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Abstract 

Pollinosis and allergic asthma are respiratory diseases of global relevance, heavily affecting 

the quality of life of allergic subjects. Since there is not a decisive cure yet, pollen allergic 

subjects need to avoid exposure to high pollen allergens concentrations. For this purpose, 

pollen forecasting is an essential tool that needs to be reliable and easily accessible. While 

forecasting methods are rapidly evolving towards more complex statistical and physical 

models, the use of simple and traditional methods is still preferred in routine predictions. In 

this review, we summarise and explain the main parameters considered when forecasting 

pollen, and classify the different forecasting methods in two groups: observation-based and 

process-based. Finally, we compare these approaches based on their usefulness to allergic 

patients, and discuss possible future developments of the field. 
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1. Introduction 

During the reproductive season, seed-plants produce and release male gametophytes in the 

form of pollen grains, that may carry allergenic molecules. Wind-pollinated plants in 

particular have to release huge amounts of pollen in the atmosphere to reach a successful 

reproduction, accidentally exposing the human population to high quantities of pollen 

allergens for several months of the year. During this period, the immune system of 

susceptible subjects might start to recognise the inhaled pollen molecules as antigens and 

produce a hypersensitivity reaction against them, a phenomenon called sensitisation 

(D’Amato et al., 2007; Erbas et al., 2012). Pollen sensitisation leads to pollen allergy, that 

can result in two types of symptomatology: an allergic rhinitis (AR) called “hay fever” or 

pollinosis, or less frequently, allergic asthma (D’Amato et al., 1991; Erbas et al., 2007).  

According to the International Study of Asthma and Allergies in Childhood (ISAAC), the 

global prevalence of pollinosis at the beginning of this century was 22.1% in older children 

(13- to 14-yr-old) and 11.8% in younger ones (6- to 7-yr-old), with an overall increase per 

year around 0.3% in both age groups (Björkstén et al., 2008a). The incidence of pollen 

allergies however displays geographic variability, being influenced by bioclimatic conditions 

and allergenic plants distribution (Björkstén et al., 2008b). 

The perspective of a constant increase in pollen allergy prevalence is concerning because, 

even if it is not life-threatening per se, AR can lead to illness and disability, and it can affect 

the quality of life (QoL) in general (Bousquet et al., 2008). According to their duration, 

severity and frequency, AR symptoms can compromise performance, quality of sleep, 

cognitive function and work productivity of the allergic subjects. Furthermore, anxiety and 

depression appear to be common comorbidities to AR, especially when the symptoms are 

persistent (Canonica et al., 2007). AR can also have indirect implications on apparently 

unrelated aspects of human health. For instance, epidemiological data show a link between 

osteoporosis and pollen allergy, along with other hyper-IgE syndromes, and common AR 

prescriptions can lead to other bone pathologies (Sirufo et al., 2020). 

Allergic asthma has a similar effect to AR on mental health, but it causes a more severe 

inflammation of the lower airways, that may become fatal. Asthma in general is estimated to 

account for about 1 in every 250 deaths worldwide (Masoli et al., 2004), with an average of 

over 1300 deaths per day (European Respiratory Society, 2017). The causes behind asthma 

onset are often difficult to investigate; therefore the exact mortality of allergic asthma alone 

remains unknown.  

Because of this deteriorating effect on QoL, and the high prevalence recorded in some 

countries, respiratory allergies costs in medical care for both individuals and society can be 

elevated (Canonica et al., 2007). The major monetary burden of these diseases, however, 

derives from productivity loss. In 2014, the Global Allergy and Asthma European Network 

evaluated the socio-economic damage provoked by AR in Europe, in terms of direct, indirect 

and intangible costs, and missed opportunities. According to the study, the European 

prevalence of airways allergies (between 20% and 35%) can lead to a loss in productivity 

from €55 to €151 billion per annum. These figures are higher than in other diseases, even if 

AR has milder consequences on health. This is because AR and asthma develop at an early 

age, therefore compromising the entire career of the sufferers through absenteeism or 

presenteeism (Zuberbier et al., 2014). 

Due to this social burden, the possibility to cure and prevent pollen allergies would be 

beneficial for both the individual and the society. However, an effective therapy to treat the 

disease is yet to come. Currently, treatment of allergic rhinitis usually combines allergen 



 

avoidance, pharmacotherapy, immunotherapy and education (Bousquet et al., 2008). 

Pharmacotherapy aims to symptomatic treatment and inflammation reduction, and involves 

H1-anti-histamines, intranasal corticosteroids, topical cromoglycate and oral leukotriene-

receptor antagonists (Roberts et al., 2018; Santos et al., 2015). Even severe allergic asthma 

symptoms can be soothed, using humanised monoclonal antibodies against IgE 

(Omalizumab) to reduce inflammation of the airway mucosa (Djukanović et al., 2004). 

Although there is evidence that these therapies can improve QoL of pollen allergies sufferers, 

patients taking these medications often do not consider their symptoms as completely under 

control (Canonica et al., 2007).  

Allergen-specific immunotherapy is the only AR treatment that acts on the causes of the 

disease, having the potential to desensitise the patient (Roberts et al., 2018) and to prevent 

further allergic sensitisation and the development of asthma (Santos et al., 2015). Although it 

can substantially enhance patients QoL (Niederberger et al., 2018; Novakova et al., 2017; 

Pfaar et al., 2019), immunotherapy alone at the moment is not sufficient to treat every kind of 

pollinosis or to completely control AR symptoms (Demoly et al., 2016), so avoidance of the 

allergens is always required (Bastl et al., 2017c; Canonica et al., 2007; Mothes et al., 2004). 

An accurate allergic risk assessment is believed to help pollen allergy sufferers planning their 

movements, precautions and medications in order to avoid pollen allergens or at least 

mitigate their effect (Burge and Rogers, 2000). While aerobiological monitoring is common 

practice in several cities worldwide, it can only provide an estimation of allergenic pollen 

concentrations in retrospective, or in real-time at best (Huffman et al., 2019). Such 

information cannot be used for the prevention of allergy outbursts as it is, but it must be 

elaborated into forecasting models to predict the future pollen loads. To our knowledge, the 

last thorough review on pollen forecasting has been published in 2013 by Scheifinger and 

colleagues (Scheifinger et al., 2013). Since then, many progresses have been made in the 

fields of artificial intelligence, remote sensing, computer modelling, Mobile Health and 

Crowdsensing. This deeply contributed to the fast evolution of pollen and phenological 

forecasting, allowing to extend old models to new regions (Hall et al., 2020; Oteros et al., 

2019), to create new models for wider geographic areas (Sofiev et al., 2020, 2017), and to 

improve the time resolution of the forecasting (Sofiev et al., 2017). This review aims to give 

a comprehensive overview on the forecasting models available, and to discuss whether and 

how they are useful to the allergic subjects in the management of their disease. 

2. Pollen indices 

To date, monitoring airborne allergenic pollen concentrations is considered the most reliable 

way to assess the health hazard for pollinosis sufferers worldwide (Galán et al., 2014). 

Ideally, pollen monitoring networks should have the highest spatial density and temporal 

continuity possible. In fact, airborne pollen spectra show a spatial variation that depends on 

geographic position and bioclimatic features of the monitored area, and temporal variation 

throughout the year, according to plant phenology and pollen morphology. They are also 

influenced by weather conditions that can modify pollen productivity, emission and 

dispersion (Bastl et al., 2017c). Moreover, pollen spectra are likely to undergo interannual 

variations, for example because of irregular flowering cycles (masting), shifts in species 

composition or meteorological variability (Brennan et al., 2019; Burge and Rogers, 2000; 

Geller-Bernstein and Portnoy, 2019). To compare pollen data over time, daily pollen 

concentrations can be summarised into standard indices, such as the Annual Pollen Integral 

(APIn) and the Seasonal Pollen Integral (SPIn). They are expressed in pollen*day/m3 and 

calculated as the sum of the average daily pollen concentrations over the chosen timespan, or 

the average pollen concentration over the chosen period multiplied by the period duration in 



 

days (Galán et al., 2017). Comparison between these indices from different years allows to 

detect shifts in airborne pollen seasonality and concentrations for a specific region, helping 

for example to evaluate the effects of a changing climate on the air quality (Anderegg et al., 

2021; Clò et al., 2016; Ziello et al., 2012). 

