the

subject in recent years, see e.g. Baltagi et al. (2012b), Gravelle et al. (2014), Arbia et al. (2014), and Atella
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et al. (2014).

A plausible reason for the relatively scarce diffusion of spatial discrete choice (SDC) models in health

economics and in all the other fields is certainly connected to their complexity, see Fleming (2004). Indeed,

there are still a number of methodological problems to be solved connected with the computational burden

and accuracy of the various techniques when dealing with large datasets which is often the case in health

economics and when using microeconomic datasets. The computational problems can be very serious so that

these models have experienced increasing attention in recent years by spatial econometricians, see Smirnov

(2010) for a review, and the methodologies proposed are still largely unexplored. The computational problem

is relevant because a–spatial discrete choices (DCs) and limited dependent variables (LDVs) are widely used

to solve health problems, see Jones (2000) and Jones (2007). The estimation problems also preclude an easy

extension to panel data applications, whose diffusion is experiencing a massive increase.

Modeling economic agent–based spatial relationships is a challenging problem to be solved since that

individual decisions usually depend upon neighboring agents’ decisions. As a matter of fact, DC models

nowadays are widely used in health econometrics, see Baltagi et al. (2012a), Berta et al. (2016), Chevalier et al.

(2016), and Baltagi et al. (2018). In this literature the methodological problems raised by spatial dependence

are often overlooked if not totally neglected. Quite often in health applications the models are estimated in

order to evaluate the impact of policies (LeSage et al., 2011) and to evaluate health programs. In this respect

it is of crucial importance to estimate accurately the model parameters and to utilize sound methodologies in

the associated hypothesis testing procedures. However, in the presence of spatial dependence, the parameter

estimators are no more fully efficient producing a bias towards the null hypothesis that can lead, e.g. to discard

health policies as ineffective in situations where they could indeed produce relevant benefits. Furthermore,

when discrete data are spatially correlated the estimator can also become inconsistent. These are the major

reasons why it is of paramount importance to introduce the necessary spatial econometrics corrections in the

inferential phases of estimation and hypothesis testing to reduce the probability of type II errors in empirical

circumstances.

The present paper is mainly focused on synchronic cross–sectional data analysis. Nevertheless, a brief

review on spatial discrete choice panel data models is included. For a review of spatial linear econometric

models with panel health data sets the reader is referred to Moscone and Tosetti (2014). The purpose of this

paper is twofold. The former is to review the main methodological problems and their different solutions in

spatial discrete choice modeling as they have appeared in the econometric literature. The latter is to review

their applications to health issues, especially those appeared in the last few years, by highlighting the main

reasons why spatial discrete neighboring effects should be considered and then suggesting possible future paths

of the development of this emerging field.

The paper is structured in the following way. Section 2 explains spatial limited dependent variable models

focusing on discrete choices. In particular, Section 2.1 describes model specifications and identification issues,
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Section 2.2 reports the game theoretical foundation of the these type of models, Section 2.3 provides the

proper definition of the marginal impacts for spatial binary probit models, Section 2.4 briefly reviews the

methodological papers which make use of endogenous weighting matrices and/or endogenous agent locations,

while Section 2.5 briefly discusses the information added by spatial autoregressive coefficients. Section 3 reports

an overview of spatial limited dependent variable models with their main estimation problems and related

solutions. It contains also an explanation of the inconsistency problem in Section 3.3 and a brief discussion on

the packages in R and Matlab in Section 3.4. Section 4 reviews the empirical applications in health economics

which make use of SDC models and tries to stimulate the readers to adopt spatial econometric techniques at

least as an alternative in comparison with a–spatial econometric approaches. Finally, Section 5 concludes.

2. Spatial discrete choice model specifications

Spatial econometricians are usually interested in extending standard econometric models by assuming that

it is likely the presence of some form of regional/social dependence when we deal with sample units observed

over a space. In the following five subsections we present the main discrete choice model specifications, the

economic theoretical foundation of these spatial econometric models, the correct specifications of the marginal

effects, the case when the weighting matrix is endogenous and the substantive correlation information inside

the autoregessive parameter.

2.1. Models’ specifications

Spatial binary and multinomial models have received a greater attention in the literature. Therefore, in

the following subsections we focus the attention on these two specifications, referring to Section 3 for a brief

discussion on other types of limited dependent variable models.

2.1.1. Spatial binary probit models

In this subsection we start with the definition of a general nonlinear nesting model (GNNM) and we

progressively define its quite general nested–specifications by introducing different constrains. Let yn be a

n–dimensional stochastic vector of spatial binary variables, i.e. yn ∈ {0, 1}n. A GNNM with binary outcomes

can be specified as follows

y∗n = ρW1,ny∗n + Xnβ + W2,nX̃nθ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) (1)

where y∗n is the n–dimensional vector of latent continuous dependent variables, yn is the n–dimensional

vector of observed binary dependent variables defined by the n–dimensional indicator function In (y∗n > 0n) =

(I(y∗1 > 0), . . . , I(y∗n > 0))
′
, Xn is the n by k matrix of exogenous variables including the constant term, X̃n

is the same matrix of regressors excluding the constant term, W1,n, W2,n and Mn are n–dimensional spatial

3



weighting matrices of known constants, θ is a (k − 1)–dimensional vector of parameters that capture local

spatial correlation effects, γ =
(
β′, ρ, λ

)′
is a (k + 2)–dimensional vector of parameters with autoregressive

coefficients ρ and λ that capture global spillover effects and with β = (β1, β2, . . . , βj , . . . , βk)
′
, and εn is a

multivariate normal vector of innovations with zero mean and finite variance σ2
ε < ∞, such that Σε = σ2

εIn.

Latent variables are then assumed to be linear functions of the regressors, but they are observed through the

use of a binary variable that makes the overall model nonlinear in parameters. In the nonlinear case, σ2
ε is

usually set to 1 for identification.

The inclusion of spatially–lagged dependent variables W1,ny∗n typically causes an endogeneity problem

(unobserved in this case), which in turn produces inconsistency of least squares estimators. In the linear

regression case, Lee (2002) provided the consistency and efficiency properties of the least squares estimators

for specific mixed–regressive (i.e. with exogenous regressors or covariates) spatial autoregressive models. The

discussion will be referred to the end of Section 3.3. The problem of inconsistency is connected to the multi–

directionality nature of spatial dependence in which each site, say i, is a second-order neighbor of itself, implying

that spatial spillover effects have the important meaning of feedback/indirect effects also on the site where the

shock may have had origin. The problem also makes the overall model a system of n simultaneous equations (one

for each random variable observed in space), with the consequence that spatial autoregressive models cannot be

viewed as simple extensions of natural recursive time–series econometric models, see Hamilton (1994). These

types of spatial models are then multivariate by definition, with the peculiarity of having statistical information

coming from one observation for each random variable in space in a cross–sectional framework.

From the model specification in equation (1), at least three nested–model specifications can be derived.

By letting θ = 0 and for notational convenience W1,n = Wn, a spatial (first–order) autoregressive–regressive

probit model with (first–order) autoregressive disturbances (SARAR(1,1)–probit) can be defined, see e.g. Billé

and Leorato (2017) and Martinetti and Geniaux (2017), in the following way

y∗n = ρWny∗n + Xnβ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) . (2)

Additional conditions are needed for the identification of (ρ, λ) in a SARAR(1,1)–probit model. Specifically,

Mn and Wn are assumed to be different thus allowing for different mechanisms to govern spatial correlation

between shocks affecting the latent model and spatial dependence of the latent variables themselves. Then, the

entire spatial dependence can be easily disentangled. It is noticetable that, when Wn = Mn, then distinguishing

among the two spatial effects may become difficult, with possible identification problems of the autoregressive

parameters. In this particular case, a sufficient condition to ensure identifiability of the linear model is that the

covariates make a material contribution towards explaining variation in the dependent variable, i.e. at least

one coefficient βj j = 2, . . . , k is statistically significant. From an empirical point of view, disentangling the

entire global impact due to (ρ, λ) is important in order to know at least how much of the total spatial spillover
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effects is due to the direct correlation among the dependent variables and how much is due to unobserved

shocks.

