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Abstract
Given the extreme dependence of agriculture on 
weather conditions, this paper analyses the effect of cli-
matic variations on this economic sector, by considering 
both a huge data set and a flexible spatiotemporal model 
specification. In particular, we study the response of N-
fertilizer application to abnormal weather conditions, 
while accounting for other relevant control variables. 
The data set consists of gridded data spanning over 21 
years (1993–2013), while the methodological strategy 
makes use of a spatial dynamic panel data (SDPD) model 
that accounts for both space and time fixed effects, be-
sides dealing with both space and time dependences. 
Time-invariant short- and long-term effects, as well as 
time-varying marginal effects are also properly defined, 
revealing interesting results on the impact of both GDP 
and weather conditions on fertilizer utilizations. The 
analysis considers four macroregions—Europe, South 
America, Southeast Asia and Africa—to allow for com-
parisons among different socio-economic societies. In 
addition to finding both spatial (in the form of knowl-
edge spillover effects) and temporal dependences as well 
as a good support for the existence of an environmental 
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1  |   INTRODUCTION

Agriculture is one of the sectors most dependent on weather conditions, being its output strongly 
affected by them. With the 45% of the world population living in rural areas (The World Bank, 
2018b) and the 26% of the working population being employed in the primary sector in 2017 (The 
World Bank, 2018a), it is therefore highly interesting to analyse the effect of weather conditions 
on agricultural production. This is even more true for developing countries where the percentage 
of people deriving their livelihood from the primary sector grows tremendously: the percentage 
of working population being employed in agriculture in 2017 is equal to 32 in low- and middle-
income countries, rising to 68 when considering only low income ones (The World Bank, 2018a).

In a world characterized by global warming and more frequent weather extremes, see, for 
example Stott et al. (2004), Pall et al. (2011) and Fischer and Knutti (2015), a strong focus has 
been placed in understanding the effect that such phenomena have on agricultural output. For 
instance, Lesk et al. (2016) evaluated the impact of weather extremes on global crop produc-
tion, finding a significant negative impact (minus 9–10% for cereals). Rosenzweig et al. (2002) 
limited their analysis to United States and to floods and excesses of rain, whereas Zipper et al. 
(2016) focused on droughts in the same area. The response to and the adopted strategies to cope 
with weather extremes is another well-established field of investigation. Iizumi and Ramankutty 
(2015), among others, analysed the changes in cropping area and intensity due to weather shocks 
at the global level, whereas Morton et al. (2015) investigated the strategies adopted by Upper 
Midwest US farmers to cope with a prolonged time of excesses of rain. Several papers examined 
the farmers’ response to droughts in vulnerable areas, for example Campbell (1999) in Kenya, 
Fisher et al. (2015) in Sub-Saharan Africa and Hossain et al. (2016) in Bangladesh.

This paper can be inserted into the above-mentioned literature strand, featuring several pecu-
liarities. Its aim is to explore the farmers’ response, in terms of fertilizer application, to abnormal 
weather conditions—dryness and wetness—but without focusing exclusively on extreme events. 
Furthermore, it also focuses on very different world macroregions rather than specifically taking 
into account a single geographical area, to account for potential heterogeneity in the nitrogen (N)-
fertilizer use. Given the importance of fertilizers in enhancing agricultural output, this appears to be 
a relevant research topic. Moreover, the effect of abnormal weather conditions on fertilizer applica-
tion is far from easily predictable. Our focus encompasses both the immediate response to dryness 
and wetness conditions and, particularly, the lagged response. In fact, from a policy perspective, it is 
important to understand which are the lasting consequences of these weather phenomena.

If a drought or an excess of rain is happening or is foreseen to happen at the time of fertilizer 
application, the immediate response of a farmer could be to increase the amount of fertilizer 

Kuznets curve for fertilizer application, the paper shows 
peculiar responses of N-fertilization to deviations from 
normal weather conditions of moisture for each selected 
region, calling for ad hoc policy interventions.
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to counterbalance the likely output loss caused by the adverse weather conditions or she could 
opt to reduce it to avoid wasting input expenditures. Moreover, the response could vary not only 
on the base of the intensity of the phenomenon, but also on the base of its nature. According to 
Purcell et al. (2004), the importance of N-fertilization on yield outcomes is more crucial during 
a drought period than under normal conditions. Regarding excesses of rain, Vlek and Byrnes 
(1986) highlighted through several experimental rice plots in Southeast Asia that the N-fertilizer 
uptake efficacy of the crop was dramatically reduced in flooded plots. Although both directions 
of departure from normal weather conditions seem to have the effect of calling for an increase in 
fertilization, nothing is said on their relative magnitude. Furthermore, both studies are focused 
on a specific area and a single crop, therefore it is not granted this to hold in general.

The lagged response, as to say the application of fertilizer in a time period subsequent the 
happening of a weather shock, seems to be more easily predictable. Since a significant departure 
from expected levels of wetness is associated with a reduction in productivity, this implies a lower 
nutrients uptake by plants. This further causes a lower need of fertilization in the subsequent 
year1. However, although heavy rains may damage crops as much as drought, they could also 
cause a run-off of fertilizer from the soil, thus nullifying this argument. The diffused lack of ag-
ricultural insurance schemes and the scarcity of farmers financial reserves in developing coun-
tries may translate into an obliged reduction of fertilizer application, due to the impossibility of 
farmers to purchase this input after an income shock (Barrett, 2007). In economically vulnerable 
rural areas, strong deviations from normal weather conditions may ignite such shock. In less 
precarious regions, however, it cannot be excluded that farmers simply keep applying the usual 
amount of fertilizer for the inability to estimate the quantity remained in the soil or even increase 
its application in the attempt to recover past losses. As just seen, also the lagged effect of abnor-
mal weather conditions on fertilization is rather unclear. Different contrasting hypotheses look 
theoretically sounding, and the geographical area under investigation may be an important factor 
in determining which of them holds. An empirical investigation is therefore necessary to unravel 
this query.

In order to shed light on these hypotheses, covering an almost global dimension, we use spa-
tiotemporal data on the yearly amount of applied synthetic N-fertilizer taken from Lu and Tian 
(2017). The time dimension is of 21 years, while the considered areas are Europe (i.e. coun-
tries affected by the Common Agricultural Policy, CAP), South America, Southeast Asia and 
Africa, to cover a very broad spectrum of climatic and socio-economic conditions. To deal with 
the spatiotemporal dimension of our data, we make use of a spatial dynamic panel data (SDPD) 
model, with both individual-specific and time-specific fixed effects to account for potential unit-
specific unobserved heterogeneity. Looking at the recent literature on spatial econometrics, see 
for example Elhorst (2014) and references therein, although the theoretical issues are quite ad-
vanced, see for example Shi and Lee (2017) among others, to the best of our knowledge only few 
empirical applications within agricultural economics and/or climate change have recently used 
these model specifications: see, for some examples, the interesting review of Baylis et al. (2011). 
In particular, we are the first ones who make use of the dynamic version of spatial panel data 
models with spatiotemporal agricultural data. Moreover, because of the nonlinearity in variables 
in our model specification, we properly define the marginal effects distinguishing between time-
varying and time-invariant impacts.

 1See, for example the following document from the University of Wisconsin Extension Service at http://nasdo​nline.org/
static_conte​nt/docum​ents/1987/d0014​65.pdf.

http://nasdonline.org/static_content/documents/1987/d001465.pdf
http://nasdonline.org/static_content/documents/1987/d001465.pdf
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Our main results confirm a rather strong geographical variability for the effect of abnormal 
weather conditions on fertilizer application. Whereas in Europe and in South America the re-
sponse to past abnormal weather conditions seems to follow optimal agronomic practices, in 
Southeast Asia and in Africa weather conditions seem to be detached from the farmers’ choice 
of fertilizing. This may be caused by the inability of local farmers to responsively adapt their 
behaviour to external shocks for lack of either technical skills or means. In these last two re-
gions, it is also observed a potential problem of poverty traps since the lagged per capita GDP 
is a strong determinant of the amount of nutrient present in the soil. Furthermore, a modest 
evidence for the existence of an environmental Kuznets curve for N-fertilizer is found. Finally, 
spatial (contemporaneous) and temporal dependence effects as well as spatiotemporal effects 
heavily contribute to explain N-fertilizer utilization, with only slight differences among the mac-
roregions. These effects, beyond testifying similar agronomic practices originating from common 
agricultural conditions (e.g. common soil conditions and grown crops) suggest the existence of 
knowledge spillovers among farmers.

The rest of the paper is organized as follows. Section 2 provides a brief literature review on 
related research works. Section 3 describes the data used. In Section 4, we explain the choice of 
the model specification, the hypothesis test strategy and we derive appropriate marginal effects 
to correctly interpret the results. In Section 5, we provide and discuss the results. Finally, Section 
6 concludes.

2  |   LITERATURE REVIEW

In this section, we briefly review the main contributions on the relation between weather ex-
tremes and the use of fertilization, distinguishing among different target societies and/or the 
methodology used.