Another important parameter derived from aeropalynological data is the pollen season, that 

positively correlates with pollen allergies outbursts (Erbas et al., 2018, 2012, 2007; Galan et 

al., 2010; Geller-Bernstein and Portnoy, 2019; Simunovic et al., 2020). There is no academic 

consensus over its definition, and according to the literature it can be calculated assuming as 

start and end day specific percentages of APIn or SPIn, considering threshold levels of daily 

pollen concentrations, or establishing a number of consecutive days during which a certain 

pollen type is detected (Bastl et al., 2018b; Pfaar et al., 2017). 

However, since the majority of monitoring stations still rely on manual pollen counts, 

airborne pollen concentrations are provided with at least one day of delay and are not helpful 

for allergen avoidance. Hence, these data must be translated into a temporally resolved pollen 

forecast (Šikoparija et al., 2018). 

3. Parameters for pollen forecasting 

To accurately predict pollen trends, it is useful to consider not only aeropalynological data, 

but also phenological, meteorological and ecological ones. 

Aeropalynological records usually derive from manual pollen counts, and can be accessed 

through local or international databases (Galán et al., 2014; Scheifinger et al., 2013). 

However, the majority of pollen and spore monitoring networks are privately owned and 

therefore their data might not be freely available (Buters et al., 2018). Moreover, monitoring 

methods have not been standardised between different networks yet, so pollen data from 

different regions are usually not directly comparable (Bastl et al., 2018b). Another issue with 

airborne pollen data collection is that monitoring stations are present only in few major cities, 

hence atmospheric pollen concentrations remain unknown for vast geographic areas. 

Furthermore, not all of the existing stations perform a continuous monitoring. To overcome 

these problems, some attempts have been made in the last years to infer airborne pollen 

concentrations from the number of internet searches and tweets about pollen allergy, but this 

field is still far from being accurate (Gesualdo et al., 2015; Hall et al., 2020; Kmenta et al., 

2016). On one hand, the number of tweets and Google Trends searches on allergic 

rhinoconjunctivitis was proven to correlate with pollen concentrations, especially during the 

early pollen season, when there is also a clear causality between the two parameters 

(Gesualdo et al., 2015; Hall et al., 2020). On the other hand, this approach suffers from 

various biases associated with the exact geo-localisation of the allergic subject, the local 

internet consumption, and the keywords used to detect tweets and searches (Gesualdo et al., 

2015). Moreover, when applying this method to sparsely populated areas, the sampled 

population might not be statistically relevant. 

A more robust solution to fill in spatial gaps in pollen monitoring, not explored in 

Scheifinger’s work, is to employ a group of statistic interpolation techniques, called kriging 

techniques. They are probabilistic methods that can model the spatial behaviour of pollen 

concentrations in unmonitored areas, using pollen records from adjacent monitoring stations. 

The high spatial autocorrelation of daily pollen concentrations in fact makes them fit for the 

application of these geostatistical methods (Della Valle et al., 2012; Oteros et al., 2019; 

Picornell et al., 2019). Multivariate kriging (cokriging) in particular has been used for this 

purpose, assuming as covariable a parameter that characterises sites with similar pollen 

emissions, such as the altitude or meteorological factors (Oteros et al., 2019; Picornell et al., 



 

2019; Rojo and Pérez-Badia, 2015). Cokriging can also be combined with other models to 

weight in additional factors influencing the spatial distribution of airborne pollen, like the 

rainfall effect (Oteros et al., 2019). For each pollen type, internal validation of cokriging 

results can be performed calculating the determination coefficient R2, the Root Mean Squared 

Error (RMSE), or the Mean Absolute Error (MAE); while external full cross-validation 

usually relies on Leave-one-out cross-validation (LOOCV) methods, and the results can be 

expressed as accuracy rates. According to these metrics, cokriging provides an accurate 

estimation of mean daily pollen concentrations in unmonitored areas, with relatively high 

spatial resolution (1 Km2) but low time resolution (24-hour intervals). The atmospheric 

concentration of some pollen types however cannot be accurately described by cokriging, 

because the spatial distribution of their sources is driven by factors that are difficult to model 

(e.g. ruderal, ornamental or endemic species). For this reason, spatial interpolation could 

benefit from an accurate vegetation inventory of the region (Oteros et al., 2019; Picornell et 

al., 2019). Another promising approach for spatial interpolation of pollen data is the use of 

convolutional neural networks, that can predict pollen concentrations faster than kriging, and 

with similar or higher accuracy (Navares and Aznarte, 2019). 

An interesting new source of aeropalynological data for pollen forecasting comes from the 

automatic pollen monitoring networks, that can provide real-time airborne pollen 

concentrations with high temporal resolution and continuity. Considered as a future 

possibility in Scheifinger and colleagues review (Scheifinger et al., 2013), in the last years 

automatic pollen sensors have been rapidly gaining accuracy and precision in pollen 

classification, and their results have already been employed in forecasting studies (Clot et al., 

2020; Huffman et al., 2019; Sofiev, 2019). 

As an alternative to aeropalynology, pollen forecasting can rely on phenological data 

providing the timing of pollen emission. Phenological data are collected worldwide by 

national networks using different technologies, from the traditional systematic observations 

in situ and ex situ (e.g. the International Phenological Gardens) to the most advanced 

techniques of citizen science and remote sensing (Scheifinger et al., 2013). Remote sensing in 

particular is a rapid-evolving field that allows to collect ecological vegetation data using 

satellites and unmanned aerial vehicles (Maes and Steppe, 2019). In fact, these instruments 

can be equipped with sensors that provide high resolution aerial photographs, multi-spectral 

or hyper-spectral composite images, or Light Detection and Ranging (LiDAR) data. The 

analysis of different spectral wavelengths and geometric features, often elaborated into 

ecological indices, allows to describe many aspects of the vegetation, such as the taxa 

composition or the plant physiological and phenological state. To date, the most advanced 

technology for remote species recognition is the combination of hyperspectral sensors and 

LiDAR sensors: the former can identify plant species by their spectral features even in areas 

with high plant diversity, while the latter analyse the plant structure and the geometry of its 

components. While this approach is still under development and improvement, several 

studies successfully employed it to create or update vegetation inventories (Pecero-Casimiro 

et al., 2020, 2019; Rocchini et al., 2018; Shi et al., 2018). This approach can also help 

overcoming the problems created by different national data collection approaches when 

forecasting pollen concentrations over vast geographic regions (Sofiev et al., 2006). 

Moreover, the possibility offered by the remote sensing to frequently monitor vast areas with 

a standard approach, gives the opportunity to better understand the relationship between 

variations in plant distribution and phenological state, and airborne pollen concentrations 

(Huete et al., 2019). Unfortunately, the remote monitoring of plant phenology is still 

problematic because it requires multi-seasonal satellite observations to match with ground-



 

based visual analysis. The relationship between the phenology signature, derived from the 

spectral analysis of the leaves, and the actual phenological stage recorded in the filed, in fact, 

does not always hold true, and it requires specific expert knowledge to be interpreted 

(Tomaselli et al., 2017). However, it has been recently demonstrated that satellite data from 

the sensor MODIS, elaborated into the Enhanced Vegetation Index (EVI), tend to correlate 

with pollen concentrations on a local level, and that the use of Machine Learning techniques 

can help combining satellite data with ground-based data, with the potential to implement this 

relationship in pollen forecasting (Huete et al., 2019).  