The combination of different values of the two spatial autocorrelation parameters in a SARAR framework

deserves a certain attention in that it may lead to a re–specification of the model. This effect is similar to

the presence of common factors in autoregressive moving average (ARMA) time series models (Harvey, 1990),

where under some conditions, for instance, an autoregressive moving average model of orders p = 1 and q = 1,

i.e. ARMA(1,1), may reduce to an autoregressive model of order p = 1, i.e. AR(1). In the case of linear

spatial models, this effect has been observed e.g. by Arbia (2014) who showed that when the two spatial

autocorrelation parameters differ only by the sign a SARAR(1,1) model reduces to a spatial (first–order)

autoregressive (SAR(1)) specification. Similar effects maybe observed in spatial discrete choice models.

By letting λ = 0 or ρ = 0 in equation (1), a spatial Durbin probit model or a spatial Durbin error probit

model, also capable of informing about local correlation effects, can be defined, respectively. See e.g. Elhorst

(2010) and LeSage (2014) for details in the linear case. The spatial Durbin probit model and the spatial Durbin

error probit model can be respectively written in the following way

y∗n = ρW1,ny∗n + Xnβ + W2,nX̃nθ + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) , (3)

y∗n = Xnβ + W2,nX̃nθ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) . (4)

Note that, differently from the case reported in model (2), the models in equations (3) and (4) allow for

W1,n = W2,n and W2,n = Mn. Moreover, the spatial interaction effects among the exogenous regressors

W2,nX̃n can be specified for all the regressors in X̃n but also for a subset of them. Finally, other nested

spatial models can be specified by letting θ = 0 and λ = 0 or by letting θ = 0 and ρ = 0, identifying a

spatial (first–order) autoregressive probit (SAR(1)–probit) model, see e.g. LeSage et al. (2011), and a spatial

(first–order) autoregressive error probit (SAE(1)–probit) model, see e.g. McMillen (1992) and Pinkse and Slade

(1998), respectively.

The above models are also useful to describe social interaction effects or peer effects. The notion that an

individuals choice is affected by the behavior and/or attributes of her peers is a natural one. In the linear

case, the focus is on the so–called linear–in–means model of social interactions. Formal econometric analysis

of the linear–in–means model begins with the well–known reflection problem paper by Manski (1993), i.e. the

analysis of the linear version of model in equation (1). As Manski (1993) states “The reflection problem arises

when a researcher observing the distribution of behaviour in a population tries to infer whether the average

behaviour in some group influences the behaviour of the individuals that comprise the group”. He notes that

some interaction effects must be excluded to model identifiability since otherwise the endogenous and exogenous
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effects cannot be distinguished from each other (see also Elhorst, 2010 for a Monte carlo simulation on this

issue). This means that some restrictions on the (spatial) weighting matrices are needed to obtain linear–in–

means models: indeed, the weighting matrices are typically assumed to be row–stochastic, i.e. the weights are

row–normalized. Extensions of the Manski’s analysis are e.g. the papers by Bramoullé et al. (2009) and Lee

(2007), with a particular focus of the SAR(1) specification with network data.

Fortunately, the reflection problem does not likely arise in binary choice models, see Brock and Durlauf

(2007). From a theoretical point of view on the causal interpretation on social interactions in (spatial) discrete

choice models see e.g. Brock and Durlauf (2007), Lee et al. (2014), Liu (2018) and references therein. In

particular, Brock and Durlauf (2007) show the conditions under which binary choice models with social

interactions can be identified or at least partially identified. In addition to the standard assumptions, like

e.g. iid distributions on the random payoff terms or linear independence among the observable individual and

group–specific regressors, the authors assume (i) random assignment of economic agents to groups and (ii) no

unobservable (to the econometrician) group–specific characteristics. In this particular case, the identification

of parameters is achieved up to scale. If only assumption (i) is relaxed, and so there is no random assignment

of the economic agents to groups, then two possible cases are considered: (a) the assignment is a function

of observable variables, in which case the parameters are identified and (b) the assignment is a function

of unobservable variables for which the parameters are only partially identified. In contrast, if only the

assumption (ii) is relaxed, then the binary model is not identified and the authors suggest two possible classes

of strategies to obtain at least a partial identification of the parameters. Finally, a brief discussion of the case of

heteroskedasticity is also included. From an empirical point of view, the discussion on social effects is referred

to the end of Section 4.

2.1.2. Spatial multinomial probit models

A second case is when we have more than two unordered modalities. A GNNM with unordered multiple

outcomes can be defined as follows

U∗ij = ρ

n∑
h=1

w1,ihU
∗
hj + x′ijβ +

n∑
h=1

w2,ihx̃
′
hjθ + uij , uij = λ

J∑
k=1

mjkuik + εij , εij ∼ N (0, σ2
εj )

yij = 1 iff U∗ij > U∗ik for k 6= j

yij = 0 otherwise (5)

where i, h = 1, . . . , n are individuals, j, k = 1, . . . , J are alternatives (choice set) and the j–th alternative is

chosen if its utility is a maximum respect to all the other alternatives, U∗ij is the utility of individual i associated

to alternative (preference) j, xij are tipically individual–specific exogenous regressors with β coefficients, yij

is the corresponding observed multinomial variable, ρ
∑n
h=1 w1,ihU

∗
hj summarizes the dependence structure

between individuals’ preferences, λ
∑J
k=1mjkuik summarizes the dependence structure between unobserved
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attributes or selected alternatives,
∑n
h=1 w2,ihx̃

′
hjθ summarizes the individual–specific local spillover effects,

and usually σεj = 1 for model identification. Moreover, the alternative–specific error terms σεj remain

constant through individuals. It is typically assumed that each individual i faces the same universal choice set

C = {1, ..., j, ..., J}. Finally, note that this model accounts for spatially correlated unobserved alternatives, but

it should be also interesting to check if individual–specific unobserved attributes could be spatially correlated.

As in subsection 2.1.1, we can obtain nested–model specifications with some constraints on model in equation

(5). By letting θ = 0 a SARAR(1,1)–MNP (multinomial probit) model can be defined. To the best of our

knowledge, no one in the literature has yet used this type of model. By letting θ = 0 and λ = 0, a SAR(1)–MNP

model is specified, see Smirnov and Egan (2012), and it can be written as follows

U∗ij = ρ

n∑
h=1

w1,ihU
∗
hj + x′ijβ + εij , εij ∼ N (0, σ2

εj )

yij = 1 iff U∗ij > U∗ik for k 6= j

yij = 0 otherwise (6)

where we assume that unobserved utility functions are autocorrelated through ρ
∑n
h=1 w1,ihU

∗
hj , revealing that

individuals’ preferences depend also on the preferences of “neighboring” people (the problem in this case is to

identify a reasonable topology in order to define individuals’ interactions). Smirnov and Egan (2012) called

this model spatial random utility maximization (SRUM) model. They proposed this type of model in order

to measure unobserved spatial interdependencies between households and establish if these interdependencies

have a significant effect on the recreational travel choices. Unfortunately, the way in which they capture

these unobserved spatial/social effects is based on an aggregation of the neighboring spatial units at a county

level, loosing the advantage of considering information at agent–based microeconomic data. The problem

of a knowledge diffusion of these type of models into the health field seems to be caused by the insufficient

information on the individuals’ spatial locations.