The impact of weather conditions on agriculture is a largely investigated theme, particularly 
when considering its extreme forms. Pandey et al. (2007) dedicate a whole book to examine the 
effects of droughts on Southeast Asian rice farmers and to analyse their coping strategies, ev-
idencing how these lasts are often insufficient to prevent rural households to fall into poverty 
after severe droughts. Devereux (2007) develops an analytic framework for understanding the 
impact of droughts and floods on food security and, based on a weather-induced food crises 
in Malawi, he uses it to derive policy prescriptions to avoid famine to occur. As mentioned in 
the introduction, the concerns about climate change have further boosted this literature since 
droughts, but other weather extremes too, are expected to intensify. Lobell and Field (2007), for 
example, estimate the effect of rising temperatures on the yields of the six most widely grown 
crops, finding significant negative effects for most of them. The present paper, however, strongly 
differs from these works in two dimensions. Methodologically, no one of the mentioned works 
adopts a spatial dynamic econometric approach. With regard to the content, the present paper 
specifically focuses on the relation between fertilization and weather conditions, rather than ex-
amining a broad spectrum of responses to weather shocks. Furthermore, our focus is not limited 
to extremes weather events, but rather on the whole spectrum of abnormal conditions.

Ding et al. (2009) share a similar focus on the response to weather variations of a very precise 
component of agricultural production: tillage practices. Besides the narrowing of the attention 
to a precise element, they also consider panel data as well as spatial correlation in the error 
terms, whereas previous works on soil conservation practices mainly used cross sectional data, 
see for example Soule et al. (2000). Spatial autocorrelation is then inherent in several agricultural 
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applications. In addition to the obvious difference regarding the outcome of interest—fertilization 
rather than tillage—our model directly considers a spatial process into the fertilization use as 
well as two dynamic components that lack in Ding et al. (2009) and a much broader territorial 
coverage.

The relation between fertilization and weather conditions, instead, is a topic rather over-
looked by the economic literature being confined to the agrobiological domain. Hartmann et al. 
(2011) consider the environmental aspect of this interaction, analysing how N-fertilization com-
bined with drought can modify the ability of the soil to store atmospheric methane. Van Metre 
et al. (2016) examine the concentration of nitrate in some US Mid-West rivers in a rainy period 
after a drought, finding a significant increase. This testifies how drought periods effectively leave 
a high amount of N-fertilizer in the soil. Purcell et al. (2004) study soya bean N2 fixation and crop 
yield response to drought. Among their results, it worth to mention how the yield response to 
N-fertilization is higher under drought conditions (plus 15–25%) than in an optimally watered 
situation (plus 12–15%).

Given the importance of fertilizers in agricultural production, several studies have focused 
on estimating the determinants of their spatial diffusion. Potter et al. (2010) analyse the pattern 
of both inorganic and organic fertilizer application at the world level, whereas Tóth et al. (2014) 
map the levels of phosphorus (P) present in soil in the European Union. However, a study that 
relates the application of fertilizer with present and past weather conditions seems, to the best of 
our knowledge, to lack. This paper tries to fill this gap, by making use of a worldwide database 
of spatial data. Although this may entail to sacrifice precision compared to using farm-specific 
data derived from surveys, it allows to offer a global view on the topic and to base the analysis 
on a rather large time span. Moreover, we specify one of the most recent spatiotemporal models 
which is able to deal with both spatial and temporal dependence structures, as well as a form of 
spatial and temporal heterogeneity.

3  |   DATA DESCRIPTION

In this section, we briefly introduce a description of the data used in our empirical analysis. 
The dependent variable is the amount of fertilizer applied on a given portion of agricultural 
land. Relying on data related to quantities at the national level would lower the precision of the 
estimation, since weather extremes may interest only some portions of a country territory and, 
therefore, their effect may be masked by aggregate data.

Thanks to a recent data set made available by Lu and Tian (2017), it is now possible to over-
come this problem. Indeed, the data set provides global time series gridded data of annual syn-
thetic N-fertilizer application2 with a resolution of 0. 5◦ × 0. 5◦ latitude–longitude for the period 
1961–2013. Given the high number of available data and the consequent computational burden, 
and supposing a decreasing quality of data for periods more distant in time, we decided to curtail 
the considered years from 1992 onwards.

Even with a trimmed data set in terms of considered years, the choice of a SDPD model, see 
Section 4, renders too burdensome the computation of the model with all the data included. 
Furthermore, the strong climatic and socio-economic differences at the world level calls for a 
subdivision of the data in more homogeneous zones. Finally, it is worth noting that comparing 
the results across developed and developing countries could be of particular interest for policy 

 2The unit of measure of this quantity is grams per square metre per year.
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makers. Therefore, we selected four macroregions over which to run the regressions separately: 
Europe (CAP zone), South America, Southeast Asia and Africa. For the above four regressions, 
we consider balanced panel data sets, with the spatial dimension equal to N = {1928, 3508, 2703, 3493} 
and the time dimension equal to T = {21, 21, 21, 21} years, respectively. Table B2 shows the con-
sidered countries included in each of these macroregions together with the number of grid cells 
for each country. Figure C1, instead, shows the spatial units (cells) taken into account for each 
macroregion and the approximated distributions of the N-fertilizer application with the Gaussian 
Kernel function. As we can observe, although the use of fertilization is by definition a truncated-
at-zero normal variable, justifying the use of a Tobit model3, in all the four cases we can approx-
imate quite well its distribution to a Gaussian, leading to the use of more complex and flexible 
spatiotemporal models already developed in the linear case, see Section 4. To obtain more reliable 
Gaussian-type distributions, a Yeo–Johnson (YJ) power transformation (Yeo & Johnson, 2000) of 
the dependent variables is also adopted and a comparison of the results is reported in Section 5.3.

Since the aim of the paper is to investigate the effect of weather conditions on the appli-
cation of fertilizer, the explanatory variable of interest must be an indicator of their variation. 
We limit the analysis to dryness and wetness given the availability of reliable indexes measur-
ing these conditions that further have the advantage to be computed at the same spatial level 
as our dependent variable. Different indexes with the ability to measure them are present in 
the literature and are potentially suitable for our analysis. Among them, we have the https://
cruda​ta.uea.ac.uk/cru/data/droug​ht/ self-calibrated Palmer Severity Drought Index (scPSDI) 
(Wells et al., 2004), the https://iridl.ldeo.colum​bia.edu/mapro​om/Globa​l/Preci​pitat​ion/SPI.html 
Standardized Precipitation Index (SPI) (McKee et al., 1993) and the http://spei.csic.es/datab​ase.
html Standardized Precipitation and Evapotranspiration Index (SPEI) (Vicente-Serrano et  al., 
2010). The scPSDI is a refinement of the Palmer Drought Severity Index (PDSI) (Palmer, 1965), 
one of the most widespread indexes used in drought-related studies. The PDSI allows to mea-
sure both wetness and dryness—positive values for the former and negative for the latter—being 
based on the supply and demand concept of the water balance equation. This implies that it en-
compasses prior precipitation, moisture supply, run-off and evaporation demand at the surface 
level (Vicente-Serrano et al., 2010). However, it has the drawbacks of being very sensitive to the 
temporal and spatial locations of calibration, of being scarcely comparable among different areas 
and of being rather subjective in relating drought conditions to the values of the index. A partial 
solution is provided by the scPDSI, that automatically calibrates the behaviour of the index at any 
location by replacing empirical constants in the index computation with dynamically calculated 
values (Wells et al., 2004). This process of self-calibration increases the spatial comparability and 
reduces the subjectivity in evaluating extremes, but the index still retains the shortcomings of a 
strong autoregressive nature and a fixed time scale (Vicente-Serrano et al., 2010). The SPI elimi-
nates this last problem, but, on the other side, it only considers precipitation, disregarding other 
important characteristics such as temperature, evapotranspiration, wind speed and the capacity 
of soil to retain moisture. Finally, the SPEI, proposed more recently, tries to take into account 
these last elements and to combine the strength points of the previous indexes (Vicente-Serrano 
et al., 2010). For these reasons, we decided to use this last index in our analysis.

The SPEI index is expressed as the number of standard deviations of weather conditions from 
the long-term average, with negative values indicating dryness and positive values wetness. The 
yearly average of such index has been adopted in order to conform it with the time dimension of 
the dependent variable. In order to improve the intelligibility of the results, we have divided the 

 3See the paper by Xu and Lee (2015) for a spatial Tobit model in a cross-sectional setting.

https://crudata.uea.ac.uk/cru/data/drought/
https://crudata.uea.ac.uk/cru/data/drought/
https://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/SPI.html
http://spei.csic.es/database.html
http://spei.csic.es/database.html
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SPEI index into two variables, dryness and wetness, with the first being equal to the SPEI index 
when it is lower than zero and assuming the value of zero otherwise. Dryness values have been 
subsequently multiplied by minus one in order to have only positive values. Wetness is simply 
defined as the complement of dryness. Figure C3 shows their distribution in the whole data set 
excluding the zero values for readability.

The countries’ per capita Gross Domestic Product (GDP) is a fundamental control. In fact, 
the relation between the economic level of a country and the amount of fertilizer applied per 
unit of land is a well-established fact in the dedicated literature. Furthermore, its interaction 
with the lagged term of dryness and wetness serves to test if the response of fertilization to past 
weather conditions changes according to level of income, as the literature on poverty traps sug-
gests (Barrett, 2007). Since the purchase and application of fertilizer is likely to vary according to 
the types of grown crops and according to other local specificities, it may well be that it is the in-
come of the past year rather than the one of the current year to affect the most this decision. For 
this reason, the time lag of per capita GDP is also included. This last may also evidence poverty 
traps more directly than the interaction of GDP with lagged weather conditions. Finally, in order 
to have a meaningful intercountries comparability of the GDP, we adopted the per capita Power 
Purchasing Parity (PPP) GDP in constant 2011 dollars, provided by the https://data.world​bank.
org/indic​ator/ny.gdp.pcap.pp.kd World Bank.