Both phenology and plant species composition vary between different sites, therefore 

forecasting models are usually developed for specific plant groups and regions (Levetin and 

Van de Water, 2003). Since phenology networks have more densely distributed stations and 

older records than air quality networks, they can supply to spatial and temporal gaps in the 

airborne pollen data series. Besides, the independent evolution of the two networks implies 

that their monitoring is not coordinated, with palynological records accounting for a higher 

botanical diversity than phenological ones (Scheifinger et al., 2013). Pollen production and 

dispersion is also influenced by environmental factors, that are accounted for by many 

forecasting approaches. Meteorological parameters for pollen forecasting can be either actual 

values from historical records or real-time monitoring, collected by meteorological stations, 

or future values estimations (Norris-Hill, 1995). These parameters are usually evaluated 

individually, but they can also be elaborated into bioclimatic indices. Bioclimatic indices 

could be more useful than individual meteorological variables when forecasting the pollen 

pre-season, since in this period they show a better correlation with mean daily pollen 

concentrations (Valencia-Barrera et al., 2002). Furthermore, since bioclimatic features 

modify plants phenology, it is important to assess bioclimatic similarity when comparing 

pollen forecasting models applied in different regions (Valencia-Barrera et al., 2001). 

4. Observation-based forecasting 

Pollen forecasting is based on two broad categories of models: observation-based and 

process-based. The proportion of papers mentioning the different types of forecasting are 

represented in the Supplementary Figure 1. Observation-based models, sometimes referred as 

empirical models, are statistic elaborations of real aeropalynological, phenological and 

environmental data, collected in a specific region for several years (Tab. 1, Fig. S1A). They 

are also called receptor-oriented models, because they aim to estimate pollen concentrations 

that pollen traps (receptors) will record, without making assumptions on their sources and 

atmospheric dynamics (Norris-Hill, 1995; Ranzi et al., 2003; Scheifinger et al., 2013; 

Šikoparija et al., 2018). Depending on the application, these predictions can be short-term, 

seasonal, or long-term. Short-term pollen forecasting is performed during the main pollen 

season, when meteorological conditions can cause daily variations. Seasonal forecasts are the 

most common, and they calculate start date, severity and peak levels of pollen season. Long-

term forecasts aim to detect trends in seasonal pollen levels due to large-scale environmental 

modifications, and they require at least 20-years records of airborne pollen (Levetin and Van 

de Water, 2003). 

The most popular and simple observation-based model is the calendar forecast. It uses 

flowering seasonality or aeropalynological data from the past years to find a medium trend. 

Pollen calendars are commonly presented as graphical descriptions of airborne concentrations 

for different pollen types during the year, outlining the shape and the duration of pollen 

seasons (Ranzi et al., 2003; Šikoparija et al., 2018). For a more accurate forecasting, records 

of meteorological parameters can be included in the calculation. Factors that could affect 

pollen trends are for example temperature, rainfall, hours of sunshine, cloud cover, relative 



 

humidity, wind speed and wind direction. Depending on the context and the pollen type, 

variations in one of these parameters may explain most of the pollen concentrations 

variability (Norris-Hill, 1995). The simplest way to evaluate these relations are regression 

and correlation analysis, that model past pollen concentrations relationship with one or more 

meteorological factors. Correlation or regression coefficients are then used to estimate future 

pollen concentrations. The same approach can be used to forecast the pollen season based on 

shifts in plant phenology (Scheifinger et al., 2013). However, calendar models seem to be 

nearly as efficient (Šikoparija et al., 2018).  

A downside of the all the previous models is that they do not consider the timescale. When 

focusing on this aspect, time-series models are generally preferred. The Box-Jenkins method, 

an autoregressive moving average (ARMA) model, is regarded as a standard time-series 

model in aerobiology. Nonetheless, more advanced approaches are available, such as the 

Holt-Winters method (Aznarte et al., 2007; Ranzi et al., 2003; Scheifinger et al., 2013). 

However, because of the chaotic component in pollen time-series, Computational Intelligence 

(CI) will probably be the turning point for the observation-based models since it appears to 

better describe complex and non-linear phenomena than statistical models. Common CI 

applications in pollen forecasting are machine learning models such as the neural networks or 

the random forests. Neural nets can also be combined with fuzzy-rule based systems to obtain 

neuro-fuzzy models. Neural and neuro-fuzzy models a higher forecasting accuracy than 

traditional linear approaches in the comparison between predicted and measured pollen 

concentrations, especially with pollen concentrations higher than 50 grains/m3 (Aznarte et al., 

2007). To date, different machine learning and advanced machine learning models are 

available for pollen forecasting, considering phenological and environmental parameters as 

well, often measured via satellite (Aznarte et al., 2007; Huete et al., 2019; Zewdie et al., 

2019). Another innovative approach is the Hidden Markov Model (HMM), a stochastic 

model that uses the current state of the system to predict the probability of different future 

scenarios. The peculiarity of this method is to contemplate stochastic variations caused by 

mast cycling, particularly useful in Betula pollen forecasting (Levetin and Van de Water, 

2003; Tseng et al., 2020). 

 Observation-based forecasting 

Approach Simple statistical analysis Time-series analysis 
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Method Calendar 
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some pollen types 
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Future SPIn, 
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Routine seasonal 

forecasting 
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Pollen forecasting for specific studies where the timescale 
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Seasonal 
forecasting when 

pollen 

concentrations are 
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Bibliography 
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(Ranzi et al., 

2003; Scheifinger 

et al., 2013) 
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(Arizmendi et 
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2007; Huete et 

al., 2019; Lops 

et al., 2020; 
Ranzi et al., 

2003; Zewdie et 

al., 2019). 

(Tseng et al., 

2020) 

Table 1 Main features of observation-based pollen forecasting models 

5. Process-based forecasting 

Process-based models, also known as simulation models, are built on a-priori assumptions 

about pollen dispersal and plant phenological responses to environmental factors. These 

models aim to forecast pollen production and release by the source plant and to reconstruct its 

journey from the source to the air sampler, therefore they are also defined source-oriented 

(Ranzi et al., 2003; Scheifinger et al., 2013; Šikoparija et al., 2018).  

5.1 Process-based phenological models 

Some process-based methods start from the assumption that pollen season overlaps with 

flowering season. They are defined process-based phenological models, and predict the 

beginning, the peak and the end of the pollen season as a function of environmental factors 

(Tab. 2, Fig. S1B) (Scheifinger et al., 2013). Two main events are thought to influence 

flowering season entrance: chilling temperature, that breaks bud dormancy, and forcing 

temperature (or thermal forcing), that stimulates bud development. The timing of these events 

can be elaborated into bud-burst models to produce a phenological forecast. While 

temperature appears to be the main driver of flowering for temperate climate trees, pollen 

season of herbaceous taxa and tropical and Mediterranean trees tends to correlate more with 

precipitations and photoperiod instead. Photoperiod in particular can be assumed to determine 

the moment when temperatures start to affect bud development (Migliavacca et al., 2012; 

Siniscalco et al., 2015). More flexible and generalised models, able to detect the principal 



 

phenological control in a certain dataset, are also available (Scheifinger et al., 2013).  

These process-based models  

Phenological projections hold some degrees of uncertainty, associated to parameters, 

structure and drivers of the model (Migliavacca et al., 2012). Since each species has its 

peculiar environmental requirements, specific models and parameters should be selected for 

different plant groups (Scheifinger et al., 2013; Siniscalco et al., 2015). Nevertheless, 

different studies have observed interannual changes in environmental requirements for the 

same species, underlining how the relations between phenology and environment are yet to 

be fully understood (Siniscalco et al., 2015). The less controllable and quantifiable 

uncertainty associated to phenological models however is due to model drivers, and it is 

mainly caused by unpredictable changes in the future climate. All these problems can be 

minimised by using a model-data fusion approach that accounts for the overall model 

uncertainty (Migliavacca et al., 2012). Another major issue of phenological forecasting is that 

local flowering and pollen seasons match only when long distance dispersal (LDD) 

contribution to the pollen records is negligible (Scheifinger et al., 2013). 