By letting θ = 0 and ρ = 0, a spatial (first–order) autoregressive error multinomial probit (SAE(1)–MNP)

model, see e.g. Bolduc et al. (1996a), can be also specified as follows

U∗ij = x′ijβ + uij , uij = λ

J∑
k=1

mjkuik + εij , εij ∼ N (0, σ2
εj )

yij = 1 iff U∗ij > U∗ik for k 6= j

yij = 0 otherwise. (7)

Some models of this type can be found in land–use applications, see e.g. Sidharthan and Bhat (2012) and

Chakir and Parent (2009), in which individuals’ (land owners’) interactive decisions are associated with spatial

correlation among the type of use of the land (i.e. parcel units, which corresponds to the alternatives).

In particular, both Sidharthan and Bhat (2012) and Ferdous and Bhat (2013) have stressed that spatial
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dependence among land development intensity levels is justified by the interactions between land owners of

the corresponding spatial units. That is, land owners of proximately located spatial units, acting as profit–

maximizing economic agents, are likely to be influenced by each other’s perceptions of net stream of returns

from land use development. This model can be used for example in the context of patient hospital choices,

see e.g. Varkevisser et al. (2012), in which individuals maximized their utilities in choosing among different

hospitals and the choice cannot depend only on hospital attributes (e.g. hospital’s quality) or travel time (which

justifies the use of the a–spatial mixed logit model), but also on the presence of spatial autocorrelation between

those alternatives. Indeed, the most recent literature is recognizing the importance of spatial competition

between alternatives, see Gravelle et al. (2014). Considering a spatial structure, at least in the simplest form

of a spatial error, is more important in nonlinear models because in this case we generally have inconsistent

estimates rather than a loss of efficiency as in the linear case, see Section 3.3.

2.2. Game theoretical foundations of spatial discrete choice models

The linear SARAR(1,1) model specification can be justified by a Nash equilibrium of a static complete

information game with linear–quadratic utilities. The static game implies that there is no time memory

among the players’ actions, while the complete information game implies that the reaction functions of all

the other players are observed and that the players do their actions simultaneously. The same occurs for the

SARAR(1,1)–probit specification in equation (2).

Suppose that there are n individuals and they choose their actions to maximaze their utility functions. For

the SARAR(1,1)–probit specification in equation (2), y∗i,n for i = 1, . . . , n are usually interpreted as utility

functions. These functions are still linear in parameters but they are unobserved by the researcher. Suppose

the researcher observes the binary action yi,n ∈ {0, 1} of individual i, which is directly related to its utility

i.e. yi,n = I
(
y∗i,n > 0

)
. In addition, suppose that the individual i’s benefit from his/her utility depends on

his/her characteristics, on the other’s utilities and on the spatially autocorrelated unobserved characteristics:

ρ
∑n
j=1 wij,ny

∗
j,n+x′i,nβ+λ

∑n
j=1mij,nuj,n+ εi,n, which can be strategic substitute or strategic complementary

if ρ < 0 or if ρ > 0, respectively. The same distintion occurs if we consider the sign of λ. Then the utility

function of individual i can be written as

Ui,n (yi,n = 1) = Ui,n
(
y∗i,n > 0

)
= ρ

n∑
j=1

wij,ny
∗
j,n + x′i,nβ + λ

n∑
j=1

mij,nuj,n + εi,n (8)

where the Nash equilibrium is then yi,n = I
(
ρ
∑n
j=1 wij,ny

∗
j,n + x′i,nβ + λ

∑n
j=1mij,nuj,n + εi,n > 0

)
and there

is an implicit normalization to zero of the cost function of doing an action. Note that Xu and Lee (2018) and

Xu and Lee (2015a) consider a type of SAR(1)–probit model not directly based on latent equations, i.e.

y∗i,n = ρ
∑n
j=1 wij,nyj,n + x′i,nβ + εi,n. However, this model maybe not algebraically consistent, see Klier and

McMillen (2008).

For nonlinear spatial econometric models, a dependent variable cannot be expressed as a linear function of
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the disturbances. As Xu and Lee (2018) stressed “... one has to investigate whether a model is well specified

so that corresponding nonlinear reaction functions would have a solution. ... If a solution would exist, the next

issue is to investigate whether the model would have a unique Nash equilibrium or multiple ones”. In order to

guarantee at least one solution for model y∗i,n = ρ
∑n
j=1 wij,nyj,n + x′i,nβ + εi,n, Xu and Lee (2015a) impose

that ρ ≥ 0, therefore defining a strategically complementary game called supermodular game, see also Xu and

Lee (2018) for details. In case of the model in equation (2) and utility function in (8) no further restrictions

have to be imposed. They also raise the issue of equilibrium selection. For details the reader can see the paper

by Xu and Lee (2018) and references therein.

Assumptions needed to guarantee a unique Nash equilibrium would probably affect the parameter space

of the autoregressive coefficients in equations (8). If the model in equation (2) is an equilibrium relationship,

then Kelejian and Prucha (2010) found a proper parameter space that rules out unstable Nash equilibria. A

stable Nash equilibrium is such that, when there is a small infinitesimal change in probabilities for one player

(economic agent), this leads to a situation where two conditions hold: (i) the players (economic agents) who

did not change has no better strategy in the new circumstance, (ii) the player (economic agent) who did change

is now playing with a strictly worse strategy. Then, a player with the small change in their mixed strategy will

return immediately to the Nash equilibrium. The parameter space they defined is based on the definition of

the spectral radius of a matrix, so that for model in equation (2) we have:

Lemma 2.1. Let τWn and τMn denote the spectral radius of the square n–dimensional Wn and Mn matrices,

i.e.:

τWn
= max{|ω1|, ..., |ωn|} and τMn

= max{|m1|, ..., |mn|}, where ω1, ..., ωn and m1, ...,mn are the eigenvalues

of Wn and Mn, respectively. Then, (In − ρWn) and (In − λMn) are non singular for all values of ρ in the

interval (−1/τWn , 1/τWn) and λ in the interval (−1/τMn , 1/τMn).

Then, the parameter spaces (−1/τWn
, 1/τWn

) and (−1/τMn
, 1/τMn

) for ρ and λ, respectively, ensure

stable Nash equilibria for model in equation (2). So the model in equation (2) can be uniquely defined by

2.1. Note that if all the eigenvalues of Wn (but the same occurs for Mn) are real and (ω < 0, ω > 0), where

ω = min{ω1, ..., ωN} and ω = max{ω1, ..., ωN}, we are in the particular case in which ρ lies in the interval

(1/ω, 1/ω). This means that the weighting matrices in 2.1 can be also asymmetric before normalization, so

that the eigeinvalues can be also not real.

2.3. Marginal effects

Billé and Leorato (2017) suggest the correct specifications of the marginal effects for spatial nonlinear

autoregressive models. In the following we briefly explain how this marginal effects are defined.

In nonlinear regressions, the interpretation of the marginal effects in terms of the change in the conditional

mean of y when regressors X change by one unit is no longer possible. The effects arising from changes in
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the explanatory variables depend in a nonlinear fashion on the levels of these variables, that is changes in

the explanatory variable near the mean have a very different impact on decision probabilities than changes in

very low or high values. For spatial autoregressive probit models, the nonlinearity increases in the evaluation

of the marginal effects, see Beron and Vijverberg (2004), LeSage et al. (2011). Recently, Billé (2014) has

also pointed out the main consequences in evaluating marginal effects with and without the consideration of

heteroskedasticity implied by the spatial autocorrelation coefficient.

