Direct triple annulations: a way to design large triazastarphenes with intertwined hexagonal packing

Qian Li,^a Chady Moussallem, ^{a,c} Frédéric Castet,^a Luca Muccioli,^b Marie-Anne Dourges,^a Thierry Toupance^{*a} and Yohann Nicolas^{*a}

^aUniv. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 351 Cours de la Libération, F-33405 Talence, Cédex. ^bDepartment of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy. ^cUniversité Libanaise, Faculté des Sciences, Laboratoire de Chimie, Campus Michael Slayman, 1352 Rasmaska, Lebanon

* Corresponding author at : Institut des Sciences Moléculaires, Univ. Bordeaux, UMR 5255 CNRS, 351 Cours de la Libération, F-33405 Talence Cedex, France. E-mail address: yohann.nicolas@enscbp.fr; thierry.toupance@u-bordeaux.fr

Contents Direct triple an

irect tri	ple annulations: a way to design large triazastarphenes with intertwined hexage	onal packing	1
Α.	Materials. Methods and synthesis		3
	1. 6,12,18-triphenyl-5,11,17-triazatrinaphthylene (TAN-Ph)	6	-
	2. 6,12,18-tri-p-tolyl-5,11,17-triazatrinaphthylene (TAN-MePh)	6	
	3. 7.15.23-triphenyl-6.14.22-triazatriantrylene (TAA-Ph)	7	
	4. 7.15.23-tri(triisopropylsilylethynyl)-6.14.22-triazatriantrylene (TAA-Tips)	7	
	5 7 15 23-tri(3 4 5-trimethoxyphenyl)-6 14 22-triazatriantrylene (TAA-OMel	Ph) 8	
	 7,15,25 tri(3,7,5 trinethoxyphenyl)-6 14 22-triazatriantrylene (TΔΔ-tRuPh 7 15 23-tri(3 5-di-tert-hutylphenyl)-6 14 22-triazatriantrylene (TΔΔ-tRuPh) 8	
	7 7 15 23-tri(3.5-di-trifluoromethylphenyl)-6 1/ 22-triazatriantrylene (TAA-	-F ₂ Dh) 9	
	 7. 7,15,25 (10,5,5 d) (11100/01/cthylphenyl) 0,14,22 (1020/1011/cthe) (100 (100 (100 (100 (100 (100 (100 (10	Q	
	9 2-amino-3-benzovlnanhthalene	10	
	10 1 (2 (2 aminon and thalonyl) 2 (triisonronylsilyl) 2 pronyn 1 ono	10	
	10. 1-(5-(2-animoliaphinalenyi)-5-(thisophopyishyi)-2-phopyil-1-one	10	
	12. 2 amino - 2 (2 E di tart butul) banzaulaan bibalana	11 11	
	12. 2-amino-3-(3,5-0i-tert-butyi)benzoyinaphthalene	11	
	13. 2-amino-3-(3,5-bis(trifiuorometnyi))benzoyinaphthaiene	12	
	14. 2-Phenylaminobenzophenone		
-	15. [1,4-Phenylenebis(imino-2,1-phenylene)]bis(phenylmethanone)	13	
В.	Electronic properties		14
С.	Thermal properties		15
D.	Crystallographic data		16
	1. Geometrical parameters for each individual molecules		
	2. Molecules and their closer neighbors in packing	19	
	3. Thermal ellipsoid plot	22	
	4. Representation of packing with whole molecular structure	28	
Ε.	DFT calculations		37
	1. Molecular orbitals	38	
	2. Absorption spectra	43	
	3. Calculated absorption properties	44	
	4. Ionization energies (IE), Electron affinities (AE)	57	
	5. Transfer integrals	58	
	6. Molecular structures	61	
F.	NMR spectra of final compounds		77
	1. TAN-Ph	77	
	2. TAN-MePh	79	
	3. TAA-Ph	81	
	4. TAA-Tips		
	5. TAA-OMePh	85	
	6. TAA-tBuPh	87	
	7. TAA-CF3Ph		
	8. 2-amino-N-methoxy-N-methyl-3-naphthamide	91	
	9. 2-amino-3-benzovlnaphthalene	92	
	10. 1-(3-(2-aminonaphthalenyl)-3-(triisopropylsilyl)-2-propyn-1-one	93	
	11. 2-amino-3-(3.4.5-trimethoxy)benzovInaphthalene	94	
	12 2-amino-3-(3 5-di-tert-butyl)benzovlnaphthalene	95	
	13. 2-amino-3-(3.5-bis(trifluoromethyl))benzovlnaphthalene		
	14. 2-Phenylaminobenzophenone		
	15. [1.4-Phenylenebis(imino-2.1-phenylene)]bis(phenylmethanone)		
G			100

A. Materials, Methods and synthesis

All the chemical reagents were purchased and used as received (3-amino-2-naphthoic acid provided by fluorochem; BrettPhos, 5-bromo-1,2,3-trimethoxybenzene and 1-bromo-3,5-di-tert-butylbenzene by Sigma-aldrich; diphenyl chlorophosphate and triisopropylsilylacetylene by TCI; 1-bromo-3,5-bis(trifluoromethyl)benzene and 2aminobenzophenone by Alfa Aesar. Solvents used below were dried and freshly distilled before use. For TAN derivatives, 2-amino-4'-methylbenzophenone was obtained by the reported method¹.

Structural assignments were made with additional information from gCOSY, gHSQC, and gHMBC experiments.

Mass spectra were performed by the CESAMO (Bordeaux, France) on a Qexactive mass spectrometer (ion trap, Thermo) or on a QStar Elite mass spectrometer (TOF, Applied Biosystems). The instruments are equipped with an ESI source and spectra were recorded in the positive mode. The spray voltage was maintained at a value between 3200 V and 4500V. The capillary temperature was set between room temperature and 320°C. Samples were introduced by injection through a 20 μ L sample loop into a flow (from 300 to 400 μ L/min) of methanol from the LC pump.Melting points were recorded by differential scanning calorimetry and confirmed by a melting point apparatus (MP90 Mettler Toledo).

Triazatrinaphthylene (TAN) derivatives **TAN-Ph** and **TAN-MePh** were synthesized following the route shown in **Scheme S-A.1**. Triazatrianthrylene (TAA) derivatives **TAA-Ph**, **TAA-Tips**, **TAA-OMePh**, **TAA-tBuPh** and **TAA-CF3Ph** were synthesized following the route shown in **Scheme S-A.2**.

For TAA derivatives, 3-amino-2-naphthoic acid was modified into its Weinreb amide counterpart before reacting with Grignard reagent and organolithium compounds to get ketone derivatives. The final products were synthesized by one-pot reactions between amino-ketones and 1,3,5-tribromobenzene with quite high yield (about 75%).

Scheme S-A.3 describes reaction carried out with mono and dibromobenzene which stopped after the coupling reaction. Reactions with sterically hindered reactants described in **Scheme S-A.4** failed to led to triazatrinaphthylene (TAN) or triazatrianthrylene (TAA) derivatives.

Scheme S-A.5 describes the steps and intermediates in the last reaction. The first intermediate is likely obtained in the reaction mixture. Then, the order in which the other steps are performed are speculative.

$$\begin{split} R &= \sim Ph [3] \\ R &= \sim = -Si(iPr)_3 [4] \\ R &= \sim Ph(OMe)_3 [5] \\ R &= \sim Ph(tBu)_2 [6] \\ R &= \sim Ph(CF_3)_2 [7] \end{split}$$

Scheme S-A.2. Synthetic route of TAA derivatives.

Scheme S-A.3. Synthetic route of TAA derivatives.

Scheme S-A.4. Unsuccessful synthetic route of TAA derivatives.

Scheme S-A.5. Plausible steps and intermediates.

1. 6,12,18-triphenyl-5,11,17-triazatrinaphthylene (TAN-Ph)

0.94 g (3.00 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 1.95 g (9.85 mmol, 3.3 eq.) of 2-aminobenzophenone, 2.48 g (17.92 mmol, 6.0 eq.) of potassium carbonate, 0.027 g (0.03 mmol, 0.01 eq.) of $Pd_2(dba)_3$ and 0.048 g (0.09 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 30 mL *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered and the filtrate was dried under reduced pressure. The residue was purified by column chromatography over silica gel using pentane:dichloromethane (4:1) as eluent to yield 1.20 g of light yellow solid (66%).

¹H NMR (300 MHz, CDCl₃): δ = 7.58 (m, 15H; Ar-H), 7.36 (m, 9H; Ar-H), 7.16 (d, 3H, *J* = 7.9 Hz; Ar-H).

¹³C NMR (151 MHz, CD₂Cl₂) δ = 150.1, 148.8, 146.7, 142.6, 130.3, 129.9, 129.6, 128.5, 128.2, 127.7, 127.0, 126.8, 123.5 HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₄₅H₂₈N₃ 610.2277; found 610.2272. Mp: >400°C.

NMR Spectra [1]

2. 6,12,18-tri-p-tolyl-5,11,17-triazatrinaphthylene (TAN-MePh)

0.13 g (0.41 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 0.31 g (1.47 mmol, 3.3 eq.) of 2-amino-4'-methylbenzophenone , 0.36 g (2.61 mmol, 6.0 eq.) of potassium carbonate, 0.004 g (0.004 mmol, 0.01 eq.) of Pd₂(dba)₃ and 0.007 g (0.013 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. 20 mL *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered and the filtrate was dried under reduced pressure. The residue was then purified by column chromatography over silica gel with pentane:dichloromethane (7:3) as eluent to give 0.21 g of light yellow solid (74%). ¹H NMR (300 MHz, CD₂Cl₂): δ = 7.61 (ddd, 3H, *J* = 8.5, 1.4, 0.6 Hz; Ar-H), 7.56 (ddd, 3H, *J* = 8.3, 5.7, 1.4 Hz; Ar-H), 7.37 (m, 9H; Ar-H), 7.22 (d, 6H, *J* = 8.0 Hz; Ar-H), 7.17 (ddd, 3H, *J* = 8.4, 1.3, 0.6 Hz; Ar-H), 2.56 (s, 9H; CH₃). ¹³C NMR (75 MHz, CD₂Cl₂): δ = 150.1, 148.8, 146.6, 139.2, 136.3, 130.0, 129.6, 129.4, 128.9, 128.1, 127.6, 126.7, 123.5, 21.6.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₄₈H₃₄N₃ 652.2747; found 652.2737. Mp: 268-270°C NMR Spectra [2]

3. 7,15,23-triphenyl-6,14,22-triazatriantrylene (TAA-Ph)

0.096 g (0.30 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 0.25 g (1.01 mmol, 3.3 eq.) of 2-amino-3-benzoylnaphthalene, 0.25 g (1.83 mmol, 6.0 eq.) of potassium carbonate, 0.003 g (0.0031 mmol, 0.01 eq.) of $Pd_2(dba)_3$ and 0.005 g (0.0092 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered and the filtrate was dried under reduced pressure. The residue was purified by column chromatography over silica gel using pentane:dichloromethane (7:3) as eluent to yield 0.20 g of light yellow solid (87%).

¹H NMR (300 MHz, CDCl₃): δ = 8.18 (s, 3H; Ar-H), 7.94 (d, 3H, *J* = 8.1 Hz; Ar-H), 7.84 (d, 3H, *J* = 8.1 Hz; Ar-H), 7.75 (s, 3H; Ar-H), 7.68 (m, 9H; Ar-H), 7.45 (m, 12H; Ar-H).

¹³C NMR (150.9 MHz, C₂D₂Cl₄): δ =150.6, 148.5, 142.6, 141.5, 133.8, 131.7, 129.2, 128.8, 128.2, 128.1, 127.2, 127.1, 126.6, 126.5, 126.4, 125.8, 122.6.

HRMS (FD-TOF) m/z: [M + H]+ Calcd for C₅₇H₃₃N₃ 759.2674; found 759.2696. Mp: >400°C.NMR Spectra [3]

4. 7,15,23-tri(triisopropylsilylethynyl)-6,14,22-triazatriantrylene (TAA-Tips)

0.081 g (0.26 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 0.30 g (0.85 mmol, 3.3 eq.) of 1-(3-(2-aminonaphthalenyl)-3-(triisopropylsilyl)-2-propyn-1-one, 0.21 g (1.50 mmol, 6.0 eq.) of potassium carbonate, 0.002 g (0.0026 mmol, 0.01 eq.) of Pd₂(dba)₃ and 0.004 g (0.0078 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered and the filtrate was dried under reduced pressure. The residue was purified by column chromatography over silica gel with pentane:dichloromethane (4:1) as eluent to give 0.20 g of light yellow solid (74%).

¹H NMR (300 MHz, CDCl₃): δ = 9.49 (s, 3H; Ar-H), 9.01 (s, 3H; Ar-H), 8.11 (m, 6H; Ar-H), 7.60 (m, 6H; Ar-H), 1.50 (m, 9H; CH), 1.36 (d, 54H, *J* = 6.8 Hz; CH₃).

¹³C NMR (150.9 MHz, C₂D₂Cl₄): δ = 149.7, 143.2, 134.2, 132.5, 128.8, 128.0, 127.7, 127.6, 127.3, 127.0, 127.0, 126.6, 125.2, 111.28, 104.6, 19.0, 11.7.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₇₂H₈₂N₃Si₃ 1072.5811; found 1072.5802.

Mp: >400°C.

NMR Spectra [4]

5. 7,15,23-tri(3,4,5-trimethoxyphenyl)-6,14,22-triazatriantrylene (TAA-OMePh)

0.34 g (1.08 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 1.20 g (3.56 mmol, 3.3 eq.) of 2-amino-3-(3,4,5-trimethoxy)benzoylnaphthalene, 0.90 g (6.50 mmol, 6.0 eq.) of potassium carbonate, 0.010 g (0.011 mmol, 0.01 eq.) of Pd₂(dba)₃ and 0.018 g (0.032 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered, and the filtrate was dried under reduced pressure. The residue was purified by column chromatography over silica gel with dichloromethane:ethyl acetate (19:1) as eluent to give 0.40 g of yellow solid (36%).

¹H NMR (300 MHz, CD₂Cl₂): δ = 8.39 (s, 3H; Ar-H), 7.98 (s, 3H; Ar-H), 7.96 (d, 6H, *J* = 7.8 Hz; Ar-H), 7.49 (m, 6H; Ar-H), 6.73 (s, 6H; Ar-H), 4.17 (s, 9H; CH₃), 3.78 (s, 18H; CH₃).

¹³C NMR (150.9 MHz, C₂D₂Cl₄): δ =153.4, 150.4, 148.01, 142.8, 137.17, 137.0, 133.9, 131.8, 129.0, 127.8, 127.4, 127.0 (x2 CH, see HSQC), 126.4, 126.0, 122.5, 106.9, 61.4, 56.4.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₆₆H₅₂O₉N₃ 1030.3698; found 1030.3664.

Mp: 331-334°C

NMR Spectra [5]

6. 7,15,23-tri(3,5-di-tert-butylphenyl)-6,14,22-triazatriantrylene (TAA-tBuPh)

0.11 g (0.35 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 0.41 g (1.15 mmol, 3.3 eq.) of (2-amino-3-(3,5-di-tertbutyl)benzoylnaphthalene, 0.29 g (2.10 mmol, 6.0 eq.) of potassium carbonate, 0.0032 g (0.0035 mmol, 0.01 eq.) of $Pd_2(dba)_3$ and 0.0056 g (0.011 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered, and the filtrate was dried under reduced pressure. The residue was purified by column chromatography over silica gel with dichloromethane:ethyl acetate (19:1) as eluent to give 0.20 g of yellow solid (53%).

¹H NMR (300 MHz, CDCl₃): δ = 8.37 (s, 3H; Ar-H), 7.88 (t, 6H, *J* = 8.0 Hz; Ar-H), 7.74 (dd, 6H, *J* = 4.7, 3.0 Hz; Ar-H), 7.45 (ddd, 6H, *J* = 19.0, 10.8, 6.2 Hz; Ar-H), 7.32 (d, 6H, *J* = 1.7 Hz; Ar-H), 1.38 (s, 54H; CH₃).

¹³C NMR (75 MHz, CDCl₃): *δ* = 151.2, 150.9, 149.9, 143.1, 140.9, 134.1, 132.1, 129.3, 128.1, 127.8, 127.5, 126.8, 126.6, 125.6, 124.1, 123.3, 120.4, 35.2, 31.9

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₈₁H₈₂N₃ 1096.6503; found 1096.6470.

Mp: >400°C.

NMR Spectra [6]

7. 7,15,23-tri(3,5-di-trifluoromethylphenyl)-6,14,22-triazatriantrylene (TAA-CF₃Ph)

0.20 g (0.63 mmol, 1.0 eq.) of 1,3,5-tribromobenzene, 0.80 g (2.09 mmol, 3.3 eq.) of 2-amino-3-(3,5-bis(trifluoromethyl))benzoylnaphthalene, 0.53 g (3.81 mmol, 6.0 eq.) of potassium carbonate, 0.0058 g (0.0063 mmol, 0.01 eq.) of $Pd_2(dba)_3$ and 0.010 g (0.019 mmol, 0.03 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered, and the filtrate was dried under reduced pressure. The residue was finally purified by column chromatography over silica gel using dichloromethane:ethyl acetate (19:1) as eluent to give 0.32 g of yellow solid (42%).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.28$ (s, 3H; Ar-H), 8.01 (s, 6H; Ar-H), 7.92 (m, 9H; Ar-H), 7.68 (s, 3H; Ar-H), 7.53 (dddd, 6H, J = 9.5, 7.9, 6.6, 1.1 Hz; Ar-H).

