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A SMALL CLOSED CONVEX PROJECTIVE

4-MANIFOLD VIA DEHN FILLING

GYE-SEON LEE, LUDOVIC MARQUIS, AND STEFANO RIOLO

ABSTRACT. In order to obtain a closed orientable convex projective four-manifold with
small positive Euler characteristic, we build an explicit example of convex projective Dehn
filling of a cusped hyperbolic four-manifold through a continuous path of projective cone-
manifolds.

1. INTRODUCTION

Convex projective manifolds form an interesting class of aspherical manifolds, includ-
ing complete hyperbolic manifolds. We refer to [Ben08, Mar14, CLM18] and [Mar18] for
surveys on convex projective manifolds and hyperbolic 4-manifolds, respectively. This
class of geometric manifolds has been studied notably in the context of deformations of
geometric structures on manifolds or orbifolds (see the survey [CLM18] and the refer-
ences therein), or for its link to dynamical systems through the notion of Anosov repre-
sentation [Ben04, DGK18, DGK17] (see [Lab06, GW12] for the notion of Anosov repre-
sentation).

A convex projective n-manifold is the quotient Ω/Γ of a properly convex1 domain Ω in
the real projective space RP

n by a subgroup Γ of the projective linear group PGLn+1R

acting freely and properly discontinuously on Ω. A convex projective n-orbifold is defined
similarly without requiring the action of Γ to be free. If Ω is endowed with its Hilbert
metric, then Γ acts on Ω by isometry, and the manifold (or orbifold) Ω/Γ inherits a com-
plete Finsler metric (see [Ver05] for an introduction to Hilbert geometry). In the case that
Ω is an open ellipsoid, it is isometric to the hyperbolic space H

n,2 and the quotient Ω/Γ
is a complete hyperbolic manifold (or orbifold). A complete hyperbolic manifold is cusped
if it is non-compact and of finite volume. A convex projective (resp. complete hyperbolic)
structure on a manifold M is a diffeomorphism between M and a convex projective (resp.
hyperbolic) manifold Ω/Γ.

The goal of this paper is to prove the following:

Theorem A. There exists a closed orientable convex projective 4-manifold X containing
10 disjoint totally geodesic 2-tori Σ= T1 ⊔ . . .⊔T10 ⊂ X such that:

2010 Mathematics Subject Classification. 22E40, 53A20, 53C15, 57M50, 57N16, 57S30.
Key words and phrases. Real projective structure, Hyperbolic 4-manifold, Dehn filling, Euler character-

istic, Cone-manifold, Hilbert geometry.
1A subset Ω of RPn is properly convex if its closure Ω is contained and convex in some affine chart.
2This is in fact the projective model of the hyperbolic space, also known as the Beltrami–Cayley–Klein

model.
1
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(1) The complement M = X àΣ admits a complete finite-volume hyperbolic structure.
(2) The Euler characteristic of X (and of M) is 12.
(3) The hyperbolic manifold M has a maximal cusp section in which each filling curve

has length 6.
(4) The fundamental group π1X is relatively hyperbolic with respect to the collection

of rank-2 abelian subgroups {π1Ti, π1T ′
i}i, where {T ′

1, . . . ,T ′
10} is another collection

of disjoint, totally geodesic, 2-tori such that each Ti is transverse to each T ′
j.

(5) The hyperbolic structure σ0 on M and the convex projective structure σ2π on X
arise as limits of an analytic path θ 7→σθ of projective cone-manifold structures on
X , singular along Σ with cone angle θ ∈ (0,2π).

(6) For each integer m Ê 1, the structure σ2π/m is the underlying cone-manifold struc-
ture of a convex projective orbifold Ωm/Γm . For m Ê 2, the group Γm is relatively
hyperbolic with respect to the collection of rank-2 abelian subgroups {π1Ti}i.

We refer the reader to Remark 2.2 for the meaning of totally geodesic submanifold in
the real projective setting and to Section 2.5 for the definition and some facts on relative
hyperbolicity.

Note that the manifold X does not admit a hyperbolic structure because π1X contains
Z

2 (the tori Ti and T ′
i are indeed π1-injective). The hyperbolic manifold M has 10 cusps,

each with section a 3-torus. A filling curve is a closed geodesic in a cusp section of M
(with respect to the induced flat metric) that bounds a disc in X .

Cone-manifolds and Dehn filling. Projective cone-manifolds are singular projective
manifolds generalising the more familiar hyperbolic cone-manifolds (see Definition 2.1).
The convex projective 4-manifold X of Theorem A is obtained from the cusped hyperbolic
4-manifold M by “projective Dehn filling”. This is in analogy with Thurston’s hyperbolic
Dehn filling [Thu79], where θ 7→ σθ is a path of hyperbolic cone-manifold structures on
a 3-manifold X , singular along a link Σ ⊂ X . In both (hyperbolic and projective) cases,
as the cone angle θ approaches 2π, the projective cone-manifold structure becomes non-
singular, and we get a convex projective structure on X . On the other extreme of the
path, as θ tends to 0, the singular locus Σ is drilled away, giving rise to the cusps of the
hyperbolic manifold M.

The projective cone-manifold structures σθ of Theorem A are singular along the tori
Σ, and induce (non-singular) projective structures3 on both M = X àΣ and Σ. The path
θ 7→ σθ is analytic, meaning that for each θ ∈ (0,2π), it is possible to choose a holonomy
representation ρθ ∈ Hom(π1M,PGL5R) of the projective structure σθ|M so that the func-
tion θ 7→ ρθ(γ) is analytic for all γ ∈ π1M. Each torus Ti ⊂ Σ has a meridian γi ∈ π1M
whose holonomy ρθ(γi) ∈ PGL5R is conjugate to a (projective) rotation of angle θ. In ad-
dition, the sequence of representations {ρ2π/m}m converges algebraically to ρ0 as m →∞,
and the sequence of convex sets {Ωm}m converges to H4 ⊂RP

4 in the Hausdorff topology.4

3A (real) projective structure on an n-manifold is a (PGLn+1R,RPn)-structure.
4These additional facts can be proved as in [CLM20, §12].
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New features of the result. Theorem A is shown by an explicit construction. Since the
convex projective manifold X has non-zero Euler characteristic, it is indecomposable5

(see Fact 2.15). It seems that, at the time of writing this paper, the literature misses
concrete examples of closed indecomposable convex projective n-manifolds, n Ê 4, which
do not admit a hyperbolic structure. For the moment, we know only two techniques to
obtain such manifolds:

(1) torsion-free subgroups of some discrete projective reflection groups using Vin-
berg’s theory [Vin71], as shown by Benoist [Ben06a, Ben06b] and Choi and the
first two authors [CLM20, CLM];

(2) some Gromov–Thurston manifolds, as shown by Kapovich [Kap07].

In contrast with Theorem A, the Selberg lemma has an important role to guarantee the
existence of such manifolds in all these cases. In particular, very little is known about
the topology of closed convex projective manifolds. Note that the techniques involved in
the construction of our X are in the spirit of (1) rather than (2).

Remark 1.1. There is a clear distinction between the manifolds constructed in [Ben06b,
Kap07] and the ones in [Ben06a, CLM20, CLM], including our X : the fundamental
groups of the former are Gromov-hyperbolic, but those of the latter are not.

The Euler characteristic of a closed even-dimensional manifold can be seen as a rough
measure of its topological complexity. Note that a well-known conjecture states that
closed aspherical 4-manifolds have Euler characteristic χ Ê 0, and this is certainly true
in the hyperbolic case by the Gauß–Bonnet theorem. Our manifold X has χ(X )= 12, and
appears to be the closed orientable indecomposable convex projective 4-manifold with
the smallest known Euler characteristic (to the best of our knowledge). In the hyperbolic
case, the smallest known value of χ is 16 [CM05, Lon08].6

Theorem A is an effective version, in dimension four, of a result by Choi and the first
two authors [CLM20, Theorem B]. Let us first recall their construction, called “convex
projective generalised Dehn filling”. They build a sequence of discrete projective reflec-
tion groups {Γm}mÊm0 of PGLn+1R, each acting cocompactly on a properly convex domain
Ωm ⊂RP

n of dimension n = 4,5 or 6, whose limit as m→∞ is a discrete hyperbolic reflec-
tion group Γ∞ < Isom(Hn) of finite covolume. A fundamental domain of the group Γm is
a compact Coxeter polytope Pm in Ωm whose combinatorics does not depend on m. The
hyperbolic Coxeter polytope P∞, instead, is combinatorially obtained from Pm by substi-
tuting a ridge with an ideal vertex. In other words, the cusp of the hyperbolic orbifold
H

n/Γ∞ is “projectively filled”. By applying a refined version of Selberg’s lemma to Γ∞, they
get a statement similar to Theorem A.(6). The difference is that X =Ωm0 /Γ′

m0
is “only” an

orbifold (where Γ′
m0

is a finite-index subgroup of Γm0). To promote X to a manifold, one

5A properly convex domain Ω of RPn is indecomposable if it is not a convex hull of lower-dimensional
domains. A convex projective manifold or orbifold Ω/Γ is indecomposable if Ω is indecomposable.