Let x.h = (x1h, x2h, ..., xih, ..., xnh)
′

an n–dimensional vector of units referred to the h–th regressor,

h = 1, . . . , k, and xi. = (xi1, xi2, ..., xih, ..., xik)
′

a k–dimensional vector of regressors referred to unit i. By

correctly specifying the conditional expected value and the robust conditional variances of model in (2), the

following specifications of the marginal effects has been proposed

∂P (yi = 1 | Xn)

∂x′.h
|x̄ = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X̄

}
i.
β
)
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ }i.βh

∂P (yi = 1 | Xn)

∂x′.h
|x = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X

}
i.
β
)
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ }i.βh (9)

where Σν(ρ,λ) is the variance–covariance matrix implied by the reduced form of a SARAR(1,1)–probit model

in equation (2), A−1
ρ = (I− ρW)

−1
, X̄ is an n by k matrix of regressor–means, ( · )i. considers the i–th row of

the matrix inside, and ( · )ii the i–th diagonal element of a square matrix. Note that Σν(ρ,λ) reduces to Σu(ρ)

for a SAR(1)–probit specification with u = A−1
ρ ε.

The first specification of equations (9) explains the impact of a marginal change in the mean of the h–

th regressor, i.e. x̄.h, on the conditional probability of {yi = 1}, i.e. P (yi = 1 | Xn), setting x̄.h′ for all

the remaining regressors, h′ = 1, . . . , k − 1. The second specification of equations (9) considers, instead, the

marginal impact evaluated at each single value of x.h. This is particularly informative in space since the

possibility of evaluating a marginal impact with respect to a particular value xih have the same meaning of

considering a marginal impact in a particular region/site for regressor h. The results are two n–dimensional

square matrices for {y1, y2, . . . , yn}. Both the specifications should be evaluated with consistent estimates of

the spatial autocorrelation coefficients
(
ρ̂, λ̂
)

.

Spatial marginal effects are then split into an average direct impact and an average indirect impact. The

average of the main diagonal elements of the n–dimensional matrix, in both the equations, is the average

direct effect (i.e., the impact from their own regions). The average of the cumulated off–diagonal elements is

the average indirect effect – due to spatial spillover effects (i.e., the impact from other regions). Finally, the

average total effects is the sum of them (LeSage and Pace, 2009). Changes in the value of an explanatory

variable in a single observation (i.e. a spatial unit) i may influence all the n − 1 other observations. The

scalar summary measure of indirect effects cumulates the spatial spillovers falling on all other observations,

but the magnitude of impact will be greatest for nearby neighbors and declines in magnitude for higher–order

neighbors. LeSage et al. (2011) pointed out the need to calculate measures of dispersion for these estimates.
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Billé and Leorato (2017) provided results on the evaluation of the marginal effects and their measures of

dispersion through Monte Carlo simulations. In their paper, they showed that if the estimates of the spatial

autocorrelation ρ in equation (2) are slightly biased for different positive/negative true values, then the direct

marginal effects remain robust, as expected, but the higher is the true value of the autocorrelation coefficient,

i.e. |ρ| → 1, the bigger is the difference between the estimated indirect marginal effects and the true ones.

The same conclusion can be made if we only consider the spatial autocorrelation coefficient λ in the error

terms, since the diagonal elements of the variance–covariance matrix implied by the reduced form model, i.e.

{Σν(ρ,λ)}ii, depend on both the spatial autocorrelation coefficients and enter in the calculation of the marginal

impacts in equation (9). Moreover, the above considerations are true if the weighting matrices are correctly

specified. Details on model misspecification due to wrongly assumed weighting matrices can be also found in

Billé and Leorato (2017). Finally, while most of the literature relies on Monte Carlo methods, some recent

papers provided a series of alternatives in the case of linear spatial models (Arbia et al., 2019a).

Observation–level total effects estimates, sorted from low–to–high values of each regressors, can be also

viewed as an important measure of spatial variation in the impacts (Lacombe and LeSage, 2013). This kind of

interpretation permits also to account for spatial heterogeneity due to the variation over space of the marginal

impacts with respect to the spatial distribution of the regressors. See Billé et al. (2017) for a two–step approach

specifically thought to account for unobserved discrete spatial heterogeneity in the beta’s coefficients via iterated

local estimation procedures. Finally, note that the specification of these marginal effects (Billé and Leorato,

2017) are different from those proposed by LeSage et al. (2011) and Beron and Vijverberg (2004).

2.4. Endogeneity of the spatial weighting matrix and of the agent locations

To the best of our knowledge, the problem of endogeneity of the spatial weighting matrix and of the agent

locations has not been yet considered into nonlinear regression model specifications, i.e. the properties of all

the estimators in spatial nonlinear regression models are derived by assuming a fixed spatial weight matrix and

exogenous agent locations. Therefore, in the following of this section we provide the state of the art on the

endogeneity problem in the linear case, hoping that this will be useful to extending these main contributions

to the nonlinear case.

Nowadays, part of the relevant literature is questioning how to correctly specify spatial weighting matrices

in parametric spatial models to avoid possible estimation and inference problems. This issue has led to an

interesting debate and to several “schools of thought” that span from using spatial semiparametric approaches

(Pinkse et al., 2002) to graphical/network theory or endogenous weighting matrices, see e.g. Bhattacharjee

and Jensen-Butler (2013), Ahrens and Bhattacharjee (2015). An ideal or “optimal” spatial weight matrix for

analyzing all spatial phenomena is surely an unrealistic goal (Bavaud, 1998). Typically, exogenous W matrices

are specified assuming that researchers have at least some prior knowledge of the underlying spatial structure.

However, researchers are typically not sure about the form of the W matrix so that they take into account the
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possibility of estimating it through the use of some exogenous variables. The problems of endogeneity raised

by such an approach are considered in e.g. Kelejian and Piras (2014) and Qu and Lee (2015). Alternatively,

one can take advantage of time information, see e.g. Billé and Catania (2018).

Another set of problems emerge in those situations where the choice of agent locations are also endogenous

or when agents choose voluntarily their peers thus determining the topology of the system incorporated in

the W matrix. Under this respect Pinkse and Slade (2010) criticized the current developments of spatial

econometrics by observing that “Economists have studied the locational choices of individuals and of firms, but

generally treat the characteristics of locals as given. The purpose of much spatial work, however, is to uncover

the interaction among (authorities of) geographic units, who choose, e.g., tax rates to attract firms or social

services to attract households. . . . . An ideal model would marry the two; it would provide a model explaining

both individuals location decisions and the action of, say, local authorities”.

The modelling strategy which treats location as endogenous by taking care simultaneously of both locational

choices and economic decision in the chosen location is one of the scope of the growing field termed spatial

microeconometrics, see Dubé and go Legros (2014) and Arbia et al. (2019c). This field is rapidly emerging

building upon the results of various branches of spatial statistics and on the earlier contributions of Arbia and

Espa (1996), Duranton and Overman (2005), Arbia et al. (2008), Marcon and Puech (2009), Arbia et al. (2010),

Espa et al. (2013), among many others. In the field of linear spatial models the problem has been discussed at

a certain length by Arbia (2016) who discussed the impact of endogenous location on the W matrix definition.

Comparatively less results are available in the area of discrete choices, see e.g. Arbia et al. (2019b).