¹³C NMR (75 MHz, CD₂Cl₂): δ = 149.6, 145.2, 144.0, 142.4, 134.5, 132.4, 131.9, 131.4, 129.9, 128.7, 127.4, 127.1, 126.8, 126.5, 125.8, 122.7, 120.7.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₆₃H₂₈N₃F₁₈ 1168.1990, found 1168.1960. NMR Spectra [7]

8. 2-amino-N-methoxy-N-methyl-3-naphthamide

1.00 g (5.34 mmol, 1.0 eq.) of 3-amino-2-naphthoic acid was dissolved in 50 mL dichloromethane and cooled down to 0 °C. 1.72 g (6.41 mmol, 1.2 eq.) of diphenyl chlorophosphate were added dropwise and stirred for 10 min. Then, 1.30 g (12.82 mmol, 2.4 eq.) of triethylamine were added and the mixture was stirred for 10 min following by addition of 0.62 g (6.41 mmol, 1.2 eq.) of *N*,*O*-dimethylhydroxylamine hydrochloride. After overnight stirring and return to room temperature, the reaction mixture was poured into water and extracted with dichloromethane, then the organic phase was collected and the organic solvent was removed under reduced pressure. The residue was finally purified by column chromatography over silica gel with dichloromethane:ethyl acetate (1:1) as eluent to give 0.98 g of brown oil (80%).

¹H NMR (600 MHz, CDCl₃): δ = 7.86 (s, 1H; Ar-H), 7.69 (dd, 1H, *J* = 8.2, 0.6 Hz; Ar-H), 7.57 (d, 1H, *J* = 8.3 Hz; Ar-H), 7.40 (ddd, 1H, *J* = 8.2, 6.8, 1.3 Hz; Ar-H), 7.23 (m, 1H; Ar-H), 7.03 (s, 1H; Ar-H), 4.63 (s, 2H; NH), 3.58 (s, 3H; CH₃), 3.39 (s, 3H; CH₃).

¹³C NMR (150 MHz, CD₂Cl₂): δ = 169.4, 143.2, 135.58, 129.3, 128.5, 127.7, 126.7, 125.6, 123.0, 110.4, 61.4, 34.2. HRMS (ESI-Ion trap) m/z: [M + H]+ Calcd for C₁₃H₁₅N₂O₂231.1128, found 231.1125. NMR Spectra [8]

9. 2-amino-3-benzoylnaphthalene

1.30 g (5.91 mmol, 1.0 eq.) of 2-amino-N-methoxy-N-methyl-3-naphthamide were dissolved in 30 mL of freshly distilled THF and cooled to 0 °C. Then, 8.8 mL (17.7 mmol, 3 eq.) of 2 mol/L phenylmagnesium chloride solution were added dropwise to the solution. The mixture was stirred at 0° C for 5 hours, then carefully quenched with 5 mL of water. After THF evaporation under reduced pressure, the residue was dissolved in dichloromethane and washed with water. Then the organic phase was collected and the organic solvent was removed under reduced pressure. The residue was then purified by column chromatography over silica gel using dichloromethane as eluent to give 1.00 g of orange powder (68%).

¹H NMR (300 MHz, CDCl₃): δ = 7.98 (s, 1H; Ar-H), 7.80 (m, 2H; Ar-H), 7.53 (m, 6H; Ar-H), 7.19 (ddd, 1H, *J* = 8.1, 6.7, 1.2 Hz; Ar-H), 7.03 (s, 1H; Ar-H), 5.42 (s, 2H; NH).

¹³C NMR (75 MHz, CDCl₃): *δ* = 199.1, 146.1, 139.5, 137.1, 136.1, 132.1, 130.0, 129.3, 129.1, 128.3, 125.8, 125.3, 122.8, 122.7, 110.5.

HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C₁₇H₁₃NONa 270.0889; found 270.0899. NMR Spectra [9]

10. 1-(3-(2-aminonaphthalenyl)-3-(triisopropylsilyl)-2-propyn-1-one

0.66 g (3.60 mmol, 3.0 eq.) of tri*iso* propylsilylacetylene were dissolved in 20 mL of freshly distilled THF and cooled down to -78 °C. Then, 2.25 mL (3.60 mmol, 3.0 eq.) of 1.6M n-BuLi solution were added drop by drop. After stirring -78 °C for 2 hours, 0.28 g (1.20 mmol, 1.0 eq.) of 2-amino-N-methoxy-N-methyl-3-naphthamide, dissolved in 20 mL of THF, were added to the mixture drop by drop. Then, the mixture was stirred and was kept at room temperature overnight. After the reaction, 10 mL of water were slowly added to quench the excess of organolithium compounds, and then THF was removed under reduced pressure. 150 mL of water and 150 mL of dichloromethane were added to the residue. The aqueous phase was extracted three times with dichloromethane. The combined solution was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with dichloromethane as eluent to give 0.31 g of orange solid (65%).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.87$ (s, 1H; Ar-H), 7.69 (d, 1H, J = 8.3 Hz; Ar-H), 7.52 (d, 1H, J = 8.3 Hz; Ar-H), 7.42 (m, 1H; Ar-H), 7.20 (ddd, 1H, J = 8.1, 6.7, 1.2 Hz; Ar-H), 6.92 (s, 1H; Ar-H), 5.82 (s, 2H; NH), 1.22 (m, 21H; CH₃CHCH₃).

¹³C NMR (75 MHz, CDCl₃): δ = 179.7, 146.3, 138.2, 138.0, 129.9, 129.7, 126.0, 125.3, 122.8, 122.3, 110.1, 103.5, 97.4, 18.8, 11.3.

HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₂₂H₃₀NOSi 352.2091; found 352.2097. NMR Spectra [10]

11. 2-amino-3-(3,4,5-trimethoxy)benzoylnaphthalene

3.86 g (15.63 mmol, 3.0 eq.) of 5-bromo-1,2,3-trimethoxybenzene were dissolved in 25 mL of freshly distilled THF and cooled down to -78 °C. Then, 6.25 mL (15.63 mmol, 3.0 eq.) of 2.5 M n-BuLi solution were added drop by drop and the mixture was stirred at -78 °C for 2 hours. After addition of 1.20 g (5.21 mmol, 1.0 eq.) of 2-amino-N-methoxy-N-methyl-3-naphthamide, again dissolved in 20 mL of THF drop by drop, the mixture was stirred and was allowed to rise its temperature to -10 °C in 3 hours. After the reaction, 10 mL of water were carefully added to quench the excess lithium compound and the resulting mixture was concentrated under reduced pressure. Then, 200 mL of water and 200 mL of dichloromethane were added, and the aqueous phase was extracted three times with dichloromethane. The combined solution was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with dichloromethane:ethyl acetate (9:1) as eluent to give 1.60 g of yellow solid (90%).

¹H NMR (600 MHz, CDCl₃): δ = 8.00 (s, 1H; Ar-H), 7.65 (d, 1H, *J* = 8.2 Hz; Ar-H), 7.58 (d, 1H, *J* = 7.9 Hz; Ar-H), 7.44 (ddd, 1H, *J* = 9.7, 5.5, 2.1 Hz; Ar-H), 7.20 (ddd, 1H, *J* = 8.1, 6.8, 1.2 Hz; Ar-H), 7.05 (s, 3H; Ar-H), 5.42 (s, 2H; NH), 3.96 (s, 3H; CH₃), 3.86 (s, 6H; CH₃).

¹³C NMR (150.9 MHz, CDCl₃): δ = 197.9, 153.0, 145.9, 141.9, 137.0, 135.5, 134.4, 129.2, 125.9, 125.4, 123.2, 123.0, 110.5, 107.7, 61.1, 56.5.

HRMS (ESI-Ion trap) m/z: [M + H]+ Calcd for C₂₀H₂₀NO₄ 338.1387; found 338.1378. NMR Spectra [11]

12. 2-amino-3-(3,5-di-tert-butyl)benzoylnaphthalene

3.51 g (13.03 mmol, 3.0 eq.) of 1-bromo-3,5-di-*tert*-butylbenzene were dissolved in 25 mL of freshly distilled THF and cooled down to -78 °C. Then, 5.21 mL (13.03 mmol, 3.0 eq.) of 2.5 M n-BuLi solution were added drop by drop, and the mixture was stirred at -78 °C for 2 hours. 1.00 g (4.34 mmol, 1.0 eq.) of 2-amino-N-methoxy-N-methyl-3-naphthamide dissolved in 20 mL of THF were then added to the mixture drop by drop. The mixture was stirred and allowed to heat to -10 °C in 3 hours. After the reaction, 10 mL of water was slowly added to quench the excess of lithium reagent, and then THF was removed under reduced pressure. 200 mL of water and 200 mL of dichloromethane were added, and the aqueous phase was extracted three times with dichloromethane. The combined solution was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with cyclohexane:ethyl acetate (7:3) as eluent to give 0.4 g of yellow solid (26%).

¹H NMR (300 MHz, CDCl₃): δ = 8.05 (s, 1H; Ar-H), 7.70 (m, 1H; Ar-H), 7.67 (d, 2H, *J* = 1.8 Hz; Ar-H), 7.60 (dd, 2H, *J* = 11.1, 8.3 Hz; Ar-H), 7.44 (ddd, 1H, *J* = 8.3, 6.8, 1.2 Hz; Ar-H), 7.19 (ddd, 1H, *J* = 8.1, 6.8, 1.2 Hz; Ar-H), 7.05 (s, 1H; Ar-H), 5.56 (s, 2H; NH), 1.39 (s, 18H; CH₃).

¹³C NMR (75 MHz, CDCl₃): *δ* =199.9, 150.9, 146.3, 138.8, 137.0, 136.4, 129.2, 129.1, 126.2, 125.9, 125.3, 124.6, 123.1, 122.8, 110.4, 35.1, 31.5.

HRMS (ESI-Ion trap) m/z: [M + H]+ Calcd for $C_{25}H_{30}NO$ 360.2322; found 360.2314. NMR Spectra [12]

13. 2-amino-3-(3,5-bis(trifluoromethyl))benzoylnaphthalene

3.82 g (13.03 mmol, 3.0 eq.) of 1-bromo-3,5-bis(trifluoromethyl)benzene were dissolved in 25 mL of freshly distilled THF and cooled down to -78 °C. Then, 5.21 mL (13.03 mmol, 3.0 eq.) of 2.5 M n-BuLi solution were added drop by drop and the mixture was stirred at -78 °C for 2 hours. After addition drop by drop of 1.00 g (4.34 mmol, 1.0 eq.) of 2-amino-N-methoxy-N-methyl-3-naphthamide dissolved in 20 mL of THF, the mixture was stirred and was allowed to heat to -10 °C in 3 hours. After the reaction, 10 mL of water were carefully added to quench the excess lithium compound, and then THF was removed under reduced pressure. 200 mL of water and 200 mL of dichloromethane were added, and the aqueous phase was extracted three times with dichloromethane. The combined solution was concentrated under reduced pressure and the residue was purified by column chromatography over silica gel with dichloromethane:cycohexane (6:4) as eluent to give 0.6 g of yellow solid (36%).

¹H NMR (300 MHz, CDCl₃): δ = 8.20 (s, 2H; Ar-H), 8.10 (s, 1H; Ar-H), 7.85 (s, 1H; Ar-H), 7.60 (m, 2H; Ar-H), 7.47 (t, 1H, *J* = 7.6 Hz; Ar-H), 7.22 (t, 1H, *J* = 7.5 Hz; Ar-H), 7.14 (s, 1H; Ar-H), 5.68 (s, 2H; NH).

¹³C NMR (75 MHz, CDCl₃): δ = 195.89, 146.27,141.56, 137.76, 136.27, 132.14 (q, ²J_(C-H) = 32 Hz), 130.02, 129.73 (q, ³J_(C-H) = 4 Hz), 129.5, 125.8, 125.5, 125.3 (sextuplet, ³J_(C-H) = 4 Hz), 123.3, 123.1 (q, ¹J_(C-H) = 273 Hz), 121.2, 111.1. HRMS (ESI-Ion trap) m/z: [M + H]+ Calcd for C₁₉H₁₂F₆NO 384.0818; found 384.0810. NMR Spectra [13]

14. 2-Phenylaminobenzophenone

1.00 g (6.37 mmol, 1 eq.) of bromobenzene, 1.49 g (7.54 mmol, 1.2 eq.) of 2-Aminobenzophenone, 1.76 g (12.7 mmol, 2.0 eq.) of potassium carbonate, 0.020 g (0.022 mmol, 0.0035 eq.) of Pd₂(dba)₃ and 0.030 g (0.056 mmol, 0.0088 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered, and the filtrate was dried under reduced pressure. The residue was finally purified by column chromatography over silica gel using dichloromethane:pentane (1:3) as eluent to give 1.29 g of yellow solid (74%). ¹H NMR (300 MHz, CDCl₃): $\delta = 10.18$ (s, 1H; N-H), 7.74 (m, 2H), 7.54 (m, 4H), 7.36 (m, 6H), 7.12 (m, 1H), 6.73 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): *δ* =199.2, 148.1, 140.6, 139.9, 135.1, 134.3, 131.5, 129.5, 129.5, 128.2, 123.6, 122.3, 119.8, 116.7, 114.7.

HRMS (ESI-Ion trap) m/z: [M + Na]+ Calcd for C₁₉H₁₅NONa 296.1046, found 296.1034. NMR Spectra [14]

15. [1,4-Phenylenebis(imino-2,1-phenylene)]bis(phenylmethanone)

0.76 g (3.2 mmol, 1 eq.) of 1,4-dibromobenzene, 1.49 g (7.54 mmol, 2.4 eq.) of 2-Aminobenzophenone, 1.76 g (12.7 mmol, 4.0 eq.) of potassium carbonate, 0.020 g (0.022 mmol, 0.007 eq.) of Pd₂(dba)₃ and 0.030 g (0.056 mmol, 0.017 eq.) of BrettPhos were added into a dry round-bottom flask. Then, 20 mL of *t*-butanol were added into the flask. The mixture was stirred at reflux for 72 hours under nitrogen by an aluminium heating block. After cooling to room temperature, the reaction mixture was filtered, and the filtrate was dried under reduced pressure. The residue was finally purified by column chromatography over silica gel using dichloromethane:pentane (1:1) as eluent to give 1.49 g of yellow solid (99%). ¹H NMR (300 MHz, CDCl₃): δ = 10.11 (s, 2H; N-H), 7.72 (m, 4H), 7.52 (m, 8H), 7.32 (m, 8H), 6.70 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ = 199.3, 148.7, 140.0, 136.5, 135.2, 134.5, 131.4, 129.5, 128.3, 124.0, 119.5, 116.4, 114.6. HRMS (ESI-Ion trap) m/z: [M + Na]+ Calcd for C₃₂H₂₄N₂O₂Na 491.1730, found 491.1718. NMR Spectra [15]

B. Electronic properties

UV-visible absorption spectra in solution were recorded with a UV-1650PC Shimadzu spectrophotometer. Cyclic voltammetry analyses were performed using a potentiostat/galvanostat Autolab PGSTAT100 and a three-electrode device. In the CV medium, the ferrocene/ferrocenium (Fc/Fc⁺) couple has always been measured at 0,6 V vs Ag/AgCl_{sat}². Taking into account the NHE formal potential on the fermi level (-4.75 eV) and our reference electrode potential against NHE potential (0.2 V), LUMO has been estimated following the equation 1 and the half-wave reduction potential E_{λ}^{red} vs Ag/AgCl³.

 $LUMO = -4.95 - E_{\frac{1}{2}}^{red} [eV]$ (1)

where E_{λ}^{red} is the half-wave reduction potential.

To compare, C_{60}/C_{60}^{-} potential in THF is -0.23V vs. Ag/AgCl⁴.

Compounds	λ_{abs} (nm) ^a	$E_g^{opt}(eV)^b$	$E_{\aleph}{}^{red}(V)^c$	LUMO (eV) ^d	HOMO (eV) ^e	$\begin{array}{c} LUMO_{calc} \\ (eV)^{f} \end{array}$	$\begin{array}{c} HOMO_{calc} \ (eV)^{f} \end{array}$	λ_{calc} $(nm)^{g}$
TAN-Ph	232, 298	3.10	-1.47	-3.48	-6.58	-2.12	-5.99	284
TAN-MePh	233, 297	3.05	-1.49	-3.46	-6.51	-2.10	-5.88	284
TAA-Ph	278, 351	2.56	-1.11	-3.83	-6.39	-2.56	-5.39	330
TAA-Tips	286, 371	2.38	-0.80	-4.15	-6.53	-2.86	-5.44	357
TAA-OMePh	278, 354	2.53	-1.15	-3.80	-6.33	-2.56	-5.39	330
TAA-tBuPh	279, 352	2.55	-1.21	-3.74	-6.29	-2.50	-5.36	331
TAA-CF ₃ Ph	280, 353	2.56	-0.88	-4.07	-6.63	-2.76	-5.55	334

Table S-B.1. Optical, electrochemical and electronic properties of TAN and TAA derivatives

a: Two main absorption features for each compound. b: Optical bandgap calculated from the threshold of UV-vis absorption spectrum. c: Halfwave reduction potential vs Ag/AgCl. d: LUMO energy level calculated from $E_{\lambda_2}^{red}$ using equation 1. e: HOMO energy level estimated from LUMO energy and optical bandgap values. f: HOMO and LUMO energy level calculated at the B3LYP/6-31G(d) level in THF. g: Maximum absorption wavelength calculated at the CAM-B3LYP/6-311G(d) level in DCM.

