
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Birational geometry of irreducible holomorphic symplectic tenfolds of O’Grady type / Mongardi G.; Onorati
C.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - ELETTRONICO. - 300:4(2022), pp. 3497-3526.
[10.1007/s00209-021-02966-6]

Published Version:

Birational geometry of irreducible holomorphic symplectic tenfolds of O’Grady type

Published:
DOI: http://doi.org/10.1007/s00209-021-02966-6

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/850341 since: 2023-08-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s00209-021-02966-6
https://hdl.handle.net/11585/850341


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Mongardi, G., Onorati, C. Birational geometry of irreducible holomorphic symplectic 
tenfolds of O’Grady type. Math. Z. 300, 3497–3526 (2022) 

The final published version is available online at https://dx.doi.org/10.1007/s00209-
021-02966-6 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1007/s00209-021-02966-6
https://dx.doi.org/10.1007/s00209-021-02966-6
https://dx.doi.org/10.1007/s00209-021-02966-6


BIRATIONAL GEOMETRY OF IRREDUCIBLE HOLOMORPHIC

SYMPLECTIC TENFOLDS OF O’GRADY TYPE

GIOVANNI MONGARDI AND CLAUDIO ONORATI

Abstract. In this paper, we analyse the birational geometry of O’Grady

ten dimensional manifolds, giving a characterization of Kähler classes and
lagrangian fibrations. Moreover, we study symplectic compactifications of in-

termediate jacobian fibrations of smooth cubic fourfolds.

To Olivier Debarre, whose work on IHS manifolds (and more) has been an
inspiration for us.

Contents

Introduction 1
1. Preliminaries 4
2. Lagrangian fibrations 7
3. The birational Kähler cone 9
4. Examples of wall divisors 10
5. The Kähler cone 21
6. An application to irreducible symplectic compactifications of

intermediate jacobian fibrations 24
References 30

Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact
Kähler manifold with a unique up to scalar holomorphic symplectic form. Up to
deformation, only few examples are known in each dimension, and the question
whether they are all or not is widely open. In dimension 2 though there are only
K3 surfaces. In this paper we concentrate on one specific deformation type, the
so-called OG10-type, and investigate aspects of its birational geometry. These
manifolds are deformation equivalent to the symplectic resolution of singularities
of a singular moduli space of sheaves on a K3 surface constructed by O’Grady
([OGr99]).

The geometry of an irreducible holomorphic symplectic manifold X is encoded in
the second integral cohomology group H2(X,Z). Recall that such a group is torsion

Key words and phrases. Keywords: O’Grady Tenfold; Lagrangian Fibration; Intermediate
Jacobians; Ample cone
MSC 2010 classification: 14D05; 14E30; 14J40.
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2 GIOVANNI MONGARDI AND CLAUDIO ONORATI

free and has a symmetric non-degenerate bilinear form on it, called the Beauville–
Bogomolov–Fujiki form and denoted by (•, •) or, for the associated quadratic form,
by •2. The pair (H2(X,Z), (•, •)) is a lattice.

We start our investigation by studying lagrangian fibrations. These are maps
from an irreducible holomorphic symplectic manifold to a normal non trivial variety,
such that all smooth fibres are lagrangian subvarieties. If f : X → B is a lagrangian
fibration, then the divisor f∗OB(1) is isotropic (i.e. (f∗OB(1))

2 = 0) and nef. Our
first result establishes a birational converse of this fact.

Theorem (Theorem 2.2). Let X be an irreducible holomorphic symplectic mani-
fold of OG10-type and let O(D) ∈ Pic(X) be a primitive non-trivial isotropic line
bundle. Assume that the class [D] of O(D) belongs to the boundary of the birational
Kähler cone of X.

Then, there exists a smooth irreducible holomorphic symplectic manifold Y , a
bimeromorphic map ψ : Y 99K X and a lagrangian fibration p : Y → P5 such that
O(D) = ψ∗p∗(O(1)).

Recall that the birational Kähler cone of X is the union of the Kähler cones
of all the smooth birational models of X which are still irreducible holomorphic
symplectic1.

As a straightforward corollary we get a proof of the weak splitting property
conjectured by Beauville ([Bea07]).

Theorem (Corollary 2.4). Let X be a projective irreducible holomorphic symplectic
manifold of OG10-type and let D be an isotropic divisor on it. Let DCH(X) ⊂
CHQ(X) be the subalgebra generated by divisor classes. Then the restriction of the
cycle class map cl|DCH(X) : DCH(X) → H∗(X,Q) is injective .

The next result describes, in a lattice-theoretic way, the ample and movable
cones. In the following C(X) ⊂ H1,1(X,R) is the connected component of the
cone of positive (with respect to the Beauville–Bogomolov–Fujiki form) classes that
contains the Kähler cone.

Theorem (Theorem 3.2, Theorem 5.5). Let X be an irreducible holomorphic sym-
plectic manifold of OG10-type. The birational Kähler cone of X is an open set in
the connected component containing a Kähler class of

C(X) \
⋃

D2=−2 or (D2=−6 and div(D)=3)

D⊥.

The Kähler cone of X is the connected component containing a Kähler class of

C(X) \
⋃

(0>D2≥−4) or (div(D)=3 and 0>D2≥−24)

D⊥.

Here,D⊥ is the orthogonal complement with respect to the Beauville–Bogomolov–
Fujiki form. The most important tool to achieve this result is the classification of
prime exceptional divisors (see Proposition 3.1) and wall divisors (see Proposi-
tion 5.4). Recall that prime exceptional divisors are irreducible and reduced divi-
sors with negative square ([Mar13]): it is known (see [Mar11]) that the movable

1These birational models have a canonical isometry of their second cohomology with that of X,
due to the fact that birational maps are well defined in codimension one as the canonical classes

are nef.



BIRATIONAL GEOMETRY OF OG10 3

cone is contained in a prime exceptional chamber, that is in a chamber where the
pairing with prime exceptional divisors does not change sign. In particular, the
exceptional chamber considered is given by all divisors whose pairing (using the
Beauville–Bogomolov–Fujiki form) is non negative with prime exceptional divisors.
Wall divisors have a more technical definition (see Definition 1.9), and they provide
a finer subdivision of the positive cone: their orthogonal complements cut it in
chambers, and the Kähler cone is the chamber containing a Kähler class in this
subdivision.

This classification is obtained in two ways. First we construct in an explicit and
geometric way examples of wall divisors, studying the birational transformations
associated. Then we prove that these examples are the only possibilities, by using
recent results from the minimal model program. This last step is the most technical
part of the argument. We use a result of Ch. Lehn and Pacienza on the minimal
model program for irreducible holomorphic symplectic manifolds ([LP16]) to reduce
the problem to a singular moduli space of sheaves on a K3 surface. Here we can
apply a result of Meachan and Zhang ([MZ16]) to show that the divisors we found
are all.

Finally, as an application of these results, we study the symplectic compact-
ifications of the twisted intermediate jacobian fibrations associated to a smooth
cubic fourfold, as constructed by [Sac20]. In particular, we focus on the unique-
ness of such compactifications. In the following V is a smooth cubic fourfold and
U1 ⊂ PH0(V,OV (1))

∗ is the open subset containing linear sections with at worst
one node. We denote by J t

U1
(V ) the associated twisted intermediate jacobian fi-

bration ([Voi18]). We recall in Section 6.1 the generalities about these varieties.

Theorem (Theorem 6.6). Let V be a smooth cubic fourfold. Assume that there
exists a smooth compactification X of J t

U1
(V ) such that:

• X is an irreducible holomorphic symplectic manifold of OG10-type;
• there exists a lagrangian fibration structure X → P5 extending the natural
fibration J t

U1
(V ) → U1;

• the fibres of X → P5 are irreducible.

Then such a compactification is unique.

We remark that a compactification satisfying the first two conditions in the
theorem above always exists, thanks to [Sac20, Theorem 1]. So the only non-trivial
condition is the third one: we will see in the proof of the theorem that, for example,
if V contains a plane or a rational cubic scroll, then there are reducible fibres.

Structure of the paper. In Section 1 we recall the main definitions and main re-
sults that we will need later in the paper. Section 2 deals with lagrangian fibrations
and here we prove Theorem 2.2 and Corollary 2.4. In Section 3 we classify prime
exceptional divisors and prove Theorem 3.2 on the movable cone. Section 4 con-
tains example of wall divisors and of birational morphisms between moduli spaces
of sheaves, where these divisors arise. Section 5 completes the classification of wall
divisors and proves Theorem 5.5. Section 6 contains applications of the previous
results to the case of compactified intermediate jacobian fibration of smooth cubic
fourfolds.
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1. Preliminaries

Let S be a projective K3 surface and v ∈ Heven(S,Z) an effective and positive
Mukai vector (see [Yos01, Definition 0.1]). If H ∈ Pic(S) is an ample class, we
denote by Mv(S,H) the moduli space of Gieseker H-semistable sheaves F on S
such that ch(F )

√
tdS = v.

Theorem 1.1 ([LS06, Rap08, PR13, PR14]). Suppose that H is v-generic (see
[PR13, Section 2.1]) and that v = 2w with w2 = 2. Then the following hold.

(1) [PR14, Thm. 1.1] The moduli space Mv(S,H) has either locally factorial
or 2-factorial singularities and

(2) [LS06, Thm. 1.1] There exists a symplectic desingularisation

πv : M̃v(S,H) −→Mv(S,H).

Moreover, if Σv denotes the singular locus of Mv(S,H), then M̃v(S,H) is

obtained by blowing up Σv with its reduced scheme structure and M̃v(S,H)
is an irreducible holomorphic symplectic manifold.