We finally included other two relevant determinants to avoid a potential omitted variable bias 
problem, that is the price of agricultural output (PAO) and the price of fertilizer (PF). Lacking 
data at such a fine extension as our grid cells, we rely on country data with a generic price index 
for agricultural output used to broadly capture potential price effects. The limits of this index, 
obtained from the Food and Agriculture Organization database (http://www.fao.org/faost​at/
en/#data Faostat), are several since it basically considers an average of all crops prices, thus dis-
regarding the specificities of each plot. It is, however, a second best option due to the territorial 
extension covered by our analysis that leaves no feasible alternatives. Table B1 reports the sum-
mary statistics of all the variables included in our model specifications, distinguishing them 
across macroregions. Regarding PF, the introduction of this variable requires to considerably re-
duce the covered time span (all years before 2002 are dropped) and to drop some countries, due 
to the lack of data. We have therefore decided to include this variable in a separate analysis, while 
accounting also for potential spatial error dependences. There are also some caveats that must be 
remembered regarding this variable. First of all, our dependent variable is defined as the amount 
of nitrogen present in the soil, with nitrogen being one of the three macronutrients present in 
different fertilizers. Nitrogen, therefore, does not have a proper price, being this defined only for 
fertilizers. These lasts differ in the proportions of macronutrients they provide. In order to cir-
cumvent the problem of lack of price for nitrogen, we use as a proxy the price of urea, a common 
fertilizer whose main component is nitrogen4. The price of urea, at the country level, has been 
also collected from http://www.fao.org/faost​at/en/#data Faostat. However, such database only 
provides information about import and export quantities and values together with the domestic 
used quantity. We use therefore the unit price of imported urea—obtained dividing the imported 
value by the imported quantity—as a proxy for its domestic market price. It is finally worth not-
ing that both these prices have required a procedure of interpolation in order to fill some missing 
values described in subsection 3.1.

 4Other common sources of nitrogen are ammonia and ammonium nitrate. The choice of Urea is simply due to a greater 
availability of data.

https://data.worldbank.org/indicator/ny.gdp.pcap.pp.kd
https://data.worldbank.org/indicator/ny.gdp.pcap.pp.kd
http://www.fao.org/faostat/en/#data
http://www.fao.org/faostat/en/#data
http://www.fao.org/faostat/en/#data
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3.1  |  Data interpolation

We found several missing values over time in both PAOs and PF, especially for the latter one. 
To avoid the elimination of a large number of cells as well as to allow for the inclusion of these 
relevant exogenous regressors in our model specification, we opted to proceed by using some ad 
hoc data interpolation methods and filling the missing values.

We first eliminated those cells belonging to those countries with more than the 30% of 
missing values, that is the series are not large enough and they do not have sufficient informa-
tion to produce accurate interpolations especially for those with higher volatility. For the PAO 
cases, only Africa lost some countries, that is Angola, Benin, Central African Republic, Chad, 
Congo, Gabon, Guinea-Bissau, Lesotho, Liberia, Mauritania, Sierra Leone, Sudan, Swaziland, 
Uganda, Zambia, Zimbabwe, whereas the PF series lost Lao PDR and Nepal in Southeast Asia 
and Benin, Central African Republic, Chad, Congo, Dem. Republic Congo, Eq. Guinea, Gabon, 
Guinea-Bissau, Lesotho, Liberia, Mauritania, Sierra Leone, Sudan and Swaziland in Africa. 
Data interpolation methods are then used according to the characteristic of the series and the 
number of missing values within the same series. In particular, we used trend interpolations 
with first-order polynomials, local interpolations with moving average and different orders q 
(MA(q)), and double or two-step interpolations that consist in filling some missing values in 
the first step and then using also the interpolated data to fill the others within the same series 
in the second step.

4  |   MODEL SPECIFICATION

In this section, we provide details on the model specification to study the effect of extreme 
weather conditions on the use of fertilizers in Europe, South America, Southeast Asia and Africa. 
In general, we try to specify the most appropriate and flexible econometric model, up to now, in 
order to model the N-fertilizer use and its main determinants.

The adopted methodological strategy is based on the use of a SDPD model (Lee & Yu, 2010b, 
2014), or a time–space dynamic model (Anselin et al., 2008, p. 646), to deal with both space and time 
dependence effects, that is spatial (cross-sectional) and serial correlations, as well as both space 
(individual) and time fixed effects. We also consider the possibility of including/excluding some 
variables depending on several theoretical and statistical issues like: (i) avoiding possible model 
overspecification and identification problems, (ii) avoiding inconsistency due to omitted variable 
biases, and (iii) avoiding inefficiency of irrelevant variables, especially those for which there is not 
an economic justification.

The temporal lagged term, yn,t−1, is of particular interest in our context, since fertilizer utili-
zation in each cell is likely to be affected by itself one year before. We then exclude a priori the 
possibility of using static specifications. We also consider fixed effects models rather than the 
random ones (Li & Yang, 2021; Parent & LeSage, 2012): the former seem to be preferred due to 
computational and robustness reasons (Lee & Yu, 2010a), especially when considering spatial 
panel specifications (Elhorst, 2014, Section 3.4). Moreover, individual (spatial) fixed effects �n (a 
specific form of unobserved spatial heterogeneity) could account for specific characteristics, like 
the soil type of the spatial units, for which we cannot obtain sufficient information. Time fixed 
effects �t �n (a specific form of unobserved time heterogeneity) are instead able to capture all the 
phenomena that change over time and simultaneously affect the units in space, for example an 
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economic crisis. In fact, the omission of spatial and time fixed effects could bias the estimates in 
spatial and time series, respectively5.

The (contemporaneous) spatial lagged and the space–time lagged variables, that is �nyn,t 
and �nyn,t−1, are also relevant determinants of fertilizer utilization worldwide. The source of 
the spatial dependence is to be found in a potential social interaction among farmers such as 
peer effects, especially in those macroregions where there is a low level of know-how and the 
only source of knowledge is though mere communication among farmers about their own ex-
periences. This type of interaction can in turn provide positive/negative spillover effects (e.g. of 
agricultural knowledge) over space and over time. Regardless, including spatial dependence in 
the dependent variables can avoid potential omitted variable bias problems and add relevant flex-
ibility to the model specification. Finally, we exclude both (contemporaneous) spatially lagged 
and space–time lagged regressors, that is �nXn,t and �nXn,t−1, since the regressors used in our 
empirical context are at least country-specific and therefore do not exhibit sufficiently variation 
at our disaggregation level of the data, leading to a redundancy of irrelevant information rather 
than excluding a potential omitted variable bias problem. For the reason just explained, there is 
no an interesting economic meaning in the interpretation of spatially lagged GDP, dryness and 
wetness variables. Even when at least one of them is statistically significant, the reason could 
be more in the identification of a common factor that cannot be interpreted as a local spillover 
effect. Results related to robustness checks of our model are referred to Section 5.3.

We start by considering the following SDPD model with both individual and time fixed effects 

where yn,t =
(
y1,t , y2,t ,…, yi,t , …, yn,t

)� is a n-dimensional column vector of fertilizer utilization at 
time t, ϕ is the temporal autoregressive coefficient, �n is a time-invariant n-dimensional square matrix 
of spatial weights among pairs of random variables 

(
yi,t , yj,t

)
, for i, j = 1, …, n, with (contemporaneous) 

spatial autoregressive coefficient ρ and space–time autoregressive coefficient γ, 
Xn,t =

(
x1,t , x2,t ,…, xh,t , …, xk,t

)
 is an n by k matrix of non-stochastic regressors including contem-

poraneous, time lagged6 and squared gross domestic product, that is GDPt, GDPt−1, GDP2t , contempo-
raneous and time lagged truncated (at zero) normal variables for dryness and wetness, that is DRYt, 
WETt, DRYt−1, WETt−1, contemporaneous and time lagged agricultural output7, that is PAOt and 
PAOt−1, and interaction terms like GDPt × DRYt−1 and GDPt ×WETt−1 with β the vector of coeffi-
cients, �n is an n-dimensional column vector of spatial (individual) fixed effects, �t �n is an n-dimensional 
column vector of time fixed effects with scalar coefficient �t and column vector of ones �n, and 
�n,t =

(
�1,t , �2,t , …, �i,t , …, �n,t

)� is an n-dimensional column vector of innovations at time t with �i,t 
independent and identically distributed (i.i.d.) across i and t with zero mean and finite variance �2.

The time-invariant spatial weighting matrix �n = {wij} is a row-stochastic matrix such that 

 5It is worth noting that one can use the Hausman test among static spatial panel data models (Mutl & Pfaffermayr, 
2011) and SDPD models (Lee & Yu, 2020) in order to discriminate between fixed and random specifications.

(1)yn,t = ��nyn,t + �yn,t−1 + ��nyn,t−1 + Xn,t� + �n + �t �n + �n,t , t = 1, …, T ,

 6The time lagged GDP is included to control for a potential poverty trap problem or simply to the fact that farmers apply 
the fertilizer bought the year before.

 7The contemporaneous price of agricultural output is included to control for a potential omitted variable problem.