Figure S-B.1. Normalized UV-vis spectra in DCM (top) and cyclic voltam-mograms in THF (bottom) of TANs and TAAs. Cyclic voltammograms were recorded at 0.1 V/s in 1 mM THF solution (0.25 M Bu4NPF6, glassy carbon as working electrode, Ag/AgCl as reference electrode).

C. Thermal properties

Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses were performed by using a STA 449 F5 Jupiter Simultaneous Thermal Analyzer (TG-DTG, DTA, DSC) from NETZSCH under an argon flow at a heating rate of 20 K.min⁻¹. The point of 5% weight loss was used to determine the temperature of thermal decomposition (Td). The different thermograms are depicted in **Figure S-C.1**.

Figure S-C.1. TGA (A,B) and DSC (C) curves for TAN-Ph (black), TAN-MePh (red), TAA-Ph (green), TAA-Tips (blue), TAA-OMePh (pink) and TAA-tBuPh (Orange).

TAN-Ph and TAN-MePh showed high thermal stability with decomposition temperature (Td) of 412°C and 402°C, respectively, the decomposition process occurring in a steep single stage. Moreover, TAA-Ph and TAA-tBuPh appeared to be even more thermally stable with decomposition temperature of 449°C and 472°C, respectively, and, once again, through a steep single decomposition stage. This suggests that the introduction of azaanthrylene arms has a beneficial effect on the thermal stability. Nonetheless, the nature of the branches also strongly affects the thermal stability. Thus TAA-OMePh and TAA-Tips are much less stable, with decomposition temperature of 397°C and 362°C, respectively, and a decomposition pathway involving at least two different steps in the last case.

On the other hand, DSC curves of TAA-OMePh and TAA-Tips exhibited no feature of any phase transition before the decomposition stage. By contrast, the DSC traces of TAN-MePh and TAA-OMePh showed an endothermic feature at 269° C (H = - 54 J.g⁻¹) and 333° C (H = -34 J.g⁻¹), respectively, that can be unambiguously assigned to melting since this temperature is far below the decomposition temperature. Similar features were also found for TAN-Ph, TAA-Ph and TAA-tBuPh at 436° C (H = - 92 J.g⁻¹), 455° C (H = - 44 J.g⁻¹) and 465° C (H = - 86 J.g⁻¹) indicating that melting took place just before the decomposition process.

D. Crystallographic data

Single crystals of all the compounds were obtained by solution diffusion method using dichloromethane and methanol as solvents. Crystallographic data were acquired at CESAMO (ISM, UMR 5255 CNRS) on a Bruker APEX 2 DUO. A single crystal was mounted and immersed in a stream of nitrogen gas [T = 150(2) K]. Data were collected, using a microfocus sealed tube of Mo K α radiation (k = 0.71073 Å) on a KappaCCD diffractometer. Data collection and cell refinement were performed using APEX2 2013.10-0 (Bruker AXS Inc.), and SAINT v8.34A (Bruker AXS Inc.). Data reduction was performed using SAINT v8.34A (Bruker AXS Inc.). Correction for absorption was performed using multi-scan integration as included in SADABS V2012/1 (Bruker AXS). Structure solutions were found by charge flipping methods (SUPERFLIP (Palatinus & Chapuis, 2007) EDMA (Palatinus et al., 2012)) and refined with (SHELXL) (G.M. Sheldrick , A short history of SHELX, Acta Crystallographica Section A, 64 (2008), pp. 112–122). Crystallographic data of all the compounds are presented in **table S-D.1**. and **table S-D.2**.

	TAN-Ph	TAN-MePh	TAA-Ph
Chemical formula	C45 H27 N3	C ₄₈ H ₃₃ N ₃	C ₃₈ H ₂₂ N ₂
Formula weight	609.69	651.77	506.57
Crystal system	Triclinic	Triclinic	Trigonal
Space group	P -1	P -1	R 3 :H
<i>a</i> / Å	11.4220(5)	11.2751(10)	26.890(2)
b/Å	11.8638(6)	12.3505(11)	26.890(2)
c/Å	13.6400(7)	13.4070(12)	9.3703(8)
a/°	115.445(2)	99.461(3)	90
β/°	98.835(2)	92.650(3)	90
γ/ °	107.484(2)	108.041(3)	120
$V / Å^3$	1503.75(13)	1741.6(3)	5867.6(10)
Ζ	2	2	9
Dcalc /mg·m ⁻³	1.347	1.243	1.290
Temperature / K	120	120	120
No. of reflections measured	46762	44512	11458
No. of independent reflections	5703	8436	5457
Residuals: R	0.0406	0.0486	0.0559
Residuals: wR ²	0.1065	0.1159	0.0995
Goodness of fit indicator	1.009	1.026	1.006

Table S-D.1. Crystallographic parameters for TAN-Ph, TAN-MePh and TAA-Ph.

 Table S-D.2. Crystallographic parameters for TAA-Tips, TAA-OMe-Ph and TAA-tBuPh.

	TAA-Tips	TAA-OMePh	TAA-tBuPh
Chemical formula	C ₇₃ H ₈₃ Cl ₂ N ₃ Si ₃	C ₆₆ H ₅₁ N ₃ O ₉	C ₈₁ H ₈₁ N ₃
Formula weight	1157.59	1030.09	1096.48
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P 21/n	P -1	P -1
<i>a</i> / Å	18.2212(10)	11.2358(6)	14.2405(16)
b/Å	10.4445(5)	15.7124(9)	17.0268(18)
c/Å	33.2572(19)	16.9610(10)	17.130(2)
a/°	90	68.562(2)	118.098(3)
β/°	91.409(2)	84.545(2)	99.825(4)
γ/ °	90	75.900(2)	99.093(3)
$V / Å^3$	6327.3(6)	2703.1(3)	3471.8(7)
Ζ	4	2	2
$D \text{calc}/\text{mg} \cdot \text{m}^{-3}$	1.215	1.266	1.049
Temperature / K	120	120	120
No. of reflections measured	98701	89514	101981
No. of independent reflections	13996	12760	13903
Residuals: R	0.0649	0.0496	0.0942
Residuals: wR ²	0.1747	0.1164	0.2703
Goodness of fit indicator	1.055	1.009	1.022

1. Geometrical parameters for each individual molecules

All molecular structures exhibit twists and bendings in single crystals. Bending and twisting angles are summarized in **table S-D.3**.

	Twist angle (°) ^a	Distance (Å) ^b	Bending angle (°) ^c	Bending radius (Å) ^d
TAN-Ph	19, 11, 4	0.73, 0.3, 0.28	-8.7, 3.5, 3.3	16, 40, 42
TAN-MePh	24, 8, 8	0.73, 0.65, 0.02	-8.7, 7.7, 0.2	16, 18, 821
TAA-Ph	13, 13, 13	0.12, 0.12, 0.12	1.4, 1.4, 1.4	101, 101, 101
	11, 11, 11	0.27, 0.27, 0.27	3.2, 3.2, 3.2	43, 43, 43
TAA-Tips	13, 13, 10	0.48, 0.39, 0.17	-5.7, 4.6, 2.0	24, 30, 70
TAA-OMePh	27, 25, 3	0.87, 0.32, 0.32	-10.3, 3.8, 3.8	14, 36, 36
TAA-tBuPh	5, 3, 3	0.2, 0.17, 0.07	2.4, 2.0, 0.8	57, 70, 180
TAA-CF ₃ Ph	/	/	/	/

Table S-D.3. Molecular structural parameters deduced from XRD.

a: Twist angles between the mean plane of the central ring and the mean plane of each branch; b: distances from the centroid of the third phenyl ring and the mean plane of central ring; c: Bending angles between the mean plane of the central ring and the line connecting the centroids of third and central phenyl rings. d: Bending radius (Å) calculated as the radius of circle connecting the centroid of the first and third ring and tangent to the mean plane of the first ring.

Figure S-D.1. Graphical representation of geometrical parameters for a single molecule listed in Table S-D.3.

2. Molecules and their closer neighbors in packing

Figures showing the molecular packing in single crystals are reported below. Only one geometrical conformation exists for **TAN-Ph**, **TAN-MePh**, **TAA-Tips**, **TAA-OMePh** and **TAA-tBuPh**. The reference molecule is dark red colored. Intermolecular contacts between this molecule and its first neighbors are shown in light blue. Molecule **TAA-Ph** exhibits two different conformations in the single crystal, colored in red and blue in the Figures below.

Close contacts between carbon atoms belonging to neighboring molecules were determined using the following criteria: a distance threshold of 2*VdW radius + 0.2 Å was applied for **TAN-Ph**, **TAN-MePh**, **TAA-Tips** and **TAA-tBuPh**, and of 2*VdW radius + 0.3 Å for **TAA-Ph** and **TAA-OMePh**. The color code is defined as follows: pink molecules can be deduced from the reference molecule (in red) by a translation operation. Molecules in light green are deduced from the reference one by an inversion operation. In **TAA-Ph**, two non-equivalent geometries are shown in red and blue for reference molecules. Then, light blue molecules correspond to the blue one after a translation operation. In all Figures, lateral substituents (branches) and hydrogen atoms have been hidden for clarity, as well as contacts from these atoms. For each compound, crystalline packing is shown normal to the three lattice planes *ab*, *bc* and *ac*.

TAN-Ph

Description: two arms of the reference molecule are connected via extended $\Box \pi$ -stacking with two arms of two inversed molecules, suggesting one efficient charge transport pathway in the $\Box \pi$ -stacking direction.

Figure S-D.2. Following three planes (100), (010) and (001), a molecule in red is represented with their closer neighbors (Symmetry operation are an inversion with the light green neighbors and identity with the light red neighbors). Blue lines correspond to C-C contacts with a distance smaller than 3.6 Å.

TAN-MePh

Description: two arms of the reference are connected via extended $\Box \pi$ -stacking with two arms of two inversed molecules, suggesting one efficient charge transport pathway in the $\Box \pi$ -stacking direction.

Figure S-D.3. Following three planes (100), (010) and (001), a molecule in red is represented with their closer neighbors (Symmetry operation are an inversion with the light green neighbors and identity with the light red neighbors). Blue lines correspond to C-C contacts with a distance smaller than 3.6 Å.

TAA-Ph

Arms of the two reference non-equivalent molecules (red and blue) are connected via small $\Box \pi - \pi$ stacking with neighbouring molecules in all directions, suggesting several but not particularly efficient charge transport pathway.

Figure S-D.4. Following three planes (100), (010) and (001), two molecules with geometry called A and B are collored in red and blue respectivly. Their closer neighbors are represented (neighbors in light red and in light blue follow the A and B geometry, respectivly). Blue lines correspond to C-C contacts with a distance smaller than 3.7 Å.

TAA-Tips

One arm of one molecule is connected via extended π - π stacking with one arm of two inversed molecules, suggesting one efficient charge transport pathway in the π -stacking direction.

Figure S-D.5. Following three planes (100), (010) and (001), a molecule in red is represented with their closer neighbors (Symmetry operation are an inversion with the light green neighbors). Blue lines correspond to C-C contacts with a distance smaller than 3.6 Å.

TAA-OMePh

One arm of one molecule is connected via extended π - π stacking with one arm of three inversed molecules; suggesting 2D charge transport pathway within molecular layers.

Figure S-D.6.: Following three planes (100), (010) and (001), a molecule in red is represented with their closer neighbors (Symmetry operation are an inversion with the light green neighbors and identity with the light red neighbors). Blue lines correspond to C-C contacts with a distance smaller than 3.7 Å.

TAA-tBuPh

No π - π interactions between molecules, suggesting no charge transport.

Figure S-D.7. Following three planes (100), (010) and (001), a molecule in red is represented with their closer neighbors (Symmetry operation are an inversion with the light green neighbors). Blue lines correspond to C-C contacts with a distance smaller than 3.6 Å.

3. Thermal ellipsoid plot

Figures showing the atomic displacements in each chemical structures are reported below. The ellipsoid contour probability has been set at 20 %.

TAN-Ph

4. Representation of packing with whole molecular structure

Figures below show the complete molecular structures of all molecules whom any atom is included in a unit cell.

TAN-Ph

Figure S-D.2. Following three planes (100), (010) and (001).

TAN-MePh

Figure S-D.3. Following three planes (100), (010) and (001).

TAA-Ph

Figure S-D.4. Following three planes (100), (010) and (001).

TAA-Tips

Figure S-D.5. Following three planes (100), (010) and (001).

Figure S-D.6.: Following three planes (100), (010) and (001).

TAA-tBuPh

Figure S-D.7. Following three planes (100), (010) and (001).
E. DFT calculations

Molecular geometries were optimized using the density functional theory (DFT) at the B3LYP/6-31G(d) level. Each structure was characterized as a minimum of the potential energy surface on the basis of its positive force constants issued by normal mode calculations. Internal reorganization energies for holes (λ_h) and electrons (λ_e) were calculated at the same level of theory, using the expression derived from the four point adiabatic potential approach:^{5–8}

$$\lambda_h = E^{(+)}(M) - E^{(0)}(M) + E^{(+)}(M^+) - E^{(0)}(M^+)$$
SII

$$\lambda_e = E^{(-)}(M) - E^{(0)}(M) + E^{(-)}(M^-) - E^{(0)}(M^-)$$
SI2

where $E^{(0)}(M)$, $E^{(+)}(M^+)$ and $E^{(-)}(M^-)$ denote the ground-state energy of the neutral, positively and negatively charged states, respectively; $E^{(+)}(M)$ [$E^{(-)}(M)$] is the energy of the neutral molecule in the optimized geometry of the cation [anion], and $E^{(0)}(M^+)$ [$E^{(0)}(M^-)$] is the energy of the cation [anion] in the optimized geometry of the neutral molecule. Ionization energies (IE) and electron affinities (EA) are defined as:

$$IE = E^{(+)}(M^+) - E^{(0)}(M)$$
 SI3

$$EA = E^{(0)}(M) - E^{(-)}(M^{-})$$
 SI4

Transfer integrals J_{ij} characterizing hole (electron) coupling between molecular pairs *ij* within the crystals were obtained by employing the projection method involving the HOMOs (LUMOs) of monomers *i* and *j*.⁹ Since the TAN-Ph compound possesses nearly degenerate HOMO (H) and HOMO-1 (H–1) levels ($E_{H-1} = -5.657$ eV and $E_H = -5.637$ eV, as calculated at the B3LYP/6-31G(d) level using the crystal geometry), effective transfer integrals for hole transport in this compound were also computed as:

$$J_{h} = \frac{1}{\sqrt{2}} \left\{ J_{H-1,H-1}^{2} + J_{H-1,H}^{2} + J_{H,H-1}^{2} + J_{H,H}^{2} \right\}^{1/2}$$
SI5

in line with previous works.^{10–12}

Transition energies towards the first optically allowed excited states were computed by means of time-dependent DFT at the CAM-B3LYP/6-311G(d) level. Solvent effects were taken into account in these calculations by using the Integral Equation Formalism of the Polarizable Continuum Model (IEF-PCM)¹³. All calculations were performed with the ORCA¹⁴ and Gaussian¹⁵ programs.

1. Molecular orbitals

A graphical representation of molecular orbitals (MOs) of the various compounds, calculated at the B3LYP/6-31G(d) level in gas phase, is given in the figures below.

TAN-Ph

Figure S-E.1. Representation of molecular orbital of TAN-Ph.

TAN-MePh

Figure S-E.2. Representation of molecular orbital of TAN-MePh.

TAA-Ph

Figure S-E.3. Representation of molecular orbital of TAA-Ph.

Figure S-E.4. Representation of molecular orbital of TAA-OMePh.

Figure S-E.5. Representation of molecular orbital of TAA-Tips.

TAA-tBuPh

Figure S-E.6. Representation of molecular orbital of TAA-tBuPh.

TAA-CF₃Ph

Figure S-E.7. Representation of molecular orbital of TAA-CF3Ph.

Figure S-E.8. Correlation between experimental and IEFPCM:B3LYP/6-31G(d) calculations in THF for (left) LUMO energies and (right) HOMO-LUMO gaps.

2. Absorption spectra

Figure S-E.9. Oscillator strengths (black bars) associated to electron excitations calculated at the IEFPCM/CAM-B3LYP/6-311G(d) level, and normalized spectra (lines), in which each transition has been enlarged by using a Gaussian function with a full width at half maximum (FWHM) equal to 0.3 eV.