6Similarly to the orientable hyperbolic 4-manifolds that one gets from [CM05, Lon08], our manifold X is
built as the orientable double cover of a non-orientable convex projective manifold. So the smallest known
value of χ for a closed indecomposable convex projective (resp. hyperbolic) 4-manifold is currently 6 (resp.
8).
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should then apply again the Selberg lemma, this time to Γ′
m0

. Thus, our improvement is
two-fold: we found an X with small Euler characteristic, and a continuous (rather than
discrete) family of cone-manifolds.

Another interesting feature of X is the relative hyperbolicity of π1X . Indeed, Gro-
mov and Thurston [BH96, And06]7 have shown that the fundamental group of a Dehn
filling of a hyperbolic manifold with torus cusps is relatively hyperbolic with respect to
the subgroups associated to the inserted tori, provided that the filling curves are longer
than 2π.8 The fundamental group of X is not relatively hyperbolic with respect to the
subgroups associated to the inserted tori by Theorem A.(4) (see Section 2.5).9 There is
no contradiction between the Gromov–Thurston 2π theorem and Theorem A.(3) because
2π> 6.

Divisible convex domains. Recall that a properly convex domain Ω of RP
n is divisi-

ble (by Γ) if there exists a discrete subgroup Γ of PGLn+1R acting cocompactly on Ω. A
theorem of Benoist [Ben04] implies that the indecomposable divisible convex domains
Ωm ⊂ RP

4 of Theorem A.(6) are not strictly convex10 because the groups Γm of Theorem
A.(6) are not Gromov-hyperbolic.

There are very few currently known constructions of inhomogeneous indecomposable
divisible non-strictly convex domains. For a complete historical account, we refer the
reader to the introduction of [CLM20]. Here we mention only its essentials.

The first construction of such domains is due to Benoist [Ben06a], and has been ex-
tended in [Mar10, BDL18, CLM]. In those constructions the compact quotient Ω/Γ is
homeomorphic to the union along the boundaries of finitely many submanifolds, each
admitting a complete finite-volume hyperbolic structure on its interior. As a result, if Ω
is of dimension n, then Γ is relatively hyperbolic with respect to a collection of virtually
abelian subgroups of rank n−1.

In [CLM20], a different construction of inhomogeneous indecomposable divisible non-
strictly convex domains is given by convex projective generalised Dehn filling. In contrast
with the previous examples, these are relatively hyperbolic with respect to a collection
of virtually abelian subgroups of rank n−2. The divisible (by Γm) domains Ωm ⊂ RP

4 of
Theorem A.(6) are new examples of this kind.

We point out that at the time of writing there is no example of inhomogeneous inde-
composable divisible non-strictly convex domain of dimension n, for any n Ê 9.

7A proof of the Gromov–Thurston 2π theorem was given by Bleiler and Hodgson [BH96] in the context
of 3-manifolds, and the same proof holds in any dimension, as explained in [And06, Section 2.1].

8See also [Osi07, GM08, FM10] for the geometric group theoretic generalisation of that statement.
9It is relatively hyperbolic with respect to a larger family of abelian groups.
10A subset Ω of RP

n is strictly convex if it is properly convex and its boundary does not contain any
non-trivial projective line segment.
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We stress that such domains, to all appearances, are linked to the geometrisation
problem, i.e. putting a (G, X )-structure on a manifold. So far, almost all manifolds ge-
ometrised through this process are either obtained by gluing cusped hyperbolic mani-
folds, or by Dehn filling of a cusped hyperbolic manifold. Here, the goal is to do so with
a small manifold and using cone-manifolds. It is especially important that we do not use
Selberg’s lemma.

Dehn fillings of hyperbolic manifolds. Let us say that a closed manifold X is a fill-
ing of a manifold M if there exists a codimension-2 submanifold Σ ⊂ X such that the
complement X àΣ is diffeomorphic to M. Note that the manifold M is diffeomorphic to
the interior of a compact manifold M whose boundary ∂M fibres in circles over Σ. Given
M as above, we obtain a filling by attaching to M the total space of a D2-bundle E → Σ

through a diffeomorphism ∂M → ∂E. This operation is commonly called a Dehn filling of
M. Any cusped hyperbolic manifold M has a finite covering M′ with torus cusps (see e.g.
[MRS13, Theorem 3.1]). In other words, ∂M′ consists of (n−1)-tori. The manifold M′ has
typically infinitely many fillings up to diffeomorphism.

Thurston’s hyperbolic Dehn filling theorem states that every filling of a cusped hyper-
bolic 3-manifold with torus cusps, except for finitely many fillings on each cusp, admits a
hyperbolic structure. In dimension n Ê 4, except for finitely many fillings on each cusp,
the fundamental group of a filling of a cusped hyperbolic n-manifold is relatively hyper-
bolic with respect to a collection of subgroups virtually isomorphic to Z

n−2, by [Osi07,
Theorem 1.1]. Since n Ê 4, those groups contains Z

2 and so those fillings do not admit
any hyperbolic structure. The geometry of the remaining fillings is rather unpredictable,
but it is expected that they also do not carry a hyperbolic structure. But, Theorem A.(1)
and [CLM20, Theorem B] show that some fillings of some cusped hyperbolic n-manifolds
admit a convex projective structure. This leads to the following:

Question 1.2. Which filling of a cusped hyperbolic manifold of dimension n Ê 4 (with
torus cusps) admits a convex projective structure?

It is worth mentioning that almost all fillings of any cusped hyperbolic manifold with
torus cusps admit a complete Riemannian metric of non-positive sectional curvature by
the Gromov–Thurston 2π theorem [BH96, And06], and an Einstein metric of negative
scalar curvature by work of Anderson [And06] and Bamler [Bam12]. Both, in some
sense, extend Thurston’s 3-dimensional theorem to higher dimension (compare also with
[Sch89, FM10, FM11]). But those theorems cannot be applied to the manifold X of Theo-
rem A, since the filling curves are too short.

Let us also note that there is an opportune version of hyperbolic Dehn filling in di-
mension 4: one can sometimes fill some cusps of a hyperbolic 4-manifold and get another
cusped hyperbolic 4-manifold, at the expense of drilling some totally geodesic surfaces
[MR18, LMRY].

Projective flexibility. Thurston’s hyperbolic Dehn filling theorem essentially relies on
the flexibility of the complete hyperbolic structure of cusped hyperbolic 3-manifolds. The
local rigidity theorem of Garland and Raghunathan [GR70] (see also [BG04]), on the
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other hand, says that the holonomy representation ρ of any cusped hyperbolic manifold
M of dimension n Ê 4 has a neighbourhood in Hom(π1M,Isom(Hn)) consisting of conju-
gates of ρ. Now, Theorem A.(5) shows that the hyperbolic structure σ0 on the 4-manifold
M is projectively flexible, i.e. the conjugacy class of the holonomy representation ρ0 of σ0

[ρ0] ∈Hom(π1M,PGL5R)
/

PGL5R

is not an isolated point. To avoid confusion with the terminology, we mention that in this
definition of flexibility there is no restriction on the holonomy of the peripheral subgroups
of π1M. For instance, all cusped hyperbolic 3-manifolds are projectively flexible by the
hyperbolic Dehn filling theorem. It is thus natural to ask the following question, which
is a priori different from Question 1.2.

Question 1.3. Which cusped hyperbolic 4-manifold is projectively flexible? Is every cusped
hyperbolic 4-manifold finitely covered by a projectively flexible one?11

We note that some cusped hyperbolic 4-orbifolds, for example the Coxeter pyramid
[6,3,3,3,∞], are not projectively flexible [Vin71, Proposition 20].

6 ∞

FIGURE 1. The Coxeter diagram of the pyramid [6,3,3,3,∞] (see Section 2.3 for the
basic terminology on Coxeter groups). The associated cusped hyperbolic 4-orbifold is pro-
jectively rigid.

On the proof. As already said, the proof of Theorem A is constructive. We begin with
the ideal hyperbolic rectified 4-simplex R ⊂H

4, which is a Coxeter polytope. By applying
the techniques introduced in [CLM20], we perform a “convex projective generalised Dehn
filling” to R: the hyperbolic structure on the orbifold R is deformed to projective struc-
tures which extend to structures of “mirror polytope” (see Section 2.2) on the bitruncated
4-simplex Q (see Section 2.6). Note that Q minus some ridges is stratum-preserving
homeomorphic to R. This will be translated into the fact that X minus some tori is
homeomorphic to M.

We build the hyperbolic manifold M as an orbifold covering of R, by exploiting a con-
struction by Kolpakov and Slavich [KS16]. By lifting the deformation from R to M, we
get the path θ 7→ σθ. The manifold X covers a Coxeter orbifold based on the bitruncated
4-simplex Q.

Since there exist cusped orientable hyperbolic 4-manifolds M0 tessellated by copies of
R with χ(M0) < 12 [KS16, Sla17, RS19, KRR20], one could wonder why not to build a
smaller convex projective manifold X by Dehn filling such an M0. A first obstruction is
topological: a cusp section of those M0 does not always fibre in circles. Even when all cusp
sections of such an M0 do fibre in circles, M0 does not cover R but covers the quotient of

11Similar considerations were done by Cooper, Long and Thistlethwaite [CLT07] for closed hyperbolic
3-manifolds.
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R by its symmetry group. The latter is the Coxeter pyramid [6,3,3,3,∞] [RS19, Lemma
2.2], which is projectively rigid, so our technique does not apply in these cases.

