
30 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Homsi, G., Jordan, J., Martello, S., Monaci, M. (2021). The assignment and loading transportation problem.
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 289(3), 999-1007 [10.1016/j.ejor.2019.07.039].

Published Version:

The assignment and loading transportation problem

Published:
DOI: http://doi.org/10.1016/j.ejor.2019.07.039

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/851369 since: 2024-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ejor.2019.07.039
https://hdl.handle.net/11585/851369


The Assignment and Loading Transportation Problem

Gabriel Homsi1, Jeremy Jordan2, Silvano Martello1, Michele Monaci1

1DEI “Guglielmo Marconi”, Alma Mater Studiorum Università di Bologna,
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Abstract

We consider a generalization of the multiple knapsack problem that combines as-
signment and loading. The problem can arise in military and emergency situations in
which one is required to refurnish a unit with a number of different goods available
at different locations. We present a mathematical model and study Lagrangian and
surrogate relaxations. We propose heuristic and metaheuristic approaches which we
use to develop two overall approximation algorithms: a self-contained polynomial-time
heuristic and a more time consuming matheuristic approach that makes use of a MILP
solver. Solution times and accuracy of lower and upper bounds are computationally
evaluated on a real military data set and on sets of both realistic and randomly gener-
ated instances.

Key words: multiple knapsack problem, assignment problem, loading constraints,
emergency, integer linear programming formulations, heuristic algorithms, computa-
tional experiments.

1. Introduction

Motivated by a real-world military application, we introduce a generalization of the multiple
knapsack assignment problem (see Kataoka and Yamada [10]) that can arise in emergency lo-
gistics. A unit asks to receive a certain number of items of different types, each characterized
by a profit (the value it has for the requesting unit) and a weight. For each item type, the
unit wants to receive a minimum and a maximum number of items. The items are available
at different bases and a set of heterogeneous vehicles is available for delivering the items.
Each vehicle has a maximum weight capacity and can only be used for picking items at one
base and delivering them to the unit. For each vehicle and base, there is a cost associated
with moving the vehicle from its current location to the base, and then from the base to the
unit. The problem is to find a feasible assignment of requested items to vehicles that maxi-
mizes the overall profit minus the overall cost. This scenario resembles emergency response
situations such as military problems where a major base, perhaps overseas, receives goods
from supply bases spread throughout the world, as well as certain humanitarian contexts.

For instance, consider the surge in troops during the Iraq war in 2007, where U.S. mil-
itary bases in the middle east experienced increased demand for goods due to the push for
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additional troops and longer deployment durations. There was an urgent need to rapidly
transport items such as food, clothing, medical supplies, ammunition, etc. in order to keep
the bases properly stocked. Various other situations arise overseas when a conflict in a re-
gion causes unexpected increases in allied military resources. The cost of overseas missions
certainly merits the employment of better optimization methods. The war with ISIS alone
cost the U.S. over $11 billion and the U.K. nearly $2 billion, see McCarthy [16, 17]. Over-
seas war operations in total since 2001 is nearing $6 trillion for the U.S. alone, see Shane
[20]. New optimization methods for the considered assignment and loading transportation
problem could help to lower future costs.

Emergency transportation planning, in general, involves choosing the best way to ship
goods or personnel from a set of departure points to a set of destination points. Humanitarian
transportation planning is a complex problem that is receiving considerable attention in the
operational research literature. We refer the interested reader to de la Torre, Dolinskaya, and
Smilowitz [5] and to Gralla and Goentzel [8] for a general overview of transportation problems
in humanitarian logistics and a comprehensive classification of the solution approaches. A
recent special issue (see Besiou, Pedraza-Martinez, and Van Wassenhove [2]) covers a number
of optimization techniques employed in various disaster response logistics.

While there is a large amount of literature on emergency transportation in humanitarian
contexts, few military transportation problems have been studied so far. Akgun and Tansel
[1] define the deployment planning problem to build optimal plans for the physical movement
of personnel units across the world. Transportation assets are scheduled and routed using
a branch-and-bound approach. Zheng [25] develops a generalized cut set algorithm to solve
military transportation path optimization problems. Jordan and Weir [9] consider multiple
objectives for planning the shortest path through a network, resulting in new average short-
est path and average minimum cost flow formulations. Efficient algorithms and heuristics
are then developed to solve the problem. Relatively speaking, there are very few military
transportation studies.

However, the magnitude of the problem warrants further attention: transportation to
military units is not only performed in emergency situations, but also in a huge number of
day to day operations. In the United States military alone, the 2018 transportation costs
exceed $19 billion (see United States Transportation Command [22]), and during an average
week they conduct more than 1900 air missions (see Williams and Gay [23]). Efficient
optimization techniques are thus necessary to reduce waste and optimize shipments. In this
paper, we consider a new optimization approach that assigns a set of vehicles to departure
bases and transports goods to a single destination base with minimal cost.