 

5.2 Process-based dispersal models 

 

Although around 90% of wind-borne (anemophilous) pollen grains falls within 100 m and 2.7 

km from its source, the remaining 10% might travel from hundreds to thousands of 

kilometres (Green et al., 2018). Pollen dispersion is promoted by air masses movements and 

turbulences, opposed by gravity (dry deposition) and rain (wet deposition), and it is 

influenced by the chemico-physical modifications pollen can undergo during the process. In 

dry atmospheric conditions, around 50% of the total pollen emitted by anemophilous species 

is estimated to be transported more than 10000 km further from its source, with a half-

lifetime of at least 1 day (Sofiev et al., 2006). In some cases, this LDD component can 

significantly alter local pollen records, for example when wind-pollinated species have dense 

extra-regional populations (Sofiev et al., 2006; Zink et al., 2012).  

Thus, to better approximate future pollen concentrations, it is useful to model pollen emission 

and pollen dispersion as separate events (Kawashima and Takahashi, 1995; Sofiev et al., 

2006).  

First emission models developed for this type of process-based forecasting estimate pollen 

emission based on the relationship between weather conditions and quantity of pollen 

released into the atmosphere, derived from experimental data (Cai et al., 2019). Kawashima 

and Takahashi (Kawashima and Takahashi, 1999) pioneered this approach, calculating the 

potential pollen emission of a uniformly flowering source, based on its correlation with 

hourly measures of air temperature and wind speed, and on the number of male flowers 

estimated from the variations in summer temperatures. Similarly, Schueler and Schlünzen 

(Schueler and Schlünzen, 2006) considered the pollen emission as a function of the pollen 

production over a certain period. The pollen production in this case was estimated from the 

relationship between actual pollen concentrations in the tree crown, and three meteorological 

parameters (wind speed, relative humidity, and temperature), measured with a two-hour 

resolution. Comparison with actual pollen levels recorded at the source site proved this 

estimation acceptable, although not very precise. More articulate emission models based on 

empirical data have been developed, that pay more attention to the biological and biometric 

features of the source plant. An early example of this approach is provided by Hidalgo and 

colleagues (Hidalgo et al., 2002), who employed neural networks to calculate the emission 

sub-model, based on three parameters: (I) the characteristics of the previous pollen seasons, 



 

formulated as the relationships between past pollen counts and meteorological data; (II) the 

dispersion factors, that included meteorological conditions, source plants abundance and 

distribution, and local topography; (III) the total pollen production, estimated empirically as 

the number of flowers per tree, anthers per flower, and pollen grains per anther. Another 

empirical emission model was proposed by Helbig and collaborators in 2004 (Helbig et al., 

2004), that has the advantage to be very general, so that it can be adapted to different plant 

species. This model starts from the definition of pollen production as the maximum number 

of pollen grains recorded for a plant species during the pollen season. This maximum 

quantity is emitted in time by the source plant, according to the characteristics of the species, 

and in particular: (I) the likelihood to bloom in a certain day of the season; (II) the maximum 

pollen quantity that can be emitted from a certain area minus the pollen already emitted, that 

depends on the LAI and the height of the canopy; (III) the friction velocity required for the 

pollen release; (IV) the threshold temperature, humidity and wind speed required for pollen 

emission (Cai et al., 2019; Helbig et al., 2004). Starting from the same inputs, a semi-

mechanistic emission model based on the mass balance of pollen emission fluxes from all the 

sides of the crown has been recently proposed (Cai et al., 2019). Some of the parameters and 

assumptions of this model however are associated with significant uncertainties, and the 

modelled emissions have only a medium correlation with actual pollen records for the area. 

 

Emission models can also be based on long-term phenological observations (Sofiev et al., 

2006) and on the aforementioned phenological models (Duhl et al., 2013; Siljamo et al., 

2013; Sofiev et al., 2015a, 2006). For instance, the “double-threshold air temperature sum” is 

a phenological emission model built on the direct proportionality between the flowering stage 

and the heat sum accumulation occurred between two temperature thresholds, and it allows to 

model the probability of an individual tree to enter the flowering stage. It takes into account 

other meteorological factors as well: ambient humidity and precipitations, that decrease the 

pollen emission; wind speed, that promotes it; and atmospheric turbulence, that has 

significant positive impact on pollen emission only in a scenario close to free convection. The 

accuracy of this method varies according to the study area (Sofiev et al., 2015a). 

Phenological emission models can also be calculated by CI, using for example the Random 

Forest machine learning technique, that was proven to explain 50% of the variance when 

comparing the predicted and recorded pollen concentrations over a missing test year (Huete 

et al., 2019). 

 

Atmospheric pollen dynamics instead are described by dispersal models, considering both 

environmental factors and pollen features, such as shape, density, dimension, and viability 

(Tab. 3, Fig. S1C) (Sofiev et al., 2006; Zhang et al., 2014). Distant pollen sources can be 

mapped using vegetation inventories or solving the inverse dispersion problem. In the latter 

case, when a pollen monitoring station records a possible LDD event, the source is identified 

by reconstructing the pollen trajectory from the source to the air sampler (Sofiev et al., 2013, 

2006). 

First pollen dispersion models were based on statistic elaborations (Helbig et al., 2004; 

Kuparinen, 2006). They can be integrated as sub-models in more complex, fully mechanistic 

dispersion models. The latter derive from the atmospheric physics principles that describe the 

motion of airborne particles. They consider factors such as gravity, wind speed, and 

turbulence, to explain pollen dynamics based on concurrent environmental conditions. More 

specifically, they are based on the advection-diffusion equation, that is an accurate 

approximation of pollen noninertial motion, approached with Eulerian or Lagrangian 

methods (Kuparinen, 2006; Nguyen et al., 1997; Sofiev et al., 2006).  



 

In general, inputs required by mechanistic dispersal models are: a map of the source plants 

distribution, the pollen emission sub-model, knowledge on the features of the past pollen 

seasons, and the meteorological forecasting (Sofiev et al., 2013).  

In the Eulerian approach, airborne particles are treated as a continuum (Zhang and Chen, 

2007), and they are modelled as concentration fields on a grid that is fixed in space and time 

(Jia et al., 2021; Nguyen et al., 1997; Young et al., 2000). This method allows to predict the 

mean concentration of airborne particles for each point of the grid by solving the advection-

diffusion equation, mainly using one of the following advection schemes: flux-form finite 

volume, that calculates the particles transport by mass fluxes at the borders of the grid cells; 

semi-Lagrangian, that considers the transport from departure points of the grid to an arrival 

point, and calculates the particle concentrations at the grid points closest to the arrival; or 

expansion-function, that calculates the solution of the equation using different sets of basis 

functions (Sofiev et al., 2015b). 

Eulerian models for pollen forecasting are usually adapted from existing mesoscale models 

for air pollutants dispersal, combined with meteorological models. A valid example of the 

Eulerian approach is the KAMM/DRAIS/MADEsoot, a comprehensive mesoscale model 

system for aerosol dispersion that produces a three-dimensional forecasting of temporal and 

spatial distribution of pollen grains (Helbig et al., 2004). Perquisites of this method are to 

take into account geomorphological heterogeneity, meteorological spatial variability, species-

specific pollen emissions, wet deposition and resuspension. Other examples of Eulerian 

models are mentioned in Table 3. A multi-model ensemble has been published as well, 

calculated as the arithmetic average and median of the results from seven Eulerian models 

fields per hour. This ensemble, now implemented in the Copernicus Atmosphere Monitoring 

Service (CAMS) forecast (www.regional.atmosphere.copernicus.eu), showed higher 

correlation coefficients with observed daily mean pollen concentrations than the individual 

models alone (Sofiev et al., 2015a).  

However, the Eulerian approach requires a number of simplifications that can limit the use of 

the model in many occasions (Kuparinen, 2006). For example, they do not take into account 

the effect of tree canopies. In fact, variations in leaf-area index and the foliage shedding of 

deciduous trees have been proven to strongly influence the turbulences within the canopy and 

therefore to affect pollen dispersion (Nathan and Katul, 2005). Furthermore, the application 

of Eulerian models is still hindered by their huge computational costs, and by the numerical 

diffusion effect produced by the grid system (Jia et al., 2021). 