Structure of the paper. In Section 2 we introduce some basic concepts of projective
cone-manifolds, mirror polytopes and the truncation process of the 4-simplex, and in
Section 3 we prove Theorem A.
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2. PRELIMINARIES

In this section we introduce some preliminary notions and fix some notation.

2.1. Projective cone-manifolds. Riemannian (G, X ) cone-manifolds were introduced
by Thurston [Thu98] (see also [McM17]). If the geometry (G, X ) locally embeds in real
projective geometry (PGLn+1R,RPn) (such as the constant-curvature geometries), a (G, X )
cone-manifold can be thought as a projective cone-manifold. Hyperbolic cone-manifolds of
dimension 3 appear in the proofs of Thurston’s hyperbolic Dehn filling theorem [Thu79]
(see also [Mar16, Chapter 15]) and of the orbifold theorem [CHK00, BLP05]. Projective
cone-manifolds were introduced by Danciger [Dan11, Dan13] in the context of geomet-
ric transition from hyperbolic to Anti-de Sitter 3-dimensional structures. Quite recently,
some higher-dimensional cone-manifolds are used, in particular, in dimension 4: for hy-
perbolic Dehn filling or degeneration [MR18, LMRY], and in the projective context of
AdS-hyperbolic transition [RS].

We now define projective cone-manifolds “with cone angles along link singularities”.
Our definition is in the spirit of Barbot–Bonsante–Schlenker [BBS11].

Let S
n =

(
R

n+1 à {0}
)
/R>0 be the projective sphere and Ŝ : Rn+1 à {0} →S

n the canonical
projection. For every subset U of Rn+1, let S(U) denote Ŝ(U à {0}). With a little abuse of
notation, we embed the projective spheres S

n−2 and S
1 into S

n, n Ê 2, as follows:

S
n−2 =S({(x1, . . . , xn−1,0,0)})⊂S

n and S
1 =S({(0, . . .,0, xn, xn+1)})⊂S

n.
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Given an open subset U ⊂S
1, we define

S
n−2 ∗U =

⋃

p∈Sn−2

⋃

q∈U
[p,−p]q ⊂ S

n,

where [p,−p]q ⊂S
n denotes the half circle containing q with endpoints p and its antipode

−p. For example, Sn−2 ∗S
1 =S

n.

A projective circle is a closed connected (SL2R,S1)-manifold. Let C be a projective circle.
We may think of C as

C =
( ∐

α∈A
Uα

)/
∼

for a collection {Uα}α∈A of open subsets of S1, a collection {Uαβ}α,β∈A of open subsets Uαβ ⊂
Uα, a collection {gαβ}α,β∈A of diffeomorphisms gαβ : Uαβ →Uβα which are restrictions of
elements of SL2R, and the relation x ∼ gαβ(x) for all x ∈Uαβ.

We now add the extra requirement that C = Cθ is an elliptic circle, i.e. that the
holonomy representation ρ of Cθ sends a generator γ of π1Cθ to an elliptic element
ρ(γ) ∈ SL2R. Passing to the universal covering S̃1 of S

1 and the covering group �SL2R

of SL2R which acts on S̃1, we lift ρ to a representation ρ̃ : π1Cθ → �SL2R. To the element
ρ̃(γ) ∈ �SL2R is naturally associated a unique real number θ > 0 which characterises the
elliptic circle Cθ. Note that ρ(γ) is conjugate to

(
cosθ −sinθ
sinθ cosθ

)
(see [Gol18, Section 5.4]).

By extending gαβ ∈ SL2R to ĝαβ =
(

Id 0
0 gαβ

)
∈ SLn+1R (thus fixing S

n−2 ⊂ S
n pointwise),

we can define

S
n−2 ∗Cθ =

( ∐

α∈A
S

n−2 ∗Uα

)/
∼

with the relation x∼ ĝαβ(x) for all x ∈S
n−2 ∗Uαβ.

This space will be the local model for our cone-manifolds. By canonically embedding
S

n−2 and Cθ into S
n−2∗Cθ, we have that the couple (Sn−2∗Cθ,Sn−2) is homeomorphic to

(Sn,Sn−2). Moreover, the sphere S
n−2 ∗Cθ is stratified in two projective manifolds:

• the singular locus S
n−2, and

• the regular locus (Sn−2 ∗Cθ)àS
n−2.

The holonomy of a meridian12 of the singular locus in the regular locus is the holonomy
of a generator of π1Cθ.

Definition 2.1. Let X be an n-manifold and Σ ⊂ X a codimension-2 submanifold. A
projective cone-manifold structure on X , singular along Σ with cone angles, is an atlas
for X whose each chart has values into some S

n−2 ∗Cθ and sends the points of Σ to the
singular locus S

n−2, and whose transition functions restrict to isomorphisms of projective
manifolds on each stratum.

12Let N be a manifold and S ⊂ N a connected submanifold of codimension 2. We call meridian of S an
element γ ∈ π1(N àS) that is represented by a curve which is freely homotopic in N àS to the boundary of
a fibre of a tubular neighbourhood of S in N.
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The regular locus of the cone-manifold X is the complement X àΣ, while Σ is the sin-
gular locus. Both are (non-singular) projective manifolds. To each connected component
Σi of Σ is associated a cone angle θi > 0.

Remark 2.2. A projective cone-manifold X with all cone angles θ = 2π is simply a projec-
tive manifold with a totally geodesic codimension-2 submanifold Σ⊂ X . Here, by totally
geodesic, we mean that the preimage of Σ under the universal covering of X is locally
mapped to codimension-2 projective subspaces of Sn. If moreover X is a convex projec-
tive (and so Finsler) manifold, then Σ is totally geodesic in the usual sense.

2.2. Mirror polytopes. We now introduce the main objects for our proof of Theorem
A: mirror polytopes. Roughly speaking, a mirror polytope is a polytope in the projective
sphere, together with a choice of a projective reflection along each of the supporting hy-
perplanes of the facets (satisfying some extra conditions). We refer to [CLM20, Vin71] for
further details.

A subset P of Sn is convex if there exists a convex cone13 U of Rn+1 such that P =S(U),
and moreover a convex subset P is properly convex if its closure P does not contain a pair
of antipodal points. A projective n-polytope is a properly convex subset P of Sn such that
P has a non-empty interior and

P =
N⋂

i=1
S({v ∈R

n+1 |αi(v)É 0})

where αi, i = 1, . . ., N, are linear forms on R
n+1. We always assume that the set of linear

forms is minimal, i.e. none of the half-spaces S({v ∈ R
n+1 | αi(v) É 0}) contains the inter-

section of all the others, hence the polytope P has N facets. A facet (resp. ridge) of a
polytope is a face of codimension 1 (resp. 2).

A projective reflection is an element of SL±
n+1R of order 2 which is the identity on a

projective hyperplane. Each projective reflection σ can be written as:

σ= Id−α⊗b, in other words σ(v)= v−α(v)b ∀v ∈R
n+1,

where α is a linear form on R
n+1 and b is a vector in R

n+1 such that α(b) = 2. The
projective hyperplane S(ker(α)) is called the support of σ. A projective rotation is an
element of SLn+1R which is the identity on a subspace H ⊂ R

n+1 of codimension 2 and
whose induced linear map from R

n+1/H to itself is conjugate to a matrix
(

cosθ −sinθ
sinθ cosθ

)
with

0< θ < 2π. The real number θ is called the angle of rotation.

Definition 2.3. A mirror polytope is a pair consisting of a projective polytope P of Sn and
a finite collection of projective reflections {σs = Id−αs ⊗bs}s∈S with αs(bs)= 2 such that:

• The index set S consists of all the facets of P.
• For each facet s ∈ S, the support of σs is the supporting hyperplane of s.
• For every pair of distinct facets s, t of P, αs(bt) and αt(bs) are either both negative

or both zero.

13By a cone, we mean a subset of Rn+1 which is invariant under multiplication by positive scalars.
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Remark 2.4. The third item of Definition 2.3 may seem a bit awkward at first glance. In
fact, [Vin71, Proposition 6] shows that the third item holds when the group Γ generated
by {σs}s∈S satisfies the condition:

γInt(P)∩ Int(P)=∅, ∀γ ∈ Γà {Id},

where Int(P) denotes the interior of P.

Note that the reflections σs of P determine the couples {(αs, bs)}s∈S up to αs 7→λsαs and
bs 7→λ−1

s bs for λs > 0, because P is defined by αi É 0. Moreover, αs(bt)αt(bs) = 4cos2θ for
some θ ∈ (0,π/2] if and only if the product σsσt is a rotation of angle 2θ. The dihedral angle
of a ridge s∩ t of a mirror polytope is θ if σsσt is a rotation of angle 2θ, and 0 otherwise.
A Coxeter polytope is a mirror polytope whose dihedral angles are submultiples of π, i.e.
each dihedral angle is π/m for some integer mÊ 2 or m=∞.