3. Calculated absorption properties

TAN-Ph

HOMO = MO 159; LUMO = MO 160)						
Excited 8 147 155 155 156 157 157 158 158 158 159	State ->160 ->161 ->162 ->160 ->160 ->162 ->160 ->162 ->160 ->161	1:	Singlet-A -0.12649 0.15423 -0.14473 0.28720 0.23417 -0.12274 -0.12393 0.14420 0.38013 -0.13791	3.7646 eV	329.35 nm	±=0.0280
Excited 154 154 156 157 158 158 159 159 159	State ->160 ->161 ->160 ->160 ->160 ->162 ->160 ->161 ->162	2:	Singlet-A 0.12710 0.11615 -0.13493 0.36749 0.17947 0.25513 -0.19218 -0.27894 -0.15156	3.7970 eV	326.54 nm	f=0.0342
Excited 155 155 156 156 158 159 159	State ->160 ->161 ->161 ->162 ->160 ->160 ->161 ->162	3:	Singlet-A -0.30425 0.10121 -0.10199 0.12589 0.42418 0.19251 -0.17100 0.13357	3.8507 eV	321.98 nm	f=0.2804
Excited 145 155 155 156 156 158 158 158 159 159	State ->160 ->160 ->161 ->160 ->161 ->161 ->160 ->161 ->161 ->162	4:	Singlet-A 0.12264 0.31366 -0.12961 -0.10523 0.17472 0.31522 -0.17930 0.27464 0.11035 -0.11132	3.8713 eV	320.27 nm	f=0.1604
Excited 148 154 155 155 156 156 158 158	State ->160 ->160 ->161 ->162 ->160 ->161 ->160 ->161	5:	Singlet-A -0.13679 -0.14331 -0.12928 0.10828 -0.22746 0.12854 -0.15513 0.19597	3.9111 eV	317.01 nm	f=0.1270

158	->162		0.25718			
159	->160		0.19206			
159	->161		-0.17767			
159	->162		0.30530			
Excited	State	6:	Singlet-A	3.9440 eV	314.36 nm	f=0.1944
154	->160		-0.17700			
154	->161		-0.12373			
154	->162		-0.15913			
155	->160		0.13938			
150 150	->160		0.30997			
150	->160		0.10270			
158	->161		0.21900			
159	->160		-0 26210			
159	->161		-0.10215			
159	->162		0.10922			
Excited	State	7:	Singlet-A	3.9687 eV	312.40 nm	f=0.0069
146	->160		0.13663			
154	->160		0.36980			
154	->161		0.14360			
155	->160		0.12647			
155	->162		-0.11048			
156	->162		-0.24931			
157	->160		-0.13046			
158 150	->161		0.30816			
109	-/102		0.10373			
Excited	State	8:	Singlet-A	4.2409 eV	292.35 nm	f=0.1219
149	->160		-0.12412			
150	->160		-0.16837			
155	->160		-0.14617			
157	->162		-0 24057			
158	->164		-0.12327			
159	->162		0.10257			
159	->163		-0.13479			
Excited	State	9:	Singlet-A	4.2548 eV	291.40 nm	f=0.3018
149	->160		-0.16611			
150	->160		0.13359			
152	->160		0.13702			
157	->161		0.20412			
157	->162		0.44742			
158 150	->162		0.22286			
150	->161		-0.13040			
159	->164		0.12041			
Fraitad	Stato	10.	Singlot-1	1 2750 017	283 31 nm	f=2 1000
157	->161	±0.	-0.12313	7.3/30 EV	203.34 1111	1-2.1090
157	->164		0.10719			
158	->161		-0.41910			
158	->162		0.10116			
159	->160		-0.10743			
159	->161		0.11305			
159	->162		0.43041			

Excited	State	11:	Singlet-A	4.38	40 eV	282.81	nm	f=1.9613
157	->162		-0.24488					
157	->163		-0.11737					
158	->160		0.10487					
158	->161		0.12680					
158	->162		0.36789					
159	->161		0.40219					
159	->162		-0.11663					

TAN-MePh

(HOMO = MO 171; LUM	0 = MO 1	.72)			
Excited State 160 -> 172 167 -> 172 168 -> 173 168 -> 174 169 -> 172 169 -> 172 169 -> 174 170 -> 173 171 -> 173	1:	Singlet-A -0.14537 -0.21200 0.15688 -0.14716 0.21732 -0.15061 -0.10774 0.44551 -0.15262	3.7093 eV	334.25 nm	f=0.0152
Excited State 167 -> 172 169 -> 172 169 -> 173 170 -> 172 170 -> 174 171 -> 172 171 -> 173 171 -> 174	2:	Singlet-A 0.13423 0.32183 0.14495 0.30444 0.25383 -0.15808 -0.23627 -0.15589	3.7620 eV	329.57 nm	f=0.0341
Excited State 157 -> 172 160 -> 174 167 -> 172 167 -> 173 168 -> 172 168 -> 174 169 -> 172 169 -> 172 169 -> 173 170 -> 172 171 -> 173	3:	Singlet-A 0.12658 0.11348 0.12260 -0.15723 0.39252 -0.16560 0.13757 0.11080 -0.22470 0.21256 -0.16669	3.7985 eV	326.40 nm	f=0.1199
Excited State 167 -> 172 167 -> 173 168 -> 172 169 -> 172 170 -> 172 170 -> 173 171 -> 172	4:	Singlet-A 0.16614 -0.11706 0.15669 -0.25236 0.41980 -0.13460 0.24169	3.8660 eV	320.71 nm	f=0.2781
Excited State 159 -> 172 166 -> 172 167 -> 172	5:	Singlet-A 0.13420 -0.20543 0.23631	3.9042 eV	317.57 nm	f=0.1165

167 168 169 170 170 171 171	-> 173 -> 174 -> 174 -> 173 -> 174 -> 172 -> 173 -> 174		-0.22690 0.10586 -0.17962 0.13641 0.24306 0.16584 -0.20446 0.24979			
Excited 166 167 167 168 168 169 170 170 171 171 171	State -> 174 -> 172 -> 173 -> 172 -> 173 -> 174 -> 172 -> 173 -> 172 -> 173 -> 174	6:	Singlet-A 0.10627 0.30770 0.10876 -0.21680 -0.11433 0.12875 -0.22493 -0.19938 0.24760 0.10487 -0.11795	3.9416 eV	314.56 nm	f=0.2567
Excited 158 166 167 168 169 170 171 171	State -> 172 -> 172 -> 174 -> 174 -> 172 -> 173 -> 172 -> 174	7:	Singlet-A 0.12080 0.36131 0.21088 -0.15022 -0.11634 0.32180 0.10161 0.21319	3.9608 eV	313.03 nm	f=0.0056
Excited 162 165 166 169 169 171	State -> 172 -> 172 -> 173 -> 173 -> 174 -> 175	8:	Singlet-A -0.19331 -0.13126 -0.14516 0.49989 -0.21730 -0.13116	4.2287 eV	293.20 nm	f=0.1159
Excited 161 164 166 169 169 170 170 171 171 171	State -> 172 -> 172 -> 173 -> 174 -> 174 -> 174 -> 174 -> 175 -> 173 -> 174 -> 175 -> 173	9:	Singlet-A -0.18679 -0.13147 -0.12637 -0.12433 0.13226 0.32059 0.35575 -0.12208 0.22462 0.11386 0.10379	4.2397 eV	292.43 nm	f=0.3677
Excited 166 170 171	State -> 173 -> 173 -> 174	10:	Singlet-A 0.13692 -0.43074 0.43263	4.3654 eV	284.01 nm	f=2.0390
Excited	State	11:	Singlet-A	4.3781 eV	283.19 nm	f=1.7665

166	->	174	0.14387
169	->	173	-0.13410
169	->	174	-0.33589
169	->	175	-0.11937
170	->	172	0.12174
170	->	174	0.25902
171	->	173	0.39310

TAA-Ph

(HOMO = MO 198;	LUMO = MO	199)			
Excited State 196 -> 2 197 -> 2 198 -> 1	e 1: 201 200 .99	Singlet-A -0.26901 0.25232 0.58087	2.9668 eV	417.90 nm	f=0.0022
Excited Stat 196 -> 1 196 -> 2 197 -> 1 198 -> 2 198 -> 2	2: 299 200 299 200 201	Singlet-A -0.33130 0.10992 0.47921 0.19187 0.23923	3.0863 eV	401.72 nm	f=0.0438
Excited Stat 196 -> 1 197 -> 1 197 -> 2 198 -> 2 198 -> 2	200 200 201	Singlet-A 0.47952 0.33206 0.14726 0.22447 -0.20707	3.1024 eV	399.64 nm	f=0.0231
Excited Stat 187 -> 1 191 -> 2 192 -> 2 194 -> 1 196 -> 2 196 -> 2 197 -> 2 197 -> 2 198 -> 2	4: 99 200 201 99 200 202 200 201 205	Singlet-A 0.14779 -0.10289 -0.14797 -0.11506 0.37741 0.10652 -0.12544 0.39761 0.12180	3.4967 eV	354.58 nm	f=0.0099
Excited Stat 187 -> 2 191 -> 1 191 -> 2 192 -> 1 192 -> 2 193 -> 1 194 -> 1 195 -> 1 196 -> 2 197 -> 1 197 -> 2 198 -> 2 198 -> 2	5: 201 299 201 299 200 299 200 201 299 200 200 200 200 200 200 200	Singlet-A -0.11482 0.13044 -0.11019 0.20129 -0.11714 0.10254 0.14177 -0.27875 0.14166 -0.18226 0.17911 0.34177 -0.10827	3.5424 eV	350.00 nm	f=0.5487
Excited Stat 185 -> 1 192 -> 1 193 -> 2	e 6: .99 .99 200	Singlet-A -0.12424 0.15731 -0.10960	3.5496 eV	349.29 nm	f=0.1609

194 194 195 196 198 198	-> 199 -> 200 -> 201 -> 199 -> 200 -> 200 -> 201		0.20452 -0.17095 0.10131 0.38513 0.16567 0.18685 0.21634			
Excited 187 191 192 192 193 194 195 196 196 198	State -> 200 -> 199 -> 201 -> 200 -> 199 -> 199 -> 199 -> 200 -> 201	7:	Singlet-A 0.11833 -0.28068 0.15926 0.11423 -0.17232 0.15376 -0.20304 0.19660 0.12939 0.32831	3.5674 eV	347.55 nm	f=0.3331
Excited 181 192 193 194 194 195 195 196 197 197 198	State -> 199 -> 199 -> 201 -> 201 -> 200 -> 201 -> 201 -> 200 -> 201 -> 201 -> 200	8:	Singlet-A 0.10932 -0.18601 0.11920 0.39957 -0.10506 -0.17048 0.17541 0.12872 0.11553 0.11591 -0.19772	3.5923 eV	345.14 nm	f=0.1852
Excited 182 185 191 191 193 193 193 195 195 196 197 198	State -> 199 -> 200 -> 199 -> 200 -> 200 -> 201 -> 200 -> 201 -> 201 -> 201 -> 201	9:	Singlet-A 0.11692 0.10658 -0.18271 -0.10898 0.41848 0.13336 0.12982 -0.12671 -0.18081 -0.13816 0.15364 0.13830	3.6380 eV	340.80 nm	f=0.2251
Excited 192 193 195 196 196 197 197 198 198	State -> 199 -> 201 -> 200 -> 201 -> 200 -> 201 -> 200 -> 202	10:	Singlet-A 0.18127 0.13841 -0.10306 0.13521 0.33507 0.31472 -0.13922 -0.27344 -0.16342	3.7588 eV	329.85 nm	f=2.4562
Excited	State	11:	Singlet-A	3.7800 eV	328.00 nm	f=2.5836

191	->	199	0.19858
196	->	200	-0.32799
196	->	201	0.13607
197	->	200	0.14629
197	->	201	0.35290
198	->	201	0.23615
198	->	203	-0.14136

TAA-tBuPh

294 -> 296

-0.12089

(HOMO = MO 294; LUMO = MO 295) 2.9726 eV 417.08 nm f=0.0010 Excited State 1: Singlet-A 292 -> 297 -0.26503 293 -> 296 0.24686 294 -> 295 0.57941 Excited State 2: Singlet-A 3.0916 eV 401.04 nm f=0.0398 292 -> 295 -0.36831 293 -> 295 0.44919 293 -> 296 0.12036 294 -> 296 0.14904 294 -> 297 0.26887 Excited State 3: Singlet-A 3.1078 eV 398.95 nm f=0.0168 292 -> 295 0.44891 293 -> 295 0.37137 293 -> 296 0.10295 294 -> 296 0.26244 294 -> 297 -0.16525 3.4867 eV 355.59 nm f=0.0672 Excited State 4: Singlet-A 290 -> 295 0.12634 291 -> 295 0.35235 291 -> 296 0.14324 291 -> 297 -0.16194 292 -> 296 0.31216 293 -> 296 -0.15631 293 -> 297 0.22306 Excited State 5: 3.4994 eV 354.30 nm f=0.0285 Singlet-A 0.15300 282 -> 295 290 -> 295 -0.25626 290 -> 296 0.23504 291 -> 295 0.36428 291 -> 297 -0.11403 292 -> 296 -0.13678 293 -> 296 0.10733 293 -> 297 -0.25880 Excited State 6: Singlet-A 3.5315 eV 351.08 nm f=0.2874 283 -> 295 -0.10778 290 -> 295 0.38537 290 -> 296 -0.14663 291 -> 296 0.15989 291 -> 297 -0.11781 292 -> 296 -0.13725 292 -> 297 -0.19674 293 -> 297 -0.22653

Excited State 284 -> 296 285 -> 295 286 -> 295 288 -> 295 289 -> 295 290 -> 295 292 -> 295 292 -> 296 293 -> 295 293 -> 299 294 -> 296 294 -> 297	7: - - -	Singlet-A 0.10117 0.20665 0.10638 0.12068 0.20133 0.12107 0.13701 0.13701 0.19640 0.14915 0.11039 0.36267 0.12394	3.5514 eV	349.11 nm	f=0.2900
Excited State 283 -> 296 284 -> 295 285 -> 295 286 -> 295 287 -> 295 289 -> 295 292 -> 295 292 -> 295 293 -> 295 293 -> 297 294 -> 297 294 -> 297	8: - - - -	Singlet-A 0.11389 0.22361 0.10593 0.11503 0.20362 0.10984 0.16219 0.11866 0.13834 0.10625 0.16485 0.35988	3.5635 eV	347.92 nm	f=0.4331
Excited State 279 -> 295 284 -> 295 289 -> 295 289 -> 297 291 -> 297 294 -> 297	9: 	Singlet-A 0.10034 0.10103 0.41839 0.25877 0.11651 0.19669	3.5929 eV	345.08 nm	f=0.0497
Excited State 285 -> 295 290 -> 295 292 -> 297 293 -> 296 294 -> 296 294 -> 298 294 -> 299	10: 	Singlet-A 0.10957 0.11274 0.37040 0.35538 0.28068 0.15643 0.11442	3.7571 eV	330.00 nm	f=2.6292
Excited State 284 -> 295 289 -> 295 292 -> 296 293 -> 297 294 -> 297 294 -> 298 294 -> 299	11: - - -	Singlet-A 0.11543 0.13527 0.35989 0.37682 0.23967 0.10815 0.13490	3.7811 eV	327.90 nm	f=2.6360
TAA-OMePh (HOMO = MO 270; LUN	/IO = MO 27	71)			

Excited State 1: Singlet-A 2.9642 eV 418.28 nm f=0.0015 268 -> 272 -0.12192 268 -> 273 0.24124

269 269 270	-> 272 -> 273 -> 271		0.22701 0.13916 0.58015			
Excited 268 269 270 270	State -> 271 -> 272 -> 271 -> 271 -> 272 -> 273	2:	Singlet-A 0.27162 -0.10353 0.51748 0.15778 0.25869	3.0745 eV	403.26 nm	f=0.0445
Excited 268 269 269 270 270	State -> 271 -> 271 -> 272 -> 272 -> 273	3:	Singlet-A 0.51674 -0.26924 -0.13009 -0.25394 0.16466	3.0959 eV	400.48 nm	f=0.0206
Excited 257 258 258 266 266 266 267 269	State -> 271 -> 271 -> 272 -> 271 -> 272 -> 271 -> 271 -> 272	4:	Singlet-A -0.15319 -0.14268 0.11871 0.44223 -0.27347 0.24171 0.14794	3.4193 eV	362.60 nm	f=0.0238
Excited 257 257 258 266 266 267 267 267 267 268 269	State -> 271 -> 273 -> 271 -> 271 -> 273 -> 271 -> 272 -> 273 -> 272 -> 272	5:	Singlet-A -0.12704 0.11985 0.17483 -0.26604 0.10130 0.41738 0.19888 -0.19840 0.13310 0.13924	3.4364 eV	360.80 nm	f=0.0874
Excited 259 260 261 267 268 268 268 269 269 270	State -> 271 -> 272 -> 273 -> 271 -> 272 -> 273 -> 272 -> 273 -> 273 -> 277	6:	Singlet-A 0.16953 -0.12911 -0.15833 0.16128 -0.29652 -0.23065 -0.13131 0.36500 -0.11695	3.5078 eV	353.45 nm	f=0.0421
Excited 259 260 261 265 268 268 268 268 268	State -> 273 -> 272 -> 271 -> 271 -> 271 -> 272 -> 275 -> 271	7:	Singlet-A -0.11221 0.10061 0.30988 -0.20075 0.12293 0.13221 -0.10630 -0.15112	3.5412 eV	350.12 nm	f=0.3662

269 -> 270 ->	> 272 > 272		0.13114 0.37637			
Excited St 260 -> 261 -> 262 -> 265 -> 265 -> 268 -> 268 -> 268 -> 269 -> 269 -> 269 -> 270 ->	tate > 271 > 271 > 271 > 271 > 273 > 273 > 271 > 272 > 271 > 273 > 273 > 273 > 273	8:	Singlet-A -0.26476 0.15018 -0.12773 0.21578 0.10637 -0.10979 -0.20545 -0.14752 -0.13461 0.15112 0.30000	3.5535 eV	348.91 nm	f=0.6149
Excited St 256 -> 260 -> 265 -> 265 -> 265 -> 268 -> 269 -> 270 ->	tate > 271 > 271 > 271 > 271 > 273 > 273 > 271 > 275 > 273	9:	Singlet-A 0.12765 0.18893 -0.15285 0.31898 0.20993 0.14087 0.10138 -0.30407	3.5796 eV	346.36 nm	f=0.0039
Excited St 261 -> 267 -> 268 -> 269 -> 270 -> 270 ->	tate > 271 > 271 > 273 > 272 > 272 > 272 > 274	10:	Singlet-A -0.14008 0.10741 0.36648 -0.34958 0.28388 0.16581	3.7428 eV	331.26 nm	f=2.6282
Excited St 260 -> 263 -> 265 -> 268 -> 269 -> 270 -> 270 ->	tate > 271 > 271 > 271 > 272 > 273 > 273 > 273 > 275	11:	Singlet-A 0.13617 -0.18000 0.11280 0.33021 0.34884 0.24432 -0.12926	3.7711 eV	328.77 nm	f=2.4596
TAA-Tips	00.1111	10 - MO	280)			
Excited Sta	.oo; LUIV at.e	1 : UIVI = UIU	Singlet-A	2.7164 eV	456.43 nm	f=0.0131
286 -> 287 -> 288 ->	> 291 > 290 > 289	±•	0.24514 -0.21951 0.59973	2.7101 60	100.40 Imt	- 0.0101
Excited St 286 -> 287 -> 287 -> 288 -> 288 ->	tate > 289 > 289 > 290 > 290 > 291	2:	Singlet-A -0.22690 0.56174 -0.13683 -0.19717 -0.17762	2.8424 eV	436.19 nm	f=0.0597
Excited St 286 ->	tate > 289	3:	Singlet-A 0.56112	2.8592 eV	433.64 nm	f=0.0360