Another way to predict mean pollen concentrations in a specific area is the Lagrangian 

approach, that considers airborne particles as a discrete phase, and models their individual 

paths in a continuous space by applying a deformation to either the grid or the coordinates of 

a fixed grid (Nguyen et al., 1997; Young et al., 2000; Zhang and Chen, 2007). Lagrangian 

models for pollen forecasting are usually based on the “Lagrangian particle random-walk” 

method, that calculates the trajectory of thousands to millions particles, with the advection 

modelled on the wind dynamics and the diffusion simulated by random relocation (Nguyen et 

al., 1997; Sofiev et al., 2013). In particular, the Lagrangian Stochastic (LS) turbulence model 

is considered to give a realistic simulation of temporary airflows. An example of LS model 

for pollen dispersal is the SMOP-2D, that simulates individual pollen grains path from their 

emission to their deposition, considering wind turbulence, pollen aerodynamic features, 

canopy structure and landscape heterogeneity (Jarosz et al., 2004; Kuparinen, 2006). Using 

surface pollen spectra and vegetation data as input, it has been proven that LS models can 

give a more accurate approximation of the observed pollen concentration than some classical 

Eulerian models when considering long-range events of pollen dispersal (Theuerkauf et al., 

2016). Other examples of Lagrangian models are listed in Table 3. In general, Lagrangian 

models account for different factors that drive LDD events, including the irregular and 



 

autocorrelated turbulent fluctuations, and this tends to give a better approximation of the 

dispersal curve (Kuparinen, 2006). However, the potential of this approach is hampered by 

the topographical complexity of the study area, that can significantly complicate the 

modelling of the particles path (Sofiev et al., 2013). 

There is not common agreement over the better approach to choose when forecasting pollen 

concentrations based on their dispersal. While some authors consider Lagrangian models to 

be more realistic in describing pollen atmospheric dynamics (Kuparinen, 2006; Theuerkauf et 

al., 2016), others prefer a more comprehensive Eulerian approach that seems a better fit 

especially in areas where airflow movements are difficult to predict, such as the mountains 

(Sofiev et al., 2013). In general, all the models have some limits, and the model choice is 

guided by the features of the study area or the data available. It is interesting to notice that 

SILAM, a global-to-meso-scale model for pollen forecasting, has been developed with both 

Eulerian and Lagrangian approaches, allowing to choose the better option for the study 

(Sofiev et al., 2015b; Veriankaitė et al., 2010). 

Quasi-mechanistic models have also been proposed to explain pollen dispersion. They 

consider pollen dynamics to be probabilistic, describing pollen dispersion as a Brownian 

motion with drift, integrated with biological and aerodynamic factors (Klein et al., 2003). 

While pollen dispersal can be approximated with a certain accuracy, however, this type of 

forecasting is still limited by the uncertainties associated with the emission sub-model. In 

fact, unpredictable changes in the future weather or in the plant physiology can substantially 

modify the starting day of the flowering season, or the pollen productivity, compromising 

pollen forecasting reliability. While the knowledge of the characteristic of the past pollen 

season can be useful to train the model, long-term averages of past observed data are not 

good predictors of the future pollen concentrations (Ranta et al., 2006; Sofiev et al., 2006). 

This problem can be approached by calculating the probability of the pollen produced by a 

certain source (e.g. forests, prairies) to affect a receptor area, with the source considered 

constant in time, and not taking into account the seasonality and the variations in pollen 

production and release. This way, it is possible to define areas of risk that are likely to be 

reached by allergenic pollen via LDD. This information is then manually integrated with 

updated qualitative data on the phenological state of the plant sources: if the flowering has 

started, then the probability is converted into forecasted pollen concentrations. This approach 

was proven to better approximate the observed pollen concentrations than the deterministic 

approach to pollen emission, although it still was not very accurate in some cases (Sofiev et 

al., 2006). Other options to improve the predictions of mechanistic forecasting models could 

be the use of either the “dynamic phenological emission” approach, that is an observation-

based phenological model including real-time meteorological data, or the “emission data 

assimilation” approach, that relies on real-time phenological or aeropalynologycal data 

assimilation (DA) (Sofiev, 2019; Sofiev et al., 2006). The latter option has been recently 

tested using real-time aerobiological records for data assimilation in the SILAM model. DA 

is a relatively recent technology that allows to bring the model predictions closer to the 

observations, and it could be potentially used to improve the pollen forecasting quality 

throughout the season, predicting accurate airborne pollen concentrations several days ahead. 

Unfortunately, the atmospheric lifetime of pollen grains turned out to be too short for DA 

corrections, making them ineffective in a few hours when applied to forecasting (Sofiev, 

2019).  



 

 

 

 Process-based phenological models 

Model type 
Thermal 

forcing only 
Chilling only 

Forcing 

temperature 

and chilling 

Models including 

photoperiod 

 

Models 

including 

photoperiod 
and water 

availability 

Generalised 

Phenological Models 

Examples 

Spring 

warming 
(SW), 

Growing 

Degree Day 

(GDD) 

- 

Sequential,  

Parallel,  
Alternating,  

Deepening 

Rest,  

Four Phases 

- - 

Unified model, 

Promotor-Inhibitor 

model 

Input 

Starting day of 

temperature 

accumulation, 
Spring daily 

temperatures, 

Plant 

phenology, 

Plant 

distribution 

Starting day of 

temperature 

accumulation, 
Winter daily 

temperatures, 

Plant 

phenology, 

Plant 

distribution 

Starting day of 

temperature 
accumulation, 

Winter and 

spring daily 

temperatures, 

Plant 

phenology, 

Plant 

distribution 

Winter and 

spring daily 

temperatures, 

Plant phenology, 

Photoperiod, 

Plant distribution 

Winter and 

spring daily 

temperatures, 

Plant 

phenology, 

Photoperiod, 

Soil water 

availability, 

Plant 

distribution 

Environmental and 

phenological data, 

plant dataset 

Assumptions 

Pollen season 

begins when 

the sum of 
forcing units 

reaches a 

threshold 

value 

Pollen season 

begins a 

certain time 
after the sum 

of chilling 

units reaches a 

threshold value 

Pollen season 
start is defined 

by a 

combination of 
chilling and 

forcing units 

Photoperiod 

defines the 

starting day of 
temperature 

accumulation, 

pollen season 
start is defined 

by a combination 

of chilling and 

forcing units 

Photoperiod 
defines the 

starting day of 

temperature 

accumulation, 

pollen season 

start is defined 
by a 

combination of 

meteorological 

factors 

 

Plant responses to a 

combination of 
environmental factors 

can be calculated 

with flexibles models 

Best fit 

Late-flowering 
trees in 

temperate 

regions 

Olea europaea 

and Alnus 

glutinosa in 
Mediterranean 

reagions 

Early-

flowering trees 
in temperate 

regions (e.g. 

Alnus sp.,  

Acer sp.) 

Tropical and 

Mediterranean 

trees 

Herbaceous 

species,  

tropical and 
Mediterranean 

trees 

Complex datasets 

Output Starting date, peak and end of the next pollen season 

Bibliography (Scheifinger et al., 2013; Siniscalco et al., 2015) 

Table 2 Description of the principal process-based phenological models used in pollen 

forecasting 



 

 

 

 Pollen dispersion models 

Model type Numerical models Fully mechanistic models 
Quasi-mechanistic 

models 

Approach Statistic Eulerian Lagrangian Probabilistic 

Examples 
Multiple regression 

equation 

ADMS, CHIMERE,  
COSMO-ART, EURAD-IM, 

KAMM/DRAIS/MADEsoot,  

Kawashima & Takahashi 
model, 

LOTOS-EUROS, 

MATCH, METRAS, 
MOCAGE, SILAM Eulerian, 

WRF-MEGAN-CMAQ 

CALMET/CALPUFF,  

HYSPLIT,  
PAPPUS,  

SILAM Lagrangian, 

SMOP-2D 

- 

Input 

Past pollen 

concentrations, 

Meteorological 

parameters 

Source plants distribution, 

Information on plant phenology 
and pollen season 

characteristics, 

Emission model, 

Meteorological model, 

Boundary layer, diffusion 

intensity, turbulent mixing. 