For any number N ∈ N, we set [[N]] := {1, . . ., N}. An N × N matrix A = (A i j)i, j∈[[N]] is
Cartan if (i) A ii = 2 for all i ∈ [[N]], (ii) A i j É 0, for all i 6= j, and (iii) A i j = 0⇔ A ji = 0, for
all i 6= j. A Cartan matrix A is irreducible if it is not the direct sum of smaller matrices
(after any reordering of the indices). Every Cartan matrix A is obviously the direct sum of
irreducible Cartan matrices A′

1 ⊕·· ·⊕ A′
k. Each irreducible Cartan matrix A′

i, i = 1, . . . , k,
is called a component of A. If x = (x1, . . . , xN) and y = (y1, . . . , yN ) ∈ R

N , we write x > y if
xi > yi for all i ∈ [[N]], and x Ê y if xi Ê yi for all i ∈ [[N]].

Proposition 2.5 (Vinberg [Vin71, Theorem 3]). If A is an irreducible Cartan matrix of
size N ×N, then exactly one of the following holds:

((P)) (i) The matrix A is nonsingular, and (ii) for every x ∈ R
N , if Ax Ê 0, then x > 0 or

x = 0.
((Z)) (i) The rank of A is N − 1, (ii) there exists a vector y ∈ R

N such that y > 0 and
Ay= 0, and (iii) for every x ∈R

N , if Ax Ê 0, then Ax = 0.
((N)) (i) There exists a vector y ∈R

N such that y> 0 and Ay< 0, and (ii) for every x ∈R
N ,

if AxÊ 0 and xÊ 0, then x= 0.

We say that A is of positive, zero or negative type if ((P)), ((Z)) or ((N)) holds, respectively.

A Cartan matrix A is of positive (resp. zero) type if every component of A is of pos-
itive (resp. zero) type. The Cartan matrix of a mirror polytope P is the matrix AP =
(αs(bt))s,t∈S. Note that the Cartan matrix of P is well-defined up to conjugation by a pos-
itive diagonal matrix because the reflections σs of P determine the couples {(αs, bs)}s∈S

up to αs 7→ λsαs and bs 7→ λ−1
s bs for λs > 0. Two Cartan matrices A and B are equivalent

if A = DBD−1 for some positive diagonal matrix D. We will make essential use of the
following:

Theorem 2.6. [Vin71, Corollary 1] Let A be a Cartan matrix of size N × N. If A is
irreducible, of negative type and of rank n+1, then there exists a mirror polytope P of Sn

with N facets (unique up to the action of SL±
n+1R) such that AP = A.

Remark 2.7. Theorem 2.6 is not explicitly stated in [Vin71, Corollary 1] for non-Coxeter
polytopes, but it follows from Propositions 13 and 15 of [Vin71] that the consequent Corol-
lary 1 of [Vin71] is valid not only for Coxeter polytopes, but also for mirror polytopes.
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To understand the combinatorics14 of a mirror polytope P with facets {s}s∈S, we intro-
duce the poset σ(P) ⊂ 2S partially ordered by inclusion, which is dual15 to the face poset
of P:

σ(P) := {T ⊂ S | T =σ( f ) for some face f of P},

where σ( f ) := {s ∈ S | f ⊂ s}. For any subset T ⊂ S, we denote by AT the restriction of the
Cartan matrix AP of P to T ×T.

Theorem 2.8. [Vin71, Theorems 4 and 7] Let P be a mirror n-polytope with facets {s}s∈S

and with irreducible Cartan matrix AP of negative type. Let T be a proper subset of S (i.e.
T 6=∅,S). Then:

(1) If AT is of positive type and ♯T = k, then T ∈σ(P) and its corresponding face ∩s∈T s
is of dimension n−k.

(2) If AT is of zero type and of rank n− 1, then T ∈ σ(P) and the face ∩s∈T s is of
dimension 0, i.e. a vertex of P.

Remark 2.9. Theorem 2.8 is not explicitly stated in [Vin71, Theorems 4 and 7], but it is
obtained by applying [Vin71, Theorem 4] as in the proof of [Vin71, Theorem 7].

Remark 2.10. Theorem 2.8.(1) tells us that for any mirror polytope P with facets {s}s∈S

and reflections {σs = Id−αs⊗bs}s∈S, if αs(bt)αt(bs)< 4, then the intersection s∩ t is a face
of codimension 2, i.e. a ridge of P.

2.3. Coxeter groups. A Coxeter matrix M = (Mst)s,t∈S on a finite set S is a symmetric
matrix with the entries Mst ∈ {1,2, . . ., m, . . . ,∞} such that the diagonal entries Mss = 1
and the others Mst 6= 1. To any Coxeter matrix M = (Mst)s,t∈S is associated a Coxeter
group WS,M given by a presentation 〈S | (st)Mst = 1 for Mst 6= ∞〉. We denote the Coxeter
group WS,M also simply by W ,WS or WM . The rank of WS is the cardinality ♯S of S.

The Coxeter diagram of WS,M is a labelled graph GW such that (i) the set of nodes (i.e.
vertices) of GW is the set S, (ii) two nodes s, t ∈ S are connected by an edge st of GW if and
only if Mst ∈ {3, . . ., m, . . . ,∞}, and (iii) the edge st is labelled by Mst if and only if Mst > 3.
A Coxeter group W is irreducible if the Coxeter diagram GW is connected.

An irreducible Coxeter group W is spherical (resp. affine) if it is finite (resp. infi-
nite and virtually abelian). For a Coxeter group W (not necessarily irreducible), each
connected component of the Coxeter diagram GW corresponds to a Coxeter group, called
a component of W . A Coxeter group W is spherical (resp. affine) if each component of
W is spherical (resp. affine). We sometimes refer to Appendix A for the list of all the
irreducible spherical and irreducible affine Coxeter diagrams.

For each T ⊂ S, the subgroup W ′ of W generated by T is called a standard subgroup of
W . It is well-known that W ′ identifies with the Coxeter group WT,MT , where MT is the
restriction of M to T ×T. A subset T ⊂ S is said to be “something” if the Coxeter group
WT is “something”. For example, the word “something” can be replaced by “spherical”,

14The combinatorics (or face poset) of a polytope is the poset of its faces partially ordered by inclusion.
15Two posets P1 and P2 are dual to each other provided there exists an order-reversing isomorphism

between P1 and P2.
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“affine” and so on. Two subsets T,U ⊂ S are orthogonal if Mtu = 2 for every t ∈ T and
every u ∈U . This relationship is denoted by T ⊥U .

2.4. Coxeter polytopes. Recall that a Coxeter polytope is a mirror polytope whose di-
hedral angles are submultiples of π, i.e. each dihedral angle is π/m for some integer mÊ 2
or m=∞.

Let P be a Coxeter polytope with the set of facets S and the set of reflections {σs = Id−
αs⊗bs}s∈S. The Coxeter group WP of P is the Coxeter group WS,M associated to a Coxeter
matrix M = (Mst)s,t∈S satisfying that Mst = mst if αs(bt)αt(bs) = 4cos2(π/mst) and Mst =∞
if αs(bt)αt(bs) Ê 4. For a proper face f of P (i.e. f 6=∅, P), we write σ( f ) = {s ∈ S | f ⊂ s}
and Wf :=Wσ(f ).

Theorem 2.11 (Tits [Bou81, Chapter V] for Tits simplex, and Vinberg [Vin71]).
Let P be a Coxeter polytope of S

n with Coxeter group WP and let ΓP be the subgroup of
SL±

n+1R generated by the reflections {σs}s∈S. Then:

(1) The homomorphism σ : WP →ΓP ⊂SL±
n+1R defined by σ(s)=σs is an isomorphism.

(2) The ΓP -orbit of P is a convex subset CP of S
n, and γInt(P)∩ Int(P) = ∅ for all

non-trivial γ ∈ ΓP .
(3) The group ΓP acts properly discontinuously on the interior ΩP of CP .
(4) An open proper face f of P lies in ΩP if and only if the Coxeter group Wf is spheri-

cal.

Theorem 2.11 tells us that ΩP is a convex domain of S
n, and that if ΩP is properly

convex then ΩP /ΓP is a convex projective Coxeter orbifold.

2.5. Relative hyperbolicity. Let Y be a proper Gromov-hyperbolic space (see e.g. [Hru10,
Section 2] for a quick review and [BH99, Part III.3] for details on Gromov-hyperbolic
spaces). We recall that for every isometry γ of Y , exactly one of the following holds:

(1) γ fixes a point of Y .
(2) γ fixes exactly one point of the Gromov boundary ∂Y of Y .
(3) γ fixes two points of ∂Y .

We say that γ is parabolic (resp. hyperbolic) if (2) (resp. (3)) holds. Let Γ be a subgroup
of isometries of Y that acts properly discontinuously. A subgroup of Γ is parabolic if it is
infinite and contains no hyperbolic element. A parabolic subgroup fixes a unique point
of ∂Y , called a parabolic point. The stabiliser of a parabolic point is a maximal parabolic
subgroup.

Relative hyperbolicity has many equivalent definitions, see e.g. [Hru10, Section 3]. We
recall one of them, named cusp uniform action. A group Γ is relatively hyperbolic with
respect to a collection P of subgroups if there exist a proper Gromov-hyperbolic metric
space Y and a properly discontinuous effective action of Γ on Y by isometry such that:

• the collection P is a set of representatives of the conjugacy classes of maximal
parabolic subgroups of Γ,
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• there exists a Γ-equivariant collection H of disjoint open horoballs16 centred at
the parabolic points of Γ,

• the action of Γ on Y àU is cocompact, where U denotes the union of the horoballs
in H .