(3) [PR13, Thm 1.7] There is an isometry

H2(M̃v(S,H),Z) ∼= U3 ⊕ E8(−1)2 ⊕A2(−1),

where U is the hyperbolic plane and E8 and A2 are the lattices associated
to the corresponding Dynkin diagrams. Moreover,

v⊥ ∼= H2(Mv(S,H),Z) −→ H2(M̃v(S,H),Z)
is injective, the second map being the pullback π∗

v . Finally, if α ∈ v⊥ has
divisibility 2, we have

α± Σ̃

2
∈ H2(M̃v(S,H),Z).

Remark 1.2. Roughly speaking a polarisation is v-generic if any strictly semistable
sheaf is extension of stable sheaves of Mukai vector w. We only use a non-generic
polarisation in one case (see Example 4.2), where the Mukai vector is v = (2, 0,−2).
Let us spell out the definition only in this particular case: a polarisationH is generic
if for any divisor class D such that (D,H) = 0 and D2 ≥ −4, then D = 0.

Any irreducible holomorphic symplectic manifold deformation equivalent to a
smooth moduli space as in the Theorem is called of OG10-type. We recall in
the following example the notation for the moduli spaces used by O’Grady in his
original construction.

Example 1.3 ([OGr99]). Assume v = (2, 0,−2). In this case an ample class H is
generic if the only divisor D such that D2 ≥ −4 and (D,H) = 0 is the trivial
divisor (cf. [OGr99]). Fixed such a generic ample class, we denote by MS the
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moduli space Mv(S,H). The locus B of non-locally free sheaves is a Weil divisor

that is not Cartier (cf. [Per10]). If we denote by B̃ its strict transform and by Σ̃
the exceptional divisor of the desingularisation, then

H2(M̃S ,Z) ∼= H2(S,Z)⊕ ⟨B̃, Σ̃⟩,

where B̃2 = −2, Σ̃2 = −6 and (B̃, Σ̃) = 3 (cf. [Rap08]). Finally,

v⊥ = H2(S,Z)⊕ Z(1, 0, 1),

where the class (1, 0, 1) corresponds to the Cartier divisor 2B, and π∗
v(2B) = 2B̃+Σ̃.

Example 1.4 (Moduli spaces of torsion sheaves). Let S be a very general K3 surface
of genus 2, that is Pic(S) = ZH where H is an ample line bundle of degree 2.
Fix the Mukai vector v = (0, 2H, s). Then the moduli space Mv = Mv(S,H)
parametrises sheaves of pure dimension 1. More precisely, Mv contains the relative
Picard variety Pics+4(C/|2H|), where C → U ⊂ |2H| is the universal family of
smooth curves contained in the linear system |2H|.

There is a natural morphism p : Mv → |2H| that assigns to a sheaf its Fitting
support; we call this map the Fitting morphism.

Notice that Mv is smooth when s is odd, and it is singular when s is even. The
last case is the one we are interested in this paper, so from now on we suppose that

s is even. If π : M̃v →Mv is the symplectic desingularisation described in Theorem

1.1, then the composition p ◦ π : M̃v → |2H| is a lagrangian fibration.

Remark 1.5. Let πv : M̃v(S,H) −→Mv(S,H) be the symplectic desinuglarisation of

Theorem 1.1. We remark that the inclusion π∗
v : H2(Mv(S,H),Z) → H2(M̃v(S,H),Z)

preserves the intersection product in the following sense. Let C ⊂ Mv(S,H) be a

curve not contained in the singular locus, let C̃ ⊂ M̃v(S,H) be its strict transform
and D ∈ Pic(Mv(S,H)) be a Cartier divisor. Then by the projection formula

C̃.π∗
vD = C.D.

Definition 1.6. (1) A monodromy operator on an irreducible holomorphic
symplectic manifold is an isometry of H2(X,Z) obtained by composing
isometries given by parallel transport along smooth families of deforma-
tions of X. The group of monodromy operators is denoted Mon2(X).

(2) Given two irreducible holomorphic symplectic manifoldsX and Y , a parallel
transport operator between them is an isometry p : H2(X,Z) → H2(Y,Z)
obtained by composing isometries given by parallel transport along smooth
families of deformations from X to Y . The image p(D) of a class D ∈
H2(X,Z) will be called the parallel transport of D (along p).

The monodromy group is always contained in the index two subgroup O+(H2(X,Z))
of orientation preserving isometries. Recall that an isometry is orientation preserv-
ing if it preserves the orientation of the positive three-space generated by the Kähler
and symplectic forms (cf. [Mar11, Section 4]). The main tool we are going to use
throughout the rest of the paper is the following description of the monodromy
group.

Theorem 1.7 ([Ono20, Theorem 5.4]). Let X be an irreducible holomorphic sym-
plectic manifold of OG10-type. Then

Mon2(X) = O+(H2(X,Z)).
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As in the case of K3 surfaces, interesting properties of divisors are preserved by
monodromy transformations. We will be interested in two monodromy invariant
classes of divisors: wall divisors and stably prime exceptional divisors.

Definition 1.8. Let X be an irreducible holomorphic symplectic manifold and let
D ∈ Pic(X) be a divisor. The divisorD is prime exceptional if it is effective, integral
and q(D) < 0. A divisor is stably prime exceptional if it is prime exceptional on a
very general deformation of the pair (X,D).

Definition 1.9. Let X be an irreducible holomorphic symplectic manifold and let
D ∈ Pic(X) be a primitive divisor. The divisor D is a wall divisor if q(D) < 0 and,
for all f ∈ Mon2(X) ∩Hdg2(X), we have

f(D)⊥ ∩ BKX = ∅.

In particular, a stably prime exceptional divisor is the multiple of a wall divisor
and wall divisors which have an effective multiple are stably prime exceptional
divisors. This is due to the fact that an effective prime divisor of negative square
is uniruled, and that by the MMP uniruled negative divisors can be contracted
([Bou04, Theorem 4.5] and [HT09, Theorem 10]). By taking together the results of
[AV15, BHT15, Mar11, Mon15] we have the following:

Theorem 1.10. Let X be a irreducible holomorphic symplectic manifold and let
D ∈ Pic(X) be a divisor. Let Y be an irreducible holomorphic symplectic manifold
deformation equivalent to X and let D′ ∈ Pic(Y ) be the image of D through a
parallel transport operator. Then, D′ is a wall divisor (respectively a stably prime
exceptional divisor) if and only if D is.

An intensive study of the birational geometry of (singular) moduli spaces of
O’Grady type has been carried out by Meachan and Zhang [MZ16], they worked in
the more general context of Bridgeland stability conditions and moduli spaces of
stable objects in the derived category of a K3 surface. We will stick with the notion
of Gieseker stability and moduli spaces of sheaves, and our (Bridgeland) stability
condition will be a (Gieseker) stability condition parametrized by the choice of an
ample class instead of choosing an ample class and a positive class, as is usually
done by taking the so called large volume limit, see [Br08, Section 1.4]. For every
v-generic stability condition H, there is an open set C of the space of stability
conditions where all moduli spaces are isomorphic. This is called a chamber of the
space of stability conditions.

Theorem 1.11. [MZ16, Proposition 5.2 and Theorem 5.3] Let S be a K3 surface
and let v = 2w be a Mukai vector with w2 = 2. Let H be a v-generic ample line
bundle on S and let Mv(S,H) be the moduli space of semistable sheaves with Mukai
vector v and stability condition H. Let C be the chamber containing H and C its
closure. If τ0 is a (general) stability condition on Db(S) in C \C, then the following
hold:

(1) There is a contraction map π : Mv(S,H) → Mv(S, τ0) which contracts
precisely the S-equivalence classes of τ0-semistable objects of Mv(S,H), and
there is a rank 2 lattice T ⊂ H2∗(S,Z) generated by the class v and the
classes of contracted curves.

(2) The map π is a divisorial contraction if and only if there exists a class
s ∈ T with s2 = −2 and (s, v) = 0.
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(3) The map π is a small contraction if and only if there exists a class s ∈ T
with s2 = −2 and 0 < (s, v) ≤ 4.

Let Stab†(S) denote the distinguished connected component of the space of
Bridgeland stability conditions on Db(S), and let τ ∈ Stab†(S) be general.

Theorem 1.12. [MZ16, Theorem 7.6] There is a globally defined and continuous
map ℓ : Stab†(S) → NS(Mv(S, τ)). The map is independent of τ and the image
of a generic stability condition τ ′ is in the ample cone of the birational model of
Mv(S, τ) given by Mv(S, τ

′). Moreover, the image of ℓ contains big and movable
divisors on Mv(S, τ). Therefore, every Q-factorial K-trivial model of Mv(S, τ)
which is isomorphic to it in codimension one arises as a moduli space Mv(S, τ

′) for
some generic τ ′ ∈ Stab†(S).

We will need a well known result in lattice theory, which goes under the name
of Eichler’s criterion. For any even lattice L, we can define the discriminant group
AL := L∨/L and this inherits a quadratic form from L with values in Q/2Z. Any
isometry of L has then an induced action on AL, and the kernel of this map is

the subgroup Õ(L). Moreover, to any element v ∈ L we can define its divisibility
div(v) as the positive generator of the ideal (v, L). This gives a natural map L→ AL

sending v to [v/div(v)]. The following can be found in [GHS10, Lemma 3.5].

Lemma 1.13. Let L′ be an even lattice and let L = U2⊕L′. Let v, w ∈ L. Suppose
in addition that

• v2 = w2,
• [v/div(v)] = [w/div(w)] in AL.

Then there is an isometry in O+(L) sending w to v.

2. Lagrangian fibrations

Lemma 2.1. Let l ∈ L := U3⊕E8(−1)2⊕A2(−1) be a primitive element of square
zero. Then div(l) = 1 and there is a single orbit for the action of O+(L).