Source plants distribution, 

Information on plant phenology 
and pollen season 

characteristics, 

Emission model, 

Meteorological model, 

Horizontal and vertical 

dimensions of the grid. 

Male flowers 

height, 

Pollen settling 

velocity,  

Wind direction and 

speed,  

Turbulence 

Principle 

Pollen dispersion is 
modelled from the 

relation between 

pollen 
concentrations and 

meteorological 

factors. 

Analytical approach. Pollen is 

modelled as a continuum, and 

its future concentrations in a 

certain point of a fixed grid are 

calculated by analytically 

resolving an advection-diffusion 
equation with Eulerian 

approach. 

Simulation approach. Pollen 

dispersion is modelled by 

simulating the trajectories of 

individual particles. 

Pollen dispersion is 

modelled as a three-

dimensional 
Brownian motion 

with drift. 

Output 

Future pollen 
concentrations in a 

certain area 
Future pollen concentrations in a certain area 

Probability that a 
pollen grain falls in 

a certain point 

Limits 

Useful as sub-
models for more 

complex models 

Problems in evaluating pollen 

emissions, difficulties in 
simplifying biological factors, 

high computational costs, 

numerical diffusion effect. 

Problems in evaluating pollen 

emissions, difficulties in 

modelling pollen trajectories in 

areas with complex topography.  

Designed to model 
pollen dispersion in 

pollination events 

Bibliography 

(Helbig et al., 2004; 

Kuparinen, 2006; 
Scheifinger et al., 

2013) 

(Helbig et al., 2004; Hunt et al., 

2001; Kawashima and 

Takahashi, 1999, 1995; Müller-
Germann et al., 2015; Schueler 

and Schlünzen, 2006; Siljamo et 

al., 2013; Sofiev et al., 2015a, 
2015b; Veriankaitė et al., 2010; 

Zhang et al., 2014; Zink et al., 

2012) 

(Hidalgo et al., 2002; Jarosz et 
al., 2004; Kuparinen, 2006; 

Müller-Germann et al., 2017; 

Sofiev et al., 2013, 2006; Zhang 

and Han, 2008) 

(Klein et al., 2003) 



 

Table 3 Description of principal pollen dispersion models used in process-based pollen 

forecasting 

 



 

 

6. Pollen loads and forecasting skills 

To be disseminated to the public, predicted pollen concentrations must be translated into 

discrete categories indicating the allergenic risk they pose. This is not an easy task, because 

the physical response to aeroallergens exposure depends on many factors: aeroallergens 

concentrations, air pollution levels, meteorological parameters, and other environmental 

factors (Caillaud et al., 2014; Cecchi, 2013; D’Amato et al., 2007; Karatzas et al., 2013; 

Mothes et al., 2004). Genetics and epigenetics of the subject also play an important role in the 

manifestation of allergic symptoms. Thus, even when considering pollen exposure alone, e.g. 

exposing the subjects to fixed pollen concentrations in a controlled environment (pollen 

chamber), there is a certain subjectivity in the timing and the intensity of the allergic reaction 

(De Weger et al., 2013; Mothes et al., 2004). 

Threshold values for symptom development have been defined throughout the years, to help 

allergic patients and medical personnel to understand pollen information and manage allergy 

symptoms. These thresholds have been established by evaluating the reactions of allergic 

patients to pollen exposure in “real life” conditions (De Weger et al., 2013). The most 

common method to achieve this is by asking the subjects to record their symptoms in a diary, 

and then correlating these symptoms to daily pollen levels (Bastl et al., 2014; De Weger et 

al., 2013; Kmenta et al., 2014). In some cases, this correlation is corroborated by weekly 

information provided by a network of allergologists (De Weger et al., 2013). During the last 

decade, interactive symptom diaries accessible to allergic patients and their physicians have 

been developed. They can be websites, such as www.pollendiary.com,  www.airrater.org, 

www.allergymap.gr, and www.allergieradar.nl (Bastl et al., 2020, 2018a; Jones et al., 2020; 

Kalogiros et al., 2018; Pfaar et al., 2017); or specific apps like ARIA, MASK-air, and Allergy 

Diary (Bousquet et al., 2019; Caimmi et al., 2018; Clot et al., 2020; Kalogiros et al., 2018). 

While this Crowdsensing approach provides real-time and standardised data, the 

determination of pollen threshold levels for symptoms development remains problematic, and 

there is no general consensus on how they should be calculated (De Weger et al., 2013). 

Moreover, although there is a proven correlation between allergic symptoms and mean daily 

pollen concentrations, personal exposure of the subject likely differs from the pollen 

concentrations recorded by the monitoring station (Berger et al., 2014; De Weger et al., 2013; 

Levetin, 2004). The variability in pollen monitoring approaches adopted by different stations 

also represents an important limit to the standardisation of pollen risk thresholds (Levetin, 

2004). Moreover, the exposure level that can cause an allergic reaction also depends on the 

pollen type. In general, average daily airborne pollen concentrations that can trigger an 

allergic reaction range from 0 to 100 pollen grains/m3 (Pfaar et al., 2017), but there is a 

variety of scales and categories that can be used to describe the airborne pollen 

concentrations and their associated risk. These values are accurately described and 

summarised by de Weger and colleagues (De Weger et al., 2013). Hence, while it is common 

to classify pollen loads using “Very Low”, “Low”, “Medium”, “High”, and “Very High” (or 

“Extreme”) categories, it is important to acknowledge that the pollen concentration range 

included in the same level might variate among monitoring and forecasting providers, and 

aeroallergen considered (De Weger et al., 2013; Gehrig et al., 2018; Silver et al., 2020; 

Sofiev et al., 2020).  

Another problem to address when disseminating pollen forecast for health managing 

purposes is its accuracy. 



 

When estimating a model performance, the most common statistics employed to compare 

observed and predicted pollen concentrations are the correlation coefficients and the RMSE. 

Some authors also applied other metrics like Theil’s U statistic, to obtain a scale-free 

measure, or MAE that is less sensitive to large errors than RMSE (Aznarte et al., 2007; 

Dennis et al., 2009; Picornell et al., 2019; Sofiev et al., 2017; Valencia-Barrera et al., 2002). 

Another useful metric is the accuracy rate or model accuracy (MA), that can be calculated as 

the relationship between the number of correct forecasts and the number of total forecasts 

(Picornell et al., 2019; Siljamo et al., 2013). 

When the aim of the forecast is to inform the public on the allergic risk, however, it is 

important to evaluate mode accuracy and consistency in predicting different pollen levels. 

While the aforementioned statistics can also be applied to categorical pollen concentrations, 

for this purpose probabilistic skill-based indices and threshold-based statistics are preferred 

(Emmerson et al., 2019; Ritenberga et al., 2016; Siljamo et al., 2013; Zink et al., 2013). 

These metrics can be calculated for all the pollen load levels estimated by the forecast (Bastl 

et al., 2017b), or they can be based on a single threshold separating low and high daily pollen 

concentrations (De Weger et al., 2013; Siljamo et al., 2013). 

When considering just one threshold, the Hit Rate (HR) or Probability of Detection (POD) is 

used to estimate the fraction of high pollen levels predictions that are correct (high predicted 

and high observed), while the False Alarm Ratio (FAR) identifies the fraction of incorrect 

high-level predictions (high predicted and low observed). A complementary measure is the 

Probability of False Detection (POFD), that calculates the fraction of observed low-

concentration days predicted as high. To evaluate the reliability of the predicted high-level 

days more comprehensively, the relationship between POD and POFD can be estimated 

through the Odds Ratio (OR) or the Hansen-Kuiper (or True Skill) Score, estimating the 

chances to observe a high-concentration day when it has been predicted (Emmerson et al., 

2019; Gerrity, 1992; Siljamo et al., 2013). Some metrics also evaluate the performance of the 

forecasting against the probability to obtain the correct prediction by chance. Examples are 

the Equitable Threat Score (ETS), that measures the skill of a forecast to correctly predict 

high pollen days, adjusted for the probability to randomly obtain correct forecasts (Emmerson 

et al., 2019); and the Peirce Skill Score (PSS), that compares the performance of the model to 

that of a random forecast (Peirce, 1884; Zink et al., 2013).  