For example, the fundamental group of a cusped hyperbolic n-manifold (or n-orbifold)
is relatively hyperbolic with respect to its cusp subgroups, which are virtually Z

n−1

[Bow12, Far98].

For k Ê 2, any Z
k-subgroup Λ of a relatively hyperbolic group Γ with respect to a collec-

tion P of subgroups must lie in a conjugate of a subgroup P ∈P . Indeed, the centraliser
of a hyperbolic element in a discrete subgroup of isometries of Y is virtually Z. Thus
Λ must contain a parabolic isometry δ with a unique fixed point p ∈ ∂Y , and any other
element γ ∈Λ also has to fix p since it commutes with δ. So Λ lies in the stabiliser of p.

In particular the fundamental group π1X of Theorem A, which is relatively hyperbolic
with respect to the collection P = {π1Ti, π1T ′

i}i of rank-2 abelian subgroups, is not rela-
tively hyperbolic with respect to any proper sub-collection of P .

We end this section by giving a criterion to determine when a Coxeter group is rel-
atively hyperbolic with respect to a collection of standard subgroups. We will use this
criterion in Section 3.2.

Theorem 2.12 (Moussong [Mou88] and Caprace [Cap09, Cap15]). Let WS be a Coxeter
group, and let T be a collection of subsets of S. Then the group WS is relatively hyperbolic
with respect to {WT | T ∈T } if and only if the following hold:

(1) For every irreducible affine subset U ⊂ S of rank Ê 3, there exists T ∈ T such that
U ⊂ T.

(2) For every pair of irreducible non-spherical subsets S1,S2 of S with S1 ⊥ S2, there
exists T ∈T such that S1 ∪S2 ⊂ T.

(3) For every pair T,T ′ ∈T with T 6= T ′, the intersection T ∩T ′ is spherical.
(4) For every T ∈T and every irreducible non-spherical subset U ⊂ T, we have U⊥ ⊂ T,

where U⊥ := {s ∈ S | s⊥U}.

2.6. Operation on a simplex. We introduce here three uniform17 Euclidean 4-polytopes
via truncation, rectification and bitruncation of the 4-simplex.

Roughly speaking, by truncation, rectification and bitruncation of a regular polytope
P ⊂ R

n we mean cutting uniformly P at every vertex with a hyperplane orthogonal to
the line joining the vertex to the barycentre. This operation is nicely described in the
classical book of Coxeter [Cox73, Section 8.1]. Combinatorially, by collapsing some ridges
of the bitruncated P to vertices, one gets the rectified P. For example, a truncated (resp.
rectified, resp. bitruncated) 3-simplex is a truncated tetrahedron (resp. an octahedron,
resp. a truncated tetrahedron) in Figure 2.

16We refer to [Hru10, Section 2] for the notion of horoball in Gromov-hyperbolic space.
17A polytope P of dimension nÊ 3 (in the Euclidean space) is uniform if it is a vertex-transitive polytope

with uniform facets. A uniform polygon is a regular polygon. By vertex-transitive, we mean that the
symmetry group of P acts transitively on the set of vertices of P.
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FIGURE 2. The truncated (left), rectified (middle), and bitruncated (right) 3-simplex.

We now explain in detail this operation for the 4-simplex. Consider a regular 4-simplex
∆ ⊂ R

4 with barycentre the origin and vertices v1, . . . ,v5. We denote by Fi the facet of ∆
opposite to vi and by Hi the closed half-space containing the origin with Fi ⊂ ∂Hi. Then
∆= H1 ∩ . . .∩H5.

Let c := |vi| and fix a positive parameter s É c. We denote by H′
i the closed half-space

(depending on s) containing the origin such that ∂H′
i is orthogonal to vi and s

c vi ∈ ∂H′
i,

and we set

Qs = H1 ∩ . . .∩H5 ∩H′
1 ∩ . . .∩H′

5.

Note that Qc =∆ is the original simplex. There exist some numbers 0< a< b < c such that
the combinatorics of the 4-polytope Qs is constant for s in (a, b) and (b, c), and changes at
s= a, b and c. The polytope Qs (depicted in Figure 3) is called:

• a truncated 4-simplex for s ∈ (b, c),
• a rectified 4-simplex for s= b,
• a bitruncated 4-simplex for s ∈ (a, b).

FIGURE 3. The Schlegel diagrams of the truncated (left), rectified (middle), and bitrun-
cated (right) 4-simplex. The facets F ′

i are coloured darker than Fi (cf. Table 1 below).

The rectified simplex Qb is in fact the convex hull of the midpoints of the edges of
the regular simplex ∆ = Qc, while Qa is another rectified simplex. For all s ∈ [a, c], the
polytope Qs is uniform.
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2.7. The combinatorics of the rectified and bitruncated 4-simplices. We describe
the combinatorics of Qs for s ∈ (a, b].

The link of a vertex of the rectified (resp. bitruncated) 4-simplex is a triangular prism
(resp. a tetrahedron) as in Figure 4. Each vertex of Qs is the intersection of facets
F ′

i1
∩F ′

i2
∩Fi3 ∩Fi4 ∩Fi5 for all distinct i1, . . . , i5 (resp. F ′

i1
∩F ′

i2
∩Fi3 ∩Fi4 for all distinct

i1, . . . , i4), where Fi and F ′
i denote the facets of Qs whose supporting hyperplanes are ∂Hi

and ∂H′
i, respectively. The 10 facets of Qs are divided into 5 octahedra (resp. truncated

tetrahedra) Fi ⊂ ∂Hi, and 5 tetrahedra (resp. truncated tetrahedra) F ′
i ⊂ ∂H′

i. For all
i 6= j, the ridge Fi ∩F j is a triangle, F ′

i ∩F ′
j is a vertex (resp. triangle), and Fi ∩F ′

j is a
triangle (resp. hexagon), while Fi ∩F ′

i =∅ (see Table 1).

truncated 4-simplex rectified 4-simplex bitruncated 4-simplex
Fi truncated tetrahedron octahedron truncated tetrahedron
F ′

j tetrahedron tetrahedron truncated tetrahedron

Fi ∩F j hexagon triangle triangle
Fi ∩F ′

i ∅ ∅ ∅

Fi ∩F ′
j triangle triangle hexagon

F ′
i ∩F ′

j ∅ vertex triangle

TABLE 1. Some information on the faces of the truncated, rectified and bitruncated
4-simplex. The symbols i, j are two distinct indices in {1, . . . ,5}.

i′1

i′2

i4i3i5
i′1 i′2

i3

i4

FIGURE 4. The vertex link of the rectified (left) and bitruncated (right) 4-simplex Qs.
A facet of the link labelled by i (resp i′) corresponds to the facet Fi (resp. F ′

i) of the
4-polytope Qs.

The following is a simple observation, but it will be useful later to prove Theorem A
(more precisely, Proposition 3.1).

Lemma 2.13. Let Qs be the rectified or bitruncated 4-simplex for s ∈ (a, b]. Relabel each
facet F ′

i of Qs with Fi′ , and let S := {1′, . . . ,5′,1, . . .,5}.

(1) In the case that Qs is the rectified 4-simplex, i.e. s= b, each vertex of Qs corresponds
to a subset {i′, j′, k, l, m}⊂ S with ♯{i, j, k, l, m}= 5 and each edge of Qs corresponds
to a subset {i′, j, k}⊂ S with ♯{i, j, k}= 3.
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(2) In the case that Qs is the bitruncated 4-simplex, i.e. a < s < b, each vertex of Qs

corresponds to a subset {i′, j′, k, l}⊂ S with ♯{i, j, k, l}= 4.

2.8. The ideal hyperbolic rectified 4-simplex. Every vertex-transitive polytope Q ⊂
R

n can be realised as an ideal hyperbolic n-polytope, obtained by interpreting the ball
in which Q is inscribed as a projective model of the hyperbolic n-space H

n. What is
nice about the rectified simplex of dimension n É 4 is that its regular ideal hyperbolic
realisation R ⊂H

n is a Coxeter polytope.18 For instance, the polytope R of dimension 3 is
a right-angled hyperbolic octahedron.

Let R ⊂ H
4 be the ideal rectified 4-simplex. The facets of R are regular ideal Cox-

eter 3-polytopes: five right-angled octahedra Fi and five π/3-angled tetrahedra F ′
i. The

horospherical link of any (ideal) vertex of R is a Euclidean right triangular prism with
equilateral bases (see the left of Figure 4). Thus, for all i 6= j the dihedral angle at a ridge
Fi ∩F j (resp. Fi ∩F ′

j) is π/3 (resp. π/2), while F ′
i and F ′

j are parallel, i.e. the facet F ′
i is

tangent to F ′
j at infinity.

Remark 2.14. The bitruncated 4-simplex is “combinatorially” a “filling” of the ideal recti-
fied 4-simplex in the sense that the latter is obtained from the former by collapsing each
triangular ridge F ′

i ∩F ′
j for i 6= j to a point and removing it. We call such triangles the

filling ridges of the bitruncated 4-simplex.

2.9. Decomposability and Euler characteristics. We conclude the section with a re-
mark on convex projective manifolds that has probably been noticed by many experts of
the subject, but whose explicit statement seems to miss in the literature. This remark is
a simple consequence of works of Vey, Benoist and Gottlieb.

Fact 2.15. If a convex projective manifold Ω/Γ is decomposable, then χ(Ω/Γ)= 0.