The paper is organized as follows. Section 2 defines the considered problem, that can be
seen as a generalization of the multiple knapsack (assignment) problem. Section 3 introduces
Lagrangian and surrogate relaxations that can be used to compute upper bounds on the
optimal value and analyzes their theoretical properties. In Section 4 we propose a polynomial-
time approach based on greedy heuristics and on iterated local search. In Section 5 we present
a (non-polynomial) matheuristic approach. Finally, in Section 6 we give the outcome of
computational experiments on a real military case study and on benchmarks of realistic and
randomly generated instances. Conclusions are drawn in Section 7.
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2. Problem Statement

We are given a set T = {1, 2, . . . , n} of item types (e.g., medical equipment, food supplies,
explosives and like). Each item of type j has positive profit pj and weight wj (j ∈ T ). There
is a set B = {1, 2, . . . b} of (military or humanitarian) bases at which items are stored: each
base k has akj items of type j available (k ∈ B, j ∈ T ). A unit asks to receive at least
`j and at most uj items of each item type j (with `j and uj possibly being zero). There
is a set V = {1, 2, . . . ,m} of different vehicles (aircrafts, trucks, ...), currently available at
different locations, that can be used for transportation. Each vehicle has a capacity ci (i ∈ V )
and may be assigned to at most one base. The cost for moving vehicle i from its current
location to base k, loading a subset of items, and delivering them to the unit is denoted by
qik (i ∈ V, k ∈ B). We look for a loading of items into vehicles such that

• no vehicle is loaded with a set of items whose weight exceeds its capacity;

• the unit receives a satisfactory amount of the items it needs, and

• the difference between the total profit of the transported items and the total trans-
portation cost is a maximum.

The resulting Assignment and Loading Transportation Problem (ALTP) can be formally
defined as an Integer Linear Program (ILP) as follows. Let us introduce two sets of decision
variables. For each vehicle i ∈ V , base k ∈ B, and item type j ∈ T , let xikj be an integer
variable representing the number of items of type j picked up at base k by vehicle i. For
each vehicle i ∈ V and base k ∈ B, let yik be a binary variable taking the value one if and
only if vehicle i is assigned to base k. A possible ILP model is then:

max
∑
i∈V

∑
k∈B

∑
j∈T

pjxikj −
∑
i∈V

∑
k∈B

qikyik (1)∑
k∈B

yik ≤ 1 (i ∈ V ) (2)∑
i∈V

xikj ≤ akj (k ∈ B, j ∈ T ) (3)∑
j∈T

wjxikj ≤ ciyik (i ∈ V, k ∈ B) (4)

`j ≤
∑
i∈V

∑
k∈B

xikj ≤ uj (j ∈ T ) (5)

xikj ∈ Z∗ (i ∈ V, k ∈ B, j ∈ T ) (6)

yik ∈ {0, 1} (i ∈ V, k ∈ B), (7)

where Z∗ denotes the set of non-negative integers. The objective function (1) gives the
difference between the total profit of the picked up items and the total cost for their trans-
portation. Constraints (2) impose that each vehicle be assigned to at most one base. The
availability of items at each base is expressed by (3), while the capacity limit of the vehicles
at each base is forced by (4). Finally, constraints (5) specify the demand bounds for each
item type, and constraints (6)-(7) define the domain of the variables.

We will assume in the following that all input data are non-negative integers.
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2.1 Complexity and related problems

Problem ALTP is a generalization of the Multiple Knapsack Assignment Problem (MKAP),
that has been recently studied by Kataoka and Yamada [10], Lalla-Ruiz and Voß [13], and
Martello and Monaci [14]. In the MKAP one is given m knapsacks (the vehicles) and a set
of n items, partitioned into a number of classes (the bases): a knapsack can only contain
items of the same class, and the objective is to assign a set of knapsacks to each class in
such a way that the total profit of the selected items is a maximum.

In the ALTP, the additional features are the transportation costs qik and the lower and
upper bounds `j and uj on the number of items of each type j to be selected. It follows
that for our problem, differently from the case of the MKAP: (i) the optimal value can be
negative; (ii) due to the lower bounding constraints (5), an instance can have no feasible
solution.

The MKAP is in turn a generalization of the 0-1 Multiple Knapsack Problem (MKP),
that arises when there is a single base. There is a huge literature on the MKP, for which we
refer the reader to the specific chapters in the classical books by Martello and Toth [15] and
Kellerer, Pferschy, and Pisinger [11]. The MKP has been shown to be strongly NP-hard by
transformation from 3-partition (see, e.g., Martello and Toth [15], Section 1.3). It follows
that the ALTP is strongly NP-hard. Note in addition that, due to the presence of the lower
bound constraints in (5), even deciding if an instance of the ALTP has a feasible solution
is a strongly NP-complete problem, even in the case where there is a single base. This is
easily shown by reduction from the recognition version of the bin packing problem: given n
items with weights wj, deciding whether they can be packed into m identical containers of
capacity c corresponds to finding a feasible solution to an ALTP instance with n item types,
each with `j = uj = 1, a single base, and m identical vehicles of capacity c.

Combinations of multiple knapsack problems with assignment/transportation constraints,
arising in a variety of managerial and emergency situations, are attracting increasing interest
from the literature. After the contributions of Dawande, Kalagnanam, Keskinocak, Salman,
and Ravi [4] (inventory problems in the steel industry), and Dahl and Foldnes [3] (wire-
less telecommunications), in recent years new studies have been presented by Kataoka and
Yamada [10] (MKAP), Laalaoui and M’Hallah [12] (machine scheduling), Dimitrov, Solow,
Szmerekovsky, and Guo [7] (emergency relocation), Simon, Apte, and Regnier [21] (equip-
ment selection for Marines), Zhen, Wang, Wang and Qu [24] (maritime shipping), and Diaz,
Handl, and Xu [6] (production planning).