⎧⎪⎨⎪⎩

wij=
1∑
jwij

iff yj∈�k

wij=0 otherwise

,
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where �k is the set of nearest random variables yj to yi defined by k. In our case, we set k = 4, which 
can be quite similar to the queen contiguity scheme for regular square lattice grids and several units 
with no more than five neighbours on average8. The reason why we use the above k-nearest neigh-
bour approach is based on the fact that it guarantees the equivalence between the two spatial dy-
namic models defined before and after row-normalization of the weights. Moreover, k  =  4 is a 
reasonable choice looking at the spatial distribution of the cells and assuming that the direct strate-
gic interaction effects among farmers are not highly relevant at greater distances. The set of nearest 
neighbours for each unit in space is defined through the Euclidean distances between pairs of cen-
troids of the grid cells.

4.1  |  Stability and first-differencing

To ensure stable spatiotemporal processes the condition ρ + ϕ + γ < 1 must be satisfied. During 
a preliminary estimation procedure of Equation (1), we found the above condition to be numeri-
cally satisfied for the 4 macroregions. However, all the four sums are very close to the unit root, 
leading to potential inconsistency and numerical instability of the estimates. We conducted (two-
sided) Wald tests on the null hypothesis that ρ + ϕ + γ = 1 (spatially cointegrated processes) by 
using the statistic 

where ΣQMLE is the (k + 4) by (k + 4) covariance matrix of the bias-corrected QMLE estimator (Lee 
& Yu, 2010b; Yu et al., 2008)9. In all the four cases, we rejected the null hypothesis of spatial cointe-
gration, but even so we opted to take the model in first-difference to avoid numerical instability10.

To remove inconsistency of the estimator in both spatial cointegration and spatial explosive 
cases, preserving also the amount of available observations, a spatial first-differencing approach 
has been recently proposed, see Lee and Yu (2010a) and Yu et al. (2012), losing some degrees of 
freedom. Alternatively, one can re-estimate all the models after time first-differencing, losing 1 
year of observations. The time-differencing is also useful to eliminate the individual fixed effects, 
and therefore, the inconsistency due to their correlation with yt−1 (Elhorst, 2014, page 100), or a 
demeaned version can be also used.

By re-writing the model in Equation (1) with the explicit inclusion of all the regressors, and sup-
pressing n for notational convenience, we obtain the following two specifications form time first-
differencing and spatial first-differencing approaches, respectively. Defining Δ = (I−𝖫) the time 
first-differencing operator such that Δvt = vt − vt−1 with vt a variable vector at time t, we obtain 

 8See Section 5.3 for robustness checks on the use of other weighting schemes.

W = (� + � + � − 1)(1 1 1 0�)ΣQMLE
(
1 1 1 0�

)�
(� + � + � − 1) ≈ �1

 9The asymptotic bias-correction form is needed due to the joint estimation of both the individual and time fixed effects 
with the other parameters of interest in SDPD models. Alternatively, the GMM approach (Lee & Yu, 2014) can be used, 
even if Lee and Yu (2020) have recently recommended the use of the QMLE for short SDPD models.

 10Indeed, especially in the European and Southeast Asia area, we found values very close to the unit root using R, that 
is 0.973 and 0.958, respectively, and even more using Stata.

(2)
Δyt =��Δyt+�Δyt−1+��Δyt−1+�1Δx1,t+�2Δx

2
1,t+�3Δx2,t+�4Δx3,t+�5Δx4,t+�6Δx1,t−1+

+�7Δx2,t−1+�8Δx3,t−1+�9Δx4,t−1+�10Δx1,tx2,t−1+�11Δx1,tx3,t−1+Δ�t �+Δ�t
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where 
(
x1,t , x2,t , x3,t , x4,t

)
 are referred to GDPt, DRYt, WETt and PAOt, respectively, and the individ-

ual (spatial) fixed effects α are suppressed since they are time-invariant, that is Δα = 0. In the same 
way, defining Γ = (I−𝗪) the spatial first-differencing operator, we obtain 

where 
(
x1,t , x2,t , x3,t , x4,t

)
 are defined as before and the time fixed effects �t � are suppressed since 

they are spatial-invariant, that is Γ�t � = 0. The model in Equation (3) exhibit heteroskedasticity, 
that is the covariance matrix is ΓΓ� which is singular. The used likelihood (Lee & Yu, 2011, eq. 5.19, 
page 96) therefore involves the generalized inverse of ΓΓ�, which is equal to the matrix multiplica-
tion of the appropriate eigenvector and eigenvalues matrices obtained from its spectral decomposi-
tion, and after the elimination of those eigenvectors whose eigenvalues are zero.

Finally, for both the models in Equations (2) and (3), a within (or demeaned) transformation 
is used to eliminate the transformed time fixed effects and the transformed individual fixed 
effects, respectively. Note that within transformations induce (spurious) cross-sectional and 
serial error correlations, from cross-sectional and time demeaning, respectively (Wooldridge, 
2010, eq. 10.52, page 270). Since the error correlations for the above two models will be equal 
to − 1

T −1
 and − 1

N −1
 which disappear as T → ∞ and N → ∞, respectively, we suppose they are 

negligible with the use of our big panel data sets. The estimation results after spatial first-
differencing are reported in a table in the Supplementary material. Careful attention should 
be paid on these results. For instance, it is quite suspected the value of ρ in Europe close to 
the boundary. Moreover, although the spatial first-differencing approach can be seen as a 
general approach, in our case we found the sums ρ + ϕ + γ = {0.97318, 0.93883, 0.95820, 0.
92282} and the Wald statistic values {50.6686, 264.1347, 167.2486, 400.2887} rejecting all the 
null hypotheses of spatial cointegration in Europe, South America, Southeast Asia and Africa, 
respectively. In this paper, we finally decide to report all the results in time first-differencing, 
leaving a more accurate statistical comparison of the two first-differencing approaches to fur-
ther researches.

4.2  |  Controlling for spatial error correlations

Although the model in Equation (1), or equivalently (2), is considered quite general in its 
form, in this paper, we also allow for the possibility of the error terms to be spatially cor-
related. Several statistical hypothesis testing that check for the presence of potential spa-
tial error autocorrelations in panel data specifications have been proposed, see for example 
Baltagi et al. (2003), Millo (2017). However, none of them consider a spatial dynamic speci-
fication of the panel data model under the null hypothesis, excluding the usability of the 
statistics for model in Equation (1). An alternative is to consider the evolution of the Moran’s 
Index (I) and hypothesis testing (Moran, 1950) over time. The Moran’s statistic, −1 < I < 1, 
can be written as 

(3)
Γyt =��Γyt+�Γyt−1+��Γyt−1+�1Γx1,t+�2Γx

2
1,t+�3Γx2,t+�4Γx3,t+�5Γx4,t+�6Γx1,t−1+

+�7Γx2,t−1+�8Γx3,t−1+�9Γx4,t−1+�10Γx1,tx2,t−1+�11Γx1,tx3,t−1+Γ�+Γ�t

(4)It =
n∑

i

∑
jw2,ij

∑
i

∑
jw2,ij

�
�i,t − �t

� �
�j,t − �t

�
∑

i

�
�i,t−�t

�2 ∀ t
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whose normalized version has a normal distribution in each year, and where w2,ij are the 
elements of a time-invariant weight matrix. Once the presence of the spatial error autocor-
relation has been detected, the model in Equation (1) can be extended as follows 

where �1,n =�n in Equations (1) and (2) whose elements are defined through the k-nn ap-
proach with k = 4, while �2,n is the time-invariant weighting matrix used for the multivari-
ate error process with λ its autoregressive coefficient. The elements of �2,n are also defined 
through the k-nn approach but k = 18, to avoid identification problems that generally occur 
when �1,n = �2,n. Also in this case, the choice of k = 18 for the error process seems to be 
reasonable looking at the spatial distribution of the cells. Indeed, for this type of process we 
assume the impact of a shock in one site can directly propagate over a greater number of 
neighbours, for example a contamination of the soil. Discussions on the Moran’s I, his hypoth-
esis testing and results on SDPD models with error correlations are referred to subsection 5.2.

4.3  |  Time-varying marginal effects

According to the spatial econometric literature, proper marginal effects that take spatial effects 
into account must be defined in different ways depending on the specified model. When con-
sidering SDPD models, the definition of the total, direct and indirect (spillover effects) impacts 
are also different with respect to the short- and long-term periods, see Debarsy et al. (2012) and 
Elhorst (2014) Sec. 4.6). Considering the model in Equation (2) with time first-differencing, the 
marginal effects can be defined, as for levels, in the following way 

for the short-term impacts, and 

(5)yn,t = ��1,nyn,t + �yn,t−1 + ��nyn,t−1 + Xn,t� + �n + �t �n + un,t , un,t = ��2,nun,t + �n,t

(6)

��
(
yt
)

�x1,t
|t =(I−��)−1

[
�1I+2�2diag(x1,t)I+�10diag(x2,t−1)I+�11diag(x3,t−1)I

]

��
(
yt
)

�x2,t
|t =(I−��)−1

[
�3
]

��
(
yt
)

�x3,t
|t =(I−��)−1

[
�4
]

��
(
yt
)

�x4,t
|t =(I−��)−1

[
�5
]

(7)

��
(
yt
)

�x1,t
=[(1−�) I−(�+�)�]−1

[
�1I+2�2diag(x1,t)I+�10diag(x2,t−1)I+�11diag(x3,t−1)I

]

��
(
yt
)

�x2,t
=[(1−�) I−(�+�)�]−1

[
�3
]

��
(
yt
)

�x3,t
=[(1−�) I−(�+�)�]−1

[
�4
]

��
(
yt
)

�x4,t
=[(1−�) I−(�+�)�]−1

[
�5
]
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for the long-term impacts. The averages of the diagonal elements of the matrices in Equations (6) 
and (7) are the direct impacts, whereas the off-diagonal averages of the matrices in Equations (6) and 
(7) are the indirect impacts. Note that, in our case, the short- and long-term effects with respect to x1 
(GDP) are time-varying, and their evolution is shown in Figure C4.