Proof. Assume by contradiction that Ω/Γ is decomposable but χ(Ω/Γ) 6= 0. By a theorem of
Gottlieb [Got65, Corollary IV.3], the fundamental group of a finite, aspherical polyhedron
with non-zero Euler characteristic has trivial centre. But since Ω/Γ is decomposable,
by Proposition 4.4 of Benoist [Vey70, Ben03], the centre of Γ contains a non-trivial free
abelian subgroup. �

In particular, since χ(X ) 6= 0, the convex projective manifold X of Theorem A is inde-
composable.

3. THE PROOF OF THEOREM A

In this section, we prove Theorem A. In Section 3.1, we perform convex projective gen-
eralised Dehn filling to the ideal hyperbolic rectified 4-simplex R ⊂H

4, and build mirror

18It is well-known that the link of the regular ideal hyperbolic rectified n-simplex is a Euclidean right
simplicial (n−1)-prism with regular (n−2)-simplicial bases, and the dihedral angle of the Euclidean regular
(n−2)-simplex is arccos(1/(n−2)). The latter is π/m for some integer m Ê 2 if and only if n É 4. Hence, R is a
Coxeter polytope if and only if nÉ 4.
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polytopes Pα combinatorially equivalent19 to the bitruncated 4-simplex. In Section 3.2,
we show that the Coxeter group Wp = WPπ/p of the Coxeter polytope Pπ/p is relatively hy-
perbolic. In Sections 3.3 and 3.4, we construct the cusped hyperbolic 4-manifold M, by
gluing some copies of R, and a filling X of M, respectively. Finally, in Section 3.5, we give
X a structure of projective cone-manifold induced by Pα, and finish the proof of Theorem
A.

3.1. Deforming the rectified 4-simplex. In this subsection, we obtain a family of pro-
jective structures on the orbifold OR associated to the ideal hyperbolic rectified 4-simplex
R by deforming its original complete hyperbolic structure.

Accordingly, the composition of two projective reflections along the facets F ′
i and F ′

j of
OR , i 6= j, (recall the notation from Section 2.6) will deform to be conjugate to a projective
rotation of angle 2α> 0. At the original hyperbolic structure on OR , the facets F ′

i and F ′
j

are parallel, i.e. α= 0. But, at the deformed projective structure on OR , new ridges F ′
i∩F ′

j
can be added to OR to form a mirror polytope Pα that is combinatorially equivalent to a
bitruncated 4-simplex, where α is the dihedral angle of the ridge F ′

i ∩F ′
j. So, the goal is

to prove the following:

Proposition 3.1. There exists a path (0,π/3] ∋α 7→ Pα of mirror polytopes with the combi-
natorics of a bitruncated 4-simplex and dihedral angles:

• α at the filling ridges F ′
i ∩F ′

j,
• π/2 at the ridges Fi ∩F ′

j, and
• π/3 at the ridges Fi ∩F j.

Moreover, the limit P0 is the ideal hyperbolic rectified 4-simplex R.

Before proving Proposition 3.1, we begin with some auxiliary lemmas. First, let

t3 =
1

2

(
11+9

p
2−3

√
31+22

p
2
)
≈ 0.0422

and for t ∈ [t3,1],

f (t)=
t(t+2)3(2t+1)3

(t2+ t+1)2(t2 +7t+1)2 , h(t)= 2+
1

t
+

t(t+2)4

(t2 + t+1)(t2+7t+1)
,

gp(t)=
2tp(t+2)p(2t+1)3−p

(t2+ t+1)(t2+7t+1)
and gp(t)=

4 f (t)

gp(t)
, where p = 0,1,2,3.

The number t3 is the unique positive solution less than 1 satisfying the equation f (t3) =
1/4 = cos2(π/3). Since t3 is positive, it is easy to check:

Lemma 3.2. The functions f , h, gp and gp : [t3,1]→R are well-defined and positive.

19Two polytopes Q and Q′ are combinatorially equivalent if the face poset of Q is isomorphic to the face
poset of Q′.
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Given t ∈ [t3,1], we now consider the matrix

Ct =




2 −g0(t) −g1(t) −g2(t) −g3(t) −h(t) 0 0 0 0
−g0(t) 2 −g0(t) −g1(t) −g2(t) 0 −h(t) 0 0 0
−g1(t) −g0(t) 2 −g0(t) −g1(t) 0 0 −h(t) 0 0
−g2(t) −g1(t) −g0(t) 2 −g0(t) 0 0 0 −h(t) 0
−g3(t) −g2(t) −g1(t) −g0(t) 2 0 0 0 0 −h(t)
−2 0 0 0 0 2 −1/t −1/t −1/t −1/t
0 −2 0 0 0 −t 2 −1/t −1/t −1/t
0 0 −2 0 0 −t −t 2 −1/t −1/t
0 0 0 −2 0 −t −t −t 2 −1/t
0 0 0 0 −2 −t −t −t −t 2




.

Lemma 3.3. For every t ∈ [t3,1], the matrix Ct is an irreducible Cartan matrix of negative
type and of rank 5.

Proof. It easily follows from Lemma 3.2 that Ct is an irreducible Cartan matrix. A simple
but long computation shows that the rank of Ct is 5, which is less than 9= 10−1. Hence,
the irreducible Cartan matrix Ct is of negative type by Proposition 2.5. �

Lemma 3.4. There exists a monotonically decreasing analytic function α : [t3,1]→R sat-
isfying

cos2α(t)= f (t), α(t3)=
π

3
, α(1)= 0.

t

f (t)

t3

1

1

3/4

1/2

1/4

1/4 1/2 3/4

FIGURE 5. The graph of f (t) over the interval [0,1]

Proof. The derivative f ′ of f satisfies:

f ′(t)=−
2(t−1)(t+1)(t+2)2(2t+1)2(t4+2t3 +21t2+2t+1)

(t2+ t+1)3(t2 +7t+1)3
.

Since f ′(t) is positive for all t ∈ [t3,1) and is zero for t = 1, the function f : [t3,1] → R is
monotonically increasing with f (t3) = 1/4 and f (1) = 1 (see Figure 5). The lemma now
follows easily. �
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We are finally ready to prove Proposition 3.1 by applying Theorems 2.6 and 2.8. Re-
call the combinatorics of the truncated, rectified and bitruncated 4-simplex, described in
Table 1. See Figure 6 for a geometric picture of the vertex link of the mirror polytope Pα.

i′1

i′2

i4i3i5
i′1 i′2

i3

i4

FIGURE 6. The vertex links of a mirror polytope are also mirror polytopes. For Pα we
have: (i) a right triangular prism with equilateral bases for the (ideal) rectified 4-simplex
P0 (left), and (ii) a tetrahedron for the bitruncated 4-simplex Pα, α ∈ (0, π3 ] (right). The
edges of dihedral angle π/2 (resp. π/3, resp. α) are drawn in black (resp. red, resp. green).

Proof of Proposition 3.1. Let us call and order the indices of Ct as S := {1′, . . . ,5′,1, . . .,5}.
Lemmas 3.3 and 3.4 together with Theorem 2.6 imply that there exists a path [0,π/3] ∋
α 7→ Pα of mirror polytopes in S

4 with facets {Fs}s∈S and with Cartan matrix Ct. The
facet Fi′ of Pα (i = 1, . . . ,5) is also denoted by F ′

i.

We consider two cases separately: (i) α∈ (0,π/3] and (ii) α= 0.

In the case (i), equivalently, t ∈ [t3,1), by Remark 2.10 (or Theorem 2.8.(1)), the inter-
sections F ′

i ∩F ′
j, Fi ∩F ′

j and Fi ∩F j, i 6= j, are ridges of Pα and their dihedral angles are
α, π/2 and π/3, respectively, because for example

(Ct)i′ j′(Ct) j′ i′ = gp(t)gp(t)= 4 f (t)= 4cos2α< 4.

We now claim that Pα is combinatorially equivalent to the bitruncated 4-simplex. For
every subset T = {i′, j′, k, l}⊂ S with ♯{i, j, k, l}= 4, the submatrix (Ct)T is the direct sum
(Ct){i′, j′} ⊕ (Ct){k,l} of matrices of positive type, hence {Fs}s∈T ∈ σ(Pα) 20 and ∩s∈T Fs is a
vertex of Pα by Theorem 2.8.(1).

That is, if V denotes the set of all subsets {F ′
i,F

′
j,Fk,Fl} with ♯{i, j, k, l} = 4, then V ⊂

σ(Pα). Let Ŝ = {Fs}s∈S, and let F be the subposet of 2Ŝ defined by:

F := {T̂ ′ ∈ 2Ŝ | T̂ ′ ⊂ T̂ for some T̂ ∈ V }.

As in the previous argument, Theorem 2.8.(1) implies that F is a subposet of σ(Pα).
We know, in addition, from Lemma 2.13.(2) and Figure 4 that the poset F is dual to the
face poset of the bitruncated 4-simplex. It is a well-known fact (e.g. [BP15, Exercise
1.1.20]) that if two polytopes Q and Q′ are of same dimension and the face poset of Q′ is
a subposet of the face poset of Q, then Q is combinatorially equivalent to Q′. As a result,
the polytope Pα is combinatorially equivalent to the bitruncated 4-simplex, as claimed.