When evaluating forecasting skills for more than two categories of pollen concentrations, all 

these metrics should be calculated for each category, considering the occurrence of the 

desired category as an event, and the occurrence of any other category as a non-event. This 

means that, when a non-event is both predicted and observed (correct negative), the 

prediction cannot be automatically assumed as correct (Emmerson et al., 2019; Zink et al., 

2013). In this case, the Threat Score (TS) can be applied to evaluate the fraction of correct 

forecasts, ignoring the correct negatives (Zink et al., 2013). 

A limit of these threshold-based metrics is that they do not consider how close the incorrect 

forecast was to the observed pollen level, in terms of pollen concentrations. For this reason, 

categorical forecasting evaluation is usually supported by the aforementioned non-categorical 

evaluation methods (Zink et al., 2013). To avoid low performance estimations of a model due 

to slight differences between predicted and observed concentrations, it is possible to assume 

an interval of tolerance around the threshold values, so that the categories have a slight 

overlap (Bastl et al., 2017b).  

Another useful metric is the Gerrity Score (GS) (Gerrity, 1992), that attributes different 

weights to incorrect predictions, depending on how much they differ from the observed 



 

values. This score also evaluates the forecasting skill relative to the random chance, by 

rewarding the correct prediction of rare events more than the correct prediction of common 

events (Emmerson et al., 2019; Gerrity, 1992). 

To be useful for allergic patients, pollen forecasting should have high POD and GS, 

accurately predicting days with high or very high pollen loads, that can cause relevant 

allergic reactions (Zink et al., 2013). On the other hand, the FAR of the forecasting model 

should be low, since incorrectly predicting high pollen loads can lead allergic patients to 

assume unnecessary medications or to avoid outdoor activities (Bastl et al., 2017a). 

How these metrics could be clearly communicated to the public along with the forecast, 

however, is still debated (Bastl et al., 2017b). 

7. Dissemination of pollen forecasts 

Allergic symptoms can be exacerbated by different environmental and genetic components, 

but pollen exposure is certainly the most important risk factor for pollen allergic subjects 

(Bousquet et al., 2019). Aeroallergen monitoring and avoidance in fact represent a primary 

and secondary prevention strategy respectively for an individual decrease of the risks to 

develop allergic illnesses (Reid and Gamble, 2009). Knowledge of future pollen loads is 

perceived by pollen allergy sufferers to be useful for prevention and avoidance, as well as 

preparation and planning, highlighting a public demand for pollen information (Medek et al., 

2019). This information is usually integrated with weather or air quality forecasting, and 

provided to the public via newspapers and television on a national scale, by websites on a 

regional scale, and by smartphone applications (apps) on a personal scale (Karatzas et al., 

2013). Public consumption of pollen forecasting during the pollen season, recorded by 

forecasting websites, underlines the concern pollen allergy causes to sensitive subjects, and 

their need to monitor the situation (Kmenta et al., 2016).  

While public access to air quality information is ensured by Governments and international 

organisations (Karatzas et al., 2013; Monfort et al., 2002) both as ordinary monitoring and 

incident-event alerts, pollen monitoring and forecasting tend to be overlooked by these 

regulations (Karatzas et al., 2013). 

Nonetheless, in the last decades different Countries have joined efforts in common 

aerobiology networks and projects, with the creation of national and international websites 

designed for pollen allergic subjects, that provide daily pollen counts and pollen forecast at 

different time and spatial resolutions. Examples are www.polleninfo.org for Eurasian 

countries (Kmenta et al., 2016), www.pollen.com for the USA (Geller-Bernstein and Portnoy, 

2019), and www.pollenforecast.com.au for Australian regions. Smartphone apps providing 

daily pollen forecasts and monitoring allergy symptoms are also available in many countries 

(Bastl et al., 2017b; Bousquet et al., 2019; Jones et al., 2020; Kmenta et al., 2016), and many 

weather forecasting websites offer pollen information. All these tools are part of the 

Electronic Health (eHealth) and Mobile Health (mHealth), defined by the WHO as the 

medical and public health practice supported by information and communication 

technologies, and by wireless mobile devices, respectively (Bastl et al., 2020; WHO, 2018).  

During the last century, the pollen calendar has been the main source of pollen forecasting 

available to the public (Fig. S1A), with the advantage to be intuitive and clearly 

understandable (D’Amato et al., 1991; Gehrig et al., 2018), but with the downsides of a low 

time resolution and the impossibility to predict uncommon and swift events. Pollen calendars 

are still employed to disseminate general, long-term information about the future pollen 



 

seasons by pollen-monitoring networks, patient organizations, and for medical information 

purposes (Gehrig et al., 2018), but they are progressively being substituted or flanked by 

more comprehensive approaches. To better exploit the informative potential of the pollen 

calendar, a recent study (Gehrig et al., 2018) developed a new form of it, intended for the 

public consumption as complementary to other forms of forecast. This pollen calendar is 

based on users’ expectation to know the possible occurrence of high pollen levels during a 

certain period, instead of the mean pollen season. For this purpose, it is not calculated as an 

average value, but as the 90% quantile of the daily pollen concentrations for each day of the 

year, in a moving 9-day time window, over 20 years of data. These pollen concentrations are 

automatically calculated and regularly updated on the website (www.meteoswiss.ch/pollen-

calendar), presented as pollen loads levels (low, moderate, high, very high), and can be 

visualised for individual monitoring stations, regions, or pollen type (Gehrig et al., 2018). 

Another way to disseminate long-term pollen information is a table with the starting date of 

the pollen season for the major pollen allergens, obtained by past pollen data and 

phenological observations. This information is embedded only in few pollen apps, e.g. Pollen 

and Pollen News, but it tends to be more accurate than daily or hourly forecasts (higher 

POD), and may help pollen allergic patients to prepare for the pollen season (Bastl et al., 

2017b). 

However, in the last decades a broad variety of pollen forecasting models have been 

proposed, in the attempt to obtain more accurate and precise predictions (Fig. S1), although 

just some of them have been made available for public consumption. Observation-based 

forecasting methods other than pollen calendars have been employed to disseminate short-

term pollen forecasts: for instance, the Spanish Aerobiology Network (REA) offers three-day 

forecasts generated on a national scale by the University of Cordoba using time-series 

(Fernández-Rodríguez et al., 2016; Oteros et al., 2019), that are available on the website 

www.uco.es/investiga/grupos/rea or on the Pollen REA app. Within the possible observation-

based approaches, CI seems to give the best approximation of future pollen concentrations, in 

particular when using machine learning models with a non-linear behaviour, such as neural 

nets (Aznarte et al., 2007). This approach has been preferred by some pollen forecasting 

providers, such as the Danish patient association Asthma-Allergy, with their smartphone app 

Dagens Pollental. 

Unfortunately, due to their regional and empirical nature, observation-based models cannot 

be generalised to wide geographic areas. Furthermore, they rely on real pollen records, 

usually expressed as mean daily pollen concentrations. This limits the time resolution of these 

approaches, since they can predict at best the daily concentrations or the starting, peak and 

end date of the pollen season, but they cannot give detailed information to pollen allergic 

subjects on the variations of the risk they are exposed to throughout the day (Scheifinger et 

al., 2013). 

Process-based forecasting models instead have higher temporal and spatial resolution than the 

observation-based ones, and some of them can even weight in the effect of LDD events 

(Ranzi et al., 2003). In particular, some process-based dispersal models can now estimate 

future concentrations of 6 pollen types up to 5 days, for wide geographic regions (Sofiev et 

al., 2020). On the other hand, these models are associated with various uncertainties 

(Migliavacca et al., 2012), they do not run operationally and are not calculated for all the 

allergic pollen types (Maya-Manzano et al., 2021). This reduces the value of these forecasts 

for pollen allergic subjects, making this approach mainly limited to scientific research 

applications.  