In addition, we consider specific marginal effects obtained from the following error correction 
model (ECM) representation of Equation (2) (Yu et al., 2012) 

from which we can easily calculate the following marginal impacts of interest 

which are the effects estimates of convergence, and 

which are specific effects related to the variables dryness and wetness at time t − 1. Since these last 
two effects are also time-varying, their evolution is shown in Figure C5. Finally, since spatial mar-
ginal effects can also be referred to each statistical unit in space to reveal a source of heterogeneity, 
in Figures C6–C9, we report maps on these effects. See Appendix A for details on their calculation.

5  |   RESULTS AND DISCUSSION

In this section, we report and discuss our main estimation results and the potential policy implica-
tions derived from them. For the estimation results, we used the function spml in the R package 
splm (Millo & Piras, 2012). Alternatively, Stata command xsmle (Belotti et al., 2017) and Matlab 
codes at https://spati​al-panels.com/softw​are/ (Elhorst et al., 2013) can be used. All the other calcu-
lations are instead implemented by ourselves in R. For the estimation of the spatial first-differencing 
model in Equation (3) we used the bobyqa optimization function in the R package minqa (Nash & 
Varadhan, 2011). As already mentioned in subsection 4.1 a within (or demeaned) transformation 
for all the considered models has been adopted. In Table B3, we show the coefficients estimates of 
model in Equation (2) for all the four regressions11, whereas the results with the dependent varia-
ble having been YJ transformed are available in the Supplementary material of this paper.

First of all, an important role is played by both the spatial, temporal and spatiotemporal 
variables in our model specification. As expected, the amount of fertilizer in a previous year is 
negatively correlated with the level of N-fertilization applied in the current year (ϕ). The more 
nutrients are applied in a given year, the lower will be the need one year later. This reasonable 

(8)

Δ2yt =��Δ2yt+(�−1) Δyt−1+(�+�)�Δyt−1+�1Δx1,t+�2Δx
2
1,t+�3Δx2,t+�4Δx3,t+�5Δx4,t+

+�6Δx1,t−1+�7Δx2,t−1+�8Δx3,t−1+�9Δx4,t−1+�10Δx1,tx2,t−1+�11Δx1,tx3,t−1+Δ�t �+Δ�t

(9)
��

(
Δ2yt

)
�Δyt−1

= (I−��)−1 [(� − 1) I + (� + �)�]

(10)
��

(
Δ2yt

)
�Δx2,t−1

=�7I+�10diag(x1,t)I

��
(
Δ2yt

)
�Δx3,t−1

=�8I+�11diag(x1,t)I

 11Estimation results of the ECM in Equation (8) are available upon request. In this paper we focus the attention on 
model in Equation (2), although we provide marginal effects also for the model in Equation (8).

https://spatial-panels.com/software/
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result applies both to developed and developing regions. The (contemporaneous) spatial autore-
gressive coefficient (ρ) is strongly significant and positive in all the macroregions, implying that 
the spatial process is not inhibitory and that the choice of the fertilizer quantity is rather equiv-
alent among close units of lands, as largely expected. This may be due to both the similarity of 
agroclimatic conditions of close units of lands, thus implying the cultivation of similar crops and 
the adoption of analogous agronomic practices, and potential knowledge spillover effects among 
farmers. The spatiotemporal coefficient (γ) is also positive and significant in all the regressions 
but with a lower magnitude than the one of the spatial autoregressive coefficient. The positive-
ness of both coefficients strengthens the hypothesis of knowledge spillovers among farmers lo-
cated in neighbour areas. Exchange of information through direct contacts or through farmers 
associations are examples of how these knowledge spillovers could take place. If the contempo-
raneous effect may be due to similar environmental conditions, the temporal lagged one seems in 
fact to indicate the persistence of an imitation effect over time. Therefore, knowledge spillovers 
are clearly stronger at present time, but they also persist for, at least, one year.

Looking at the effect of current weather conditions, the coefficients are significant in Europe 
and in South America. In the first case, only wetness is significant and positive, whereas in South 
America it is significant for both deviations, with the coefficient for wetness being negative—
opposite to Europe—and the one for dryness positive. The lower efficacy of certain crops in ab-
sorbing N-fertilizer during wet conditions, described in Vlek and Byrnes (1986), could be the 
reason explaining the positive coefficient in Europe, whereas the greater need of N-fertilization 
under drought conditions evidenced by Purcell et al. (2004) provides a reason for the positive 
value of the dryness coefficient in South America. The negative coefficient for wetness in this last 
region, instead, may be due to the diffusion of crops or crop varieties less negatively affected in 
their capacity to absorb N-fertilizer under wet conditions combined with a substitution effect. In 
particular, in the presence of wet conditions that favour the growth of crops, farmers would tend 
to rely on them and saving inputs. It is questionable, however, that this is a sounding agronomic 
practice. When considering their lagged terms, the coefficients are still significant only in Europe 
and South America12. The negative effect of past dryness is consistent with the lower need of 
fertilization after a drought period due to the availability in the soil of the nutrients left from the 
past season (see footnote 1). This is therefore an optimal strategy, apparently followed only in the 
most industrialized region. The increase of fertilization in South America as a consequence of 
past excesses of wetness is also reasonable and justified from an agronomic point of view since 
wet conditions may favour the run-off of nutrients from the soil. The opposite coefficient of this 
variable in Africa—significant only under the YJ transformation—may instead be the result of 
wrong farming practices, see Tables in the Supplementary material. The almost total lack of sig-
nificance of the climatic variables in Africa and Southeast Asia deserves attention. This could be 
due to a simple technical reason, for example a lower quality of data. However, it could also be 
due to a lower ability of local farmers to adjust the input quantities to both present and past cli-
matic variations. This may be due to a lack of proper training or proper means to analyse the soil 
and calls for an improvement in extension services.

Regarding the other relevant control variables, the comments are as follows. The role played 
by per capita GDP varies considerably between the examined macroregions. Its effect at time t 
follows a concave downward parabola in Europe. This is consistent with the presence of an en-
vironmental Kuznets curve for fertilization, hypothesis already confirmed by Li et al. (2016) for 

 12Actually, in Africa the lagged term of wetness is significant when considering the YJ transformation, see Tables in the 
Supplementary material.
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China. Moreover, the lagged term is negative. If we consider the time of purchase of fertilizers as 
being dependent from the grown crop type and its related optimal period of fertilization, rather 
than from the immediate availability of economic means, as it seems plausible in an industrial-
ized region, it is legitimate to expect a similar role of GDP at time t and t − 1. This seems to be true 
in our case, confirming a tendency of wealthier countries to adopt more stringent environmental 
policies, thus reducing the level of fertilization. On the contrary, Africa has not a significant 
contemporaneous per capita GDP coefficient, but a positive and significant lagged GDP. The 
positive role of a country’s economic attainment on fertilization in this region is largely expected, 
whereas the significance of the lagged GDP deserves more attention. A plausible explanation is 
that strong financial constraints suffered by farmers oblige them to purchase fertilizers when 
they have cash at disposal, and this generally coincides with the sale of farmers’ agricultural 
products. Consequently, it is the last year economic level to shape the fertilization pattern of 
the current year since the sale of agricultural output happens at the end of the growing season. 
The positive coefficient of lagged GDP can also be interpreted as a poverty trap problem, since it 
originates from economic vulnerability and leads to underinvestment in productive assets after a 
shock. A similar conclusion can be drawn for Southeast Asia. Here, The GDP at time t is instead 
significant and negative, whereas the squared term is not significant. This last result may appear 
odd for this region, since invoking the role of environmental policies as justification of the neg-
ative relation is inconsistent with the positive role of the lagged term and, more generally, with 
the economic level of this region. Looking at the coefficient magnitudes, the contemporaneous 
effect is smaller than the lagged term. A plausible explanation is that several farmers are actually 
engaged in various activities, with off-farming ones being a better source of income. A lower level 
of per capita GDP is linked with lower possibilities for off-farming opportunities, thus increasing 
the time and the efforts dedicated to farming and consequently explaining the inverse relation 
between GDP and fertilization. The most puzzling result is the one of South America, where per 
capita GDP has a positive and significant coefficient for the level of the contemporaneous vari-
able and negative for the one of the lagged term. Focusing on the contemporaneous effect, the 
positive—linear or convex—relation between fertilization and per capita GDP seems to resemble 
the one of a developing area laying in the increasing region of the Kuznets curve. However, the 
negative lagged term, contrasting the contemporaneous effect, is of difficult interpretation, thus 
deserving the attention of further studies.