3. Upper Bounds

In this section, we discuss relaxations of the ALTP that can be used to compute upper
bounds on the optimal value.
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3.1 Lagrangian relaxation

Let us relax constraints (4) in a Lagrangian fashion through an array λ = [λik] of mb non-
negative multipliers. The resulting objective function is

max
∑
i∈V

∑
k∈B

∑
j∈T

pjxikj −
∑
i∈V

∑
k∈B

qikyik +
∑
i∈V

∑
k∈B

λik(ciyik −
∑
j∈T

wjxikj). (8)

The Lagrangian relaxation can then be written as:

max
∑
i∈V

∑
k∈B

∑
j∈T

p̃ikjxikj +
∑
i∈V

∑
k∈B

q̃ikyik subject to (2), (3), (5)− (7), (9)

where

p̃ikj = pj − λikwj (i ∈ V, k ∈ B, j ∈ T ), (10)

q̃ik = λikci − qik (i ∈ V, k ∈ B). (11)

This relaxation has an interesting property, that will be relevant for obtaining the polynomial-
time approach of Section 4

Property 1 For any set of multipliers, the Lagrangian relaxation (9) of the ALTP is solvable
in polynomial time.

Proof. As the relaxed constraints (4) are the only ones involving both sets of variables, for
each choice of multipliers the problem decomposes into two independent subproblems, one
in the x variables, one in the y variables:

(LX) max
∑
i∈V

∑
k∈B

∑
j∈T

p̃ikjxikj subject to (3), (5), (6); (12)

(LY ) max
∑
i∈V

∑
k∈B

q̃ikyik subject to (2), (7). (13)

Problem (LX) decomposes in turn into n independent subproblems (one per item type).
For each item type j, we must load into a set of vehicles at least `j and at most uj items,
taken from a set of bases (without exceeding the corresponding availabilities). As the vehicles
have no capacity limit, an optimal solution for item type j will consider the pairs (vehicle
i, base k) according to non-increasing p̃ikj values. Observe that such a sorting does not
depend on j, as it is only induced by λik, see (10). Accordingly, Procedure LX, shown in
Algorithm 1, starts by sorting all pairs (i, k) by non-decreasing λik, and then considers one
item type j at a time. At the j-th iteration, sj denotes the current number of selected items
of type j, and akj (k ∈ B) the current availability of items of type j at base k. For each pair
(i, k) in order, if the Lagrangian profit is non-negative (resp. negative), the maximum (resp.
minimum) possible number of items is added to sj.

Problem (LY) decomposes into m independent subproblems (one per vehicle). For each
vehicle i, we must assign the vehicle to at most one base. An optimal choice is then to
assign it to the base with maximum associated Lagrangian profit, provided such value is
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Algorithm 1 Procedure LX(λ)

1: sort pairs (i, k) according to non-decreasing values of λik;
2: for all item types j ∈ T do
3: sj := 0;
4: for k := 1 to b do akj := akj;
5: for all pairs (i, k), in the order determined at Step 1, do
6: p̃ikj := pj − λikwj;
7: if p̃ikj ≥ 0 then xikj := min{akj, uj − sj} else xikj := min{akj,max{lj − sj, 0}};
8: sj := sj + xikj, akj := akj − xikj
9: end for

10: end for
11: return

∑
i∈V

∑
k∈B

∑
j∈T p̃ikjxikj

non-negative. The resulting solution is produced by the simple Procedure LY, shown in
Algorithm 2.

The Lagrangian upper bound for a given set of multipliers (array λ) can then be com-
puted as shown in Algorithm 3. Procedure LX takes O(mbmax{logm, log b}) time for the
initial pair sorting. It then performs n iterations, each of which requires O(mb) time, so
the overall complexity of LX is O(mbmax{n, logm, log b}). Procedure LY takes linear time
O(mb). The overall time complexity needed to compute, for a given set of multipliers, the
corresponding Lagrangian upper bound on (1)-(7) is thus O(mbmax{n, logm, log b}). �

Algorithm 2 Procedure LY(q̃)

1: for all vehicles i ∈ V do
2: for k := 1 to b do yik := 0;
3: ki = arg maxk∈B{q̃ik};
4: if q̃iki ≥ 0 then yiki := 1;
5: end for
6: return

∑
i∈V

∑
k∈B q̃ikyik

It should be observed that relaxation (9) has the integrality property, i.e., the solution
of its linear programming relaxation is integer. It follows (see, e.g., Nemhauser and Wolsey
[18], Chapter 6) that the Lagrangian dual (i.e., the problem of determining the multipliers
providing the lowest upper bound) yields the same upper bound as the linear programming
relaxation of (1)-(7). Subgradient optimization techniques could produce good approxima-
tions to the Lagrangian dual, but may be time-consuming. In order to quickly compute an

Algorithm 3 Procedure Lagrangian(λ)

1: UX := LX(λ);
2: for all i ∈ V , k ∈ B do q̃ik := ciλik − qik;
3: UY := LY(q̃)
4: return UX + UY
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upper bound we thus preferred to execute Lagrangian(λ) with a limited number of prefixed
λ multipliers (see Section 6).

3.2 Surrogate relaxation

A surrogate relaxation of (1)-(7) can be obtained by replacing the mb capacity constraints
(4) with b surrogate constraints (one per base), i.e., with∑

i∈V

πi
∑
j∈T

wjxikj ≤
∑
i∈V

πiciyik (k ∈ B), (14)

where π = [πi] is an array of m non-negative multipliers. Intuitively we replace, for each
base k, the set of vehicles that are assigned to k with a single vehicle having capacity equal
to the weighted sum of their capacities.

For this relaxation it is possible to determine the optimal dual multipliers, generalizing
to the ALTP a known property of the MKP (see Martello and Toth [15]).
Property 2 Optimal surrogate multipliers for (1) - (3), (14), (5) - (7) are πi = ϑ (ϑ any
positive constant) for all i ∈ V .