Proof. The discriminant group of L is of three torsion, hence l can have only divis-
ibility one or three. Inside A2(−1), any element s of divisibility three has the form
e1 + 2e2 + 3t or −e1 − 2e2 + 3t, where e1 and e2 are the standard generators with
e21 = e22 = −2 and ⟨e1, e2⟩ = 1 and t is any element. It follows that, modulo 18,
the square of such an element is −6. Therefore, a primitive element of divisibility
3 inside L is an element of the form 3w + as for some w ∈ U3 ⊕ E8(−1)2, a not
divisible by three and s ∈ A2(−1) primitive of divisibility three. The square of such
an element is congruent to −6a2 modulo 18, which cannot be zero. Therefore l has
divisibility one and, by Lemma 1.13, the action of O+(L) has a single orbit. □

The above Lemma is the technical core of the section, as for any irreducible holo-
morphic symplectic manifold X, if p : X → Pn is a lagrangian fibration, the divisor
p∗(O(1)) is nef, isotropic and, if nonreduced fibres are in codimension at least two,
primitive (see [KV19]). In particular, if a divisor is induced by a lagrangian fibra-
tion on a different birational model of X, it will be isotropic and in the boundary of
the birational Kähler cone. The following is a converse for manifolds of OG10-type:
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Theorem 2.2. Let X be an irreducible holomorphic symplectic manifold of OG10-
type and let O(D) ∈ Pic(X) be a primitive non-trivial line bundle whose Beauville-
Bogomolov square is 0. Assume that the class [D] of O(D) belongs to the boundary
of the birational Kähler cone of X.

Then, there exists a smooth irreducible holomorphic symplectic manifold Y , a
bimeromorphic map ψ : Y 99K X and a lagrangian fibration p : Y → P5 such that
O(D) = ψ∗p∗(O(1)). Moreover, the smooth fibres of p are principally polarized
abelian fivefolds2.

Proof. The proof of this theorem is completely analogous to [MR21, Theorem 7.2]
for the case of sixfolds of O’Grady type, for the convenience of the reader we sketch
it here. First of all, notice that we can always assume that O(D) is primitive, up
to replacing it by its primitive submultiple, as the parallel transport of the two
coincides. By the work of Matsushita [Mat17, Theorem 1.2] and Wieneck [Wie16,
Theorem 1.1], the statement of the Theorem either holds for all deformations of
the pair (X,O(D)) where the parallel transport of [D] belongs to the boundary
of the birational Kähler cone, or never holds. By Lemma 2.1 and [Mar13, Section
5.3 and Lemma 5.17(ii)], the moduli space of pairs (X,O(D)) with D primitive
and isotropic is connected. Therefore, we only need to provide an example of
a lagrangian fibration with principally polarized fibres, but such an example is
well known and represented by moduli spaces Mv(S,H) of torsion sheaves as in
Example 1.4. Notice that a general fibre of the Fitting morphism is isomorphic
to the jacobian of a genus five curve, therefore it is a principally polarized abelian
variety of dimension 5. □

The above Theorem has an immediate consequence concerning the movable cone
of a projective manifold of OG10-type. The following can be thought as a converse
of [HT09, Theorem 7] for manifolds of OG10-type.

Corollary 2.3. Let X be a projective manifold of OG10-type. Then the set of
movable divisors of X is BKX ∩H1,1(X,Z).

Proof. By [HT09, Theorem 7], the closure of the movable cone equals BKX . By
[HT09, Corollary 19], all elements of BKX ∩H1,1(X,Z) with positive square are in
the movable cone. By Theorem 2.2, also isotropic elements in this intersection are
in the movable cone too. □

By using a result of Riess [Rie16, Theorem 4.2], we obtain as a corollary that the
weak splitting property conjectured by Beauville [Bea07] holds when the manifold
has a square zero divisor.

Corollary 2.4. Let X be a projective irreducible holomorphic symplectic mani-
fold of OG10-type and suppose that there exists an isotropic divisor class. Let
DCH(X) ⊂ CHQ(X) be the subalgebra generated by divisor classes. Then the
restriction of the cycle class map

cl|DCH(X) : DCH(X) → H∗(X,Q)

is injective.

2Notice that without a section the lagrangian fibration does not give a family of abelian
varieties.
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Proof. [Rie16, Theorem 4.2] proves that the weak splitting property holds for all
manifolds X such that one of their birational model has a lagrangian fibration. By
[Mar11, Section 6], a manifold with a square zero divisor has a square zero divisor
in the boundary of the birational Kähler cone and from Theorem 2.2 it follows that
X has a birational model with a lagrangian fibration. □

Remark 2.5. The same statement has been proved by Voisin in [Sac20, Appendix]
for intermediate jacobian fibrations of very general cubic fourfolds. We remark that
the ideas behind our proof and Voisin’s one are essentially the same.

3. The birational Kähler cone

Proposition 3.1. Let X be a manifold of OG10-type and let D ∈ Pic(X) be a
primitive divisor. Then a multiple of D is stably prime exceptional if and only if
D2 = −2 or D2 = −6 and div(D) = 3.

Proof. If E is a stably prime exceptional divisor and D is a primitive divisor such
that E = aD, Markman [Mar13] proves that the reflection RE = RD which sends a

divisor F to F −2 (D,F )
D2 D is a monodromy operator, and in particular it is integral.

Therefore, 2div(D)/D2 is an integer. As H2(X,Z) ∼= U3 ⊕ E8(−1)2 ⊕ A2(−1),
div(D) can be either 1 or 3. This in turn implies D2 = −2 in the first case
and D2 = −6 in the second case. Being a stably prime exceptional divisor is a
property which is invariant under the Hodge monodromy group by [Mar11, Section
6], and elements of square −2 form a single monodromy orbit by Lemma 1.13 and
Theorem 1.7, as do elements of square −6 and divisibility 3. Therefore, to prove our
claim it suffices to produce an example of a manifold X with two prime exceptional
divisors having degree −2 and degree −6, respectively.

Let S be a projective K3 surface and MS the moduli space of semistable rank 2
sheaves with trivial first Chern class and second Chern class of degree 4. The locus

B parametrising non-locally free sheaves is a (Weil) divisor. Take X = M̃S to be

O’Grady’s symplectic desingularisation; then the strict transform B̃ of B and the

exceptional divisor Σ̃ of the desingularisation are prime exceptional divisors with
the right degrees and divisibilities, as written in Example 1.3, by [Rap08].

□

Theorem 3.2. Let X be a manifold of OG10-type. Then, the birational Kähler
cone of X is an open set containing a Kähler class inside one of the connected
components of

C(X) \
⋃

D2=−2 or (D2=−6 and div(D)=3)

D⊥.

Let us explain what is the open subset in the statement. There is only one
chamber in the decomposition above that contains the Kähler cone. This chamber
is denoted fundamental exceptional chamber in [Mar11, Section 5] and its closure
coincides with the closure of the birational Kähler cone. Since the birational Kähler
cone is the union of the pullback of Kähler cones via all bimeromorphic morphisms,
the latter is obtained from the former by removing more walls, corresponding to
birational transformations (see Section 5).
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Proof. By the discussion above, the birational Kähler cone is an open set in the
fundamental exceptional chamber, which is the connected component of

C(X) \
⋃

D stably prime exceptional

D⊥,

containing a Kähler class. By Proposition 3.1, stably prime exceptional divisors
are multiples of divisors of square −2 or of square −6 and divisibility 3, therefore
the claim follows. □

Example 3.3. If V is a very general cubic fourfold (in the sense of Hassett), de-
note by IJ(V ) the (compactified and smooth) families of intermediate jacobians
associated to V . They have been constructed in [LSV16], where it is shown that
they are irreducible holomorphic symplectic manifolds of OG10-type with a natural
lagrangian fibration. In Section 6 we recall some of their geometry. By [Ono20,
Proposition 4.1], Pic(IJ(V )) ∼= U , where U is the unimodular hyperbolic plane. By
fixing standard square zero generators of Pic(IJ(V )) = U = ⟨e, f⟩, all square zero
classes are e, f,−e,−f and, up to a sign choice, positive ones are only e and f – in
particular f can be chosen to be the class of the fibration. However, the class e− f
is negative on e and positive on f , therefore by Theorem 3.2 only one among e and
f can be movable. In particular, the movable cone is the region between the walls
generated by e− f and f .

As a consequence one can see that, for very general V , the variety IJ(V ) cannot
be birational to its twisted version IJ(V )t (see [Voi18]). In fact, Voisin proved in
[Voi18] that IJ(V ) and IJt(V ) are not birational as lagrangian fibrations, therefore if
they were birational there would be two square zero movable divisors in Pic(IJ(V )),
which is excluded by the description of the movable cone given above.

We remark that the same conclusions were already obtained by Saccà with es-
sentially the same arguments (see [Sac20, Corollary 3.9]).

4. Examples of wall divisors

In this section we exhibit explicit examples of wall divisors. The following remark
is fundamental for the computations. If X is an irreducible holomorphic symplec-
tic manifold and H2(X,Z) is the homology group of curve classes, then Poincaré
duality and the non-degeneracy of the Beauville–Bogomolov–Fujiki form give the
embedding

H2(X,Z) ∼= H2(X,Z)∗ ↪→ H2(X,Q).

If R ∈ H2(X,Z) is the class of an extremal curve of the Mori cone of curves, then
by [Mon15, Lemma 1.4] an integral generator D of the line QR ⊂ H2(X,Q) is the
class of a wall divisor, and D∨ := D/div(D) = R. The strategy is then to look
for lines describing certain Mukai flops and write down their classes in the group
H2(X,Q).