287 287 288 288	-> 289 -> 290 -> 290 -> 291		0.22586 -0.13532 -0.15585 0.23801			
Excited 284 285 286 286 287 287 287 288 288	State -> 290 -> 291 -> 290 -> 291 -> 290 -> 291 -> 291 -> 291 -> 291	4:	Singlet-A -0.13074 -0.15180 0.38351 0.11144 -0.10912 0.40591 -0.18075 -0.10904	3.3169 eV	373.79 nm	f=0.0113
Excited 285 286 287 287 288	State -> 289 -> 291 -> 289 -> 290 -> 290	5:	Singlet-A -0.36979 0.17960 0.18569 0.26953 0.37314	3.3506 eV	370.04 nm	f=0.6795
Excited 284 284 286 286 288	State -> 289 -> 290 -> 289 -> 290 -> 290 -> 291	6:	Singlet-A 0.32907 -0.11704 -0.18188 0.29193 0.39709	3.3865 eV	366.11 nm	f=0.6891
Excited 281 283 285 286 287 288 288	State -> 289 -> 290 -> 289 -> 291 -> 290 -> 290 -> 292	7:	Singlet-A 0.15302 0.10266 0.13002 -0.26353 -0.28916 0.38332 0.12996	3.4570 eV	358.65 nm	f=1.1279
Excited 276 281 282 282 283 284 285 286 286 287 288	State -> 289 -> 290 -> 289 -> 291 -> 291 -> 289 -> 289 -> 289 -> 290 -> 291 -> 291	8:	Singlet-A -0.15091 -0.10992 0.32885 -0.14095 -0.15419 0.13723 0.11928 0.18874 -0.25667 -0.20116	3.4854 eV	355.72 nm	f=0.4620
Excited 273 273 278 280 281 281 282 282	State -> 289 -> 290 -> 289 -> 289 -> 289 -> 290 -> 290 -> 289 -> 290	9:	Singlet-A -0.15355 -0.10309 -0.10283 0.16427 -0.21636 -0.18117 0.24399 0.14423	3.5352 eV	350.71 nm	f=0.6046

283 -> 289 286 -> 290 287 -> 291 288 -> 291	-0.20024 -0.16584 0.24547 0.14542			
Excited State 273 -> 289 280 -> 289 282 -> 289 282 -> 290 282 -> 291 283 -> 289 286 -> 290 287 -> 291 288 -> 291	10: Single 0.12780 -0.20327 0.16758 -0.12923 -0.17486 0.29091 -0.22754 0.25403 0.14370	et-A 3.5772 ev	7 346.60 nm	f=0.7937
Excited State 271 -> 289 274 -> 289 280 -> 291 281 -> 289 281 -> 291 282 -> 290 283 -> 289 286 -> 291 287 -> 290	11: Single 0.10661 0.12195 0.10484 0.38598 0.13756 -0.11417 -0.13410 0.22305 0.16256	et-A 3.6360 eV	7 340.99 nm	f=0.6576
TAA-CF₃Ph				
(HOMO = MO 294; LUN	/IO = MO 295)	2 9269 01	123 61 nm	f-0 0032
292 -> 297 293 -> 296 294 -> 295	-0.26963 -0.25810 0.58414	. A 2.5205 ev	423.01 Ind	1-0.0032
Excited State 292 -> 295 292 -> 296 293 -> 295 293 -> 297 294 -> 296 294 -> 297	2: Single -0.16707 -0.12865 0.56460 -0.11885 -0.26940 0.12134	et-A 3.0439 eV	7 407.32 nm	f=0.0315
Excited State 292 -> 295 293 -> 295 293 -> 296 294 -> 296 294 -> 297	3: Single 0.56099 0.16197 -0.16561 -0.12086 -0.27663	et-A 3.0565 eV	7 405.65 nm	f=0.0363
Excited State 286 -> 295 290 -> 296 291 -> 297 292 -> 296 293 -> 297 294 -> 296 294 -> 307	4: Single 0.16465 0.13769 -0.16927 -0.36822 0.42621 0.11535 0.13166	et-A 3.4812 eV	7 356.16 nm	f=0.0242

Excited 286 290 291 291 292 293 294	State -> 297 -> 296 -> 295 -> 296 -> 296 -> 295 -> 295	5:	Singlet-A 0.12860 -0.10245 -0.37550 -0.10014 0.21658 0.19837 0.38871	3.5151 eV	352.72 nm	f=0.4461
Excited 286 290 290 292 292 293 293 294	State -> 296 -> 295 -> 296 -> 296 -> 296 -> 296 -> 297	6:	Singlet-A -0.13331 -0.36730 0.11950 0.21005 -0.10446 0.11469 0.41521	3.5417 eV	350.07 nm	f=0.4491
Excited 288 289 289 291 292 292 293 293 293 293	State -> 296 -> 297 -> 295 -> 296 -> 296 -> 297 -> 296 -> 297 -> 296	7:	Singlet-A 0.10402 0.10847 0.31925 0.10880 0.17915 -0.23123 0.12158 -0.12108 -0.25715 0.27839	3.6847 eV	336.49 nm	f=1.6076
Excited 288 289 289 290 292 293 293 293 294	State -> 295 -> 295 -> 296 -> 295 -> 297 -> 296 -> 297 -> 297	8:	Singlet-A 0.15324 0.14230 0.11694 -0.10921 -0.32625 0.36740 -0.11448 -0.25620	3.7237 eV	332.96 nm	f=2.3040
Excited 287 287 288 289 289 289 290 292 293 294	State -> 295 -> 296 -> 296 -> 295 -> 297 -> 295 -> 296 -> 297 -> 296	9:	Singlet-A 0.10386 -0.10647 0.15522 0.38836 0.11806 0.10120 0.27106 0.27302 -0.13546	3.7414 eV	331.38 nm	f=1.0557

4. Ionization energies (IE), Electron affinities (AE)

Table S-E.1a: Total electronic energies of the neutral and charged systems used to calculate the IP, EA and internal reorganization energies for holes and electrons. All values are given in atomic units and are issued from B3LYP/6-31G(d) calculations in the gas phase.

compound	neutral (optimized)	anion (optimized)	cation (optimized)
TAN-Ph	-1895.362357	-1895.396003	-1895.114186
TAN-MePh	-2013.315957	-2013.348170	-2013.072927
TAA-Ph	-2356.275805	-2356.329814	-2356.050654
TAA-Tips	-3825.225748	-3825.294413	-3825.000768
TAA-OMePh	-3386.940213	-3386.996633	-3386.717890
TAA-tBuPh	-3299.804369	-3299.858166	-3299.582773

	anion (in the geometry of	cation (in the geometry of	neutral (in the geometry	neutral (in the geometry
compound	the neutral compound)	the neutral compound)	of the anion)	of the cation)
TAN-Ph	-1895.394242	-1895.110397	-1895.360615	-1895.35765
TAN-MePh	-2013.346423	-2013.069302	-2013.314078	-2013.311643
TAA-Ph	-2356.328504	-2356.049940	-2356.274506	-2356.273467
TAA-Tips	-3825.291814	-3824.999355	-3825.224374	-3825.224270
TAA-OMePh	-3386.994908	-3386.715321	-3386.938495	-3386.936612
TAA-tBuPh	-3299.857166	-3299.581356	-3299.802454	-3299.803037

Table S-E.1b: Ionization energies (IE), Electron affinities (AE) and Internal Reorganization Energies (λ i), for Hole (h) and Electron (e) Transport

Compounds	IE (eV)ª	EA (eV)ª	λ _h (eV) ^b	λ_e (eV) ^b
TAN-Ph	6.753	0.916	0.231	0.095
TAN-MePh	6.613	0.877	0.216	0.099
TAA-Ph	6.126	1.470	0.083	0.071
TAA-Tips	6.122	1.868	0.079	0.108
TAA-OMePh	6.049	1.535	0.168	0.094
TAA-tBuPh	6.030	1.464	0.075	0.079

a: calculated from differences in the total energies of the charged and neutral molecules in their optimized geometries. b: calculated using the four point adiabatic potential approach (see ESI section 5 for details).

5. Transfer integrals

Table S-E.2. Transfer integrals (with absolute values larger than 2 meV) between a reference molecule (i) and its	s first
neighbors (j), calculated for holes (h) and electrons (e) at the B3LYP/6-31G(d) level.	

Compound	Direction ^a	d _{i-j} (Å) ^b	J _h (meV) ^c	J _e (meV) ^c	Dimer
TAN DL		5 852	12 (68)	(7	relation
	(0.52, 0.02, 0.13)	5.055	12(08) 15(24)	6/	$\frac{1}{4}$
P1	(-0.48, 0.02, 0.13)	0.073	13 (24)	5	$\frac{1}{1}$
	(-0.52, -1.02; -0.12)	10.888		2	1
	$\pm (0, 0, 1)$	13.640	7(10)	5	$\frac{1}{4}$
	(-0.52, -1.02, -1.13)	13.721	1 (4)	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	1
	$\pm (1, 1, 0)$ $\pm (1, 1, 1)$	13.///	1(9)	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$	1
TAN-MePh	$\pm (1, 1, 1)$	6 162	15	2	1
	(0.02, 0.03, 0.46)	7 272	15	3	$\frac{1}{1}$
PI	(0.02, 0.03, -0.53)	12 052	0	4/	$\frac{1}{4}$
	(0.02, -0.90, -0.53)	12.932	0	3	$\frac{1}{4}$
	(0.02, 1.03, 0.46)	13.181	/	14	$\frac{1}{1}$
	(1.02, 0.03, -0.53)	13.812	13		1
	$\pm (1, 1, 0)$	13.907	0	0	$\frac{1}{1}$
	(1.02, 1.03, 0.40)	14.340	0	1	1
IAA-Ph	(0, 0, -0.45)	4.194	39	72	A→B
R3	(0, 0, 0.55)	5.177	8	8	A→B
	(-2/3, -1/3, 0.22)	15.660	0	12	A→B
	(1/3, 2/3, 0.22)	15.660	0	12	A→B
	(1/3, -1/3, 0.22)	15.660	0	12	A→B
	$\pm(-1/3, 1/3, 1/3)$	15.836	10	6	1
	$\pm (-1/3, -2/3, 1/3)$	15.836	10	6	l
TAA Ting	$\pm (2/3, 1/3, 1/3)$	15.836	10	6	1
1AA-11ps D2 /m	(0.09, 0.22, -0.22)	/.881	/	90	1
P21/II	$(-0.41, \pm 1/2, 0.28)$	13.131		2	$\frac{21}{1}$
	(0.09, 1.22, -0.22) $(0.59 \pm 1/2, 0.28)$	14.792	2	9	1
TAA-OMePh	$(0.33, \pm 1/2, 0.23)$	0.522	22	2 95	<u>Z/I</u>
	(-0.43, 0.01, -1/3)	9.322	23	05	$\frac{1}{1}$
P1	(0.37, -0.39, -1/3)	10.404	39	8.5	$\frac{1}{1}$
	-(0.43, -0.39, -1/3)	11.//1	2		$\frac{1}{1}$
	(-0.43, -0.39, 2/3)	11.933	/	41	
	(0.57, 0.01, -1/5) +(0, 1, 0)	12.130	5	3	1
	$\pm (0, 0, 1)$	16.961	4	7	1
	$\pm (0, -1, 1)$	18.432	3	0	
TAA-tBuPh			Ì		
P1	(-0.46, -0.96, -0.94)	15.902	3	3	$\overline{1}$

^a Crystallographic directions corresponding to intermolecular vectors joining one central molecule with its neighbours are given in the basis of direct lattice vectors. ^b d_{i-j} is the distance (in Å) between the centers of mass of molecules i and j. ^c values in parentheses are calculated using equation SI5 accounting for the close degeneracy of the two highest occupied MOs. ^d Symmetry relationship linking molecules i and j. When i and j possess identical geometry, symmetry operations are given, otherwise dimers are described as A→B. B→B dimers do not have close contacts, so that all integral transfers for those dimers are negligible.

Figure S-E.10. Molecular packing within the investigated crystals, with values of the main electron and hole transfer integrals between the reference molecule (in red) and its first neighbors for TAN-Ph, TAN-PhMe an TAA-Ph. Lattice vectors a, b and c are represented in red, green and blue, respectively. In all structures, lateral substituents and hydrogen atoms have been omitted for clarity.

6. Molecular structures

TAN-Ph

No imaginary	frequency			
Energies (in	atomic units):			
Electronic e	nergy = -1895.362	235747		
Zero-point c	orrection=		0.587338	
Thermal corr	ection to Energy=		0.621996	
Thermal corr	ection to Enthalpy=	=	0.622940	
Thermal corr	ection to Gibbs Fre	e Energy=	0.515976	
Sum of elect	ronic and zero-poir	nt Energies=	-1894.7	75019
Sum of elect	ronic and thermal H	Inergies=	-1894.7	40361
Sum of elect	ronic and thermal H	Inthalpies=	-1894.7	39417
Sum of elect	ronic and thermal H	ree Energies=	-1894.8	46381
Cartesian co	ordinates (in Angst	röms):		
Ν	-0.71886500	-2.69736500	0.00232200	
Ν	2.65463600	0.67357900	0.40521500	
Ν	-1.90953500	1.91998900	-0.46378500	
С	0.37545300	1.39881700	-0.00541100	
С	0.19875800	-3.68495300	-0.06168400	
C	2.13458300	3.04861000	0.36423700	
C	0.76180600	2.74378300	0.10903700	
C	-3,72293200	0.31813000	-0.22675400	
C	-1 40287800	-0 40915700	-0.01833000	
C	1 39368000	0.38949500	0.01000000	
C	2 02138300	-2 05115700	-0.13436200	
C	1 05249600	-1 04407200	-0 00196400	
C	1 59851100	-3 /1589100	-0 16437000	
C	-3 22684300	1 62775300	-0.51050000	
C	-2 77166500	_0 72194900	0.01196100	
C	2.01727700	1 06022500	0.01180100	
C	1 02100500	1.90023300	0.31734200	
C	-1.03108500	0.97349700	-0.18899700	
C	3.48921100	-1.80111800	-0.30692000	
C	-0.33385100	-1.43411800	0.02054800	
C	-0.1663/900	3.91846400	0.01/52500	
C	2.63943200	4.3/490/00	0.49775100	
H	1.96234700	5.21340500	0.38554400	
C	4.38833600	-2.035/5000	0.74236600	
H	4.00643500	-2.32/0/300	1./1692500	
С	-3.33032400	-2.07980000	0.31199600	
С	-4.13363900	2.68066100	-0.81482700	
H	-3.71292700	3.65885000	-1.02500900	
С	2.01016800	-5.81169200	-0.29661100	
Н	2.70378300	-6.64224900	-0.39624900	
С	2.48817900	-4.52132800	-0.29893000	
Н	3.55125800	-4.33721400	-0.39903000	
С	-0.26755300	-5.02933300	-0.05801400	
H	-1.33779400	-5.18756200	0.02968100	
С	5.76010200	-1.87585500	0.54956200	
H	6.44362200	-2.05384900	1.37600000	
С	-5.48829900	2.44900400	-0.81430600	
Н	-6.18089100	3.25523300	-1.04102500	
С	-3.43621400	-2.51631400	1.63903200	
Н	-3.04328000	-1.89416900	2.43859600	
С	3.97104100	4.59547500	0.76548400	
Н	4.33870700	5.61346200	0.86227900	

С	-0.32373400	4.60848000	-1.19173700
H	0.16677000	4.23573200	-2.08673900
С	-1.58358900	5.56321100	1.10398400
H	-2.06568500	5.93432400	2.00478500
С	0.62191800	-6.07089700	-0.16847300
H	0.26492400	-7.09737600	-0.16599500
С	4.41829200	2.21726600	0.79738000
H	5.07705500	1.36082000	0.89967400
С	4.87024100	3.50946200	0.91677100
H	5.91859100	3.70495300	1.12611900
С	-5.99041200	1.15986600	-0.50371400
H	-7.06382000	0.99102500	-0.49188300
С	-4.44805600	-4.11025900	-0.41123500
Н	-4.84666300	-4.72399000	-1.21512900
С	-5.13461500	0.12182000	-0.21391400
H	-5.53163400	-0.85831800	0.02211100
С	-3.86272700	-2.87971100	-0.70806300
H	-3.79955200	-2.54233000	-1.73895300
С	-1.11858600	5.75240200	-1.25628300
H	-1.23635700	6.27260900	-2.20356200
С	3.99502000	-1.44149800	-1.56284100
H	3.30758300	-1.27670600	-2.38819600
С	-0.78562800	4.42074400	1.16927700
H	-0.65144300	3.90520400	2.11643500
С	-4.02532700	-3.74489800	1.93635500
H	-4.09414500	-4.07187300	2.97073500
С	-1.75711900	6.23152800	-0.10951900
H	-2.37461400	7.12449200	-0.15939700
С	6.25544800	-1.49404100	-0.69995200
H	7.32480300	-1.37255600	-0.85103800
С	-4.52810900	-4.55031800	0.91229300
H	-4.98883600	-5.50692700	1.14426300
С	5.36744500	-1.28212900	-1.75590000
H	5.74281900	-0.99617200	-2.73510800