Proof. Let πh = mini∈V {πi}. Given a feasible solution x with xikj > 0 for a triplet (i, k, j)
with i 6= h, we can obtain an equivalent solution x′ in which x′ikj = 0 and x′hkj = xhkj + xikj,
i.e., we can move the current content of vehicle i to vehicle h. In this way the left-hand
side of the k-th constraint (14) decreases (or is unchanged, if πi = πh) while those of the
other constraints are unchanged, i.e., solution x′ is feasible and has the same profit as x. By
iterating, we get a solution in which all items are loaded into vehicle h and xikj = 0 for all
i 6= h, k ∈ B, j ∈ T . It follows that the surrogate capacity constraints (14) can be written as

πh
∑
j∈T

wjxhkj ≤
∑
i∈V

πiciyik (k ∈ B). (15)

Now observe that

(i) if πh = 0, the left-hand side of each constraint (15) is zero, which allows the optimal
choice yik = 0 for each i ∈ V and k ∈ B. In this way, the solution of the surrogate relaxation
loads all available items into vehicle h, i.e., it produces the trivial upper bound

∑
j∈T pjuj,

where uj = min{uj,
∑

k∈B akj};
(ii) if πh > 0, we can divide both terms of (15) by πh obtaining∑

j∈T

wjxhkj ≤
∑
i∈V

πi
πh
ciyik (k ∈ B). (16)

Since πi/πh ≥ 1 for any i, the choice πi = ϑ (any positive constant) for all i ∈ V produces
the minimum right-hand side, and hence the tightest (minimum) surrogate bound. �

Differently from the Lagrangian case, the optimal multipliers can be determined for this
relaxation. However, the relaxation with such multipliers cannot be solved in polynomial
time unless P = NP :
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Property 3 For the optimal surrogate multipliers, relaxation (1) - (3), (14), (5) - (7) is
strongly NP-hard.

Proof. Given an MKP instance, consider the surrogate relaxation of an ALTP instance
with

1. m bases and m vehicles, with assignment costs qii = 0 and qik = +∞ if i 6= k;

2. availabilities akj = 1 for all k, j;

3. lower and upper bounds `j = 0 and uj = 1 for all j.

Due to 1., bases and vehicles coincide, and any optimal solution to the relaxed problem
has yii = 1 and yik = 0 if i 6= k. It follows that: (i) the second term of (1) vanishes; (ii)
constraints (2) and (7) are automatically satisfied; (iii) the right-hand side of each constraint
(14) is πkck, and hence (iv) yik variables can be eliminated.
Adopting optimal multipliers πi = 1 for all i (see Property 2), we can define variables
ξkj =

∑
i∈V xikj. The surrogate relaxation becomes then

max
∑
k∈B

∑
j∈T

pjξkj (17)

ξkj ≤ 1 (k ∈ B, j ∈ T ) (18)∑
j∈T

wjξkj ≤ ck (k ∈ B) (19)

0 ≤
∑
k∈B

ξkj ≤ 1 (j ∈ T ) (20)

ξkj ∈ Z∗ (k ∈ B, j ∈ T ). (21)

As constraints (18) are redundant, the resulting model describes an MKP, which is known
to be strongly NP-hard. �

4. Constructive and metaheuristic algorithms

In this section, we present two simple constructive heuristics and an iterated local search ap-
proach. These methods are purely combinatorial and can quickly produce a feasible solution
with no need for a Mixed-Integer Linear Programming (MILP) solver. Combining them with
the Lagrangian upper bound computation of Section 3.1, we obtain a viable, self-contained,
polynomial-time approach to the ALTP that can be used when a solution has to be pro-
vided in a very short time like, e.g., in an emergency situation. A more time consuming
(matheuristic) algorithm will be proposed in Section 5.

4.1 Constructive heuristics

We next introduce two constructive heuristics. Both start with an empty solution and follow
a greedy strategy that assigns a vehicle at a time to a base and determines a set of items
to be loaded into it. The possible assignments of a vehicle i to a base k are considered by
non-decreasing cost qik. An assignment, say of i to k, is considered potentially feasible if
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vehicle i is not yet assigned. In this case both algorithms consider the item types j according
to non-increasing pj/wj ratios and load vehicle i according to its current residual capacity
ci, the number sj of already loaded items of type j, and the current residual availability akj
of item type j at base k.

The first heuristic, H1, shown in Algorithm 4, loads the maximum possible number of
items into the current vehicle.

The solutions provided by H1 satisfy all capacity, availability, and upper bound con-
straints. The method, however, disregards the lower bound constraints in (5), and hence it
can fail in producing a feasible solution. When this happens, a second constructive heuris-
tic, H2, is executed, that explicitly takes such constraints into account and hence is more
likely to determine a feasible solution. The algorithm, for which we do not give a detailed
description, only differs from H1 in two points:

• in the loading decision executed in the inner ‘for all’ loop, the term uj− sj is replaced
by `j − sj, so as to avoid unnecessary item loading;

• the assignment test is modified to ‘if
∑

j∈T xikj > 0 then assign vehicle i to base k’,
so as to load necessary items even in case the resulting loading is unprofitable.

In addition, the solution produced by H2 is improved by a post-processing procedure that
considers one used vehicle at a time and loads additional items of each item type for which
there is residual availability and the upper bound has not been reached.

Both H1 and H2 require O(mb logmb+ n log n+ nb) for sorting and initialization. The
outer for-each loop is executed mb times: at each iteration, the inner for-each loop takes
O(n) time. The overall complexity of both algorithms is thus O(mb logmb+n log n+mnb).

4.2 Iterated local search

The best feasible solution obtained by the constructive heuristics (or the empty solution, if
no feasible solution was obtained) can be improved through iterated local search as follows.