Finally, the coefficient of PAO at time t is positive and significant in all the macroregions, 
except for Southeast Asia. If farmers are able to forecast an increase in the value of their 
output, it is then rational to increase the level of inputs to maximize production, thus justi-
fying the positive relation between fertilization and PAO. The lagged term of this variable is 
instead significant and negative in all the regressions, except the one in Europe. Theoretically, 
a positive coefficient seems to be more reasonable for the lagged term too, especially for the 
developing countries. Indeed, a higher price of the agricultural output should imply higher 
profits for farmers, thus allowing them to have more resources to purchase inputs. However, 
since agricultural output includes all cultivated crops and several of them are used as fodder 
for livestocks, which in turn provide manure (a close substitute for chemical fertilizers), it 
might be that an increase in the agricultural output price leads to an increase in manure price 
and, consequently, in chemical fertilizer price too. In this specific case, the negative coeffi-
cient could then be a consequence of an omitted variable problem. In subsection 2, where 
we will discuss the results of the regressions including the price of urea, we will see that this 
interpretation seems highly likely.
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5.1  |  Discussion on the marginal effects

From an economic point of view, and for ad hoc policy interventions, it is of main interest to 
take a look at the marginal effects. As already explained in Section 4, marginal effects for SDPD 
models can be distinguished according to direct and indirect (due to spillovers) effects and short- 
and long-term effects. For our model specifications in Equations (2) and (8), we also provide a 
distinction between time-invariant marginal effects, see Table B5, and time-varying marginal 
effects, see Figures C4 and C5, due to the non-linearity in GDPt and the presence of additional 
interaction terms, respectively.

Let us consider first the time-varying short- and long-term total marginal effects with respect to 
per-capita GDP at time t from model in Equation (2), see also Equations (6) and (7), shown in 
Figure C4. First of all, there is a small difference between the short- and long-term effects, such 
that it is rather useless to comment them separately. The temporal mean values for Europe, South 
America, South-east Asia and Africa, respectively, are around {0.06825; 0.07524; −0.04697; 0.003
74} for short-term direct effects, and {0.06605; 0.06851; −0.03817; 0.00333} for long-term direct 
effects, while {0.00013; 0.00005; − 0.00006; 0.000002} and {0.00012; 0.00005; − 0.00004; 0.000001} 
for short-term indirect effects and long-term indirect effects, respectively. The magnitude of the 
indirect effects is so trivial in all the regions compared to the one of the direct effects, that it is 
again advisable to overlook them. This is somehow not surprising, however, since the variable 
GDP do not vary at a unit-level but rather at a country level, so that the indirect impacts due to 
neighbouring cells could be mitigated by the absence of variability in per-capita GDP across units 
within the same country. The time-varying total marginal effects are always positive in all the 
macroregions, with the exception of Southeast Asia where they are always negative13, and the 
absolute magnitude in Africa seems not to be very high compared with all the other 
macroregions.

Figure C5 reports the time-varying marginal effects with respect to the weather variables at 
time t − 1 from the model in Equation (8), see also Equation (10). The evolutions of both dry-
ness and wetness are quite flat in all the considered macroregions, but some differences can be 
found. In Europe and South America, the evolution of dryness is always negative with temporal 
mean values equal to {−0.04689; −0.00233}, respectively. The evolution of wetness is instead al-
ways positive with temporal mean values equal to {0.02149; 0.02900}, respectively. These two area 
seem to reveal a similar evolution, although with different magnitudes and a slightly higher vol-
atility in South America. Interesting are the lowest and highest peaks reached in 2009, just after 
the financial crisis started in 2007, where probably N-fertilization becomes much more sensitive 
to variations in per-capita GDP. Southeast Asia shows a similar evolution for dryness and wet-
ness, whose mean values are {−0.00299; −0.00240}, respectively. It is interesting to note that its 
highest negative peak is reached in 1998 during the financial crises of the so called Asian tigers. 
In Africa, instead, the evolution of dryness is flat compared to the one of wetness, with temporal 
mean values equal to {−0.00266; −0.00221}, respectively.

Regarding the time-invariant marginal effects in Table B5, we note that only in Europe the di-
rect, indirect and total marginal effects are positive both in the short- and long-term with respect 
to all the variables, whereas a variation of signs can be found in the other macroareas. Therefore, 
in Europe, the higher are dryness, wetness and the price of agricultural outputs, the greater is 
the N-fertilization in both the cell itself and in the neighbour cells, whereas this is true in South 

 13Obviously, the sign of the marginal effects directly depends on the combination of signs of the estimated coefficients 
that directly enters in the calculation of the marginal effects.
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America only for dryness and the price of agricultural outputs, in Southeast Asia only for wetness 
and in Africa only for the price. Looking at the estimates of convergence from the ECM, we can 
observe that both the strength of convergence of the cell itself and the strength of convergence of 
the other cells are negative in all the macroareas, with a higher absolute value in Southeast Asia. 
Therefore, the higher is the use of N-fertilization the year before, the lower is the amount of N-
fertilizer used a year later, corroborating the results of the coefficient of the SDPD model. Finally, 
in Figures C6–C9, we show the spatial heterogeneity in terms of the time-invariant short-term 
marginal effects in Equation (6) with respect to the weather variables at time t. First of all, the 
range and the sign of the values do not necessarily correspond to the mean values in Table B5, 
since in this case we only consider the indirect impacts as row-sums of the matrix in Appendix A. 
The spatial patterns seem to show a higher indirect impacts for both dryness and wetness in the 
majority of the grid cells, especially inside the core of all the macroareas. This could mean that 
weather conditions, both in normal and in extreme cases, have a greater impact in those areas.

5.2  |  Discussions on spatial error correlations and fertilizer prices

In this section, we propose to re-estimate the model in Equation (2), by controlling for spatial error 
autocorrelations to improve estimation efficiency and by including fertilizer (urea) prices, since 
their omission could bias the estimates. Additionally, we also consider the impact coming from the 
same price at time t − 1. This new model specification is defined in Equation (5). The analysis is 
restricted to 10 years from 2004 to 2013, since no data are available for the years before 2002 and 
after having dropped 2002 and 2003 for time-differencing and the inclusion of the temporal lag.

Before considering estimation results, we detected the evolution of the Moran’s I on the resid-
uals of the model in Equation (2), see Figure C2. As we can observe, Moran’s I values fluctuate 
around the zero value of no autocorrelation in the error terms in Europe and Southeast Asia, while 
in South America and Africa there is a persistence of positive values, that is positive spatial error 
autocorrelations, over time. All the values are relatively low, ranging between −0.10 and 0.10. The 
significant presence of error dependences in South America and Africa is also confirmed by the 
greater number of rejections, almost consecutive, of the null hypothesis of no autocorrelation, 
where I is not statistically different from 0. Although in some cases, especially in the period 2004–
2013, we do not find the tests to be significant, we opted to consider spatial error autocorrelations 
in South America and Africa, since the majority of the null hypotheses are here rejected.

Table B4 shows the estimation results. First of all, it is interesting to note that, in South America 
and Africa, the estimates of the spatial error autocorrelations �̂ = {0.848, 0.951} are both very 
high and significant at 0.1%, reducing a bit the magnitude of the spatial autocorrelations in the 
dependent variables �̂ = {0.143, 0.257} and confirming that potential unobserved shocks or fac-
tors could have a greater impact over time on fertilizer utilizations rather than social interactions 
among farmers. The price of urea is also not significant both at time t and t − 1, probably also 
due to the adjustment of the standard errors when including relevant error autocorrelations, and 
revealing that no bias from omitted variable due to this price is at work here. Detailed comments 
on the other results are as follows.

Starting from Europe, we can see that the price of urea is not significant at time t nor at time 
t − 1. It is possible that in advanced economies, such as the ones characterizing western Europe, 
farmers are scarcely sensitive to price variations, or else, the demand for a fundamental input 
such as nitrogen is rather price inelastic. An alternative explanation is that urea is not the main 
source of nitrogen in this region being other sources such as ammonia or ammonium nitrate 
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preferred, and, despite the likely price correlation of substitute products, this last is not enough 
to reach statistical significance. It is possible to note that almost all contemporaneous variables 
become not significant including per capita GDP. The lagged term of wetness, instead, becomes 
significant compared to the regression without the price of Urea, testifying that also in Europe, 
as was for South America, there may be an increase of fertilization to counteract the possible run-
off of nitrogen after a wet season.

Also in South America, the effect of fertilizer price is not significant at time t nor at time 
t − 1. The same reasons seen for Europe may well apply here. It must be further noted that the 
per capita GDP coefficients have the same signs as the ones of Europe in Table B3, suggesting 
that South America could be in the concave section of the Kuznets curve rather than in its as-
cending part. Another interesting fact to notice is the change of sign for the lagged coefficient 
of the agricultural output price, now become positive (and significant at 10% level). The nega-
tive sign for this variable has remained only in Africa, but with reduced significance whereas 
in Southeast Asia has lost significance. Finally, it must be noted the loss of significance of the 
lagged weather conditions.

In Southeast Asia, the fertilizer price effect is statistically strong and negative both at time t 
and t − 1. This implies that farmers are very price sensitive in their choice to fertilize the soil. 
Compared to the regression with the price of urea omitted, it is possible to observe the loss of sig-
nificance of per capita GDP and a gain of significance for the effect of contemporaneous wetness, 
with it being positive. The same variable gains significance also in Africa together with the con-
temporaneous effect of dryness, that, however, has a negative sign. This may imply that farmers 
tend to fertilize more when they observe or foresee abundant rains whereas they avoid to do so in 
the opposite case, possibly for saving inputs. This practice, however, can be very deleterious given 
the higher need of nitrogen under dry conditions mentioned earlier.

These are the most significant variations produced by the introduction of the price of urea as 
a proxy for the cost of nitrogen. The coefficients of the other variables are, overall, similar to the 
ones in Table B3. The availability of better data for the cost of nitrogen could improve the analysis 
thus leaving room for further studies once there will be such availability.