We refer to Example 1.3 and Example 1.4 for the notation and background.

4.1. Example: the zero section. Let S be a very general K3 surface of genus
2, that is Pic(S) = ZH with H2 = 2. We work with the moduli space M(0,2H,−4)

and its symplectic desingularisation M̃(0,2H,−4). The generic point of M(0,2H,−4) is
of the form i∗L, where i : C → S is the embedding of a genus 5 curve such that
C ∈ |2H| and L is a degree 0 line bundle on C. In particular, the generic fibre of
the Fitting support morphism p : M(0,2H,−4) → |2H| is an abelian variety, so that
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there is a zero section s : |2H| 99KM(0,2H,−4). (Since the K3 surface is very general,
one can see that the zero section is in fact regular.) We denote by ZS its image.

We want to take a general line l ⊂ ZS and compute its class in Pic(M̃(0,2H,−4))Q =

⟨a, b, σ⟩, where a = (−1, H, 0), b = (0, 0, 1) are the generators of v⊥alg, and σ is the
class of the exceptional divisor of the desingularisation. The class of the line l gen-

erates an extremal ray of the Mori cone of M̃(0,2H,−4), so that the divisor D such
that l = D∨ is a wall divisor.

We take as l the horizontal curve defined in [Ono20, Section 4.1.1, after Re-
mark 4.7]; the following result is shown there.

Lemma 4.1 ([Ono20, Remark 4.10, Lemma 4.11]). l.a = −1, l.b = 1 and l.σ = 0.

As a consequence we get that l = a− 3b. In particular it is already integral, so
that the associated wall divisor is D = a − 3b. Notice that D has degree −4 and
divisibility 1.

Remark 4.2. We remark that since l is not contained in the singular locus, this
example is just the pullback of [MZ16, Remark 8.5].

4.2. Example: P5. Let S be an elliptic K3 surface such that Pic(S) = ⟨e, f⟩,
where e − f is the class of a section and f is the class of a fibre; in particular
e2 = 0 = f2 and (e, f) = 1. The class H = e + 3f is ample and generic (in the

sense of Example 1.3); M̃S(H) is the associated smooth O’Grady moduli space.
Consider the class H0 = e+2f ; then H0 is ample but not generic. In fact one can

describe explicitly the singular locus of MS(H0): a semistable sheaf F is singular
in MS(H0) if either F is strictly H-semistable or F fits in a short exact sequence

(1) 0 −→ L −→ F −→ L∨ −→ 0,

where L = e − 2f . This follows directly from the proof of [OGr99, Lemma 1.1.5].
Notice that a sheaf F fitting in a sequence like (1) is locally free, and there is a P5 of
such extensions. In particular, blowing up the locus Σ(H0) of strictly H-semistable

sheaves produces a symplectic variety M̃S(H0) (which is still singular).
The same proof as in [MR21, Proposition 4.4 and Corollary 4.6] yields that any

H-semistable sheaf remains H0-semistable, so there is a regular contraction mor-
phism c : MS(H) →MS(H0). Moreover, this morphism lifts to a regular morphism
between the corresponding blow-ups, i.e. there is a commutative diagram

M̃S(H)
c̃ //

��

M̃S(H0)

��
MS(H)

c // MS(H0),

and c̃ is a flopping contraction. The extremal curve R associated to the contraction
c̃ is any line inside the P5 of extensions of the form (1). We claim that the divisor

D ∈ Pic(M̃S(H)) such that D∨ = R is the class e − 2f , seen as a divisor class in

Pic(M̃S(H)) via the Mukai–Donaldson–Le Poitier morphism Pic(S) → Pic(MS(H))
(see beginning of [OGr99, Section 5]) composed with the pullback of the desingu-
larisation map. In particular, D = e− 2f is a wall divisor of degree −4.

First of all, we notice that the contracted P5 is contained in the locally free locus,

so that the curve R is disjoint from both the exceptional divisor Σ̃ and the divisor
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B̃ of non-locally free sheaves (cf. Example 1.3). In particular, we can suppose that

[R] ∈ H2(S,Z) ∼= ⟨B̃, Σ̃⟩⊥ (here we are implicitly using the Mukai–Donaldson–Le
Poitier morphism again to identify classes on the K3 surface with the corresponding
classes on the moduli space). On the other hand, such a class must be orthogonal
to the ample class H0 by construction. It follows that, up to a constant, R = e−2f ,
and we are done.

4.3. Example: P3-bundle. In this section we work with the symplectic resolution

M̃v(S,H) of the moduli space Mv(S,H), where (S,H) is a polarised K3 surface of
genus 2 and v = (0, 2H, 2). Moreover, we assume that (S,H) is very general, that
is Pic(S) = ZH.

We start by defining a closed subvariety Y ⊂ Mv(S,H) of codimension 3 such
that Y is generically a P3-bundle over Hilb2(S). Then we identify the class of the
extremal ray corresponding to a line in a P3-fibre of Y .

Let w = (1, 2H, 3) and notice that Mw(S,H) ∼= Hilb2(S). The moduli space
Mw(S,H) parametrises sheaves of the form Iξ(2), where ξ ∈ Hilb2(S) and Iξ is

the corresponding sheaf of ideals. By a direct computation, when ξ ∈ Hilb2(S) is
general, we get that h0(Iξ(2)) = 4 and h1(Iξ(2)) = h2(Iξ(2)) = 0. If s ∈ PH0(Iξ(2))
is a section, then the sheaf Fs fitting in the short exact sequence

(2) 0 −→ OS
s.−→ Iξ(2) −→ Fs −→ 0

belongs to the moduli space Mv(S,H). The subvariety Y ⊂ Mv(S,H) formed by
sheaves arising as in (2) is by construction generically a P3-bundle over Mw(S,H).

Let M̃v(S,H) be the symplectic desingularisation of Mv(S,H). We want to

determine the class in H2(M̃v(S,H),Z) ⊂ H2(M̃v(S,H),Q) of a line R ∼= P1 in a
general fibre of Y . Then a primitive integral generator D of the line QR is a wall
divisor.

From now on we fix a very general point ξ ∈ Hilb2(S); the support of ξ is
composed by two reduced and disjoint points, i.e. Supp(ξ) = {p, q} and p ̸= q. If
s ∈ PH0(Iξ(2)) is a section, we denote by Cs the zero locus of s. With an abuse of
notation, we identify s with Cs when no confusion arises.

Claim 4.3. There exists a pencil L ⊂ PH0(Iξ(2)) such that Cs is smooth for all but
a finite number of sections s1, s2, · · · , sk ∈ L and moreover:

• Cs1 , Cs2 and Cs3 have two smooth irreducible components; more precisely
Csi = Csi,1 ∪ Csi,2 with Csi,j ∈ |H| smooth.

• Csi , i = 4, · · · , k, is irreducible.

Proof. We can think PH0(Iξ(2)) as the subset of |2H| of curves passing through the
points p and q, support of ξ. Recall that the K3 surface S is the double cover of P2

ramified along a smooth sextic curve Γ; the linear system |2H| is then isomorphic
to the linear system |OP2(2)| of conics in P2. A curve C ∈ |2H| is smooth only if
the corresponding conic in |OP2(2)| is smooth and is not tangent to the sextic Γ.
Moreover, the locus of singular conics in |OP2(2)| is a degree 3 hypersurface.

Let d : S → P2 be the cover. By the generality of ξ, the image d(ξ) consists of
two disjoint points and PH2(Iξ(2)) is isomorphic to PH0(Id(ξ)(2)) ⊂ |OP2(2)|. The
locus of singular conics in PH0(Id(ξ)(2)) is then again a hypersurface of degree 3. It

follows that a general pencil L′ in PH0(Id(ξ)(2)) contains three singular members:
these correspond to the three reducible curves in L = f∗L′. Now, let C ⊂ Γ ×
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PH0(Id(ξ)(2)) be the incidence variety of conics tangent to Γ at some point. The

projection C → PH0(Id(ξ)(2)) is finite on its image. The projection C → Γ has
generic fibre of dimension 1. So the pencil L′ contains only finitely many conics
tangent to Γ and the claim follows. □

Remark 4.4. The locus of reducible conics in PH0(Id(ξ)(2)) is the union S1 ∪ S2 of
two surfaces. The surface S1 parametrises reducible conics where both the points
in the support of d(ξ) are on the same irreducible component. Since there exists a
unique line passing through two points, it follows that S1 is a linear surface. On the
other hand, the surface S2 parametrises reducible conics such that each irreducible
component contains one point of the support of d(ξ); S2 has degree 2.

Let L be as above. In order to define the line R ⊂ Mv(S,H) in a general P3-
fibre of Y , we need to define a family F of sheaves on L× S, flat over L, such that
Fs ∈Mv(S,H) for every s ∈ L.

Let πL and πS the projections from L×S to L and S, respectively. The following
result is an adaptation to our case of [Per10, Section 2.2 and Appendix].

Lemma 4.5. Let P = PH0(Iξ(2)). There exists an injective morphism

φ : π∗
SOS ⊗ π∗

POP(−1) −→ π∗
SIξ(2)

defining a sheaf F ′ := coker(φ) on P×S, flat over P, such that F ′
s is the sheaf in

Mv(S,H) corresponding to the section s (cf. (2)), for every s ∈ P.

Proof. Viewing PH0(Iξ(2)) as a P3-bundle over a point ⋆ = Spec(C), we can write

P = PH0(Iξ(2)) = P (o∗Hom(OS , Iξ(2))) ,

where o : S → ⋆ is the structure morphism of S. Denote by p : P → ⋆ the in-
duced morphism. The universal property of P-bundles yields a canonical injective
morphism f : OP(−1) → p∗o∗Hom(OS , Iξ(2)). By the commutativity of the square

P×S
qP //

qS

��

P

p

��
S

o // ⋆

we eventually get the isomorphism

p∗o∗Hom(OS , Iξ(2)) ∼= qP ∗Hom(q∗SOS , q
∗
SIξ(2)).