Algorithm 4 Procedure H1

1: sort the assignment pairs (i, k) by non-decreasing qik values;
2: sort the item types j by non-increasing pj/wj ratios;
3: set sj := 0 (j ∈ T ) and akj := akj (k ∈ B, j ∈ T );
4: for all pairs (i, k) in order do
5: if vehicle i is not yet assigned then
6: ci := ci;
7: for all item types j in order do
8: xikj := max {0,min{bci/wjc , uj − sj, akj}};
9: ci := ci − wjxikj, sj := sj + xikj, and akj := akj − xikj

10: end for;
11: if

∑
j∈T xikj > 0 and

∑
j∈T pjxikj − qik > 0 then assign vehicle i to base k

12: end if
13: end for

9



For the sake of simplicity, let us denote by σ = (x, y) the current solution, where x = [xikj]
is the item loading and y = [yik] is the vehicle assignment, and by z(σ) the corresponding
profit (see (1)). The procedure can accept solutions in which some constraints are violated,
but in this case it penalizes the corresponding objective function value. Specifically, the
constraints on availability of items at the bases, vehicle capacity, and item demand lower
and upper bounds can be relaxed. The corresponding violations,

availability: ea(x) =
∑
k∈B

∑
j∈T

max{0,
∑
i∈V

xikj − akj}; (22)

capacity: ec(x) =
∑
i∈V

max{0,
∑
k∈B

∑
j∈T

wjxikj − ci}; (23)

demand lower bound: e`(x) =
∑
j∈T

max{0, `j −
∑
i∈V

∑
k∈B

xikj}; (24)

demand upper bound: eu(x) =
∑
j∈T

max{0,
∑
i∈V

∑
k∈B

xikj − uj}, (25)

are then used to obtain a penalized solution value

z̃(σ) = z(σ)− µaea(x)− µcec(x)− µ`e`(x)− µueu(x) (26)

where µa, µc, µ`, and µu are appropriate penalty parameters.
Procedure ILS, shown in Algorithm 5, receives in input the incumbent solution σ pro-

duced by H1 (and H2), and two parameters, I and F , that specify the number of iterations
and the frequency of penalty adjustments, respectively. At each iteration, it randomly
changes vehicle assignments (Shake) and improves the resulting solution by modifying the
loading decisions (Reload). The procedure operates on a solution σ̃ that stores the (possibly
infeasible) best solution found for the penalized objective function (26). In addition, it stores
in σ∗ the best feasible solution found by the whole process, if any.

Shake is a simple procedure (for which we do not provide the explicit statement) that
receives a solution σ̃ and randomly selects a vehicle i and a base k (k ∈ B ∪ {0}). Vehicle
i is de-assigned (k = 0) with probability 0.5 (value settled on the basis of computational

Algorithm 5 Procedure ILS(σ,I,F ,R)

1: σ̃ := σ;
2: if σ is feasible then σ∗ := σ else σ∗ := (0, 0), z(σ∗) := −∞;
3: for r := 1 to I do
4: σ := Shake(σ̃);
5: σ := Reload(σ);
6: if z̃(σ) > z̃(σ̃) then σ̃ := σ;
7: if σ is feasible and z(σ) > z(σ∗) then σ∗ := σ;
8: if rmodF = 0 then update the penalty parameters
9: end for

10: return σ∗

10



experiments): in this case its current contents are unloaded. All other bases k ∈ B are
selected with probability 0.5/|B|: in this case vehicle i is assigned to base k without modifying
its loading. Note that the new solution σ may be feasible or infeasible.

Similarly, Reload consists of a local search that operates on a simple neighborhood
defined by all pairs (vehicle i, item type j), and explores it in random order. For each selected
pair (i, j), the procedure evaluates two moves, consisting of loading (resp. unloading) one
item of type j into (resp. from) vehicle i. (But moves that increase the availability violation
ea(x) (see (22)) are not allowed). As soon as a solution with better z̃(σ) is found, σ is
updated and the search is iterated, with a prefixed limit R on the number of iterations.

The penalty parameters are dynamically adjusted every F iterations, according to the
number of times each violation (22)-(25) occurred in the last solutions generated by Reload:
If a constraint was violated in more than 10% of the solutions, the corresponding penalty
parameter is increased, and otherwise it is decreased.

Procedure Shake takes O(n) time to either unload the contents of the selected vehicle
or to compute the updated penalty ea(x). Procedure Reload performs a constant number
R of iterations, each taking O(nm) time. As both procedures are executed at most I times,
the overall time complexity of ILS is O(nm).

4.3 Overall combinatorial algorithm

Our overall polynomial-time heuristic, H-Poly, shown in Algorithm 6, executes the con-
structive heuristics and computes the best Lagrangian upper bound relative to three vectors
of Lagrangian multipliers: λik = 0, or λik = 1, or λik = qik/ci (i ∈ V, k ∈ B). Finally, it
possibly performs the iterated local search (with parameters I and F ).

As the time complexities of Lagrangian and ILS are dominated by that of H1 (and
H2), this polynomial-time heuristic has complexity O(mb logmb+ n log n+mnb).