2.5. A substantive correlation information

Apart from an omitted variable problem whose solution is a purely statistical task, it should be emphasized

that the additional information deriving from the geographical location of data is of paramount importance

in health economics for a number of reasons. For instance, Atella et al. (2014) developed a spatial Durbin

model (SDM) by partitioning the Wn contiguity weighting matrix into two sub–matrices in order to take

into account institutional constraints in a study of per–capita public health expenditure, finding that spatial

effects plays a role mainly within entities belonging to the same institutional setting while the between effect is

quite negligible. Other examples in health are those of Bolduc et al. (1996a) and Gravelle et al. (2014), which

discussions are referred to Section 4.

From a substantive point of view, spatial parameters usually bear an important information content in a

way that they cannot be thought as simply nuisance parameters1. Indeed, spatial dependence not only means

lack of independence between observations, but also an underlying spatial structure, so that the autoregressive

coefficient ρ should be interpreted in terms of causal relationship information parameter between y∗n and its

1See Anselin (2002) for a brief discussion on differences between substantive and nuisance correlation parameters.
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neighboring values in a discrete context. This should be particularly relevant in all those cases in which we

need to describe social interaction/dependence effects between economic agents over space. For instance, it

might be interesting to evaluate the probability that a single person takes the decision of choosing a particular

health facility that has been affected by the decisions of neighboring economic agents. Moscone et al. (2012)

have recently modeled peer effects between economic agents’ hospital choices, but their interpretation is more

related to a temporal dimension rather than a proximity in space.

3. Estimation

3.1. Generalities

Traditionally, spatial regression models are estimated by maximum likelihood (ML) method. However, this

approach can often become computationally unfeasible in the presence of large samples (Arbia et al., 2019d),

especially when dealing with discrete dependent variables. In order to solve this issue, some methodological

and computational solutions have been recently proposed. Furthermore, in view of the possible computational

advantages, many researchers seem to be increasingly incline to use Bayesian inference with the well–known

MCMC and Gibbs sampling approaches (LeSage, 2000). At the same time, an emerging literature is seeing

the development of semi– and non–parametric techniques (McMillen and McDonald, 2004). In the following

of this section we provide a brief review of the main methodological innovations in the econometric subfield of

discrete choice and limited dependent variable spatial modeling by distinguishing them according to the nature

of the dependent variable, with the purpose to highlight the potential of the proposed solutions.

3.1.1. Binary variables

It is well known from the econometric literature that discrete choice models can be distinguished according

to the number of outcomes of the dependent variable. Nonlinear models like binary probit/logit models are

useful to describe binary dependent variables and both of them have received particular attention in order to

introduce spatial spillover effects, see McMillen (1992), Pinkse and Slade (1998), Fleming (2004) and Beron and

Vijverberg (2004). However, the spatial dependence structure adds complexity in the estimation of parameters,

at least because of the implied heteroskedasticity. Solutions for inconsistency due to heteroskedastic variances

in spatial probit/logit models have been proposed by e.g. Case (1992) and Pinkse and Slade (1998). However,

there is no consideration in these cases on the information deriving from the off–diagonal elements of the

variance–covariance matrix.

Due to the easier accessibility to computer–based solutions, a class of maximum simulated likelihood (MSL)

estimators has been proposed to deal with both inconsistency and loss of efficiency, see McMillen (1992)

and Beron et al. (2003). Nowadays, a major problem in maximizing this log–likelihood function with MSL

approaches is represented by fact that it repeatedly involves the calculation of the determinant of n by n
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matrices whose dimension depends on the sample size, in which cases the use of sparse matrices is generally

recommended, see also Pace and Barry (1997). The generalized method of moments (GMM) is also affected

by this problem in the nonlinear context. For this reason MSL/GMM approaches are still computationally

unfeasible. Important contributions are those of Klier and McMillen (2008) in a GMM environment, of Bhat

(2011) and Mozharovskyi and Vogler (2016) in the realm of the composite ML estimation, and of Martinetti

and Geniaux (2017) for approximate ML estimation. However, the estimator proposed by Klier and McMillen

(2008) (a linearization of the GMM proposed by Pinkse and Slade, 1998) has good properties only if the true

autocorrelation coefficient is small. The other solutions are, instead, only approximations.

Differently from numerical approximation solutions, Bhat and Sener (2009) copula–based approach does

not require simulation machinery and provides a simple closed–form solution, which is computationally feasible

even with very large sample sizes. However, when dealing with discrete data there is no unique copula that can

be defined and the interpretation of the correlation coefficient is different with respect to the autocorrelation

coefficient ρ in model (2). Moreover, in Bhat and Sener (2009) there is no mention of the spillover effects and

the estimation of the copula coefficient is based on a parametrization through the use of external exogenous

regressors. Wang et al. (2013) proposed a partial maximum likelihood (PML) approach which is based on a

trade–off solution between statistical efficiency and computational burden. Their limits are mainly relative

to the model specification (a spatial error process which is less attractive for empirical applications), and the

absence of a criterion for the partition of the spatial data into groups of pairs of random variables.

Billé and Leorato (2017) overcome these limits. In particular, they proposed a SARAR(1,1)–probit

model specification which is more attractive also from an empirical prospective since they accounted for the

(unobserved) endogenity problem implied by the inclusion of the term ρW1,ny∗n (i.e., the correlation among the

latent dependent variables) in equation (2). A Kullback–Leibler divergence approach between the continuos

Gaussian distributions of the latent variables is also included to provide a criterion for choosing the best

partition, i.e. the one that minimizes the loss of statistical information, of the spatial data in terms of couples.

They provided proper definitions of the marginal effects for this type of model. The paper also included

extensive Monte Carlo simulations to evaluate the finite sample properties of the PML estimator and the

marginal effects, also in the case when the spatial model is misspecified due to a wrongly assumed weighting

matrix. Finally, the asymptotic analysis of the PML estimator is also derived, providing two direct estimators

of the asymptotic variance–covariance matrix and two bootstrap approaches to obtain the estimated standard

deviations. Further details are given in Section 2.3. Recently, Lu et al. (2018) have proposed a two–step

generalized estimating equation approach in the quasi–maximum likelihood (QML) framework to estimating

spatial nonlinear models. They have focused their analysis on spatial binary and count data variables by

accounting for potential spatial processes in the error terms. To improve efficiency of the two–step approach

they have also proposed a grouping estimator.

Despite the above–mentioned estimation limits, an increasing attention has recently been paid to extending
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the previous model specifications to panel data. In this context we recognise the recent work by Pinkse

et al. (2006), Arduini (2016) and Baltagi et al. (2016). The first one specifies a dynamic model with a one–

step GMM or continuous updating (CU) estimation procedure, whereas the second and the third proposed a

semiparametric approach and a Bayesian pairwise approach, respectively. The estimation method proposed by

Pinkse et al. (2006) lies within the class of generalized empirical likelihood (GEL) estimators, whose statistical

properties tend to be superior with respect to a standard GMM for small/moderate sample sizes. Their

dynamic spatial model mainly relies on the assumption that, by dividing the entire sample size into subgroups

and groups of units, the spatial dependence between observations into different subgroups that are allocated to

the same group must be relatively small. Arduini (2016) proposes a semiparametric apporach in order to relax

the assumption on the distribution of the error terms. Although the proposed spatial semiparametric nonlinear

least square (SSNLLS) is unfeasible, the author define a two–step procedure to estimate the dynamic spatial

model. Finally, in Baltagi et al. (2016) the model assumed to be true is an m–simultaneous equation dynamic

spatial model, where m ∈ {1, 2} to define the bivariate case. Then, each of the two simultaneous equations

reflect a dynamic SAR(1) model. Therefore, in their paper the bivariate case is relative to the number of

(simultaneous) equations, with n observations each. The advantage of the Bayesian procedure over the ML

one is that the first can be used with large data set. However, in their Monte Carlo simulations the sample

size is equal to n ∈ {100, 500}, and there is no a computational comparison with the ML estimator.