It follows that f defines a section ϕ ∈ H0(P×S,Hom(q∗SOSq
∗
POP(−1), q∗SIξ(2))).

By construction ϕ is defined fibrewise, and its restriction to each fibre is injective.
It follows that ϕ is injective, so that F = coker(φ) is flat over P, and that Fs is the
sheaf associated to the section s ∈ P. □

Let j : L× S → P×S be the inclusion and F := j∗F ′ the restriction. Then F is
a sheaf on L×S, flat over L. The pair (L,F) defines a line R ⊂Mv(S,H). Now, we
want to understand the intersection of R with Σ, the singular locus of Mv(S,H).

Lemma 4.6. R intersects Σ in one point, corresponding to the unique reducible
curve with the property that ξ is contained in only one irreducible component.
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Proof. Let s ∈ PH0(Iξ(2)) be a section, Cs the associated curve and Fs the associ-
ated sheaf. If Cs is irreducible, then Fs is stable. Assume then that Cs = C1∪C2 is
reducible. The stability of Fs is checked by studying the sheaves Gi := (Fs|Ci)/ tors.
Since Fs is defined by the short exact sequence (2), the sheaf Gi is defined by

0 −→ OS −→ Iξ∩Ci(1) −→ Gi −→ 0.

Using the same notation as in Remark 4.4, if s ∈ S1, then without loss of generality
we can suppose that ξ ⊂ C2. This implies that Iξ∩C1

(1) = OS(1) and we have a
square

0 // OS
s. //

id

��

OS(1) //

��

i1∗OC1
(2)

��

// 0

0 // OS
s. // Iξ(2) // Fs

// 0

with injective vertical arrows. Notice that the dotted arrow is induced by the com-
mutativity of the first square, which is in turn induced by the inclusion H0(OS(1)) ⊂
H0(Iξ(2)) given by multiplication by the equation of C2 (which is uniquely deter-
mined by ξ).

On the other hand, if s ∈ S2 \ (S1 ∩ S2), then Iξ∩Ci
(1) = Ipi

(1) and one can
directly check that neither of Gi can destabilise Fs.

Finally, since L is general, the three points s1, s2 and s3 corresponding to the
three reducible curves of Claim 4.3 decompose as s1 ∈ S1 and s2, s3 ∈ S2. It follows
that R ∩ Σ = {Fs1} and the claim holds. □

Let now R̃ be the strict transform of R in M̃v, and π : M̃v → Mv the desingu-

larisation morphism. We want to determine the coefficients of R̃ in

Pic(M̃v)Q = spanQ{a, b, σ},

where a = (2, H, 0) and b = (0, 0, 1) are the generators of v⊥alg, and σ is the class of
the exceptional divisors of π.

Lemma 4.7. R̃.a = 2 and R̃.b = 1.

Proof. By Remark 1.5, R̃.a = R.a and R̃.b = R.b. The claim follows then from
[HL10, Theorem 8.1.5] and the Grothendieck–Riemann–Roch formula, as explained
in [Ono20, Lemma 4.11]. □

Together with Lemma 4.6, this shows that

R̃ = −1

2
a− 3

2
b− 1

6
σ = −1

2
(a+ 3b+ σ) +

1

3
σ.

If we put x = − 1
2 (a + 3b + σ), then we notice that x2 = −4, so that x is integral.

It follows that the divisor

D := 3x+ σ

is a wall divisor such that D∨ = R̃. Notice that D2 = −24 and div(D) = 3.

Remark 4.8. The image of D inside Pic(Mv), obtained by contracting the excep-
tional divisor, is −a−3b, which has square −10 and divisibility 2, giving an example
of [MZ16, Theorem 5.3, item (SC)]. In fact, this example is an explicit geometric
description of [MZ16, Example 8.6].
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Remark 4.9. There is a birational isomorphism

M̃(0,2H,2)
∼= M̃(0,2H,−2) 99K M̃(0,2H,−4)

induced by the unique g12 on the smooth curves in |2H| (see Example 4.6). The
first isomorphism is the one given by taking the tensor with −H. This birational
morphism induces a morphism on the corresponding Picard groups

φ : Pic(M̃(0,2H,2)) −→ Pic(M̃(0,2H,−4))

that has been written down in coordinates in [Ono20, Section 4.1.2, Section 4.1.3].
Therefore one can explicitly see that φ(x) coincides with the class of the wall divisor
of Example 4.1. Notice that φ is a parallel transport operator (since it is induced
by a birational isomorphism), therefore this implies that the class x corresponds to

the class of a wall divisor that is deformation of the zero section in M̃(0,2H,−4).

4.4. Example: the O’Grady birational morphism. Let S be a projective K3
surface with a polarisation H of degree 2. We consider the moduli space M(0,2H,2),
whose generic member is of the form i∗L, where i : C → S is the closed embedding
of a smooth curve C ∈ |2H| and L is a degree 6 line bundle on C.

Following a construction of O’Grady in [OGr99, Section 4.1], we define a bira-
tional morphism

ϕ : M(0,2H,2) 99KM(2,2H,0)

in the following way. First of all, notice that if C is smooth and L is a line bundle
of degree 6 on C, then h0(i∗L) ≥ 2. O’Grady defines then the open subset J 0 ⊂
M(0,2H,2) consisting of sheaves of the form i∗L, where C is smooth and L is a

globally generated line bundle of degree 6 such that h0(L) = 2. He defines ϕ(i∗L)
as the dual of the kernel of the surjection H0(L) ⊗ OS → i∗L. As remarked in
the proof of [Ono20, Lemma 4.23], this birational morphism coincides with the
birational morphism induced by the Fourier–Mukai transform with kernel the ideal
sheaf of the diagonal in the product S × S.

We denote by ϕ̃ : M̃(0,2H,2) 99K M̃(2,2H,0) the birational morphism induced on
the symplectic desingularisations.

The indeterminacy locus of ϕ (and of ϕ̃) is generically identified with the relative
Brill–Noether locus W = W6

2 (|2H|) of line bundles L of degree 6 such that h0(L) =
3. Notice that W has dimension 7. On the other hand, one can easily check that
the general member of the P3-bundle Y ⊂M(0,2H,2), defined before in Example 4.3,

is of the form i∗L with h0(L) = 3. It follows that W = Y and so that ϕ̃ is the
generalised Mukai flop around a (generic) P3-bundle.

4.5. Example: P3-bundles over the locus of non-reduced curves. In this

example we work with the symplectic resolution M̃(0,2H,−2)(S,H) of the moduli
spaceM(0,2H,−2)(S,H), where (S,H) is a polarised K3 surface of genus 2; moreover,
we assume that (S,H) is very general, that is Pic(S) = ZH. The moduli space
M(0,2H,−2) comes with a lagrangian fibration structure p : M(0,2H,−2) → |2H| that
associates to each sheaf its Fitting support. Let ∆ ⊂ |2H| be the locus of non-
reduced curves, that is any curve in ∆ is of the form C = 2C ′, where C ′ ∈ |H|.

Now, let us consider the restriction

p : M∆ −→ ∆,
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where M∆ ⊂ M(0,2H,−2) is the sublocus of sheaves whose Fitting support is not
reduced. It is known (see for example [DeRS19, Section 3.7]) that M∆ has two
irreducible components, denoted M1 and M2. The component M1 parametrises
sheaves whose schematic support is the reduced curve: these sheaves are of the
form i∗G, where i : C

′ → S and G is a rank 2 torsion free sheaf of degree 0. The
component M2 contains an open subset M0

2 := M2 \ (M2 ∩ M1) parametrising
sheaves whose schematic support is the non-reduced curve itself. We recall that
M0

2 consists of stable sheaves, that is it does not intersect the singular locus Σ of
M(0,2H,−2) (cf. [Moz07, Lemma 3.1.7]).

In this section we consider the component M1, which is a P3-bundle over a
smooth moduli space of sheaves on S of dimension 4. We recall this strucure and
compute the square and divisibility of the associated wall divisor.

As already remarked, a general sheaf in M1 is of the form i∗G, where i : C
′ → S

is the embedding of the reduced curve C ′ and G is a rank 2 vector bundle of degree
0. Therefore the determinant detG of G is a line bundle of degree 0 on C ′. There
is then a well-defined rational morphism

m1 : M1 99KM(0,H,−1),

whose general fibre m−1
1 (C ′, L) is the moduli space of rank 2 semistable vector

bundles G on C ′ such that detG = L. By [NR69, Theorem 2] (cf. [DeRS19, Propo-
sition 3.7.4]), it follows that m−1

1 (C ′, L) ∼= P3. More precisely, if θ is the theta
divisor of the jacobian surface J1

C′ , then m
−1
1 (C ′, L) ∼= |2θ|. Moreover, Narasimhan

and Ramanan also show that the locus inm−1
1 (C ′, L) of strictly semistable sheaves is

isomorphic to the Kummer surface that is the image of J1
C′ in |2θ| (cf. [NR69, Propo-

sition 6.3]). In the following we denote by m̃1 : M̃1 → M(0,H,−1) the strict trans-

form of m1 : M1 →M(0,H,−1) via the desingularisation morphism π : M̃(0,2H,−2) →
M(0,2H,−1). This is a generic P3-bundle.