TAN-MePh

ency c units): = -2013.31	595666		
to Energy=		0 710247	
to Enthalpy	=	0.711191	
to Gibbs Fre	ee Energy=	0.590075	
and zero-poin	nt Energies=	-2012.64	46114
and thermal 1	Energies=	-2012.60)5710
and thermal 1	Enthalpies=	-2012.60	04765
and thermal i	Free Energies=	-2012.72	25881
tes (in Angs	tröms):		
-1 13398800	2 43813200	-0 52801900	
2 68358100	-0 28489000	0.52001900	
-1.59556900	-2.30602400	-0.14376900	
-0.80807200	-1.24980300	-0.04824600	
3.00760100	2.12543600	0.52978100	
-0.63858200	1.25192100	-0.22741700	
1.20748800	-2.62170100	-0.15024400	
0.62768700	-1.35177300	-0.00546500	
	ency c units): = -2013.31 ion= 0.66984 to Energy= to Enthalpy to Gibbs Fre and zero-poin and thermal 1 and thermal 1 and thermal 1 tes (in Angs -1.13398800 2.68358100 -1.59556900 -0.80807200 3.00760100 -0.63858200 1.20748800 0.62768700	<pre>ncy c units): = -2013.31595666 ion= 0.669843 (Hartree/Part to Energy= to Enthalpy= to Gibbs Free Energy= and zero-point Energies= and thermal Energies= and thermal Enthalpies= and thermal Free Energies= tes (in Angströms): -1.13398800</pre>	<pre>ncy c units): = -2013.31595666 ion= 0.669843 (Hartree/Particle) to Energy= 0.710247 to Enthalpy= 0.711191 to Gibbs Free Energy= 0.590075 and zero-point Energies= -2012.64 and thermal Energies= -2012.60 and thermal Enthalpies= -2012.60 and thermal Enthalpies= -2012.60 and thermal Enthalpies= -2012.60 and thermal Enthalpies= -2012.60 and thermal Free Energies= -2012.72 tes (in Angströms): -1.13398800 2.43813200 -0.52801900 2.68358100 -0.28489000 0.55992100 -1.59556900 -2.30602400 -0.14376900 0.80807200 -1.24980300 -0.04824600 3.00760100 2.12543600 0.52978100 -0.63858200 1.25192100 -0.22741700 1.20748800 -2.62170100 -0.15024400 0.62768700 -1.35177300 -0.00546500</pre>

0.81909500	1.17473400	0.02399900
1.63239900	2.30778200	0.18458000
1.42364700	-0.12120900	0.19904200
3,48117000	0.79190600	0.72551900
-1 46357700	0 07844200	-0 08006700
1 16910700	3 72793100	0 05555800
-3 39064800	1 5515/300	-0.33653000
2 94400500	0 02272100	0.33033000
-3.84400300	-0.832/2100	0.23177000
-1.06086500	-3.54307300	-0.21963200
2.67969600	-2.8/323200	-0.26/45100
-2.4/0/9100	2.60910000	-0.61536400
0.70609300	4.42996200	1.17481100
0.60722100	3.91553800	2.12702500
-2.85720400	0.25100400	-0.07472000
0.35108200	-3.76110900	-0.25616900
1.30614000	4.41938800	-1.15417800
1.67338900	3.89470000	-2.03200800
4.83401700	0.56740400	1.10382400
5.15114600	-0.46201200	1.23687000
3.40680000	-3.43925400	0.78725200
2.91298600	-3.62803200	1.73656800
-2,95675400	3,90302800	-0.95102300
-2.22211800	4.67476400	-1.15788400
5 43037700	-3.49378300	-0.56776000
-5 81483800	-2 77173500	0 86157400
3 33867800	-2 64570500	-1 /8185900
2 78055500	-2 21036500	-2 31724500
2.78955500	1 20044100	-2.31724500
-4.04944100	-1.30044100	-0.70990300
-4.50612800	-1.08306300	-1.80281900
-4.05511400	-1.23824600	1.55565800
-3.44829200	-0.81049400	2.34924600
3.92524900	3.19999900	0./1596200
3.58442700	4.21813100	0.56969000
5.23015800	2.95455000	1.07748400
5.91619000	3.78625000	1.21369800
0.82176500	-5.09766600	-0.40892100
1.88855000	-5.28075000	-0.45965300
5.69090300	1.62806700	1.27465000
6.72552100	1.45515000	1.55896000
-0.06223300	-6.14948000	-0.48587100
0.31528500	-7.16232000	-0.59793300
4.76074500	-3.73524800	0.63961200
5.30684400	-4.16397700	1.47753500
-4.30870000	4.14857400	-0.98172500
-4.67906700	5.13916500	-1.23220100
-4.78386300	1.85128400	-0.35130700
-5 49634900	1.07007800	-0.11441700
0 46618200	6 46754300	-0 13749900
-1 46131500	-5 92699500	-0 42402600
-2 1/295600	-6 77135200	-0 /8/19100
_5 00000400	_2 1052200	1 061/0700
-J.UZUJZ4UU E.1E075000	-2.19522500	1.00149/00
-5.159/5200	-2.49914200	2.09094000
0.35036800	5.//416000	1.0/401600
-0.02007900	6.29442000	1.95493500
4.69266300	-2.94462400	-1.62405500
5.18391100	-2.74964000	-2.57513700
-5.60999800	-2.34964200	-0.45882400
-6.21390900	-2.77705200	-1.25673700
-5.22734900	3.11460700	-0.6700000

ССССССССССНСССНСНСНСНСССНСНСНС

НСНСНСНСНСНСНССНСНСНСНСНС

H	-6.29370700	3.32367700	-0.67988600
С	0.95298000	5.76423600	-1.24800500
Н	1.05939200	6.27773100	-2.20148500
С	-1.95199500	-4.64960200	-0.29871900
Н	-3.01583900	-4.43776000	-0.25980300
С	0.11609100	7.93475400	-0.23413900
Н	0.97990700	8.56977200	0.00561600
Н	-0.68489100	8.20296700	0.46336200
Н	-0.21158100	8.20359700	-1.24423800
С	6.88995200	-3.84765900	-0.73650800
Н	7.42246800	-3.82120300	0.22029800
Н	7.39341900	-3.15757700	-1.42241600
Н	7.01227400	-4.85894400	-1.14785700
С	-6.88237300	-3.78599600	1.20194700
Н	-6.58369200	-4.41466500	2.04804900
Н	-7.09710300	-4.44297000	0.35228300
Н	-7.82573300	-3.29677300	1.48046600

```
TAA-Ph
```

No imaginary frequency

Energies (in atomic units): Electronic energy = -2356.27580455Zero-point correction= 0.727021 (Hartree/Particle) Thermal correction to Energy= 0.769949 Thermal correction to Enthalpy= 0.770894 Thermal correction to Gibbs Free Energy= 0.646359 -2355.548783 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= -2355.505855 -2355.504911 Sum of electronic and thermal Free Energies= -2355.629446 Cartesian coordinates (in Angströms):

N	2.30247100	-1.57376500	0.11718500
С	3.54902000	-1.04378100	0.00475600
С	3.75778500	0.36407400	-0.21046000
С	2.59876900	1.21711700	-0.23096500
С	2.83934400	2.66654300	-0.52249900
С	2.61369800	3.16694200	-1.81139400
Н	2.20070100	2.51184900	-2.57374500
С	2.90382900	4.49695500	-2.11719200
Н	2.71665900	4.87079800	-3.12051200
С	3.43666200	5.34226600	-1.14281800
Н	3.66491200	6.37760400	-1.38175800
С	3.68477600	4.84463400	0.13912300
Н	4.10831500	5.49198000	0.90299600
С	3.39537500	3.51531900	0.44481700
Н	3.58332900	3.13370200	1.44450800
С	1.33918400	0.64919400	-0.03773800
С	1.24672400	-0.79285400	0.08958000
С	5.07075400	0.82542600	-0.39297800
Н	5.24877400	1.87921400	-0.57664700
С	6.16929000	-0.04200000	-0.33514400
С	5.95313500	-1.44997300	-0.09106700
С	4.64425900	-1.91603700	0.06647300
Н	4.44351300	-2.96999400	0.23551700
С	7.08835400	-2.31777200	-0.03097900
H	6.92188300	-3.37615700	0.15355600
С	8.35636900	-1.82857800	-0.20254100

Н	9.21056200	-2.49862800	-0.15450900
С	8.57028600	-0.43927600	-0.44604400
Н	9.58375400	-0.07109700	-0.58022500
С	7.50945600	0.42517500	-0.51035500
Н	7 66863500	1 48479900	-0 69529900
N	-2 42056800	-1 18580000	-0.49604300
N C	2.42030000	2 53205200	0.49004300
	-2.39206600	-2.55595200	-0.44062400
C	-1.54029300	-3.41149400	0.00182600
C	-0.24646900	-2.832/9900	0.25496100
С	0.82815400	-3.77003300	0.71136800
С	1.41723000	-4.68080400	-0.17649600
Н	1.14091300	-4.65696300	-1.22693500
С	2.36962600	-5.59447000	0.27398900
Н	2.82560700	-6.28657500	-0.42951600
С	2.73222600	-5.62535600	1.62290400
H	3.47045100	-6.34105600	1.97506100
C	2 12900400	-4 73938500	2 51784500
U U	2 39506300	-1 76318800	3 571/8/00
	1 10063000	4.70310000 2.02107700	2.06645200
C II	1.10003900	-3.02197700	2.00043200
H ~	0.71611300	-3.13169400	2.76530900
C	-0.0/944800	-1.45614500	0.09466000
С	-1.25759600	-0.65660600	-0.19491300
С	-1.82442800	-4.77909800	0.13878400
Н	-1.05461100	-5.45440600	0.49536800
С	-3.08211700	-5.30451100	-0.18587700
С	-4.12064100	-4.42173400	-0.66589800
С	-3.84879400	-3.05408000	-0.77558100
Н	-4.61573200	-2.35723800	-1.10080400
С	-5.39585800	-4.97853600	-0.99532300
Н	-6 17484000	-4 31123500	-1 35564300
C	-5 63241100	-6 32120000	-0 85985100
	-5.05241100	-0.32120000	-0.0J90J100
П	-0.00383100	-0.75105700	-1.11452500
C	-4.60835000	-7.19292700	-0.38433500
H	-4.81599100	-8.25468/00	-0.28319200
C	-3.3/310300	-6.69860100	-0.05/41400
Н	-2.58985500	-7.36004600	0.30503700
N	0.25063100	2.73774700	0.30068400
С	-0.83811200	3.54988500	0.36299300
С	-2.17251800	3.04249400	0.18358400
С	-2.33220600	1.62784200	-0.02922600
С	-3.74511200	1.13853000	-0.13644500
С	-4.41704600	1.16793800	-1.36569800
Н	-3.87958200	1.46900200	-2.26065900
C	-5 75825500	0 79550600	-1 44852600
е н	-6 26394500	0.81767400	-2 41062700
C C	6 45102100	0.01/0/400	0 20140200
	-0.45105100	0.39900700	-0.30140200
H	-7.49692500	0.11123800	-0.36572500
C	-5.79387900	0.39132900	0.93031400
Н	-6.32641400	0.09601400	1.830/0/00
С	-4.45335800	0.76873700	1.01421400
Н	-3.94670100	0.76412700	1.97552600
С	-1.19545600	0.82019600	-0.08564500
С	0.10094900	1.45515900	0.06085500
С	-3.24635800	3.94386500	0.25209300
Н	-4.25985000	3.58179600	0.11918500
С	-3.04502800	5.30981500	0.48901000
С	-1.70169400	5.81091800	0.67081300
C	-0.63062800	4,91430400	0.60462800
с н	0 30254500	5 25712100	0 70710600
11	0.39234300	J.ZJ/IJI00	0.12110000

С	-1.51766300	7.20878000	0.91018700
Н	-0.50565200	7.58225000	1.04546800
С	-2.59046500	8.05872700	0.96820600
Н	-2.43706400	9.11885900	1.15123700
С	-3.91681600	7.56464900	0.78988600
Н	-4.75440000	8.25504400	0.83975000
С	-4.13553800	6.23237900	0.55753100
Н	-5.14502700	5.85212500	0.42096200

TAA-tBuPh

No imaginary fre	equency			
Energies (in at	comic units):			
Electronic ener	gy = -3299.804	137280		
Zero-point corr	rection=		1.404666	
Thermal correct	ion to Energy=		1.481420	
Thermal correct	ion to Enthalpy=	-	1.482364	
Thermal correct	ion to Gibbs Fre	e Energy=	1.284034	
Sum of electron	nic and zero-poir	nt Energies=	-3298.39	9707
Sum of electron	nic and thermal E	Inergies=	-3298.32	2953
Sum of electror	ic and thermal H	Inthalpies=	-3298.32	2009
Sum of electror	ic and thermal H	Tree Energies=	-3298.52	0339
Cartesian coord	linates (in Angst	röms).	0200.02	
Cartebran Coore	(III IIIgot			
N	_1 72456500	2 01623700	0 50100500	
IN NI	2 75247000	2.04023700	0.35600000	
IN N	2.75247900	2 56002500	-0.23099900	
IN C	-0.02739200	-2.30993300	-0.43094000	
	-3.03266100	1.81641600	0.76914000 1.15506700	
C	-3.86289100	2.89224500	1.15596700	
H	-3.38/05100	3.85814000	1.29813400	
C	-5.24103000	2.73577300	1.33576200	
C	-6.09169000	3.81/26100	1./256//00	
Н	-5.64475200	4.79481200	1.88941200	
С	-7.43844600	3.62798400	1.89059400	
Н	-8.07345800	4.45819600	2.18802000	
C	-8.02134500	2.34391900	1.67501800	
H	-9.09157200	2.21424500	1.81098800	
С	-7.24101300	1.28225400	1.29978100	
Н	-7.68161300	0.30200000	1.13440900	
С	-5.83093900	1.43466100	1.11661000	
С	-5.01497600	0.36239600	0.73323600	
Н	-5.46971100	-0.60896700	0.57305600	
С	-3.63131700	0.51718300	0.55436000	
С	-2.74988200	-0.56281600	0.19534200	
С	-1.38737400	-0.29947600	0.03943100	
С	-0.93331700	1.06901000	0.21169400	
С	1.46790300	0.35815600	-0.10011600	
С	0.48291300	1.42142600	-0.04267100	
С	0.91489900	2.73543300	-0.23108400	
С	2.32167800	2.98632300	-0.40576800	
С	2.86772300	4.26355700	-0.60810700	
Н	2.21154800	5.12571800	-0.65100300	
С	4.24768500	4.45977200	-0.74911800	
С	4.80886600	5.76035700	-0.94576300	
Н	4.13617300	6.61362400	-0.98802300	
С	6.16183700	5,93114600	-1.07645600	
H	6.57522100	6.92506200	-1.22458800	
 C	7.04039000	4.80857000	-1.01939300	

Н	8.11075000	4.96394200	-1.12500500
С	6.54408800	3.54523800	-0.83434900
Н	7.21101000	2.68757300	-0.79211100
С	5.13822400	3.32280600	-0.69416100
C	4 59457700	2 04680100	-0 51710900
Ч	5 23166500	1 16775300	-0.48265400
	2 21254100	1.05644700	0.40205400
	3.21234100	1.83644700	-0.38116700
C	-0.3/823600	-1.36136400	-0.19195900
C	1.03//3100	-1.06022200	-0.06539/00
С	1.93422400	-2.12943400	-0.01332100
С	1.43415800	-3.46602000	-0.20559500
С	2.23897200	-4.61494200	-0.15767500
Н	3.29405800	-4.52038400	0.07384900
С	1.71658700	-5.88989200	-0.41230700
С	2.53420300	-7.06234100	-0.37209200
H	3.58925800	-6.95002300	-0.13397500
C	2 00452800	-8 29964600	-0 62824200
с ц	2 63733600	-9 18234600	-0 59527/00
	2.03733000	9.10234000	0.03027400
C II	0.01988200	-8.441/0300	-0.94013400
H	0.21/68400	-9.43115200	-1.14056100
С	-0.19902600	-7.34433900	-0.98691000
H	-1.25521600	-7.44972700	-1.22215400
С	0.31341700	-6.03485400	-0.72622400
С	-0.49623800	-4.89426600	-0.74779300
Н	-1.56093600	-4.96930300	-0.94938000
С	0.03067700	-3.62347500	-0.48125200
С	-3.39418600	-1.90799500	0.04225400
С	-3.95207100	-2.28096400	-1.17883000
Н	-3.84000200	-1.61238100	-2.02736300
C	-4 62576100	-3 50398900	-1 32767900
C	-1 73140700	-1 32870400	-0.20200600
	5 24757400	5 27722700	0.20290000
П	-3.24/3/400	-3.27733700	1 052323000
	-4.20410500	-3.9/024000	1.05238700
C	-3.54684100	-2./434//00	1.15/91900
H	-3.12287000	-2.4225/300	2.10229600
C	-5.21919600	-3.88227700	-2.69889/00
С	-5.91080100	-5.25871600	-2.68444400
Н	-6.74819400	-5.28872700	-1.97798800
Н	-5.21370200	-6.06316200	-2.42312200
Н	-6.31146400	-5.48014200	-3.68017600
С	-6.26832800	-2.82305800	-3.11347500
Н	-7.08933600	-2.78044900	-2.38834300
Н	-6.69395100	-3.06945000	-4.09415100
Н	-5.83109100	-1.82164400	-3.18184700
C	-4.09085500	-3.92415300	-3.75679200
с н	-4 49976100	-4 18460600	-4 74097800
и П	-3 33438400	-4 67250400	-3 19103000
п п	-3 58280000	-2 05010000	-3 95004700
п	-3.38290000	-2.93910900	-3.03094700
C	-4.3/095300	-4.92775700	2.24843500
	-5.8/651800	-5.15202900	2.52666000
H	-6.3/351400	-4.20694500	2.//444800
Н	-6.01093600	-5.83801900	3.37217200
Н	-6.39203700	-5.58394400	1.66240800
С	-3.70353400	-6.28450300	1.91886800
Н	-3.81038300	-6.97749200	2.76264400
Н	-2.63412200	-6.15575100	1.71714500
Н	-4.15552100	-6.75857200	1.04107400
С	-3.72416600	-4.37913200	3.53452100
Н	-4.17392400	-3.42911100	3.84481300
	· · · · ·		