5. A matheuristic approach

The many conflicting constraints of the ALTP may cause ILS (Algorithm 5) to quickly
stagnate. In this section we present a non-polynomial approach that defines a neighbor-
hood of exponential size and explores it through a MILP solver. The approach is based on

Algorithm 6 Procedure H-Poly(I, F,R)

1: execute H1;
2: if no feasible solution is returned by H1 then execute H2;
3: let σ be the best solution found, if any, and let z(σ) be its profit;
4: for all i ∈ V , k ∈ B do λrik := qik/ci;
5: UP := min{Lagrangian(0), Lagrangian(1), Lagrangian(λr)};
6: if z(σ) < UP then execute ILS(σ,I,F ,R)
7: return σ, UP
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mathematical model (1)-(7). Given the incumbent solution σ = (x, y), let

Y 0(σ) = {(i, k) : i ∈ V, k ∈ B, yik = 0}; (27)

Y 1(σ) = {(i, k) : i ∈ V, k ∈ B, yik = 1}. (28)

Our neighborhood is obtained by randomly selecting a subset Y
0 ⊂ Y 0(σ) of unused

(vehicle, base) assignments, and defining a restricted problem instance in which all such
assignments are forbidden. In our implementation, all (i, k) pairs of Y 0(σ) have the same

probability P of being selected for inclusion in Y
0
. We correspondingly run a MILP solver,

with a prefixed time limit τ1, on model (1)-(7) with the additional constraints:

yik = 0 (i, k) ∈ Y 0
. (29)

Note that all non-zero assignments are preserved, so the (possible) feasibility of σ is main-
tained, and hence the solver can use σ as a starting solution. A large neighborhood of the
current solution is thus described by the restricted model, that can be effectively solved (ei-
ther exactly or heuristically), taking advantage of the wide arsenal of tools (cuts, heuristics,
propagations, etc.) available in state-of-the-art MILP solvers.

When the solver does not improve the incumbent solution σ, parameters τ1 and P are tem-
porarily updated according to prefixed parameters δτ and δP, to increase the neighborhood
size and the time allowed for the exploration.

If instead σ was improved, parameters τ1 and P are re-stored to their initial values. In
addition, if the solver was unable to prove optimality of the solution found, a second run is
executed (with time limit τ2 < τ1) on the model obtained from (1)-(7) by fixing all variables
yik to their current value.

As the computational effort required to solve the latter formulation is considerably
smaller, the process is typically able to achieve near-optimal loading decisions.

Our overall matheuristic, M-Exp, is summarized in Algorithm 7, where TL denotes
the overall CPU time allowed, and τ1 and τ2 are prefixed fractions of TL. We denote by

Algorithm 7 Procedure M-Exp(I,F ,R)

1: execute H-Poly(I,F ,R) and let σ and U be the returned solution and upper bound;
2: possibly improve U through the surrogate relaxation of Section 3.1;
3: τ ′1 = τ1;P′ = P;
4: while time limit TL not exceeded and z(σ) < U do

5: define Y 0(σ) (see (27)) and extract Y
0

using probability P;

6: σ := MILP(Y
0
, τ1);

7: if σ was not improved then
8: τ1 = τ1 + δτ ; P = max{0,P− δP}
9: else

10: τ1 = τ ′1;P = P′;
11: if the solver was terminated by time limit then σ := MILP(Y 0(σ) ∪ Y 1(σ), τ2)
12: end if
13: end while
14: return σ

12



MILP(S, τ) a black box procedure that runs the solver, with time limit τ , on model (1)-(7)
with all variables of S fixed at their current value.

6. Computational experiments

In this section we evaluate the computational performance of our overall approach and that
of a MILP solver directly executed on mathematical model (1)-(7). All procedures were
implemented in C++, using the Gurobi Optimizer 8.0 as MILP solver. All experiments
were executed, in single thread mode, on a computer with a 3.30 GHz Intel Core i7-3960X
processor and 64 GB of RAM.

The proposed algorithms should be used in a number of different contexts: day to day
operations, standard periodic schedules, and emergency situations. For example, in the
United States military alone, the average number of missions per week, only considering
air shipments, is higher than 1900, i.e., one every five minutes assuming 24/7 activities
(see Williams and Gay [23]). For this reason, we are interested in having the possibility
of solving instances both very quickly and in situations where a large amount of time is
available. The experiments in this section evaluate thus the performance of our approaches
for several different time limits TL, ranging from very small to large values. All time limits
are expressed in CPU seconds.

On the basis of preliminary experiments, the following values are adopted for the param-
eters needed by the various procedures:

• penalty parameters: µa = µc = µu = 10, and µ` = 105;

• maximum number of ILS iterations:
– for H-Poly stand-alone: I = 106 if TL ≤ 50 and I = 2 · 106 otherwise;
– within M-Exp: I = 2 · 104 if TL ≤ 50 and I = 3 · 104 otherwise;

• maximum number of Reload iterations: R = 100;

• penalty parameters updating: F = 100;

• probabilities of fixing y variables to zero: P = 0.6, δP = 0.1;

• parameters for MILP executions: τ1 = 0.1 TL, δτ = 0.1 TL, τ2 = 0.05 TL.

The surrogate relaxation used by M-Exp was always computed with multipliers πi = 1, for
all i (see Property 2).

6.1 Real-world case study

We obtained a real-world ALTP instance from the United States Department of Defense.
The case study involves 12 bases, 11 item types, and 8496 vehicles. The characteristics of
the instance are summarized in Table 1. The item types are those typically used by the U.S.
Defense Contingency: food, clothing, fuel, construction materials, ammunition, personal
demand items, medical material, repair parts, etc. (See [19] for the detailed list). The
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Item types Vehicles
`j uj pj wj akj ci qik

min 50 140 103 2330 0 44,000 0
max 200 250 973 23,669 40 240,000 1,363,945

average 130.00 201.82 556.27 10,837.64 17.04 134,970.02 193,690.94

Table 1: Characteristics of the real-world instance.

locations of the bases and the details of the vehicles are sensitive, and hence we did not
receive them.

For the real-world instance, the ILP model of Section 2 results to be as follows:

• number of constraints = 110,602;

• number of integer variables [xikj] = 1,121,472;

• number of binary variables [yik] = 101,952;

• number of non-zero constraint matrix elements = 4,689,792.