We denote by R̃ a line inside a general fibre of m̃1 and, as in the previous

examples, we want to compute its class l̃ = [R̃] in Pic(M̃(0,2H,−2))Q = ⟨a, b, σ⟩.
Here a = (−2, H, 0) and b = (0, 0, 1) are the generators of v⊥alg, and σ is the class of

the exceptional divisor of the desingularisation map π. The first remark is that R̃
is obtained as the strict transform of a line R in a general fibre of m1, whose class
is denoted by l = [R]. The following intersections hold.

Lemma 4.10. l̃.a = 2, l̃.b = 0 and l.σ = 4

Proof. Let us start with the first two intersection numbers. By Remark 1.5, the
projection formula reduces the problem to compute l.a and l.b. We claim that l = b.
In fact, since R is contained in a fibre of the Fitting map p : M(0,2H,−2) → |2H|, its
class l must be a multiple of b = p∗O(1); and because both R and b are primitive
and positive, the claim follows.

Finally, let Σ be the singular locus of M(0,2H,−2). We claim that R ∩ Σ consists
of four points with multiplicity 1: this will finish the proof. In fact, we have already
remarked that if C ′ ∈ |H| is general and L ∈ JC′ is a degree 0 line bundle, then
m−1

1 (C ′, L)∩Σ is isomorphic to the Kummer surface in P3, hence it is a degree four
hypersurface. Since R is a general curve in the P3, it intersects Σ in four points of
multiplicity 1 as claimed. □
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As a corollary, we get that

l̃ = b− 2

3
σ ∈ Pic(M̃(0,2H,−2))Q.

Since l̃ generates an extremal ray in the Mori cone, the divisor D such that
D/div(D) = l̃ must be a wall divisor. It follows that

D = 3b− 2σ

is a wall divisor and it has degree −24 and divisibility 3.

Remark 4.11 (Structure of the irreducible component M2). We thank the anony-
mous referee for pointing out this situation to us and for having corrected an erro-
neous statement made in a previous version of this paper.

We use the notation introduced at the beginning of this section. In particular
we work on a non-reduced curve C = 2C ′, where C ′ ∈ |H|, and the component M2

contains the open subsetM0
2 =M2\(M2∩M1). A general point inM0

2 corresponds
to a sheaf of the form i∗F , where i : C → S is the inclusion and F is a line bundle
on C. We recall that these sheaves are always stable. By [Moz07, Lemma 3.3.1],
there is a short exact sequence

0 −→ E ⊗K∨
C′ −→ F −→ E −→ 0,

where KC′ is the canonical bundle of C ′ and E is the restriction of F to C ′.
Moreover, E is a line bundle of degree 1 on C ′. There exists a well defined map
m0

2 : M
0
2 → M(0,H,0) that sends F to E ([Moz07, Lemma 3.3.3]). There is a short

exact sequence ([Moz07, Corollary 3.2.2])

0 → Ext1OC′ (E,E ⊗K∨
C′) → Ext1OC

(E,E ⊗K∨
C′) → EndOC′ (E ⊗K∨

C′) → 0,

so that the fibre of m0
2 over a point (C ′, E) ∈ M(0,H,0) is identified with the affine

space

PExt1OC
(E,E⊗K∨

C′)\PExt1OC′ (E,E⊗K∨
C′) ∼= Ext1OC′ (E,E⊗K∨

C′) ∼= H1(K∨
C′) = C3.

It follows that m0
2 : M

0
2 →M(0,H,0) is a generic C3-bundle.

Let us denote by m̂2 : M̂2 → M(0,H,0) the fibration whose general fibre is the

projective space PExt1OC
(E,E ⊗K∨

C′) = P3. The component M2 is then obtained

from M̂2 by gluing the boundary of the fibres of m̂2 with M1.
We claim that there are 16 fibres of m̂2 that glue to a given general fibre

m−1
1 (C ′, L) of m1. Moreover the gluing is performed along a boundary P2 of the

fixed P3 = m−1
1 (C ′, L). In fact, the P2 must be the space of extensions of OC′-

modules PExt1OC′ (E,E ⊗K∨), and if a sheaf belongs to such a P2, then it belongs

to M1 only if 2E ⊗K∨ = L. Since there are 16 points of 2-torsion on an abelian
surface, the claim follows. Moreover each of these 16 planes must meet in the fixed
P3, therefore M2 cannot be normal.

4.6. Example: the hyperelliptic birational map. We keep the same notations
as in the previous Section 4.5. So, in particular, we work with the moduli space
M(0,2H,−4) and we denote by p : M(0,2H,−4) → |2H| the Fitting support morphism.
Since any smooth curve C in the linear system |2H| is hyperelliptic, there exists a
unique g12(C). Tensoring with this degree 2 line bundle defines a birational map

(3) φ : M(0,2H,−4) 99KM(0,2H,−2).
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We denote by φ̃ : M̃(0,2H,−4) 99K M̃(0,2H,−2) the birational map between the respec-
tive symplectic desingularisations.

These birational maps have already been considered in [Ono20, Section 4.1.2],
where it is shown that φ does not preserve the singular loci of the respective moduli
spaces.

In this section we want to understand the wall divisor associated to φ̃. We study
the indeterminacy locus in terms of the Fitting support of the objects parametrised

by M̃(0,2H,−4) and M̃(0,2H,−2). We start with the following technical result.

Proposition 4.12. (1) φ̃ is well defined on sheaves whose schematic support
is an irreducible curve of arithmetic genus 5.

(2) φ̃ is well defined on stable sheaves whose schematic support is a reducible
and reduced curve of arithmetic genus 5; φ is not defined on sheaves whose
support is a reducible and reduced curve of arithmetic genus 5.

(3) φ̃ is not defined on stable sheaves whose schematic support is a double curve
of arithmetic genus 5.

Proof. Recall that C is the double cover of a conic in P2, ramified along a sextic
curve; the pullback of a point on the conic defines a g12 on C.

(1) If the conic is smooth, there exists only one equivalence class of such a
point, so the g12 is uniquely determined. In this case, the curve C is irre-
ducible (but possibly singular if the conic is tangent to the sextic curve)
and the maps φ and φ̃ are well defined.

(2) Suppose that C = C1 ∪ C2 is reducible.We can take a pencil C → P1 of
curves in |2H| whose general member is smooth and whose central member
C0 is the reducible curve C. (For example, the pencil in Claim 4.3.) After
possibly a finite base change, we can suppose that the pencil has a bi-section
Z, that is the pullback of a section of the corresponding pencil of conics.
Denote by j : C → S × P1 the natural embedding. Let now F = j∗L be a
flat family of semistable sheaves on S parametrised by P1, such that Ft is
the pushforward of a degree 0 line bundle on Ct. In particular F defines a
curve in M(0,2H,−4).

Using the bi-section Z on C → P1, we can then define the sheaf on S×P1

E = j∗L(Z)

that is flat over P1. Moreover, for general t, the sheaf Et = E|S×{t} is stable
and coincides with φ(jt,∗Lt) by construction. We need to investigate the
stability of the central member E0.

First of all, we make the following remark: Z0 is contained in one ir-
reducible component, and without loss of generality we can assume that
it does not contain any node of C. Therefore the sheaf E0 is obtained by
twisting the line bundle L0 with the g12 of the corresponding irreducible
component. We divide the analysis in two cases.

Both C1 and C2 are smooth. Let F = i∗G be a sheaf in M(0,2H,−4).

Each Cj has a g12, call it OCj
(pj + qj) with pj , qj /∈ C1 ∩ C2, and we

denote by φj(F ) the sheaf F (pj + qj). Both φj(F ) belong to the moduli
space M(0,2H,−2). We claim that φ1(F ) = φ2(F ) if and only if F is stable.
Moreover, in this case φ(F ) is strictly semistable.
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Let us denote by Gj the torsion free part of the restriction of G to Cj ;
Gj is a line bundle on Cj of degree dj . With an abuse of notation we keep
calling i the inclusion of the curve Cj in S. Since F is semistable, we have
that dj ≥ −1. There is a short exact sequence

0 → F → i∗G1 ⊕ i∗G2 → Q→ 0,

where Q is a torsion sheaf supported on C1 ∩ C2. If F is stable, the only
possibility is that Q has length 2 and d1 = d2 = 0. If the length of Q is 2
and F is strictly semistable, then either d1 = 1 and d2 = −1 or d1 = −1
and d2 = 1. If the length of Q is 1, then F is necessary strictly semistable
and either d1 = 0 and d2 = −1 or d1 = −1 and d2 = 0. Finally if Q = 0,
then F is polystable and d1 = d2 = −1.

Let us now study the semistability of φ1(F ). As for F , we do that
by studying the torsion free restrictions φ1(F )1 = i∗(G1(p1 + q1)) and
φ1(F )2 = i∗(G2), of degree (respectively) d1 + 2 and d2.

Suppose that F is stable, in which case d1 = d2 = 0. It follows that the S-
equivalence class of φ1(F ) is [i∗G1(p1+q1−n1−n2)⊕i∗G2] = [i∗G1⊕i∗G2],
since p1 + q1 −n1 −n2 is linearly equivalent to zero on C1. Here n1 and n2
are the nodes of C (possibly coinciding – recall that Q has length 2 in this
case).

If F is strictly semistable, then we have three cases, depending on the
length of Q. If the length of Q is 2, then either d1 + 2 = 1 and d2 = 1 or
d1+2 = 3 and d2 = −1; it follows that φ1(F ) is stable in the first case and
unstable in the second case. If the length of Q is 1, then either d1 + 2 = 2
and d2 = −1 or d1 + 2 = 1 and d2 = 0; it follows that φ1(F ) is unstable
in the first case and strictly semistable in the second case. If Q = 0, then
d1 + 2 = 1 and d2 = −1, so φ1(F ) is unstable.