5.3  |  Yeo–Johnson power transformation and robustness checks

In this section, we briefly report the main results of some robustness checks of our model specifi-
cation in Equation (2), that is the estimation results are almost the same in terms of both the sign 
and the magnitude for the majority of the regressors considered. Tables on both the regression re-
sults after YJ transformation and the other robustness checks are reported in the Supplementary 
material of this paper.

First of all, the estimated parameter values are robust to the YJ transformation, which 
differently from the Box–Cox transformation allows also for zero values of y. The values of 
the shift parameter λ are equal to {0.55; 0.3; 0.4; −1.2} for Europa, South America, Southeast 
Asia and Africa, respectively, see Figure C1, with λ = 1 means no transformation. Only slight 
differences can be found, especially for the spatial autoregressive parameter ρ in those mac-
roregions in which a more heavily data transformation has been applied. Second, as expected, 
the results are also robust to different sparse weighting matrices. Specifically, we consider 
k = {11,18} for the k-nn approach and the queen scheme, for which the weighting matrix is 
still largely sparse. Only slight differences can be found in the magnitude of the spatial au-
toregressive parameter ρ.
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We also found that the inclusion of the spatially lagged regressors 𝗪X for GDP, dryness and 
wetness, can be in some situations, and as expected, statistically significant. In particular, only 
the estimated coefficients of GDP, Dryness and Wetness at time t are affected by the inclusion of 
the same spatially lagged regressors, since, obviously, they can be highly correlated among each 
other. However, their inclusion do not change substantially the sign and the magnitude of the 
other estimated parameters, avoiding in this specific situation a heavy omitted variable bias when 
they are excluded. Finally, the model in Equation (2) can be sometimes over-specified when in-
cluding simultaneously the terms �yt, �yt−1 and yt−1. We then excluded the term �yt−1, finding 
again no substantial differences.

6  |   CONCLUSIONS

The present paper analyse the relation between abnormal weather conditions and fertilizer ap-
plications at world level, by considering four macroregions—Europe (CAP), South America, 
Southeast Asia and Africa—and using a recent data set of gridded data which covers more than 
20 years (1993–2013). The selected exogenous covariates include dryness and wetness (excess of 
rain) as indicators of weather conditions, derived from the SPEI index, as well as per-capita GDP 
(PPP and constant 2011 dollars). Furthermore, PAO and a proxy for PF (i.e. price of urea) are in-
cluded to avoid potential omitted variable bias problems. Different methods of data interpolation 
are adopted to fill some missing values.

The methodological strategy is based on the use of a SDPD model that deals with both space 
and time dependence effects, that is spatial (cross-sectional) and serial correlations, as well 
as both space (individual) and time fixed effects. To avoid inconsistency due to potential non-
stability of the SDPD model, we conduct Wald tests on the null hypothesis of spatial cointegra-
tion and we then time first-differencing the model specification. Moreover, we also calculate 
time-varying Moran’s I indexes and tests to control for potential (residual) spatial error auto-
correlations. Finally, some robustness checks like regression results with different weighting 
schemes, with the YJ power transformation of the dependent variables, and with or without 
some additional covariates have been also included.

The main results are as follows. Both the dynamic and the spatial dependence parameters are 
statistically very strong with the latter being positive and the former negative for all the macrore-
gions. This testifies both certain behavioural similarities in agronomic practices among neigh-
bouring areas, probably due to similar agroclimatic conditions, and the presence of knowledge 
deriving from the past. The spatiotemporal coefficient is also strongly significant, and positive, 
in all the macroregions, even when considering the error correlation. This validates the choice 
of the spatial dynamic model, revealing that not only pure spatial and temporal dependence 
parameters play an important role, but also the spatiotemporal coefficient could hide spillover 
effects, which will be shown one year later. Looking at the climatic variables, it is possible to 
observe a rather differentiated response to weather anomalies. In particular, whereas in Europe 
and in South America present and past levels of dryness and wetness are generally significant 
predictors of N-fertilization, the opposite is true in Southeast Asia and Africa. This may imply 
a lower capacity, possibly due to knowledge or technical deficiencies, to adapt fertilization to 
abnormal weather conditions. Not surprisingly, the area where good agronomic practices seem 
to be observed more often is Europe, whereas South America shows some contrasting results. 
The analysis of per-capita GDP suggests the existence of an environmental Kuznets curve for N-
fertilizer in Europe, and also in South America when including PF, showing an inverted U-shape 
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relation between per-capita GDP and the amount of applied fertilizer. Southeast Asia and Africa, 
instead, display a linearly positive relation between fertilization and the time lag of per-capita 
GDP, suggesting the possibility that they are still in the ascending section of the Kuznets curve. 
This last element may also be interpreted as a sign of the presence of poverty traps, thus calling 
for ad hoc policy interventions.

Given the recent high relevance of forecasting with spatiotemporal models and the raising 
availability of spatiotemporal data, it is finally worth mentioning that this paper could lay the 
foundations for correctly specifying the model specification used as basis for time predictions of 
fertilization worldwide. This project should deserve the right attention for future research.
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APPENDIX A

LOCAL MARGINAL EFFECTS
Here we briefly show how to consider local marginal effects, that is unit-specific marginal ef-
fects. In this paper, we consider the spatial heterogeneity in terms of the time-invariant short-
term marginal effects in Equation (6), with respect to the variables DRYt (x2,t) and WETt (x3,t). 
Alternatively, if they are time-varying, one can consider to show specific marginal effects in one 
point in time, say t. Let xk,t be a covariate of interest at time t and yt the dependent variable at 
time t. We are then interested in defining the marginal effect of xk,t on yt for each spatial unit 
i = 1, …, n. Therefore, we have 

the elements of which are direct effects (diagonal elements) and the indirect effects (cross-diagonal 
elements). However, we should note that the information coming from the indirect effects, that is 
the average of the off-diagonal elements, is different according to considering the lower or the upper 
triangular matrix. Indeed, for instance, in the first row, we recognize the indirect effects of all the 
variables x1k,t , …, xnk,t on the dependent variable y1,t, while in the first column we observe the 
indirect effects of the variable x1k,t on all the dependent variables y1,t , …, yn,t, excluding the first 
element (the direct effect) in both cases. In our paper, we consider the first case of heterogeneity for 
each yi,t, that is looking at each row, and then summarize the information by taking row-sums. The 
results are shown in Figures C6–C9.
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APPENDIX B

TABLES

TABLE B1  Summary Statistics over the entire Panel dimension

Variables Mean Median Std. Dev. Min. Max. Kurtosis

Europe

Fertilizer (N) (gN∕m2) 11.2046 9.59 6.1996 0 44.48 3.5058

GDP (Const. 2011 PPP $/1000) 34.5437 34.8872 10.8505 10.0695 97.8642 1.1158

Dryness 0.2783 0 0.452 0 2.7099 2.7927

Wetness 0.4361 0.1662 0.5423 0 2.6648 0.3427

Price Agr. 82.9964 82.79 16.9829 20.33 148.13 1.6585

South America

Fertilizer (N) (gN∕m2) 3.8203 3.21 2.7163 0 21.93 7.546

GDP (Const. 2011 PPP $/1000) 11.9857 11.56 3.4558 3.4687 21.9983 0.0227

Dryness 0.2778 0 0.447 0 3.6238 2.6907

Wetness 0.4273 0.1384 0.5555 0 3.265 0.889

Price Agr. 41.4037 37.31 24.4936 −1.3397 113.28 −0.5323

Southeast Asia

Fertilizer (N) (gN∕m2) 7.588 7.15 4.1817 0 39.73 2.9979

GDP (Const. 2011 PPP $/1000) 5.173 4.0498 3.7942 1.015 23.2242 5.0619

Dryness 0.3154 0 0.4737 0 2.6268 1.8175

Wetness 0.372 0.0601 0.5041 0 2.874 1.1683

Price Agr. 47.4911 40.79 25.0958 5.84 135.86 0.0253

Africa

Fertilizer (N) (gN∕m2) 1.1405 0.28 3.9961 0 49.25 61.3191

GDP (Const. 2011 PPP $/1000) 3.0984 1.5285 3.5376 0.3705 40.0158 7.6428

Dryness 0.3901 0.1416 0.5085 0 3.4016 1.5376

Wetness 0.2527 0 0.4262 0 2.9603 3.693

Price Agr. 54.4285 50.69 28.8513 −0.245 143.59 −0.5468

Notes:: Dryness and Wetness are computed as the number of standard deviations around the mean with dryness taking negative 
values. We considered the absolute value of dryness in order to ease its interpretation.
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TABLE B2  Countries in Each Macroregion with the Relative Number of Cells (Units) per Year

Country Cells Country Cells Country Cells

Europe Southeast Asia

Austria 55 Finland 146 Malaysia 113

Norway 164 France 278 Bangladesh 33

Czech Rep. 61 Sweden 111 Lao PDR 47

Ireland 35 Spain 202 India 1145

Luxembourg 1 Belgium 25 Indonesia 537

Netherlands 12 Switzerland 19 Pakistan 273

Germany 164 Italy 134 Vietnam 132

Denmark 31 Hungary 60 Philippines 108

United Kingdom 149 Poland 165 Nepal 39

Portugal 50 Cambodia 65

Greece 66 Thailand 211

Africa South America

Guinea 77 South Africa 294 Colombia 181

Botswana 32 Cameroon 107 Suriname 5

Dem. Rep. Congo 600 Niger 129 Guyana 22

Morocco 103 Nigeria 297 Paraguay 128

Mali 165 Algeria 96 Argentina 509

Mozambique 250 Eq. Guinea 8 Peru 207

Namibia 50 Togo 7 Uruguay 59

Tanzania 290 Egypt 58 Ecuador 60

Malawi 38 Rwanda 7 Brazil 1921

Cote d’Ivoire 89 Burundi 3 Bolivia 192

Ghana 86 Madagascar 178 Chile 78

Tunisia 51 Burkina Faso 83 Venezuela 146

Senegal 68 Kenya 104

Ethiopia 223
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TABLE B3  Estimated coefficients through QMLE of model in Equation (2)