In Table 2 we compare the results obtained, for different time limits (expressed in sec-
onds), by the ILP model of Section 2 (solved using Gurobi), the polynomial-time heuristic of
Section 4, and the matheuristic algorithm of Section 5. The first column gives the time limit.
For each algorithm, we report the lower and upper bounds, LB and UB, computed within
the time limit and the percentage gap between the lower bound and the best available upper
bound (say, U∗, underlined in the table), computed as 100(U∗ − LB)/U∗. In addition, for
H-Poly we give the actual CPU time (in seconds) used. (CPU time and time limit coincide
for ILP and M-Exp.) For each time limit, the best solution found appears in bold. The

ILP H-Poly M-Exp

TL LB UB %Gap LB UB %Gap time LB UB %Gap

25 – 1022352 – 982347 1216542 3.89 25.01 970834 1216542 5.02
50 – 1022352 – 982347 1216542 3.89 50.01 970834 1216542 5.02

100 – 1022352 – 982347 1216542 3.89 100.01 970834 1216542 5.02
200 – 1022352 – 991297 1216542 3.02 200.01 1018752 1216542 0.33
300 1018303 1022352 0.37 991297 1216542 3.02 300.01 1020099 1216542 0.20
400 1019083 1022352 0.30 991297 1216542 3.02 400.00 1020178 1216542 0.19
500 1019083 1022352 0.30 991297 1216542 3.02 500.00 1020178 1216542 0.19
600 1019083 1022352 0.30 991297 1216542 3.02 542.00 1019368 1216542 0.27
700 1019083 1022352 0.30 991297 1216542 3.02 539.89 1019368 1216542 0.27
800 1019083 1022352 0.30 991297 1216542 3.02 538.70 1019526 1216542 0.25
900 1019083 1022120 0.30 991297 1216542 3.02 542.11 1019526 1216542 0.25

1000 1019083 1022120 0.30 991297 1216542 3.02 539.14 1019526 1216542 0.25

Table 2: Results for the real-world instance.
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initial upper bound (1,022,352) was computed in 11.36 seconds by dropping integrality con-
straints (6)-(7) (continuous relaxation). Note that Gurobi is unable to improve such value
in the next 800 seconds.

The table shows that:

• for small time limits the solver is unable to even find a feasible solution to model
(1)-(7), and H-Poly turns out to be the best approach, clearly dominating M-Exp;

• the picture changes for large time limits, for which H-Poly is dominated by the other
approaches. M-Exp produces the best solutions while the best upper bound, U∗, is
obtained by running the solver on (1)-(7). The tiny percentage gaps indicate that
M-Exp obtains a solution very close to the optimum.

Observe that M-Exp does not have a monotonic behavior: it may happen that larger time
limits produce slightly worse solution values. This is due to the use of inner time limits
(τ1 and τ2) that are fractions of the overall time limit TL, which can produce a different
neighborhood exploration.

The best solution found, underlined in the table, was obtained by M-Exp for TL = 400
and for TL = 500, and has the following characteristics:

• objective function value 1020178, with overall profit 1158190 and overall cost 138012;

• number of items delivered 1977 (89.05% of the sum of upper bounds, 138.25% of the
sum of lower bounds);

• number of vehicles used 192 (2.26% of the total);

• average percentage load of the used vehicles 75.90%;

• average transportation cost per vehicle 719;

• minimum and maximum net profit of a vehicle −8896 and 29035 (profit of the trans-
ported items minus movement cost);

• number of bases visited 11 (91.67% of the total);

• number of pairs (base, item type) for which all available items have been picked up
111 (84.09% of the total).

From an operational point of view, the results appear very satisfactory. The base receives
a sufficient number of all requested item types, not very far from their maximum request.
The solution shows a very efficient use of the vehicles: a limited fraction of them is used
and their load is high, which results in transportation costs considerably smaller than the
average cost (see Table 1). It is worth noting that some vehicles have a negative net profit,
clearly needed to satisfy all minimum requests. All bases but one are visited and, in most
cases, all available items of some type are picked up.

The solution improves upon those produced through existing manual methods. However,
details on manual solutions are not available due to the sensitive nature of the information.
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6.2 Realistic instances

Starting from the real-world instance of the previous section, we produced an additional
benchmark of 30 realistic instances, obtained by emulating the original input data through
slight random modification. The benchmark consists of six sets of five instances each, pro-
duced as follows:

• REA-c: capacity of vehicle i uniformly random in [0.9 ci, 1.1 ci] (i ∈ V );

• REA-p: profit of item type j uniformly random in [0.9 pj, 1.1 pj] (j ∈ T );

• REA-w: weight of item type j uniformly random in [0.9wj, 1.1wj] (j ∈ T );

• REA-b: lower and upper bounds for item type j uniformly random in [0.9 `j, 1.1 `j]
and [0.9uj, 1.1uj] (j ∈ T );

• REA-a: availability of item type j at base k uniformly random in [0.9 akj, 1.1 akj]
(k ∈ B, j ∈ T );

• REA-q: cost of pair (vehicle i base k) uniformly random in [0.9 qik, 1.1 qik] (i ∈ V ,
k ∈ B).

All generated values are rounded to the closest integer. These instances, as well as those
discussed in the next session, are available at http://or.dei.unibo.it/library/.