3.1.2. Ordered and unordered variables

When we deal with more than two modalities (ordered or unordered), ordered-response probit/logit models

and multinomial probit/logit models are adopted, respectively.

In health economics, ordered response models are usually employed to describe individual inequalities

of self–assessed health (SAH) and its reporting heterogeneity (Lindeboom and Van Doorslaer, 2004), state–

dependent reporting bias and justification bias (Lindeboom and Kerkhofs, 2009), or scale of reference bias

problem (Groot, 2000)2. Although many databases require ordered discrete responses in a spatial context, few

papers with spatial spillover effects have been found. Among them, two relevant papers are those by Ferdous

and Bhat (2013) and Castro et al. (2013). The former developed a spatial panel ordered–response model

with spatial dependence introduced in both the exogenous variables and the error terms, while accounting

for unobserved spatial heterogeneity and accommodating time–varying dependency effects in a urban land–use

application. The latter proposed a spatial random coefficient generalized ordered-response probit (SRC-GORP)

model with a spatial intermediate formulation of the dependence structure to analyze injury severity of crashes

occurring at urban intersections. Both the estimation procedures rely on the composite marginal likelihood

proposed by Bhat (2011).

2See Greene et al. (2014) for a recent review of ordered response models for this type of applications.
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Multinomial probit/logit (MNP/MNL) models are instead justified by the random utility theory, see

McFadden (2001) and Manski (1981), and are usually considered in health economics to describe individuals’

choices and utilizations of health care services. These models define individual utility functions based on some

features that only vary between individuals (i.e. effects through decision-makers) together with some others

that only vary among individual choices (i.e. effects among choice alternatives). To ensure a closed–form

solution for the individual choice probabilities, multinomial models usually rely on two main assumptions: (i)

iid error terms with a type I extreme value (or Gambel) distribution; (ii) unobserved response homogeneity. See

Weeks (1997) for a review on specification and estimation of this type of models. Multinomial probit models

have been generally preferred because of the independent of irrelevant alternatives (IIA) property which affects

the logit (McFadden, 1981). Indeed, this property reflects an individual choice independence which is too

restrictive for several applications, so that alternative specifications – mixed logit models – were progressively

defined. See e.g. McFadden and Train (2000) for an overview of these models.

The IIA property is unlike to hold in spatial autoregressive models. The generalized–extreme value (GEV)

class of models (see Hunt et al., 2004, Bhat and Guo, 2004, Bekhor and Prashker, 2008 and Pinjari, 2011) relaxes

the iid assumption of the MNL model by allowing the random components of alternatives to be correlated, while

maintaining the assumption that they are identically distributed, assuming a Gumbel distribution for the error

terms. For instance, Bhat and Guo (2004) proposed a mixed spatially correlated logit (MSCL) model which

utilized a GEV structure in order to consider utility correlation between spatial units, and they superimposed

a mixed distribution on the GEV structure to capture the unobserved response heterogeneity in a housing

choices study. Bekhor and Prashker (2008) examined several GEV models to discuss their adaptability on

destination choice situations, with the object to determine the probability that a person from a given origin

chooses a particular destination among different available alternatives. Pinjari (2011) has formally obtained

the class of multiple discrete–continuous generalized extreme value (MDCGEV) models, and in particular he

tested the existence and extracted the general form of the consumption probability in a closed–form, with

an application in a household expenditure analysis. Finally, Bhat et al. (2015) developed a spatial multiple

discrete-continuous probit (MDCP) model to specify and estimate a model of land–use change that is capable

of predicting both the type and the intensity of urban development patterns over large geographic areas. Their

formulation also accommodates spatial heterogeneity and heteroskedasticity in the dependent variable, and

should be applicable in a wide variety of fields where social and spatial dependencies between decisions’ agents

lead to spillover effects in multiple discrete–continuous choices (or states). The estimation procedures of the

GEV class of models rely on MSL estimation which is time–consuming as mentioned in the previous section,

while Bhat et al. (2015) consider the composite marginal likelihood proposed in Bhat (2011).
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3.1.3. Count data and limited dependent variables

A different discussion can be made for count data variables. As it is well–known, count data models are

used when dependent variables consist in a count of positive integers. Due to the nature of these variables,

data are usually affected by asymmetric distribution problems and by a high proportions of zero. In health

economics these models have been subjected to a wide diffusion in order to analyze the demand for health care

and health care utilization.

Negative binomial models (see e.g. Cameron and Trivedi, 1986) have rapidly replaced the Poisson models

due to their equidispersion property that did not arise in many health data sets, see e.g. Mullahy (1997) and

Gurmu (1997). Moreover, an excess of zeros that is not implied by unobserved heterogeneity requires instead

the so–called zero–inflated models and their extensions: finite mixture/latent class models (Deb and Trivedi,

1997) or hurdle/two part models (Mullahy, 1986). A substantial difference between finite mixture models and

two part models in health empirical applications is that the former distinguish between users and not users of

the health care services (because of the binary process), whereas the latter distinguish among frequently users

and the not frequently users3. For a discussion see e.g. Deb and Trivedi (2002) and Winkelmann (2004).

Empirical spatial econometric papers with count data dependent variables are still not very popular. Recent

promising works are those of Lambert et al. (2010) and Castro et al. (2012). The former developed a two step

limited information maximum likelihood (LIML) estimator for a spatial autoregressive Poisson model, with

small sample properties evaluated using by Monte Carlo simulations. The latter proposed a spatial lag count

model with temporal dependence in a generalized ordered response context, introducing spatial dependences

by using a spatial structure on the latent continuous variables and time–varying temporal correlation patterns

by means of an appropriate structure for the error term of the latent variable. The estimation procedure is

based on the composite marginal likelihood by Bhat (2011).

Finally, some recent important contributions on the estimation of spatial autoregressive tobit models are

those by Xu and Lee (2015b), Qu and Lee (2012) and Qu and Lee (2013). In particular, the first paper analysed

the asymtpotic properties of the maximum likelihood estimator based on the spatial near–epoch dependence

of the dependent variable process, see Jenish (2012), Jenish and Prucha (2009) and Jenish and Prucha (2012).

Finite sample properties of the estimator are also included. The second and the third papers focused instead

on the asymptotic and finite sample properties of LM test statistics for the spatial simultaneous autoregressive

Tobit model.