Europe
South 
America

Southeast 
Asia Africa

ϕ −2.49e-02*** −1.14e-01*** −2.07e-01*** −1.05e-01***

(−5.59e-03) (0.00439) (0.00450) (0.00395)

γ 0.01575* 0.10461*** 0.159*** 0.0553***

(0.00614) (0.00503) (0.00508) (0.00464)

GDPt 0.04968*** 0.05981** −3.41e-02* 0.00308

(0.01154) (0.01931) (0.01660) (0.01100)

GDP2t −5.00e-04*** 0.00018 −5.00e-05 −1.90e-04

(0.00012) (0.00062) (0.00053) (0.00025)

DRYt 0.00635 0.01277*** −4.78e-03 −1.40e-03

(0.00567) (0.00372) (0.00368) (0.00238)

WETt 0.01301** −1.01e-02*** 0.0021 −1.30e-03

(0.00479) (0.00279) (0.00315) (0.00264)

PAOt 0.00111** 0.0016*** −1.20e-03*** 0.00024+

(0.00039) (0.00041) (0.00034) (0.00013)

GDPt−1 −2.68e-02*** −1.92e-02*** 0.02880*** 0.0267***

(0.00547) (0.00474) (0.00753) (0.00672)

DRYt−1 −4.76e-02** −2.69e-03 −3.03e-03 −2.66e-03

(0.01815) (0.01120) (0.00575) (0.00292)

WETt−1 0.02183 0.02968** −2.46e-03 −2.14e-03

(0.01516) (0.00971) (0.00502) (0.00343)

PAOt−1 0.00078* −4.41e-03*** −1.32e-03*** −3.00e-04*

(0.00039) (0.00043) (0.00035) (0.00013)

DRYt−1 × GDPt 0.00142** 0.0015+ 0.00021 2.00e-05

(0.00052) (0.00090) (0.00090) (0.00060)

WETt−1 × GDPt −6.70e-04 −2.81e-03*** 0.00032 −1.11e-03+

(0.00041) (0.00077) (0.00061) (0.00062)

ρ 0.83588*** 0.77474*** 0.84480*** 0.74264***

(0.00286) (0.00268) (0.00233) (0.00286)

N × T 36,632 66,652 51,357 66,367

N dimension 1928 3508 2703 3493

T dimension 19 19 19 19

Standard errors in parenthesis. p-value: +p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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TABLE B4  Estimated coefficients through QMLE of model in Equation (5), including the price of fertilizer 
(PF)

Europe
South 
America Southeast Asia Africa

ϕ −0.12415*** −0.10765*** −0.201*** 0.01792*

(0.00861) (0.00621) (0.00677) (0.00758)

γ 0.09785*** 0.04483*** 0.183*** −0.04176**

(0.00953) (0.01248) (0.00762) (0.01398)

GDPt 0.02498 0.7732*** 0.03810 −0.10846

(0.01605) (0.15851) (0.03270) (0.08665)

GDP2t −0.00025 −0.01565*** −0.00088 0.00386

(0.00018) (0.00442) (0.00083) (0.00941)

DRYt −0.0015 0.04484*** −0.00543 −0.01082*

(0.00894) (0.01347) (0.00573) (0.00442)

WETt −0.00219 −0.02179+ 0.00959* 0.01117*

(0.00764) (0.01175) (0.00438) (0.00520)

PAOt 0.00055 0.00055 −0.00202*** 0.00023

(0.00064) (0.00344) (0.00044) (0.00042)

PFt 0.02719 0.2874 −0.0278*** −0.0071

(0.04247) (0.18078) (0.00603) (0.00632)

GDPt−1 −0.03223*** −0.14543*** 0.00347 0.10063*

(−0.0074) (0.03346) (0.0132) (0.04007)

DRYt−1 −0.06211* 0.03106 0.00351 −0.00395

(0.0285) (0.03812) (0.00924) (0.00703)

WETt−1 0.05518* 0.05116 −0.00725 0.00114

(0.0232) (0.03337) (0.00741) (0.00835)

PAOt−1 0.00110+ 0.00540+ 0.00e+00 −0.00094+

(0.00066) (0.00319) (0.00046) (0.00048)

PFt−1 0.05620 −0.06559 −0.020700*** −0.00138

(0.04241) (0.07353) (0.00538) (0.00831)

DRYt−1 × GDPt 0.00180* −0.00034 −0.00157 0.00092

(0.00080) (0.00280) (0.00133) (0.00104)

DRYt−1 × GDPt −0.00161** −0.00497* 0.00071 0.00120

(0.00061) (0.00253) (0.00078) (0.00125)

ρ 0.83086*** 0.14275*** 0.84345*** 0.25700***

(0.0043) (0.00888) (0.00325) (0.01039)

λ — 0.84802*** — 0.95164***

— (0.00599) — (0.00294)

N × T 16,580 32,070 26,170 19,100

N dimension 1,658 3,207 2,617 1,910

T dimension 10 10 10 10

Standard errors in parenthesis. p-value: +p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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TABLE B5  Time–invariant Marginal Effects from SAR and EC models in Equations (2) and (8), respectively

Macroarea Variable Effect Direct Indirect Total

SDPD Model

Europe DRYt short 0.008805291 1.741442e-05 0.008822705

long 0.008521506 1.630236e-05 0.008537809

WETt short 0.018056484 3.571070e-05 0.018092195

long 0.017474544 3.343028e-05 0.017507974

PAOt short 0.001537706 3.041156e-06 0.001540748

long 0.001488148 2.846953e-06 0.001490995

South America DRYt short 0.016041268 1.158859e-05 0.016052856

long 0.014605642 1.133174e-05 0.014616974

WETt short −0.012714951 −9.185577e-06 −0.012724137

long −0.011577017 −8.981987e-06 −0.011585999

PAOt short 0.002005386 1.448737e-06 0.002006834

long 0.001825912 1.416627e-06 0.001827329

South–East Asia DRYt short −0.006582302 −8.971406e-06 −0.006591273

long −0.005349902 −6.731993e-06 −0.005356634

WETt short 0.002888857 3.937393e-06 0.002892794

long 0.002347978 2.954554e-06 0.002350933

PAOt short −0.001650949 −2.250175e-06 −0.001653199

long −0.001341843 −1.688493e-06 −0.001343531

Africa DRYt short −0.0017101155 −1.064206e-06 −0.0017111797

long −0.0015224597 −8.673616e-07 −0.0015233271

WETt short −0.0015950535 −9.926028e-07 −0.0015960461

long −0.0014200238 −8.090028e-07 −0.0014208328

PAOt short 0.0002893142 1.800404e-07 0.0002894943

long 0.0002575670 1.467387e-07 0.0002577137

EC Model

Europa yt−1 / −1.816695 −0.005607266 −1.822302

South America yt−1 / −1.69087 −0.002041492 −1.692912

South–East Asia yt−1 / −2.106944 −0.004490682 −2.111435

Africa yt−1 / −1.594045 −0.00166058 −1.595706
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APPENDIX C

FIGURES

FIGURE C1  Maps of (a) Europe (PAC zone), (b) South America, (c) Southeast Asia and (d) Africa with 
their data distributions before and after YJ transformation (right-hand side). The values of λ for the YJ 
transformations are equal to {0.55;0.3;0.4;−1.2}, respectively
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FIGURE C2  Moran’s I (left) and p-value of the (two-sided) Moran’s Test (right) for the four macroregions 
to detect the additional presence of spatial error autocorrelation in each year. On the right, red dotted lines 
represent 10% significant level of the two-sided test
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FIGURE C3  Frequency Distribution of SPEI values at the World Level for Dryness (left) and Wetness (right). 
Zero values are excluded
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FIGURE C4  Time-varying Short-term (on the left) and Long-term (on the right) Total Marginal Effects from 
Model in Equation (2) with respect to GDP for (a-b) Europe, (c-d) South America, (e-f) Southeast Asia, and (g-h) 
Africa, respectively. The total effects are split into the direct (in pink) and indirect (in green) Effects
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FIGURE C5  Time-varying Marginal Effects from Model in Equation (8) with respect to Dryness (in red) and 
Wetness (in green) for (a) Europe, (b) South America, (c) Southeast Asia, and (d) Africa, respectively
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FIGURE C6  Local Short-term Indirect effects from model in Equation (2) with respect to the variables Dryness 
(on the left) and Wetness (on the right) for Europe
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FIGURE C7  Local Short-term Indirect effects from model in Equation (2) with respect to the variables Dryness 
(on the left) and Wetness (on the right) for South America
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FIGURE C8  Local Short-term Indirect effects from model in Equation (2) with respect to the variables Dryness 
(on the left) and Wetness (on the right) for Southeast Asia
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FIGURE C9  Local Short-term Indirect effects from model in Equation (2) with respect to the variables Dryness 
(on the left) and Wetness (on the right) for Africa
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