Н	-2.64613600	-4.22449800	3.41391400
Н	-3.86636700	-5.09428200	4.35275200
С	3.40013300	-1.99665400	0.26335600
С	4.33754500	-2.20815000	-0.75903600
Н	3.97026700	-2.40096600	-1.76017200
С	5.70805900	-2.14646100	-0.50290000
С	6.11933900	-1.88046500	0.81736100
Н	7.18160500	-1.83196100	1.02631200
С	5.21271000	-1.69026000	1.86456600
С	3.84334900	-1.76283800	1.56365700
Н	3,10427900	-1.61805500	2 34624300
C	6 76810500	-2 36594600	-1 60039900
C	6 13796900	-2 64386400	-2 97850400
Н	5 51546800	-1 80853800	-3 31812100
ч	5 52005500	-3 54885400	-2 96972500
п ц	6 92870900	-2 79135600	-3 72293600
C	7 65547300	-3 57700700	_1 22590100
U U	7.05463000	_1 19991600	_1 13040700
	9 17104700	2 42622200	-1.13949700
п	0.17194700	-3.42023200	-0.27221400
H C	8.41853800 7. CE42C800	-3.74492000	-1.99602200
	7.65426800	-1.103/3300	-1.72617400
H	8.42139700	-1.25031800	-2.49662700
H	8.16653900	-0.868/2400	-0.78720500
H	7.05282300	-0.23196900	-2.00942900
	5.65789200	-1.40807600	3.3125/800
	7.19041600	-1.33346700	3.43936100
н	7.00233400	-2.302/1000	3.18101100
п	7.45515200	-1.140/3000	4.30302000
С	5 12677300	-0.53609000	2.04/0/300
	4 02417700	-2.52550500	4.24200300
п u	5 42528000	-2.33300000	5 22001500
п п	5 52781300	-3 50258100	3 9/897300
C	5 08365300	-0 04578600	3 76952400
ч	5 44062100	0.76570500	3 12534600
н	5 39343800	0.17312600	4 79895800
ч	3 98935400	-0.03451000	3 74106500
C	0.00863800	3 92550700	-0 31877400
C	-0.05367500	4 85014400	0.310//400
н	0.51330900	4 64779200	1 63186900
C	-0.84306600	6 00275900	0 63401000
C	-1 56449300	6 20846300	-0 55226200
H	-2.18012300	7.09282900	-0.64130700
C	-1,50782400	5.31291100	-1.63038800
C	-0.70073200	4.17634600	-1.49599500
н	-0.62824500	3 45845300	-2 30783500
С	-2.29498100	5.53561100	-2.93688900
C	-3.25900700	4.34619300	-3.16239500
H	-2.72042700	3.39704500	-3.25004600
Н	-3.83442500	4.49034600	-4.08534200
Н	-3.96536800	4.25090900	-2.33008300
С	-1.30843400	5.62786300	-4.12519700
Н	-0.62009300	6.47156600	-3.99868800
Н	-1.85503600	5.77336200	-5.06522300
Н	-0.70653600	4.71901800	-4.22735200
С	-3.13150200	6.82909300	-2.91052600
Н	-3.87817500	6.81654000	-2.10839100
Н	-3.66923700	6.93867700	-3.85917300
Н	-2.50528700	7.71941600	-2.78203600

С	-0.88211800	6.99670200	1.81243400
С	-1.81060700	8.19660600	1.54443000
Н	-1.48611200	8.77990200	0.67521900
Н	-1.80557800	8.86693300	2.41149100
Н	-2.84694800	7.88153900	1.37689900
С	0.54336100	7.54219100	2.06856200
Н	1.24900200	6.74041100	2.30951200
Н	0.53873700	8.24712400	2.90918700
Н	0.92445600	8.06950900	1.18619100
С	-1.38728400	6.27650200	3.08503500
Н	-2.40356200	5.89154900	2.94072300
Н	-1.40564800	6.97015100	3.93484100
Н	-0.74827800	5.43081600	3.35803600

TAA-OMePh

No imaginary fr Energies (in a	equency tomic units): ray = -3386 9402	21300	
Zero-point cor	rection=	.1009	1.019443
Thermal correc	tion to Energy=		1.087450
Thermal correc	tion to Enthalpy=		1.088394
Thermal correc	tion to Gibbs Fre	e Energy=	0.905323
Sum of electro	nic and zero-poir	t Energies=	-3385.920770
Sum of electro	nic and thermal E	Inergies=	-3385.852763
Sum of electro	nic and thermal E	Inthalpies=	-3385.851819
Sum of electro	nic and thermal F	'ree Energies=	-3386.034890
Cartesian coor	dinates (in Angst	röms):	
0	3.50851700	-6.95201100	-0.28555800
0	3.40706800	4.79943600	3.25969700
0	2.10897900	-6.20448000	-2.44716200
0	4.24773700	5.66269000	-1.26009900
0	3.26833200	-5.66365200	2.05194000
0	-7.63307300	0.03682000	-1.14011800
0	4.28505900	6.41824300	1.31002700
0	-6.98945100	1.09139500	1.25132400
0	-5.64966900	-0.33695000	-3.08846300
N	0.32233000	2.80044000	-0.03540700
N	-2.4/541000	-1.0053/300	0.60003700
N	2.16/02600	-1.58/02500	-0.53443900
C	2.04077000	1.14/82300	0.01127000
C	U.I.30/4400 1 52151100	I.30084400 5.04026200	0.01137000
C	-0.74199000	3 63906200	-0.14597900
C	1 86445400	-5 50954300	-1 29859700
C	3 81760500	5 16836600	0 98656900
C	3 39054700	4 28684400	1 99509100
C	2 63950100	-5 89289700	-0 18940900
C	-1 18180300	0.89659500	-0 00667800
C	1.34580700	0.64207400	-0.01800600
С	-2.28719900	1.72214300	-0.21023800
C	-0.31650300	-2.79468000	0.19677200
С	-3.68314700	1.22257300	-0.42215100
С	3.00228500	2.56594100	0.33812200
С	-1.61521600	-3.29432200	0.56476400
С	-2.87926900	5.45021200	-0.52138200
С	-0.49494200	5.01843300	-0.16548000

0.53280000	5.34974200	-0.04789600
-0.14363800	-1.41905100	0.03675600
0.76129100	-3.82639300	0.04572900
0 91676400	-4 48662500	-1 17671400
0 31892100	-4 17842000	-2 02545800
3 83014400	4 73459600	-0 35110900
-1 20057500	-0 56172700	0.21740900
-1.29957500	-0.30172700	0.21/40000
1.1/593100	-0./8966400	-0.21035400
2.46588600	-5.22951300	1.03/58/00
-2.0866/100	3.14513800	-0.28/62100
-3.12132700	4.07052700	-0.49441900
-4.13744100	3.71646100	-0.62897500
3.44192400	3.42854000	-0.67153500
3.44516900	3.08441000	-1.69829400
-5.97498100	0.98868100	0.34211600
1.51310600	-4.21052500	1.15990400
1.36645700	-3.69770300	2.10256400
-4.21698200	-4.13149300	1.37184100
-1.89560300	-4.65666100	0.75379200
-1.11422000	-5.39094800	0.59228500
3,74601900	0.25931000	-0.26224400
2 99511600	2 98366400	1 67222400
2.55511000	2 2070/300	2 44085500
6 12399400	_0 23000100	_0 5909900
0.12300400	-0.23009100	-0.50090900
-4.66039300	1.40201100	1 50000100
-4.3/316200	1.83296700	1.52006200
-2.66932200	-2.33932900	0./8106600
-1.30637400	7.35238100	-0.36573500
-0.29119800	7.71736600	-0.22998300
-4.03940700	0.67620700	-1.65481000
-3.30711000	0.54150000	-2.44385000
-3.93172100	6.39762900	-0.72083600
-4.94430700	6.02589300	-0.85843000
-3.67403100	7.74308200	-0.73790200
-4.48309900	8.45229000	-0.88983400
5.80239100	-1.58842100	-0.95530700
1.35324900	-5.87269100	-3.60093900
0.27919000	-6.03406000	-3.44040900
1.70411700	-6.54230600	-4.38852900
1 51803900	-4.83152000	-3.90845500
-2 34395600	8 22617400	-0 55706600
-2.15927800	9 29692600	-0 57347700
-3 16502500	-5 09733100	1 14940100
5 0023200	0 65545900	_0 2/178000
5.09252000	1 67291000	-0.241/0000
5.34/12300	1.6/281000	0.0354/500
-6.3316/800	0.41106000	-0.89535200
-6.69649900	1.66646800	2.51494700
-5.94249400	1.08382300	3.06062500
-7.63539200	1.65565800	3.07173900
-6.34634600	2.70219500	2.41492000
-3.93930600	-2.77423400	1.18205100
-4.70877700	-2.02212500	1.32911000
3.43768000	-1.10574800	-0.59734300
3.14390900	-5.03493700	3.31702100
3.37261100	-3.96241100	3.26101700
3.87159400	-5.52622400	3.96579800
2.13791100	-5.16701500	3.73685000
4.46335400	-1.99278100	-0.94832700
4 18800100	-3.01492000	-1 19129500
1.10000100	3.01172000	±•±>±2>>00

НСССНСССССНСНССНССНССНССНССНСНС

H C H C C H H H C H C C H C C

H H H

C H C H H

H C H

С	-5.35515200	0.26274900	-1.88735700
С	6.86937700	-2.47484700	-1.30242000
Н	6.62372200	-3.49603500	-1.58346000
С	-3.45567900	-6.48416900	1.34291300
Н	-2.66188500	-7.20799500	1.17500800
С	8.17150200	-2.04918400	-1.28095700
Н	8.97310500	-2.73283600	-1.54736300
С	-5.74192000	-5.94041200	1.94978700
Н	-6.72568400	-6.28497100	2.25712400
С	4.83445200	-6.59627000	-0.67078700
Н	4.84657500	-6.14061500	-1.66971600
Н	5.40812200	-7.52643300	-0.69351500
H	5.28736300	-5.90935200	0.05547600
С	7.49643200	0.17100300	-0.56959000
H	7.73515700	1.19315100	-0.28576300
С	-5.50559700	-4.60230000	1.77555600
H	-6.29502300	-3.87327400	1.94187700
С	-7.97878700	-1.25315300	-0.62940500
H	-7.33601900	-2.03021600	-1.06092000
Н	-9.01573400	-1.43127100	-0.92480000
H	-7.90454000	-1.27412100	0.46429000
С	-4.70389800	-6.89423800	1.73091800
H	-4.91155100	-7.95105000	1.87445200
С	4.28934300	5.28548600	-2.62687400
H	4.98318800	4.45130800	-2.79514200
H	4.64613800	6.16461900	-3.16688700
H	3.29538500	5.00712000	-3.00150400
С	2.99145700	3.96078700	4.32511900
H	1.94800300	3.64013300	4.20588800
H	3.08319500	4.56334900	5.23083400
H	3.63231800	3.07368700	4.41433500
С	8.48983000	-0.70930000	-0.90932000
H	9.52878200	-0.39140700	-0.89754800
С	3.28148100	7.42965600	1.36567000
H	2.79770700	7.55955700	0.38834500
H	3.79342100	8.35603700	1.63855600
H	2.52481700	7.19637600	2.12511500
С	-6.53300400	0.39339300	-3.94485700
H	-7.51068500	0.54030300	-3.47711400
H	-6.64135700	-0.20966300	-4.84958800
H	-6.09944800	1.36719600	-4.20978900

TAA-Tips

```
No imaginary frequency
 Energies (in atomic units):
 Electronic energy = -3825.22574738
                                                       1.339983
 Zero-point correction=
 Thermal correction to Energy=
                                                        1.422327
 Thermal correction to Enthalpy=
                                                        1.423271
 Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
                                                       1.213229
                                                       -3823.885765
-3823.803421
 Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal -
                                                           -3823.802477
 Sum of electronic and thermal Free Energies=
                                                         -3824.012519
 Cartesian coordinates (in Angströms):
```

```
Si 6.71250400 -0.70728800 -0.79375100
```

Si	-4.43240700	-4.80950300	1.36505400
Si	-2.50037300	6.06956200	0.18773200
N	-0.21120000	-2.90736700	-0.32360000
N	2 53941700	0 86380300	0 64865500
N	-1 89757200	1 47117100	-1 11586900
N C	0 27531300	1 20503300	_0 1/03/900
C	0.27JJJJ00	1.29393300	-0.14034800
C	-5.36331700	1.36/48600	-2.314/8000
C	-2.50114900	-1.2248/400	-0.4549/800
С	0.85773000	-3.75152600	-0.33279300
С	-3.13357500	0.96712200	-1.40086400
С	2.47941700	-8.34333000	-0.62036800
Н	2.29267300	-9.41124800	-0.69445400
С	2.41617600	-1.84465300	-0.19358400
С	1.29626600	-1.01359800	-0.09004300
С	6.74239900	-3.15261600	-2.39213800
Н	7 11410800	-3.66595900	-3.28961000
ч	5 65188400	-3 09568500	-2 46523300
11	6 09242600	2 70164700	1 52211000
П	1 40277700	-3.79104700	-1.33311000
C	1.403/7/00	0.43619100	0.14357100
C	-0.01438700	-1.610/4000	-0.21353000
C	1.68364700	3.15926600	0.60566300
С	0.41109800	2.66615600	0.11350600
С	-3.20911500	-6.15202900	1.97578600
H	-3.77686200	-6.77127100	2.68767500
С	-5.20925900	-3.93279800	2.89107700
Н	-4.35445300	-3.39761000	3.33301300
С	-7.59608600	1.75076700	-3.20661200
Н	-8.31130400	2.38588200	-3.72227200
C	-1 19146000	-0.73894000	-0.37802900
C	0 61357700	-5 12700000	-0 43760400
С Ц	-0 41946300	-5 45236000	-0 49166900
II C	6 73974500	1 15976100	_1 23196300
	0.73874500	1.13070100	-1.23100300
H	6.29891500	1.658/9800	-0.35661300
C	-3.525/9300	-0.35867000	-0.99945/00
C	1.65904000	-6.05526800	-0.4808/200
C	7.67644400	-1.03406300	0.83169800
H	8.73270100	-0.82511000	0.60082000
С	4.20022300	3.96021800	1.67594300
С	3.45484900	6.31570400	1.62878700
Н	2.68519300	7.04919600	1.40239000
С	-0.98763200	0.68156300	-0.59104500
С	-5.77386200	0.05858800	-1.86496300
С	1,43006300	-7.46329100	-0.57983800
Н	0 40424500	-7 82060000	-0 62002500
C	3 82389200	-7 87087100	-0 56570900
U U	4 64200100	-9 59513600	-0 50035400
п С	4.04200100	-0.30313000	-0.09900400
	-5.75027400	-4.09557000	3.90004300
H	-6.09562400	-4.32931900	4.84603600
H	-4.98969500	-5.60130900	4.31650900
Н	-6.60448/00	-5.4/68/800	3.60554500
С	3.02074800	-5.57626200	-0.42819200
С	-8.00264700	0.45943900	-2.75965500
Н	-9.02180900	0.12880400	-2.94022400
С	3.17900000	4.93627900	1.37602000
С	2.21469800	-3.27322500	-0.28868100
С	3.76009100	-1.37778300	-0.29233900
С	-6.31612500	2.19073000	-2.99118800
Н	-6.00290700	3.17428800	-3.33232500
С	3.26186100	-4.19809300	-0.34071000
		-	
Н	4.28546400	-3.84080300	-0.30490800
--------	-------------	---------------------------	-------------
С	-2.92461300	-2.50509500	0.01107700
С	2.71347000	2.19308700	0.88066400
С	-4.05225800	1.78936500	-2.06332500
н	-3 72135600	2 77513600	-2 37106900
C	-0.63176900	3 63501100	0 00357200
C	-4 84438000	-0 76809900	-1 21737900
	F 14020100	1, 7600, 9900	1.21/3/900
П	-3.14839100	-1.76071700	-0.90483100
	4.94724500	-1.15531200	-0.49040100
C	1.94844800	4.50894/00	0.85638300
H	1.18234000	5.24519400	0.64282100
С	4.66075200	6.70779000	2.14861800
H	4.85751900	7.75964600	2.33698600
С	5.66684000	5.74289500	2.44917300
Н	6.61569400	6.07343600	2.86293200
С	3.93690900	2.61037500	1.42149500
Н	4.67878000	1.84845800	1.63938700
С	5,44321800	4.41071900	2,22035900
Ч	6 20764100	3 67226500	2 44929200
C	-3 50225900	-3 17910900	0 49000700
C	-3.30223300	-3.47019800	0.48000700
	-7.11767300	-0.36086900	-2.10956500
H	-7.42309600	-1.34/6/800	-1.//055/00
С	4.08502900	-6.52883100	-0.47240500
H	5.10870100	-6.16477500	-0.43245400
С	8.15679500	1.72839400	-1.43130500
H	8.64005000	1.30296100	-2.31960500
Н	8.81235800	1.53593600	-0.57320900
Н	8.12023300	2.81637700	-1.57787100
С	7.38374500	-1.75830100	-2.26001300
Н	7.10014200	-1.18875600	-3.15858700
C	5 84049500	1 49319200	-2 43778400
е н	5 80949100	2 57756000	-2 60960500
п ц	4 81184100	1 15070600	-2 28394900
	6 21254000	1.02160000	2.20394900
п	0.21554900	1.03100000	-3.30120200
C	7.24635700	-0.08277900	1.96498300
Н	6.18612700	-0.216/6/00	2.21343800
H	7.39902900	0.97039700	1.70147100
H	7.82367200	-0.27913500	2.87883000
С	7.58024600	-2.49884100	1.30054800
Н	8.15966000	-2.65193400	2.22134000
Н	7.96382400	-3.20154500	0.55230900
Н	6.54184700	-2.77735000	1.51763200
С	8,92255800	-1.87156000	-2.25613200
Н	9,28065900	-2.45196500	-1.39704000
н	9 41801500	-0 89487700	-2 22182200
и и	9 27426300	-2 39510100	-3 16119200
	5.27420500	-2.30319100 E 60107700	-3.10110200
	-5.88780400	-3.00107700	0.12391300
H	-5.01629900	-6.15593800	-0.56/14600
C	-2.02100500	-5.53518400	2./400/000
H	-1.35765000	-6.31974400	3.12867000
Н	-2.35003100	-4.93202800	3.59467800
H	-1.42286100	-4.88643900	2.09039200
С	-2.72033400	-7.08490500	0.85190400
Н	-2.25372700	-6.52313700	0.03382200
Н	-3.53691300	-7.67430000	0.42014300
Н	-1.97094000	-7.79249500	1.23265600
С	-6.47255000	-4.60551400	-0.72818100
с Н	-7 09618700	-5 13931700	-1 45863100
ц		_2 02157600	_1 20600000
п	-3.014/0100	-3.3313/000	-I.20099000