The outcome of the experiments is presented in Table 3. For each approach and time
limit, the table reports the average percentage gap with respect to the best upper bound. The
best values are given in bold. The results confirm those obtained for the original instance for
what concerns small time limits: the solver is inadequate and H-Poly is the best approach.
For larger time limits, there is some variation with respect to the previous picture: ILP and
M-Exp are the best approaches, with gaps one order of magnitude smaller than those of
H-Poly, and ILP is almost always the winner. Overall, H-Poly should be preferred for day
to day operations and in cases where almost on-line solutions are needed, while M-Exp and
ILP are the most robust approaches when a solver is available and larger solution times are
allowed. The final upper bound value U∗ is typically identical (or very close) to the value
of the continuous relaxation (not reported in the table), that requires, on average, about 11
seconds.

6.3 Random instances

In order to further test the various algorithms, we use an additional benchmark of 50 random
instances, generated with the same number of item types, bases, and vehicles as the original
instance. All input data (`j, uj, pj, wj, akj, ci, and qik for j ∈ T , k ∈ B, and i ∈ V ) are
generated as integer values uniformly random in the intervals given by the corresponding
minimum and maximum values in the real-world instance (see Table 1).

Table 4 reports the average percentage gaps for the three algorithms, with different time
limits. The best values (in bold) confirm the previous indications. For small time limits, H-
Poly is the best approach and ILP is unable to find a feasible solution. In addition, ILP can
fail for TL = 300 as well: we thus report the average percentage gap over the successful cases
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REA-c REA-p REA-w
TL ILP H-Poly M-Exp ILP H-Poly M-Exp ILP H-Poly M-Exp
25 – 4.88 5.50 – 4.71 5.35 – 4.93 5.33
50 – 4.49 5.50 – 4.48 5.35 – 4.73 5.33

100 – 4.02 5.50 – 3.49 5.02 – 4.05 5.28
200 0.31 3.76 0.24 0.39 3.09 0.30 0.36 3.51 0.38
300 0.17 3.42 0.21 0.36 3.03 0.29 0.33 3.29 0.26
400 0.14 3.28 0.20 0.33 3.03 0.28 0.30 2.97 0.25
500 0.13 3.26 0.16 0.28 2.96 0.28 0.27 2.71 0.24
600 0.13 3.26 0.17 0.28 2.96 0.27 0.25 2.71 0.24
700 0.13 3.26 0.15 0.28 2.96 0.24 0.23 2.71 0.25
800 0.13 3.26 0.15 0.28 2.96 0.22 0.23 2.71 0.24
900 0.13 3.26 0.15 0.27 2.96 0.22 0.23 2.71 0.24

1000 0.13 3.26 0.16 0.27 2.96 0.22 0.23 2.71 0.25
REA-b REA-a REA-q

TL ILP H-Poly M-Exp ILP H-Poly M-Exp ILP H-Poly M-Exp
25 – 5.34 7.76 – 4.44 4.44 – 3.43 5.10
50 – 4.24 7.76 – 4.44 4.44 – 3.03 5.10

100 – 4.20 6.67 – 4.09 4.44 – 2.72 4.77
200 0.41 3.52 0.27 – 3.88 0.31 – 2.72 0.29
300 0.34 3.28 0.29 0.29 3.52 0.27 0.35 2.72 0.22
400 0.29 2.65 0.26 0.26 3.52 0.25 0.26 2.65 0.23
500 0.29 2.59 0.30 0.26 3.52 0.26 0.22 2.65 0.21
600 0.26 2.59 0.28 0.25 3.52 0.23 0.21 2.65 0.21
700 0.24 2.59 0.29 0.25 3.52 0.24 0.21 2.65 0.22
800 0.23 2.59 0.28 0.25 3.52 0.26 0.21 2.65 0.22
900 0.22 2.59 0.27 0.24 3.52 0.26 0.21 2.65 0.22

1000 0.22 2.59 0.28 0.24 3.52 0.25 0.21 2.65 0.23

Table 3: Percentage gaps for the realistic instances. Average values over 5 instances.

and the corresponding number in parentheses. For the two largest time limits, ILP obtains
the smallest gaps. Worth is noting that random instances appear to be more challenging
than real and realistic cases, but the proposed heuristics always succeeds in finding a feasible
solution. In this case, the solution of the continuous relaxation requires about 12.5 seconds
on average.

7. Conclusions

We introduced the assignment and loading transportation problem, a generalization of the
multiple knapsack problem that can arise in military and emergency contexts. We for-
mally described it as an Integer Linear Program with a polynomial number of variables and
constraints. The problem is strongly NP-hard and difficult to solve in practice to proven
optimality for real-size instances. We introduced Lagrangian and surrogate relaxations, a
self-contained polynomial-time heuristic and a non-polynomial matheuristic approach that
makes use of a MILP solver. We used a real-world military instance and a number of re-
alistic and random instances to compare these approaches with the direct use of a MILP
solver. The outcome of the experiments indicates that the polynomial-time algorithm is the
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TL ILP H-Poly M-Exp

25 – 5.60 6.36
50 – 5.12 6.36

100 – 4.47 6.21
200 – 3.81 2.01
300 – 3.56 1.13
400 1.16 (16) 3.40 0.94
500 0.82 (44) 3.37 0.98
600 0.66 (49) 3.37 0.94
700 0.58 3.37 0.83
800 0.55 3.37 0.86
900 0.53 3.37 0.87

1000 0.50 3.37 0.84

Table 4: Percentage gaps for the random instances. Average values over 50 instances (in
parentheses, number of solutions found if less than 50).

best approach when the problem has to be solved very quickly, while the other methods are
preferable when sufficient CPU time and a MILP solver are available. For all benchmarks,
the proposed heuristics obtained, even within small time limits, feasible solutions of high
quality (typically over 95% of the upper bound).
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