20See the end of Section 2.2 for the definition of the poset σ(P).
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In the case (ii), equivalently, t = 1, we claim that P0 is combinatorially equivalent
to the rectified 4-simplex. For every subset U = {i′, j′, k, l, m} ⊂ S with ♯{i, j, k, l, m} = 5,
the submatrix (C1)U is the direct sum (C1){i′, j′} ⊕ (C1){k,l,m} of matrices of zero type and
the rank of (C1)U is 3. Hence {Fs}s∈U ∈ σ(P0) and ∩s∈U Fs is a vertex of P0 by Theorem
2.8.(2). Furthermore, for every subset U ′ = {i′, j, k} ⊂ S with ♯{i, j, k} = 3, the submatrix
(C1)U ′ is of positive type. Hence {Fs}s∈U ′ ∈σ(P0) and ∩s∈U ′Fs is an edge of P0 by Theorem
2.8.(1). Then, as in the proof of case (i), using Lemma 2.13.(1) and Figure 4, we may
conclude that the polytope P0 is combinatorially equivalent to the rectified 4-simplex, as
claimed. Finally, a simple computation shows that the Cartan matrix C1 is equivalent to
a symmetric matrix of signature (4,1), and therefore the polytope P0 (without vertices)
may be identified with the ideal hyperbolic rectified 4-simplex R. �

Remark 3.5. The symmetry group of the mirror polytope Pα, α ∈ [0,π/3], is of order Ê 5.
For, if we set Q̂ =

(Q 0
0 Q

)
with

Q =




0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




,

then Q̂ is a permutation matrix of order 5 and Q̂CtQ̂−1 is equivalent to Ct.

Remark 3.6. A (bit more complicated) computation reveals that the deformation space
of projective structures on the orbifold OR associated to the ideal hyperbolic rectified
4-simplex R is six-dimensional. In other words, one can find a six-parameter family
of Cartan matrices (of rank 5) which correspond to projective structures on OR. But,
we choose a particular one-parameter family of Cartan matrices having symmetry as
described in Remark 3.5 in order to simplify the computation.

We end the subsection with the following.

Corollary 3.7. For every integer p Ê 3, the mirror polytope Pπ/p is a Coxeter polytope.
Moreover, if Γp denotes the subgroup of SL±

5R generated by the associated reflections, then
the Γp-orbit of Pπ/p is a properly convex domain Ωp of S4, i.e. it is divisible by Γp.

Proof. It is obvious that the mirror polytope Pπ/p is a Coxeter polytope. For any subset
T = {i′, j′, k, l}⊂ S with ♯{i, j, k, l}= 4, the standard subgroup WT of the Coxeter group WS

of Pπ/p is isomorphic to Dp×D3, where Dm is the dihedral group of order 2m, hence it is a
finite group. In the proof of Proposition 3.1, we show that every vertex of Pπ/p corresponds
to a subset {i′, j′, k, l}⊂ S with ♯{i, j, k, l}= 4, so by Theorem 2.11, the Γp-orbit of Pπ/p is a
divisible convex domain of S4. �

3.2. The Coxeter group Wp. The goal of this subsection is to show that the Coxeter
group Wp of Pπ/p is relatively hyperbolic with respect to a collection of virtually abelian
subgroups of rank 2. To do so, we need to analyse the Coxeter diagram of Wp in Figure
7, and to use Theorem 2.12 together with the (complete) list of the irreducible spherical
and affine Coxeter groups in Appendix A.
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p

p

p

pp

p

pp

p

p

∞

∞∞

∞∞

1

1′

5′

4′ 3′

2′

5

4 3

2

FIGURE 7. The Coxeter diagram of the Coxeter group Wp of Pπ/p

We denote by Tp the following collection of subsets of S = {1′, . . . ,5′,1, . . .,5}:

• In the case of p Ê 4, the collection Tp consists of all subsets {i′, j′, k, l, m} of S with
♯{i, j, k, l, m}= 5, so the cardinality of Tp, p Ê 4, is 10.

• In the case of p = 3, the collection T3 consists of all subsets {i′, j′, k, l, m} and
{i′, j′, k′, l, m} of S with ♯{i, j, k, l, m}= 5, so the cardinality of T3 is 20.

For each U ∈ Tp, the standard subgroup (Wp)U of Wp is isomorphic to Ã2 × I2(p) (see
Appendix A), hence it is virtually isomorphic to Z

2.

Proposition 3.8. The Coxeter group Wp is relatively hyperbolic with respect to the col-
lection of subgroups {(Wp)U | U ∈ Tp}, in particular, a collection of virtually abelian sub-
groups of rank 2.

Proof. We only prove it for the case p = 3; the argument is similar for other cases p Ê 4.
Thanks to Theorem 2.12, we just need to carefully analyse the Coxeter diagram of Wp in
Figure 7, using the list of irreducible spherical and affine Coxeter groups in Appendix A.

First, the condition (1) holds because all irreducible affine subsets U ⊂ S of rank Ê 3
are {i′, j′, k′} and {i, j, k} with ♯{i, j, k} = 3. Second, the condition (2) holds because there
does not exist a pair of irreducible non-spherical subsets S1,S2 of S with S1 ⊥ S2. Third,
the condition (3) holds because for every pair T,T ′ ∈ T3 with T 6= T ′, the intersection
T ∩T ′ is a subset of {i′, j′, k, l} with ♯{i, j, k, l}= 4. Finally, the condition (4) holds because
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for every T ∈ T3, there exists only one irreducible non-spherical subset U ⊂ T, which is
either {i′, j′, k′} or {i, j, k} with ♯{i, j, k}= 3, and T =U ⊔ U⊥. �

Remark 3.9. The Coxeter group Wp of Pπ/p is in fact a finite-index subgroup of the follow-
ing Coxeter group Ŵp:

6 2p

It is easier to verify the conditions (1) – (4) of Theorem 2.12 for the Coxeter group Ŵp.

3.3. The cusped hyperbolic manifold. In this subsection, we build the cusped hyper-
bolic manifold M of Theorem A. A reader who is not familiar with hyperbolic manifolds
(with totally geodesic boundary) could consult [Mar16, Chapter 3].

1

1

1

2

2

2

3

3

3

4

4

4

5 5

5

FIGURE 8. The edge-labelled complete graph K6

We first recall the construction of a building block B by Kolpakov and Slavich [KS16].
Consider the complete graph K6 on 6 vertices with its edges labelled by numbers in
{1, . . . ,5} so that adjacent edges have distinct labels (see Figure 8). For each vertex of K6,
take a copy of the ideal hyperbolic rectified 4-simplex R ⊂H

4, described in Section 2.8. If
two vertices of K6 are connected by an edge of label i ∈ {1, . . .,5}, then we glue together
the facets Fi of the two corresponding copies of R using the identity as a gluing map.

Proposition 3.10 ([KS16, Section 3]). Let B be the building block constructed above.

• The space B is a non-orientable, complete, finite-volume hyperbolic 4-manifold with
non-compact totally geodesic boundary.

• The boundary ∂B of B has exactly 5 connected components ∂1, . . . ,∂5, each tessel-
lated by the facets F ′

i of the copies of R in B.
• The hyperbolic manifold B has exactly 10 cusps C i j, i < j ∈ {1, . . .,5}. Each cusp

section S i j is diffeomorphic to K × [0,1], where K denotes the Klein bottle. One
boundary component of S i j is contained in ∂i, and the other in ∂ j.

Now, consider again the edge-labelled graph K6 in Figure 8. For each vertex of K6,
take a copy of B. If two vertices of K6 are joined by an edge of label i ∈ {1, . . .,5}, then
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we glue together the boundary components ∂i of the two corresponding copies of B using
the identity as a gluing map. Let us call M′ the resulting cusped hyperbolic manifold
(without boundary), and M its orientable double cover.

Proposition 3.11. The orientable hyperbolic 4-manifold M has exactly 10 cusps, each
with section diffeomorphic to the 3-torus.

Proof. We obtain the cusps of M′ by gluing together the cusps of the copies of B, and
the gluing maps are induced by the identity. Hence, each cusp section of M′ must be
diffeomorphic to K ×S

1. By construction, for each pair i < j ∈ {1, . . .,5}, the simple cycle
(of length 6) in the graph K6 with edges labelled alternately by i and j corresponds to a
cusp of M′, thus M′ has exactly 10 cusps. Since the cusps of M′ are non-orientable, each
cusp section of M is the orientable double covering of a cusp section of M′. In particular,
M has precisely 10 cusps, each with 3-torus section. �

Remark 3.12. The natural map M → OR is an orbifold covering of degree 6 · 6 · 2 = 72,
where OR denotes the orbifold associated to R.

3.4. Topology of the filling. In this subsection, we build the manifold X of Theorem A
topologically. The desired (singular) geometric structures on X will be given in the next
subsection.

Let Q ⊂ R
4 be a bitruncated 4-simplex. We define X in the same way as the manifold

M (see Section 3.3), but substituting the ideal rectified simplex R with the bitruncated
simplex Q.

Proposition 3.13. The space X is a closed, orientable, smooth 4-manifold, containing
10 pairwise disjoint embedded 2-tori whose complement is diffeomorphic to the cusped
hyperbolic manifold M.