 

Nevertheless, some process-based dispersal models are starting to be employed by 

forecasting providers as informative tools to alert the public about possible future pollen 

concentrations, even with hourly resolution. For example, Swiss Federal Office of 

Climatology and Meteorology MeteoSwiss offers both the aforementioned user-oriented 

pollen calendar, and hourly three-day pollen forecasts calculated using COSMO-ART model. 

Similarly, Austrian website www.pollenwarndienst.at allows to choose among various pollen 

forecasts elaborated by the Medical University of Vienna: phenological calendars indicating 

the starting date of the pollen season, three-day forecasts in the form of daily pollen 

concentration maps or daily pollen loads estimated by COSMO-ART, and daily forecasts 

with hourly resolution created with SILAM. Some of these forecasts are also available for 

other European countries at the website www.polleninfo.org. Furthermore, the ensemble 

model embedded in the CAMS website offers a 5-day global pollen forecasting and a 3-day 

forecasting on a European scale (Sofiev et al., 2020, 2017). CAMS also provides 3-day pollen 

forecasts to several apps designed for pollen allergic patients, such as BreezoMeter and 

MeteoPollen (Tab. 4) (Bousquet et al., 2019). The app PASYFO recently developed for 

Lithuania and Latvia by The Copernicus Project combines SILAM model and CAMS 

forecasts (Sofiev et al., 2020), while the Austrian app Pollen relies on the SILAM model for 

daily forecasts (Kmenta et al., 2014), achieving hit rates of 60% on the predicted pollen loads 

(Bastl et al., 2017b). 

These examples, listed in Table 4, are excellences in their field. In fact, many pollen 

forecasting sources do not specify the method applied, nor they are associated to scientific 

publications or official institutions. This makes it difficult to evaluate their factual utility to 

allergic patients. In fact, pollen information disseminated by private or unofficial entities 

might be subject to conflict of interest or affected by poor data quality (Bastl et al., 2017a, 

2017b). Health-related mobile apps in particular often lack of clinical evidence and validation 

(Matricardi et al., 2020a), and their pollen forecasts tend to have low performance and to be 

discontinuous, especially when they are published by private companies (Bastl et al., 2017b). 

Deliberate inaccuracy in pollen forecasting leads to avoidable under- and overestimations of 

the allergenic risk, because the public is not aware of the forecast performance, resulting in 

what can be considered a physical injury of the allergic subjects (Bastl et al., 2017a; 

Bousquet et al., 2019). 

Another problem when evaluating the utility of pollen forecasting for allergic patients is the 

subjectivity of the symptoms, that partly depends on the personal exposure to the allergen. 

This problem has been addressed with the development of interactive symptom diaries, that 

allow to produce individual, user-specific symptom forecasting using CI to model the 

relationship between recorded symptoms, associated pollen counts, and concurrent 

environmental parameters (Bastl et al., 2014; Kmenta et al., 2014; Voukantsis et al., 2013). A 

continuous personal monitoring of allergic symptoms and pollen exposure could be the key to 

improve pollen forecasting in a way that is useful to allergy sufferers, and that can also help 

health workers to foresee pollen allergy outbreaks and emergency room accesses (Bastl et al., 

2014; Pfaar et al., 2017). For this reason, many apps providing pollen information have also 

integrated a symptom monitoring and forecasting service (Tab. 4) (Kmenta et al., 2016, 2014; 

Sofiev et al., 2020). It is however important to investigate whether the knowledge of pollen 

forecasts can have the psychological effect of anticipating pollen symptoms (Pfaar et al., 

2017). Moreover, it is challenging to evaluate the real benefits provided by mobile apps to 

allergy sufferers, especially because of their discontinuous engagement with the app and the 

impossibility to detect subjective biases in their perception of the symptoms (Bousquet et al., 

2019). 
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Table 4 Description of mobile applications and websites cited in literature, that provide 

pollen forecasting to the public specifying the forecasting method applied.



 

 

8. Conclusions 

Pollen forecasting is an active research ground that conjugates aerobiology, engineering, 

physics, and informatics to approximate the complex phenomena of pollen emission and 

dispersion. To date, many approaches and models are available to forecast future pollen 

concentrations and the risk they pose to pollen allergic subjects. Observation-based models 

are the first type of pollen forecasting developed, based on past pollen concentrations and 

phenological observations (Fig. S1A). They are still employed to provide accurate pollen 

calendars and pollen season starting dates, allowing allergic subjects to plan in advance their 

movements and medications. On the other hand, the information is local, averaged, and 

expressed as weekly or daily values (Scheifinger et al., 2013). In the last two decades there 

has been a great effort to model the complex relationships between plants and the 

environment, that influence pollen emission and dispersal (Fig. S1B, C). This approach, 

called process-based, allows to simulate future pollen dynamics, given the initial conditions 

of the system. On a direct comparison, process-based models have more potential than the 

observation-based ones, and some of them can even weight in the effect of LDD events. 

Nonetheless, their use may be hindered by the computational effort and the amount of data 

they require (Ranzi et al., 2003). In fact, they need detailed information on geographical and 

meteorological features of the study area, and a deep knowledge of plant phenology and 

distribution (Norris-Hill, 1995; Šikoparija et al., 2018; Skjøth et al., 2010). This problem 

could be partially solved by preparing local or global allergenic plant inventories (Skjøth et 

al., 2010; Sofiev et al., 2006). Another major issue of process-based models is the uncertainty 

associated with pollen emission modelling, due to both a lack of knowledge about the process 

and the unpredictability of future climate scenarios (Migliavacca et al., 2012). 

A common problem to all these forecasting approaches is that the airborne pollen data they 

elaborate are temporally and spatially scattered, and they do not accurately reflect individual 

exposure. Furthermore, since pollen sampling and counting methods may vary between 

different monitoring stations (Buters et al., 2018), real and forecasted pollen concentrations 

calculated in different areas might not be comparable. Comparability issues also arise from 

the long data collection and the massive computational effort these models require, that 

discourage the comparison between different models on the same dataset. 

Because of all these issues, high forecasting accuracy is difficult to achieve. Complex 

dispersal models are not run routinely for many pollen types and locations yet, and their 

application is often limited to scientific research purposes. Process-based dispersion models 

like SILAM, COSMO-ART, and the CAMS ensemble, are being used by forecasting 

websites and mobile apps to inform the public on the allergenic risk, often with hourly 

resolution (Bousquet et al., 2019; Sofiev et al., 2020). Nonetheless, the usefulness of these 

instruments to pollen allergic subjects is still uncertain. On one hand, pollen information 

consumption is perceived as important and beneficial by allergic patients, because Electronic 

Health can help them self-manage their disease and reduce the symptom severity, a crucial 

issue especially for those living in rural or remote areas (Kmenta et al., 2016; Matricardi et 

al., 2020b; Sofiev et al., 2020). On the other hand, forecasting pollen levels in remote and 

underpopulated areas, where no pollen monitoring is in place, is still problematic (Hall et al., 

2020; Oteros et al., 2019; Sofiev et al., 2020; Wakamiya et al., 2019). Furthermore, it is 

difficult to evaluate the reliability of the pollen forecast provided by many apps and websites, 

since they do not indicate their sources, their data are not be scientifically validated, and they 

tend to have temporal gaps (Bastl et al., 2017b). If the allergic subject relies on these 



 

instruments for his wellbeing, unaware of their probabilistic nature, unreliable pollen  

forecasting might be even detrimental to his health (Bastl et al., 2017a). 

To enhance the value of pollen forecasting, more epidemiological studies correlating allergic 

symptoms and pollen concentrations are needed, because the severity of the allergic reaction 

also depends on other factors (Bastl et al., 2018a; Caillaud et al., 2014; De Weger et al., 

2013; Sofiev et al., 2020). These studies need to be performed on a global scale, since 

pollination varies with plant abundance and microclimate, resulting in regionally differences 

in pollen emission that could affect both the pollen forecasting models and the individual 

exposure (Bastl et al., 2017b; Reid and Gamble, 2009). For these reasons, a portfolio of 

quality criteria for pollen monitoring and forecasting was recently suggested in the interest 

and for the protection of people affected by a pollen allergy (Bastl et al., 2017a). 
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