We can perform the same analysis for φ2(F ) and confront the result
with the previous case. For example, if F is stable, then φ2(F ) is strictly
semistable and its S-equivalence class is [i∗G1 ⊕ i∗G2(p2 + q2 −n1 −n2)] =
[i∗G1 ⊕ i∗G2], since p2 + q2 − n1 − n2 is linearly equivalent to zero on C2.
Again n1 and n2 are the nodes of C. On the other hand, if F is strictly
semistable and Q has length 1, then φ2(F ) is stable, but it is not isomorphic
to φ1(F ). Finally, there is a remaining case (when F is strictly semistable
and Q has length 1) where both φ1(F ) and φ2(F ) are strictly semistable,
but their S-equivalence classes are different.

At least one between C1 and C2 is singular. The main tool we used for
the smooth case is the Riemann–Roch formula, which holds in the singular
case for locally free sheaves (e.g [Har77, Exercise IV.1.9]). The same com-
putations can be performed in the singular case using the following remark.
Sheaves supported on a singular curve C are of the form i∗F , where F is
torsion free of rank 1. We then have two cases, either F is locally free or
F is the pushforward of a line bundle on a (partial) normalisation.

Let us conclude the proof. The analysis above ensures that the stability
of the central sheaf E0 depends to Z and the stability of F0. In particular, we
see that if F0 is stable, then E0 is strictly semistable, but its S-equivalence
class does not depend on the choice of the bi-section Z, nor on the choice
of the pencil C. We see in a while that the morphism φ̃ can be defined in
these points by putting φ̃(F0) = E0. On the other hand, if F0 is strictly



20 GIOVANNI MONGARDI AND CLAUDIO ONORATI

semistable, then we see that either E0 is unstable, or it depends on the
choice of Z, so that φ̃ cannot be defined in such points.

If φ were regular at stable sheaves supported on a reducible and reduced
curve, then F0 would be mapped to the S-equivalence class of E0 as con-
structed above, which would therefore not be injective. Hence it is not
regular there. On the other hand, this issue does not occur for φ̃, as the
different pencils C → P1 parametrize the one dimensional space of sheaves
S-equivalent to E0, as the locus of reducible curves is a divisor in |2H|.

(3) Now the curve C = 2C0 is not reduced and the reduced curve C0 is either
smooth or has at worst nodal or cusp singularities.

As in the point before, we study a general pencil of stable sheaves limiting
to a general sheaf whose Fitting support is C = 2C0. We take as a general
point the sheaf j∗O2C0 , which can be checked being stable in M(0,2H,−4).

First of all, we consider a general pencil Q → P1 of conics in P2, whose
central fibre Q0 = 2L0 is a double line. (For a local toy example we can
think at V (ty − x2) ⊂ A3.) The total space Q is singular at the base locus
of the pencil, which consists of two points (counted with multiplicity 2). In
order to be able to consider a section, we pass to a double cover Q′. Notice
that now Q′ is singular along L0. By a local computation, one can see that

the normalisation Q̃ of Q is smooth, and the natural projection Q̃ → P1

has a section. Notice that Q̃0 = L0.
Let us take the pullback via the ramified double cover f : S → P2 as-

sociated to the degree 2 polarisation H of S. This gives a pencil C̃ → P1

with central fibre C̃0 = C0 and having a bi-section Z. If p : C̃ → C is the
normalisation morphism and j : C → S×P1 is the natural embedding, then
we consider the sheaf

E = j∗p∗OC̃(Z),

which is flat over P1. The main remark is that for general t ̸= 0, the fibre
Et = φ(jt∗OC̃t

), hence if φ̃ extends, it must hold φ̃(j0∗O2C0
) = E0.

We claim that E0 is strictly semistable. First of all, we remark that Z0 =

KC0
is the canonical divisor of C̃0 = C0. Moreover, E0 = j0∗p0∗OC0

(KC0
),

where p0∗OC0
(KC0

) is a rank 2 vector bundle on C0 whose degree is 0.
Since h0(C0, p0∗OC0

(KC0
)) = 2, any section defines an inclusion OC0

→
p0∗OC0(KC0) destabilising it. Notice that the cokernel N of the inclusion is
isomorphic to OC0 . Now, let L ⊂ p0∗OC0(KC0) be any subsheaf of positive
degree. Without loss of generality, we can suppose that L is a line bundle.
Then the composition with the map p0∗OC0

(KC0
) → N = OC0

gives a map
L → N = OC0

that must be zero. It would follow that L ⊂ OC0
, which is

absurd, and so p0∗OC0
(KC0

) is semistable.
As before, if φ were regular at these points, then F0 would be mapped to

the S-equivalence class of E0 as constructed above, which would therefore
not be injective. On the other hand, this time φ̃ cannot extend either. In
fact, the S-equivalence class of E0 is a P1 of extensions, while there is a P3

of directions where we can take the pencil limiting to j∗O2C0
. Therefore φ̃

would not be injective at these points again.

□
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In the following we denote by M∆ ⊂M(0,2H,−4) the locus of sheaves whose Fit-

ting support is a non-reduced curve, and with M̃∆ ⊂ M̃(0,2H,−4) its strict transform.

Remark 4.13. As in Section 4.5, it is known that M∆ has two irreducible com-
ponents, parametrising sheaves whose schematic support is a non-reduced curve
of genus 5 or a reduced curve of genus 2, respectively. The locus parametrising
sheaves supported on reduced curves is again a generic P3-bundle. On the other
hand, as in Remark 4.11, one can see that the other component is not normal,
but its normalisation is again a generic P3-bundle. Moreover, these two irreducible
components intersects along a union of subvarieties isomorphic to P2. In particular

M∆ (and M̃∆) is uniruled and the class of the line ruling it is the same on both
the irreducible components.

Corollary 4.14. The indeterminacy locus of the map φ̃ is M̃∆

Proof. By Proposition 4.12, the indeterminacy locus of φ̃ is contained in M̃∆ ∪ Σ̃,

where Σ̃ is the exceptional divisor. We claim that it also contains the whole M̃∆.

In fact, by item (3) of Proposition 4.12 it contains the irreducible component of M̃∆

corresponding to stable sheaves whose schematic support is the non-reduced curve.
Since this locus is uniruled, and the line ruling it also rules the other component

(cf. Remark 4.13), it follows that φ̃ cannot be defined on the whole M̃∆.
Now, since φ̃ is a birational morphism between irreducible holomorphic symplec-

tic varieties, it is regular on the generic point of the exceptional divisor, and the
corollary follows. □

Remark 4.15. If we denote by φ′ : M(0,2H,−2) →M(0,2H,0) the analogous morphism,
then the composition

φ̃′ ◦ φ̃ : M̃(0,2H,−4) → M̃(0,2H,0)

is regular and coincides with the morphism that sends any sheaf to its tensor with
the polarisation H. In fact, if C is a smooth curve, then 2g12(C) = H|C . Therefore,
with an abuse of notation, we can write φ̃−1 = φ̃′ ⊗H∨.

Now, if U = M̃(0,2H,−4) \ M̃∆, then φ̃
′ must be regular on φ̃(U) ⊂ M̃(0,2H,−2).

Moreover, if there exists V ⊃ φ̃(U) where φ̃′ is regular, then φ̃′(V ) ⊗ H∨ ⊃ U ,
which is absurd. It follows that φ̃′ is regular exactly on φ̃(U).

Since the morphisms φ̃ and φ̃′ are defined fibrewise (with respect to the la-
grangian fibration induced by the Fitting morphism map), it follows that the inde-
terminacy locus of φ̃′, which is equal to the indeterminacy locus of φ̃−1, coincides
again with the locus of sheaves whose Fitting support is the non-reduced curve. As
we have seen in Section 4.5, this locus has two irreducible components: the first one
is a generic P3-bundle, while the second one has a normalisation that is generically
a P3-bundle (see Remark 4.11). In particular, the wall divisor dual to the line ruling
this locus is the divisor of divisibility 3 and square −24 described in Section 4.5.

5. The Kähler cone

Let S be a projective K3 surface, v = 2w with w2 = 2 and H is a v-generic
polarisation. Consider the moduli space Mv(S,H) and its desingularisation

π : M̃v(S,H) →Mv(S,H),
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and denote by Σ̃ the exceptional divisor. Recall that

π∗ : H2(Mv(S,H),Z) → H2(M̃v(S,H),Z)

is a Hodge isometric embedding whose orthogonal complement is generated by Σ̃.

If D is an effective divisor on M̃v(S,H), then π(D) ⊂Mv(S,H) is a Weil divisor.
We put E = π(D) or E = 2π(D) if either π(D) is Cartier or 2π(D) is Cartier (this
is possible because Mv(S,H) is either locally factorial or 2-factorial). We remark

that E coincides with the lattice-theoretic projection of D into the sublattice Σ̃⊥ ∼=
H2(Mv(S,H),Z). More precisely D = aE + kΣ̃, with E ∈ Σ̃⊥ ∼= H2(Mv(S,H),Z)
and a, k ∈ 1

2Z such that a + k ∈ Z (see [PR14]). In general, if D is a divisor class

in H2(M̃v(S,H)) (not necessary effective), we can still write D = aE + kΣ̃, with
E, a and k as before, and we refer to E as the orthogonal projection of D into

H2(Mv(S,H),Z) ∼= Σ̃⊥.

Proposition 5.1. In the setting above, suppose that D ∈ H2(M̃v(S,H),Z) is a
wall divisor. Then the corresponding E ∈ H2(Mv(S,H),Z) is a multiple of one of
the following:

• a divisor of square −2 and divisibility 1,
• a divisor of square −2 and divisibility 2,
• a divisor of square −4 and divisibility 1,
• a divisor of square −10 and divisibility 2.