3.2. Bayesian analysis

Because of the apparent computational advantages, Bayesian techniques have received an increasing

attention in several applied research fields, especially those related to agricultural and land use issues. For

3Bago d’Uva (2006) proposed a finite mixture hurdle panel (FMH–Pan) model which can accommodate for both mixture and

two part models. However, the author stressed that for cross–sectional data the model is characterized by identification problems.
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instance, some of them made use of binary variables (Holloway et al., 2002 and Holloway et al., 2007), ordered

responses (Wang and Kockelman, 2009b and Wang and Kockelman, 2009a), unordered responses (Chakir and

Parent, 2009) and count data (Rathbun and Fei, 2006 and Ver Hoef and Jansen, 2007). Anyway, it should

be clarified that the use of Bayesian inference should not be generally preferred to a frequentist approach

without a justified statistical reason. In order to briefly explain, in all cases in which a non-correct prior

distribution is chosen, the estimates may give misleading results and in most empirical cases we generally

do not have sufficient information to define a proper prior. Many uninformative or diffuse priors have been

proposed, but for those priors we generally expect that “the likelihood will dominate the prior” (i.e. the

likelihood function will provide the significant part of information). Being Bayesian inference a different “way”

to view the estimation of parameters, a comparison with MSL and other kind of estimators is necessary. For

example, in a comparison between MSL estimator and the Gibbs sampling approach Bolduc et al. (1997) found

no significant differences. Moreover, recently in LeSage and Pace (2009) it has emerged that the Bayesian

MCMC estimation requires extensive simulation, it is time–consuming, not straightforward to implement and

it can create converge assessment problems. Therefore, there are no significant advantages over the MSL–based

estimators. However, as LeSage (2014) stressed, a Bayesian approach can be used in many situations where a

prior knowledge (for example on the well–known W matrix) is required.

3.3. The problem of inconsistency

Although a long list of reasons would justify the use of spatial autoregressive models, the one considered

here is the inconsistency of the standard probit estimators.

The error term in a simple probit model summarizes the unknown information coming from other regressors

(i.e. omitted variables) which we assume to be uncorrelated with those in Xn. In this case, extremum estimators

(such as likelihood–based estimators) are consistent, see Amemiya (1977), Amemiya (1978) and Amemiya

(1985). However, unknown forms of misspecification of the functional form (Yatchew and Griliches, 1985), for

example when heteroskedastic errors are incorrectly assumed to be homoskedastic, lead to inconsistency of the

maximum likelihood estimators in a nonlinear setting (Poirier and Ruud, 1988). Indeed, MLE is consistent

if the conditional density of yn|Xn is correctly specified. Misspecification of the functional form in a probit

context is equivalent to have a misspecification of the Bernoulli probability for each yi, 1 ≤ i ≤ n.

In a SAE(1)–probit setting, heteroskedasticity will arise whenever the weights Mn induce non–constant

diagonal terms of the matrix Σu = [B′λBλ]
−1

. Indeed, this usually happens even for rather simple choices

of Mn, such as a k–nearest neighbor matrix. Heteroskedastic probit estimators (Case, 1992) that explicitly

consider the diagonal elements of the variance–covariance matrix, i.e. diag (Σu) = diag [B′λBλ]
−1

, remain

consistent. However, the form of heteroskedasticity is generally unknown if it is implied by the spatial

autocorrelation coefficient, see McMillen (1995) and Pinkse and Slade (1998).
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In the general case, let Aρ = (In − ρWn) and Bλ = (In − λMn). So we get

y∗n = ρWny∗n + Xnβ + un, Bλun = εn

Bλy
∗
n = ρBλWny∗n + BλXnβ + εn

y∗n = λMny∗n + ρBλWny∗n + BλXnβ + εn, εn ∼ Nn (0n,Σε) (10)

which is known as the Cochrane–Orcutt type transformation (Cochrane and Orcutt, 1949), a model in which

the resulting disturbances are innovations. Even after the Cochrane–Orcutt transformation, both Wny∗n and

Mny∗n are correlated with εn because

E [y∗nε
′
n] = A−1

ρ E [unε
′
n] = A−1

ρ B−1
λ (11)

and these correlations rule out the use of nonlinear least squares methods due to their inconsistency. For the

SARAR(1,1)–probit model in equation (2), and its sub–specification SAR(1)–probit by letting λ = 0, we have

E ((Wny∗n) u′n) 6= 0n where un = B−1
λ εn and E ((Wny∗n) ε′n) 6= 0n, respectively (see Kelejian and Prucha, 1998

and Kelejian and Prucha, 1999 in the linear case). Therefore, consistency can only be achieved by correctly

specifying the conditional expected value of model in equation (2).

In the linear case, the paper by Lee (2002) significantly contributed to indentify cases in which the least

squares estimation is consistent and efficient. He showed that when the sum of the distances among pairs of

random variables in space diverges to infinity, i.e. limn→∞
∑n
j=1 dij → ∞ ∀i = 1, . . . , n, the ordinary least

squares estimator (OLSE) can be consistent. However, two important considerations can be made. First of

all, the property that limn→∞
∑n
j=1 dij → ∞ ∀i = 1, . . . , n implicitly requires that the weighting matrix

Wn = {wij} is row–normalized, such that each row vector is defined as wi,. =
di,.∑n
j=1 dij

, where di,. is the i–th

row vector of distances. The row–normalization does not ensure the equivalence of the normalized spatial

model with the original/unnormalized one (Kelejian and Prucha, 2010). Secondly, if the row–normalization is

assumed then the property that limn→∞
∑n
j=1 dij →∞ ∀i = 1, . . . , n precludes the cases of sparse weighting

matrices, like e.g. based on a first–order contiguity criterion, since in this case each unit has usually a (fixed)

finite number of neighbours. The dense weighting matrix is instead suitable. However, the property that

limn→∞
∑n
j=1 dij → ∞ ∀i = 1, . . . , n implies that Wn = {wij} → 0, so that the OLSE is consistent as

long as the spatial connections have relatively small weights: this is something similar to say that there is no

spatial autocorrelation. Finally, the spatial autocorrelation coefficent λ e.g. in equation (2) appears linearly

in the Cochrane–Orcutt transformed equation (10) only if we consider the latent equations y∗n, as in the linear

case. This is not true in the nonlinear context, so that a more careful attention should be paid on the rate of

convergence to establish the asymptotic distribution of least squares estimators.

3.4. Estimation procedures in R and MATLAB

The estimation procedures developed in spatial econometrics are gradually spreading out in the R language,

see e.g. Arbia (2014). With respect to discrete choice models, we found the McSpatial package to be
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useful in estimating spatial binary probit models with both the MLE and the Linearized GMM proposed by

Klier and McMillen (2008). The mvProbit package used the GHK algorithm to numerically approximate

the multidimensional integral, which is unfortunately computationally unfeasible. A fast approximated

ML procedure is proposed by Martinetti and Geniaux (2017) with their package ProbitSpatial. Finally,

within the Bayesian estimation, we recognise the spatialprobit package. More information are available at

https://cran.r-project.org/web/views/Spatial.html, especially in the section spatial regression.

Further available packages for modeling spatial limited dependent variable models are in the

MATLAB software, see e.g. LeSage and Pace (2009). The functions are available at

http://www.spatial-statistics.com/software index.htm.

4. Spatial Discrete Choice models in Health

Although a large number of papers dealing with limited dependent variable (LDV) and discrete choice (DC)

models with empirical applications can be found in health economics, those models with an explicit reference

to space and spatial relationships are still not so common in the literature mainly because of the peculiarities

and the micro–scale of health data. Modeling economic agent–based spatial relationships will be instead an

approaching problem to be solved since individual decisions usually depend upon peers and neighboring agents’

decisions. These dynamics can e.g. occur between economic agents in the demand for health care utilization.

Observational data are though vulnerable to biases in estimating effects due to non–random selection and

confounding that are avoided in randomized experimental data. To properly indentify spatial neighbour effects

with the use of experimental data the reader is referred e.g. to the papers by Bobonis and Finan (2009) and

Lalive and Cattaneo (2009). For a recent review see also Advani and Malde (2018). In most cases, the above–

mentioned peculiarities of observational health data, instead, make us unable to correctly use the econometric

techniques which differ according to different observed data and they are continuously subject to criticisms and

improvements by researchers4. The inconsistency due to incorrect functional forms in discrete choice models

is particularly important and, moreover, if the researcher is also interested in estimating endogenous effects,

then she has also to deal with some other important issues like e.g. agents’ self–selection, sorting and common

shocks, that are likely to be present in health economic data sets5.