Н	-7.14415200	-3.99154600	-0.11665100
С	-6.60400900	-6.62955600	0.79328200
Н	-7.32342900	-6.14144900	1.46173200
Н	-6.05788600	-7.37475900	1.38412800
Н	-7.18553500	-7.17370700	0.03676800
С	-6.26513500	-2.87135200	2.52890800
Н	-7.17650600	-3.33098000	2.12699800
Н	-5.89294800	-2.15736800	1.78597700
Н	-6.56019400	-2.29891800	3.41886900
С	-1.59974900	7.44776100	1.17640900
Н	-2.35377900	8.23666500	1.32588500
С	-4.02310200	5.49448900	1.20537400
Н	-3.56746000	5.03880400	2.09846300
С	-2.82995600	6.71025500	-1.59150200
Н	-1.84158400	7.07246400	-1.91424200
С	-4.85987600	4.39871100	0.52110700
Н	-5.62366000	4.00961300	1.20820100
Н	-4.24488400	3.55391500	0.19631500
Н	-5.38917000	4.78573700	-0.35827600
С	-3.79515400	7.91147000	-1.63778500
Н	-3.83855400	8.33562500	-2.65015600
Н	-3.49561600	8.71818100	-0.95813300
Н	-4.81642500	7.61562500	-1.36928000
C	-3.25286900	5.62740100	-2.59991200
Н	-4.24903900	5.23096700	-2.36977000
Н	-2.54952400	4.78796500	-2.60819100
Н	-3.29544100	6.04075100	-3.61710600
C	-4.92555800	6.64613900	1.69209100
Н	-5.42204500	7.15514600	0.85739300
Н	-4.37201800	7.40316400	2.25900100
Н	-5.71674200	6.26012700	2.34910800
C	-0.42314800	8.08521500	0.41379200
Н	0.06620000	8.85479300	1.02686100
Н	-0.74336400	8.56607900	-0.51709900
Н	0.34130500	7.34335900	0.15086200
C	-1.15229600	6.96762500	2.57084000
Н	-0.41971200	6.15498400	2.49866500
Н	-1.99208300	6.59830500	3.17051500
Н	-0.68256100	7.78570500	3.13390000
C	-1.36969200	4.61167300	0.05094800

TAA-CF₃Ph

No imaginary frequency	
Energies (in atomic units):	
Electronic energy = -4378.50118483	
Zero-point correction=	0.755392
Thermal correction to Energy=	0.820681
Thermal correction to Enthalpy=	0.821625
Thermal correction to Gibbs Free Energy=	0.639278
Sum of electronic and zero-point Energies=	-4377.745793
Sum of electronic and thermal Energies=	-4377.680504
Sum of electronic and thermal Enthalpies=	-4377.679560
Sum of electronic and thermal Free Energies=	-4377.861907
Cartesian coordinates (in Angströms):	

C	-0.18416500	-3.68977600	-0.33558400
С	-0.44525800	-1.39199600	-0.15210900

С	0.98716600	-1.18324500	-0.04314600
С	1.80515800	-2.30440800	0.07316300
C	1 23062700	-3 61206000	-0 07505400
C	1 26881600	0.01200000	0.07005400
	-1.36881600	-0.24912500	0.05025100
C	1.51/63800	0.19453400	-0.13916500
С	0.62289100	1.32327200	0.00146000
С	-0.80363000	1.06570700	0.29750100
С	1.14121200	2.60048100	-0.20308400
С	2.54175000	2.75378000	-0.48696100
C	3 33568000	1 55677600	-0 59608100
	2.75271000	1.33077000	0.33000100
C	-2.75371800	-0.384/6900	0.14402400
С	-3.54465300	0.73515000	0.57985900
С	-2.84936000	1.94368500	0.94013900
С	-4.94164900	0.70270000	0.71210800
С	-5.65718500	1.79648200	1.21755500
С	-4.94582700	2.99015000	1.61371800
C	-3 55630500	3 03391800	1 46100300
U U	-5 40120500	_0 19794300	0 42752600
11	2.00051.000	0.10704300	1 72020200
H	-3.00051600	3.92392700	1./3820300
С	1.96821500	-4.80318000	-0.00285200
С	1.36925400	-6.05125900	-0.21766800
С	-0.78646000	-4.93486300	-0.55452700
С	-0.04460900	-6.12009500	-0.50991700
Н	-1.85473400	-4.95772300	-0.74813600
Н	3 03104600	-4 76761000	0.21166300
C	3 16746700	3 99111800	-0 68375400
C	4 52202400	1 00014200	0.000070400
	4.53595400	4.08914200	-0.97837400
C	4.69908600	1.64501200	-0.90499200
С	5.32068500	2.88263300	-1.09666200
H	2.58924100	4.90889600	-0.60481600
Н	5.26658500	0.72493400	-1.00130700
Ν	-0.97512000	-2.58177400	-0.32217200
Ν	2.79169100	0.32012400	-0.43514200
N	-1 50637300	2.07369300	0.75948500
C	-5 68836500	1 09370600	2 13735300
C	-7 05095500	4.02364300	2 26053400
	-7.03093300	4.02304300	2.20033400
H	-7.60638400	4.86775900	2.659/1200
С	-7.75496400	2.84687300	1.86739100
H	-8.83568400	2.81249800	1.97290600
С	-7.07925700	1.76766200	1.36161900
Н	-7.61405500	0.86955600	1.06275800
Н	-5.14576800	4.98785500	2.43356400
С	-0.63850100	-7.40182400	-0.72958300
н	-1 70209100	-7 45043700	-0 94823400
C	0 11530500	-9 5/395900	-0 66491900
	0.11550500	-0.54505900	-0.00491000
H	-0.34/33200	-9.51223600	-0.83386300
C	1.51039000	-8.4/662300	-0.3/562000
H	2.08980300	-9.39437500	-0.32850400
С	2.11755100	-7.26795500	-0.15861300
Н	3.18076600	-7.21369200	0.06178700
С	6.71150000	2.99404100	-1.40902000
С	7,29098100	4.22195100	-1.58966500
н	8 34868300	4 29620600	-1 82654400
C	6 51629200	5 /1/01000	_1 16003600
		J.414U19UU	-1.409030UU
п	0.99583T00	0.3///4900	-1.0100/100
C	5.18021800	5.34937600	-1.17393600
Н	4.58815900	6.25676800	-1.08414000
Н	7.29528300	2.08159800	-1.50011600
С	0.31209700	3.84899500	-0.23752200

-0.22496300	4.27788200	-1.45378700
0.13387400	4.64500800	0.90016000
-0.95808000	5.46646600	-1.52652800
-0.08456800	3.67803100	-2.34711500
-0.60538400	5.82322000	0.82406500
0.54627400	4.32515600	1.85056600
-1.15739400	6.24318300	-0.38922600
-1.73186800	7.16028500	-0.44341400
3.26054900	-2.23098800	0.42001400
4.25973300	-2.40263500	-0.54554000
3.63310700	-2.06028300	1.75577000
5.60359700	-2.35455600	-0.18133000
3.98552300	-2.53687700	-1.58604000
4.98297900	-2.03065500	2.11802000
2.86969300	-1.93597200	2.51674200
5.97603100	-2.16945800	1.15271600
7.02258300	-2.13459600	1.43123600
-3.50416900	-1.64059600	-0.17652300
-3.84989500	-1.93275400	-1.49988200
-3.96232600	-2.47876800	0.84563700
-4.60081000	-3.06999000	-1.79808100
-3.51045200	-1.28538800	-2.30128600
-4.70754000	-3.61838100	0.54178100
-3.71252000	-2.25762400	1.87770700
-5.02779400	-3.92477300	-0.78135200
-5.59879700	-4.81543000	-1.01630700
-1.47866100	5.93343600	-2.86074100
-0.90476900	6.59783400	2.07828400
6.66619800	-2.39465900	-1.24533000
5.35714300	-1.90678700	3.57204000
-5.00337200	-3.34856800	-3.22301200
-5.22465700	-4.49475600	1.65271600
-4.09325800	-2.88098300	-4.10368800
-5.15085900	-4.67225200	-3.45106000
-6.18433900	-2./6214500	-3.52/08100
7.81982600	-2.92/66200	-0./9126000
6.28062900	-3.10656600	-2.32386600
6.96325400	-1.1423/000	-1.68/11100
5.34826800	-3.1111//00	4.1889/800
6.59402800	-1.38961900	3./3131000
4.49260300	-1.113/9200	4.24392500
-3.32997700	-5.78457500	1.20340000
-4.42234000 _6 /5551600	-4.40940900 -/ 10/50300	2.13119000
-0.40001000 _0.50110000	-4.10400000 6 7600/100	2.UJ0401UU _2 72710200
-2.00113800	0.10024100	-2.12119300
-0.52654500	0.000//000	-3.55588400
-2 06037100	4.09/02000 6 16869500	-3.03220700
-2.0003/100	7 91617500	1 83557000
	6 <u>4</u> 6231600	3 00463600
0.000/2200	0.10201000	J.00-03000

СОСНОНОНОСОНИНОНОСОСНОНОНОСОССБЕЕЕЕЕЕ

두 두 두 두 두 두

F

F

F. NMR spectra of final compounds

1. TAN-Ph

Figure S-F.1: ¹H NMR Spectrum (300 MHz, CDCl₃).

Figure S-F.2: ¹³C NMR Spectrum (151 MHz, CD₂Cl₂).

Figure S-F.3: ¹³C NMR Spectrum, extension, (151 MHz, CD₂Cl₂).

2. TAN-MePh

Figure S-F.4: ¹H NMR Spectrum (300 MHz, CD₂Cl₂).

Figure S-F.5: ¹³C NMR Spectrum (75 MHz, CD₂Cl₂).

Figure S-F.6: ¹H NMR Spectrum (300 MHz, CDCl₃).

Figure S-F.7: ¹³C NMR full Spectrum and expanded (150.9 MHz, C₂D₂Cl₄).

Figure S-F.9: ¹³C NMR full Spectrum and expanded (150.9 MHz, C₂D₂Cl₄).

Figure S-F.10: ¹H NMR Spectrum (300 MHz, CD₂Cl₂).

Figure S-F.11: ¹³C NMR Spectrum, (150.9 MHz, C₂D₂Cl₄).

6. TAA-tBuPh

Figure S-F.13: ¹H NMR Spectrum (300 MHz, CDCl₃).

7. TAA-CF3Ph

Figure S-F.15: ¹H NMR Spectrum (300 MHz, CDCl₃).

Figure S-F.16: ¹³C NMR Spectrum (75 MHz, CD₂Cl₂).

8. 2-amino-N-methoxy-N-methyl-3-naphthamide

Figure S-F.18: ¹³C NMR Spectrum (150 MHz, CDCl₃).

2-amino-3-benzoylnaphthalene 9.

Figure S-F.19: ¹H NMR Spectrum (300 MHz, CDCl₃).

Figure S-F.20: ¹³C NMR Spectrum (75 MHz, CDCl₃).

10. 1-(3-(2-aminonaphthalenyl)-3-(triisopropylsilyl)-2-propyn-1-one

Figure S-F.21: ¹H NMR Spectrum (300 MHz, CDCl₃).

Figure S-F.22: ¹³C NMR Spectrum (75 MHz, CDCl₃).

11. 2-amino-3-(3,4,5-trimethoxy)benzoylnaphthalene

Figure S-F.24: ¹³C NMR Spectrum (150 MHz, CDCl₃).

12. 2-amino-3-(3,5-di-tert-butyl)benzoylnaphthalene

Figure S-F.26: ¹³C NMR Spectrum (75 MHz, CDCl₃).

13. 2-amino-3-(3,5-bis(trifluoromethyl))benzoylnaphthalene

Figure S-F.27: ¹H NMR Spectrum (300 MHz, CDCl₃).

14. 2-Phenylaminobenzophenone

Figure S-F.30: ¹³C NMR Spectrum (75 MHz, CDCl₃).

15. [1,4-Phenylenebis(imino-2,1-phenylene)]bis(phenylmethanone)

Figure S-F.31: ¹H NMR Spectrum (300 MHz, CDCl₃).

G. References

- Li, P. H.; Yu, L. Z.; Zhang, X. Y.; Shi, M. Cu(I)-Catalyzed Coupling and Cycloisomerization of Diazo Compounds with Terminal Yne-Alkylidenecyclopropanes: Synthesis of Functionalized Cyclopenta[b]Naphthalene Derivatives. *Org. Lett.* 2018, 20 (15), 4516–4520. https://doi.org/10.1021/acs.orglett.8b01812.
- (2) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* 1996, 96 (2), 877–910. https://doi.org/10.1021/cr940053x.
- (3) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. *Adv. Mater.* 2011, 23 (20), 2367–2371. https://doi.org/10.1002/adma.201004554.
- (4) Li, Q.; Wudl, F.; Thilgen, C.; Whetten, R. L.; Diederich, F. Unusual Electrochemical Properties of the Higher Fullerene, Chiral C76. J. Am. Chem. Soc. **1992**, 114 (10), 3994–3996. https://doi.org/10.1021/ja00036a068.
- (5) Zang, L.; Che, Y.; Moore, J. S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 2008, 41 (12), 1596–1608. https://doi.org/10.1021/ar800030w.
- (6) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. *Science (80-.).* 2001, 293 (5532), 1119–1122. https://doi.org/10.1126/science.293.5532.1119.
- (7) Qian, H.; Negri, F.; Wang, C.; Wang, Z. Fully Conjugated Tri(Perylene Bisimides): An Approach to the Construction of n-Type Graphene Nanoribbons. J. Am. Chem. Soc. 2008, 130 (52), 17970–17976. https://doi.org/10.1021/ja807803j.
- (8) Horowitz, G. Evidence for N-Type Conduction in a Perylene Tetracarboxylic Diimide Derivative. Adv. Mater. 1996, 8 (3), 242–245. https://doi.org/10.1002/adma.19960080312.
- (9) Valeev, E. F.; Coropceanu, V.; Da Silva Filho, D. A.; Salman, S.; Brédas, J. L. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors. J. Am. Chem. Soc. 2006, 128 (30), 9882–9886. https://doi.org/10.1021/ja061827h.
- (10) Gali, S. M.; Matta, M.; Lessard, B. H.; Castet, F.; Muccioli, L. Ambipolarity and Dimensionality of Charge Transport in Crystalline Group 14 Phthalocyanines: A Computational Study. J. Phys. Chem. C 2018, 122 (5), 2554–2563. https://doi.org/10.1021/acs.jpcc.7b11588.
- (11) D'Avino, G.; Olivier, Y.; Muccioli, L.; Beljonne, D. Do Charges Delocalize over Multiple Molecules in Fullerene Derivatives? J. Mater. Chem. C 2016, 4 (17), 3747–3756. https://doi.org/10.1039/c5tc03283k.
- (12) Liu, T.; Troisi, A. What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them. *Adv. Mater.* **2013**, *25* (7), 1038–1041. https://doi.org/10.1002/adma.201203486.
- (13) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* 2005, *105* (8), 2999–3093. https://doi.org/10.1021/cr9904009.
- (14) Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73–78. https://doi.org/10.1002/wcms.81.
- (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision A.03. Gaussian Inc. Wallingford CT 2016.