Proof. To prove that the polyhedral complex X is a smooth manifold, it suffices to show
that the link of each vertex is homeomorphic to the 3-sphere. Recall that the polytope Q
is vertex transitive. The vertex link L of Q is the tetrahedron in the right of Figure 4.

When we glue the first 6 copies of Q to form B, for each vertex of Q, 6 copies of L are
glued cyclically around one edge, to form a polyhedral complex L′ homeomorphic to the
closed 3-disc D3. Thus, B is a 4-manifold with boundary. Note that R is homeomorphic
to the complement Qà

⋃
i< j F ′

j ∩F ′
j of the filling ridges; in particular, B is non-orientable

(recall Proposition 3.10). When we glue 6 copies of B to get X ′, for each vertex of the
complex, 6 copies of L′ are glued cyclically around a circle C ⊂ ∂L′. The resulting polyhe-
dral complex is clearly homeomorphic to the 3-sphere, so X ′ is a manifold. Its orientation
cover X is thus a manifold.

Now, the cusped hyperbolic manifold M is diffeomorphic to the interior of a compact
manifold M with boundary ∂M consisting of 10 3-tori (recall Proposition 3.11). Let Σ⊂ X
be the union of the copies of the filling ridges of Q. Clearly, M is diffeomorphic to X àΣ.
Moreover, ∂M is diffeomorphic to the boundary of a regular neighbourhood of Σ in X .
Thus, Σ consists of 10 2-tori. �
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We conclude the subsection with some additional information about X .

Remark 3.14. The 4-manifold X has Euler characteristic χ(X ) = 12. Indeed, OR has
orbifold Euler characteristic χorb(OR) = 1

6 [KS16, Appendix 1], and the covering M → OR

has degree 72 (recall Remark 3.12), so χ(M) = 12. Since χ(∂M) = 0 and χ(Σ) = 0, we have
χ(X ) = χ(M)= 12.

Remark 3.15. The manifold X is a filling of M, which has a maximal cusp section S such
that each filling curve in S has length 6. The reason is that the maximal, and maximally
symmetric, cusp section of OR consists of 10 Euclidean prisms, each with all edges of
length 1 [KS16, Section 3.2]. Each of the filling curves of X is made of 6 copies of the
height of such prism. Since 6 < 2π, one cannot apply directly the Gromov-Thurston 2π
theorem to conclude, for instance, that X is aspherical. We will see later that, being
convex projective, X is in fact aspherical.

Remark 3.16. The 6 theorem, independently obtained by Agol [Ago00] and Lackenby
[Lac00], shows that a filling of a cusped hyperbolic 3-manifold carries a hyperbolic struc-
ture as soon as the filling curves are of length strictly greater than 6. This is thus an
improvement of Gromov and Thurston’s 2π theorem in dimension three. It is an open
question whether or not it is possible to generalise the 6 theorem to higher dimension
as follows: “The fundamental group of a filling of a cusped hyperbolic n-manifold is rel-
atively hyperbolic with respect to the collection of subgroups associated to the inserted
(n−2)-submanifolds, as soon as the filling curves are of length > 6.”

Note that in dimension n = 3 the bound of 6 is sharp, as shown by Agol [Ago00, Section
7]. Remark 3.15 shows that the same bound would be sharp in dimension n = 4.

3.5. Cone-manifold structures on the filling. We now conclude the proof of Theorem
A. Let Σ⊂ X be the union of the copies of the filling ridges F ′

i∩F ′
j. We first show item (5),

giving a path of projective cone-manifold structures on X with the desired properties.

In Proposition 3.1, we built a path of structures (0, π3 ] ∋ α 7→ Pα of mirror polytope on
the bitruncated simplex Q. Since the manifold X is built by pairing the facets of some
copies of Q through the map induced by the identity, for each α we have a well-defined
projective structure on the complement in X of the ridges of the copies of Q. Indeed,
the projective structures of the copies of Pα à

⋃
(ridges) match well via the projective

reflections associated to the facets of Pα. We want to show that this projective structure
extends to a projective structure on XàΣ, and on the whole X as projective cone-manifold
structures with cone angle θ = 6 ·α along Σ.

The link L of a vertex of Pα is a mirror tetrahedron. Its non-right dihedral angles are
α and π

3 along its two opposite edges {i′1, i′2} and {i3, i4}, respectively (see Figure 6–right).
Recall Section 2.1 about projective cone-manifolds. Some copies of L are glued together
in X to form a 3-sphere, which we now show to be the projective cone 3-manifold S

1∗Cθ,
where θ = 6 ·α.

The manifold X was built in three steps. At the first step (when gluing 6 copies of Q to
build the block B), 6 copies of L are glued cyclically along its edge {i3, i4}. The resulting
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space L′ is the intersection of two half-spaces of S
3 with “dihedral angle”21 α. At the

second step (when gluing 6 copies of B to build X ′), 6 copies of L′ are glued cyclically
along its edge. Indeed, the cycle in the graph K6 with edges labelled alternately by i1

and i2 has length 6. The resulting space is thus S
1 ∗Cθ. The third step is just the

orientation double covering X → X ′, so the local structure of X is the same as that of X ′.

The union of the copies of the filling ridge F ′
i1
∩F ′

i2
of Q in X is a component T of Σ

(a 2-torus). The holonomy of a meridian of T in X is (σ′
i1
σ′

i2
)3, where σ′

i is the projective
reflection (depending on α) associated to the facet F ′

i of the mirror polytope Pα.

Since (X ,Σ) is locally modeled on (S2 ∗Cθ,S2), we have a projective cone structure σθ

for each θ ∈ (0,2π]. Since S
2 ∗C2π =S

4, the projective structure σ2π is non-singular, and
each component of Σ is totally geodesic in X (see Remark 2.2). The associated path of
projective cone-manifold structures θ 7→ σθ on X is analytic because the path of Cartan
matrices t 7→Ct is analytic.

We have shown item (5) of Theorem A. Clearly, item (1) follows from Proposition 3.11.
Item (2) is shown in Remark 3.14, and item (3) in Remark 3.15.

Let us now fix an integer p Ê 3. By Corollary 3.7, the mirror polytope Pπ/p is a convex
projective orbifold. If moreover p = 3m (i.e. θ = 2π/m), the natural map X → Pπ/p gives X
a structure of convex projective orbifold Ωm/Γm with cone structure σ2π/m. We have thus
shown the first part of item (6).

Remark 3.17. We already know that the convex projective manifold X is indecomposable.
Another way to see this is as follows. Since X covers the Coxeter polytope Pπ/3, and the
Coxeter group W3 acts strongly irreducibly on R

5 because the Cartan matrix of Pπ/3 is
indecomposable and W3 is not virtually abelian (see e.g. [Mar17, Theorem 2.18]), so does
Γ1

∼=π1(X ).

Let T1, . . . ,T10 be the components of Σ. Being totally geodesic for each Ti, the natural
map π1Ti → Γm induced by the inclusion Ti ⊂ X is injective. For m Ê 2, the group Γm

is relatively hyperbolic with respect to {π1Ti}i. Indeed, by Proposition 3.8, the Coxeter
group W3m, which is the orbifold fundamental group of Pπ/3m, is relatively hyperbolic with
respect to the collection {(W3m)U |U ∈T3m} which corresponds to the fundamental groups
of the T1, . . . ,T10. The proof of item (6) is complete.

It remains to show item (4). For m= 1 (i.e α= π/3 and θ = 2π) there is another collection
of totally geodesic tori T ′

1, . . . ,T ′
10 tiled by the ridges Fi ∩F j. Being totally geodesic, also

T ′
i is π1-injective. This time, the group Γ1

∼= π1X is relatively hyperbolic with respect
to {π1Ti, π1T ′

i}i. Indeed, by Proposition 3.8, the Coxeter group W3, which is the orbifold
fundamental group of Pπ/3, is relatively hyperbolic with respect to the collection {(W3)U |
U ∈ T3} which corresponds to the fundamental groups of the T1, . . . ,T10 and T ′

1, . . . ,T ′
10.

Finally, for every T ∈ {T1, . . . ,T10} and T ′ ∈ {T ′
1, . . . ,T ′

10}, the tori T and T ′ are transverse

21Since to each hyperplane is associated a reflection, it makes sense to talk about the dihedral angle,
even if L′ is not properly convex.
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(sometimes T∩T ′ =∅) in X , since the ridges F ′
i ∩F ′

j and Fk ∩Fℓ do so in S
4. Also, in the

universal cover Ω, the lifts of T and T ′ are transverse.

The proof of Theorem A is complete.

APPENDIX A. THE SPHERICAL AND AFFINE COXETER DIAGRAMS

For the reader’s convenience, we reproduce below the list of the irreducible spherical
and irreducible affine Coxeter diagrams.

An (n Ê 1)

Bn (n Ê 2) 4

Dn (n Ê 4)

I2(p) (p Ê 5)
p

H3
5

H4
5

F4
4

E6

E7

E8

TABLE 2. The irreducible
spherical Coxeter diagrams

Ãn (n Ê 2)

B̃n (n Ê 3)
4

C̃n (n Ê 3)
4 4

D̃n (n Ê 4)

Ã1
∞

B̃2 = C̃2
4 4

G̃2
6

F̃4
4

Ẽ6

Ẽ7

Ẽ8

TABLE 3. The irreducible
affine Coxeter diagrams
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