In the last 20 years, we have had an increased experience in econometric studies as the basis for health policy.

As already said, most of them required the use of LDV or DC models to describe health care expenditures,

treatment effects analysis, and many others, see e.g. Varin and Czado (2009), Munkin and Trivedi (2008),

4See for example Madden (2008) and Norton et al. (2008) for comprehensive debates.
5For theoretical contributions in linear spatial models that also account for serial correlation, spatial dependence (also known

as weak dependence), and common factors (also knwon as strong dependence), the reader is referred to Pesaran and Tosetti (2011)

and Shi and Lee (2017).
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Santos et al. (2017), Varkevisser et al. (2012), Lindeboom and Kerkhofs (2009), Deb et al. (2006) and Basu

et al. (2007). However, a very limited number of papers take into account space and spatial structure of

discrete health data sets. Some empirical works considered a distance variable or a spatial dummy variable to

distinguish between districts/regions (see e.g. Geweke et al., 2003, Wolff et al., 2008 and Nketiah-Amponsah,

2009), but none of them used spatial spillover effects by introducing autocorrelation coefficients.

Bolduc et al. (1996a) proposed the model in equation (7) in order to allow for suspected interdependencies

among location choices (so among the alternatives regions or preferences) in a study of the choice of location by

general practitioners in their initial work. Indeed, they argued that “spatial correlation is likely to be present in

the data because of the similarity of unobserved attributes in neighboring regions”, and found that the spatial

model was to be preferred. The hybrid MNP model approximated the correlation among the utilities of the

different locations using a first–order spatial autoregressive process based on a distance decaying relationship.

They used a MSL estimation procedure to obtain parameter estimates. Other more recent contributions are

those of Bukenya et al. (2003) who proposed a spatial ordered probit model to examine the relationship existing

between quality of life (QOL), health and several socioeconomic variables. Bhat and Sener (2009) instead

used a binary logit model to study teenagers’ physical activity participation levels, a subject of considerable

interest in the Public Health as well as in other fields. Instead of cosidering a spatial autoregressive model, they

proposed a copula–based apporach and they parametrized the copula coefficient trought a geographical distance

measure. Similarly, Sener et al. (2010) proposed a spatial ordered-response model to estimate physical activity

participation levels by including unobserved dependences inside clusters of observations (i.e. family units)

which affects those participation levels and, in the same way, Sener and Bhat (2012) extended a multinomial

model to introduce spatial effects into the error terms with the motivation that it is likely the presence of

unobserved residential urban form factors (such as good bicycle and walk path continuity) which may increase

participation tendencies in specific activity and unobserved lifestyle perspectives (such as physically active

lifestyle attitudes) that affect activity participation decisions based on the proximity of teenagers’ residences.

In studies on the demand of health care, health care utilizations, and in all those cases in which we need to

describe individual choices of health services among different alternatives, it is generally reasonable to assume

that there are unobserved factors, which are correlated among geographical units or among individuals who are

proximal in space, as it is frequently the case in health. For instance, in Nketiah-Amponsah (2009) it is likely

that unobserved factors (such as tobacco and alcohol consumptions) are correlated over space since it is almost

certain that individuals, especially among the youngest, have social interaction effects with those who live in

the neighboring areas. This correlation information can be taken into account by specifying a simple spatial

error structure of the discrete choice model, which can be used to improve coefficient estimates by avoiding

inconsistent estimates6 and leading to a correct inference approach. In Bolduc et al. (1996b), individuals’ utility

6The problem of inconsistency in spatial binary nonlinear models is referred to Section 3.3.
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functions, which are generally described by individuals’ choices of health care services, can be autocorrelated in

space due to social interaction effects between those individuals who are proximal in space, that is individuals’

choices are also likely to be determined by neighbor individual opinions. Also in child labor (Wolff et al., 2008)

and child mortality (Iram and Butt, 2008) studies, it is not to exclude the possibility of specifying a spatial

autoregressive discrete choice structure, since it is reasonable to assume the presence of autocorrelation between

health status among children who lie within the same neighborhood. In the same way, it could be interesting

to see if there are spatial interaction effects among child labor choices taken by individuals (i.e. parents’

choices) who are in the closeness. Gravelle et al. (2014) used a spatial autoregressive–regressive (SAR) model

in order to detect if a hospital’s quality level depends on its rivals’ quality levels in a competitive setting. The

main finding was that hospitals’ quality levels are positively autocorrelated over space and then geographical

proximity plays a paramount role in describing hospitals’ competition. One way in which hospitals can raise

their quality is surely the adoption of advanced technologies. In this context, it is then reasonable to assume

that hospitals close in space, which are competitive in terms of technology adoptions, share information about

the quantity and the quality of their qualified technologies, which in turn have an impact on the hospitals’

attractive potential of patients.

Spatial dependence is inherent in many aspects to human–decision–making, with the choice decisions of

one individual being affected by those of other individuals who are proximal in space. The importance of such

spatial dependence has been recognized in a variety of disciplines. In recent years, it has become more common

to include social interactions or neighborhood effects (i.e. social network effects) also in discrete choice models,

see e.g. Goetzke and Andrade (2010), Li and Lee (2009). In particular, Goetzke and Andrade (2010) stressed

the need to include social interactions and correlated effects in mode choice models as one combined spatial

spillover variable for two reasons: spatial spillover serves the purpose to avoid a possible omitted variable

bias, and, in addition, the spatial spillover variable can be seen as a proxy for the mode–friendliness in the

neighborhood. As also Rosenquist and Lehrer (2014) stressed, if such influences are ignored estimates of the

impact of policy interventions will, in many cases, be biased because they neglect the indirect pathway that

occurs due to spillovers or what is known as the social multiplier effects. This should be a tempting prospect

also in applied health economics, where microeconomic geo–referred data will become more and more available

in the near future.

5. Conclusions

Accounting for spatial autocorrelation in the discrete or limited dependent variable is a fundamental

challenge in the econometrics literature. One of the most important reasons for the relatively scarce diffusion

of these models is certainly their complexity, which often require MSL or Bayesian algorithms to estimate

them. To this purpose, some methodological and computational solutions have been proposed, but the aim of
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developing optimal estimators is still unreached. In our literature review, however, we have found that only a

small number of papers use the above–mentioned models with the purpose of solving health economics issues.

This fact stresses the need to popularize the potential of these models in this applied field: this was one of the

aims of the present paper.

Most of the sample sizes used in health empirical applications are of the order of millions of observations

because of their micro–scale nature. Indeed, Bell and Dalton (2007) highlighted the problem of specifying a

weighting matrix for micro–scale or individual data, in which the difficulties are related to correctly describe

all the relationships among economic agents. Data of this kind will become more and more available in the

near future with the diffusion of Big Data and with the current state–of–the–art methods we are still largely

unprepared to manage them and to correctly use the whole amount of information. Filling this gap in the

literature will surely lay the foundations for the development of Spatial Microeconometrics, which can provide

an unbelievable impact especially in Health Economics.
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Billé, A. G. (2014). Computational issues in the estimation of the spatial probit model: A comparison of various estimators. The

Review of Regional Studies, 43(2, 3):131–154.

Billé, A. G., Benedetti, R., and Postiglione, P. (2017). A two–step approach to account for unobserved spatial heterogeneity.

Spatial Economic Analysis, 0(0):1–20.
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