Proof. Let us first suppose that D⊥ ∩ BK
M̃v(S,H)

̸= 0. Consider the saturation T

of the lattice generated by D and Σ̃. This is a negative definite rank 2 lattice, and
since E ∈ T , we have that E2 < 0.

Now, since we have that D⊥ ∩ BK
M̃v(S,H)

̸= 0, there is a class l corresponding

to an extremal curve R on a smooth and irreducible symplectic birational model of

M̃v(S,H), such that l lies in T ⊗Q and is not a multiple of Σ̃. Here we are using

the embedding H2(M̃v(S,H),Z) ⊂ H2(M̃v(S,H),Q) induced by the Beauville–

Bogomolov–Fujiki form. If δ is the curve class dual to Σ̃, then T ⊗Q is generated
by δ and l. Moreover, up to replacing l by −l, we can suppose that l is effective
(cf. [BHT15] and [Mon15]), so that both δ and l generate extremal rays of the Mori
cone.

Since M̃v(S,H) is projective, we can take a very general big and movable di-

visor P in D⊥ ∩ Σ̃⊥ (the orthogonal complement to T has signature (1, ρ − 3) in

Pic(M̃v(S,H))). Let P ′ := P − ϵD − ηΣ̃ for small ϵ and η: clearly, it is still a
big divisor. Up to replacing P ′ with a multiple, we can suppose that P ′ is big
and effective. We can also take P (and therefore also P ′ and the surface S) very
general with respect to these properties, i.e. all negative divisors orthogonal to P
are in T (and the Picard rank of S is one). Let us run the MMP for the pair

(M̃S , µP
′) (for µ small enough, the pair is klt, see [HT09, Remark 12]). By [LP16,

Theorem 2.1], this MMP terminates and its termination does not depend on the
order of the contractions. Therefore, as a first step we can contract the curve δ;

this contraction is the morphism π : M̃v(S,H) → Mv(S,H). This produces the
pair (Mv(S,H), µπ(P ′)), where π(P ′) = P − ϵ′E (here we are tacitly identifying P

and π(P ) via the identification H2(Mv(S,H),Z) ∼= Σ̃⊥). Notice that E differs from
π(D) by a multiple, which is hidden in the constant ϵ′.
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By construction, P is still orthogonal to the class l we associated to D at the
beginning of the proof. Therefore we can run the MMP for the pair (Mv(S,H), µP−
ϵ′′E), resulting in a divisorial contraction or in a flopping contraction. Birational
modifications of these types have been studied and classified by Meachan and Zhang
in [MZ16]. In particular, the centre of the modification E must be a multiple
of one of the classes described in [MZ16, Proposition 5.2 and Theorem 5.3] (see
Theorem 1.11).

If on the other hand we have D⊥ ∩BK
M̃v(S,H)

= 0, by the Kawamata–Morrison

cone conjecture for the Movable cone (see [Mar11, Section 6]) we can replace D

with f(D), where f ∈ Mon2Hdg(M̃v(S,H)) is generated by monodromy reflections
and the claim follows by applying the previous argument to the wall divisor f(D).

□

Remark 5.2. The statement of Proposition 5.1 actually holds for all very general

K3 surfaces such that ⟨Σ̃, D′⟩ is negative definite. Indeed, in this case there is a
MMP contracting or flopping all the curves in this negative lattice, which in turn
implies that the singular moduli space has some non generic stability conditions.

Proposition 5.3. Let X be a manifold of OG10-type and let D ∈ Pic(X) be a wall
divisor. Then one of the following is satisfied:

(1) D2 = −2 and div(D) = 1,
(2) D2 = −4 and div(D) = 1,
(3) D2 = −6 and div(D) = 3,
(4) D2 = −24 and div(D) = 3.

Proof. Up to the monodromy action we can suppose that X ∼= M̃v(S,H) for a
projective K3 surface S, a Mukai vector v = 2w with w2 = 2 and a v-generic
polarization H. Let us explain this claim. First of all, if S is a sufficiently special

K3 surface, then we can find an divisor D′ on M̃v(S,H) such that D′2 = D2 and

divD′ = divD. Now, if η is a marking ofX and η′ is a marking of M̃v(S,H), then by
Lemma 1.13 there exists an orientation preserving isometry sending η(D) to η(D′).
Since orientation preserving isometries are of monodromy type by Theorem 1.7, it

follows that there exists a deformation of X to M̃v(S,H) and a parallel transport
operator sending D to D′. In particular, D′ is a wall divisor with same degree and
divisibility as D (see Theorem 1.10), and the claim follows.

Suppose that div(D) = 1. Up to the monodromy action again, we can suppose

that (D, Σ̃) = 0 (cf. Lemma 1.13). By Proposition 5.1, this immediately implies
D2 = −2 or −4 as claimed.

Let us then suppose that div(D) = 3. This time, up to the monodromy action,

we can write D = 3E+Σ̃ by Lemma 1.13, with E ∈ Σ̃⊥ primitive (and we can even
take E inside H2(S,Z) ⊂ H2(Mv(S,H),Z)). Proposition 5.1 now implies that one
of the following holds: E = 0, E2 = −2 or E2 = −4. The first two cases correspond
to the cases in our claim, let us exclude the third one.

Let us take a very general polarized K3 surface (S,H) of degree 2 and take the
Mukai vector v = (0, 2H,−2) (and H as the v-generic polarization). Let us take the
two orthogonal generatorsD1 = (−2, H, 0) andD2 = (−2, H,−1) of Pic(Mv(S,H)).

Notice that D2 has divisibility 2 in H2(M(0,2H,−2). We have Pic(M̃v(S,H)) =

⟨D1,
D2+Σ̃

2 , Σ̃⟩, where Σ̃ is the exceptional divisor. The divisor class W = 4D1 +
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5D2 has square −18 and div(W ) = 2 in H2(Mv(S,H),Z). Notice that W−Σ̃
2 ∈

Pic(M̃v(S,H)). Now, suppose that divisors of square −42 and divisibility 3 are

wall divisors. It would follow that W ′ := 3W−Σ̃
2 + Σ̃ is a wall divisor such that

⟨W ′, Σ̃⟩ is negative definite, hence the projection ofW ′ inside Σ̃⊥ must be a multiple
of one of the cases contained in Theorem 1.11 by Remark 5.2 and the proof of
Proposition 5.1. However, this projection is clearly a multiple of W , which gives
the desired contradiction. □

Proposition 5.4. Let X be a manifold of OG10-type and D ∈ Pic(X). Then D is
a wall divisor if and only if one of the following holds:

(1) D2 = −2 and div(D) = 1,
(2) D2 = −6 and div(D) = 3,
(3) D2 = −4 and div(D) = 1,
(4) D2 = −24 and div(D) = 3.

Moreover, there is a curve of class proportional to D covering a divisor in the first
two cases, a codimension 5 rational subvariety in the third case and a codimension
3 subvariety in the last case.

Proof. By Proposition 5.3, the above cases are the only ones which can give wall
divisors. By Proposition 3.1, the first two cases have a multiple which is stably
prime exceptional, hence they are wall divisors and there is a curve ruling a divisor
proportional to them by [Mar11, Section 5 and 6]. Notice that if a wall divisor has
an associated curve covering a codimension k subvariety, any deformation of the
curve (preserving its Hodge type) covers a codimension k subvariety (see [AV21,
Theorem 1.6]). Moreover, the two subvarieties so obtained are always diffeomorphic.
By Example 4.2 and Example 4.1, the third case is a wall divisor corresponding to
a lagrangian P5. Finally the last case follows from Example 4.3. □

Theorem 5.5. Let X be a manifold of OG10-type. Then, the Kähler cone of X is
one of the connected components of

C(X) \
⋃

(0>D2≥−4) or (div(D)=3 and 0>D2≥−24)

D⊥.

Proof. Notice that if D is a divisor of non negative square, then D⊥∩C(X) = ∅, so
the relevant divisors for the claim are only those of negative square. By [Mon15],
the Kähler cone is a connected component of

C(X) \
⋃

D wall divisor

D⊥.

By Proposition 5.4, wall divisors are divisors of square either −2 or −4 and divisors
of divisibility 3 and square either −6 or −24, therefore the claim follows.

□

6. An application to irreducible symplectic compactifications of
intermediate jacobian fibrations

6.1. Generalities on intermediate jacobian fibrations and their irreducible
symplectic compatifications. Let V ⊂ P5 be a smooth cubic fourfold. The
smooth linear sections Y ⊂ V have a principally polarised intermediate Jacobian
JY , and we denote by Jk

Y the torsor parametrising degree k cycles. Notice that,
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up to adding multiples of the degree 3 hyperplane cycle h2, and up to changing
the sign of the cycles parametrised by Jk

Y , we can suppose that there are only two
jacobians, namely JY = J0

Y and J t
Y = J1

V , up to a canonical isomorphism.

If U ⊂ PH0(V,OV (1))
∗ is the open subset parametrising smooth linear sections,

then there are two fibrations JU → U and J t
U → U obtained by relativising the

construction above. By [LSV16] and [Voi18], when V is general there exist smooth
and symplectic compactifications

pV : IJ(V ) → P5 and ptV : IJt(V ) → P5

of JU → U and J 1
U → U , respectively. Both IJ(V ) and IJt(V ) are irreducible

holomorphic symplectic manifolds of OG10-type, and pV and ptV are lagrangian

fibrations. More precisely, we want to remark that if U1 ⊂ PH0(V,OV (1))
∗ is

the open subset of linear sections with at worst one ordinary double point, then
there is a natural partial compactification JU1 → U1 of JU → U and of which
IJ(V ) → P5 is a smooth and symplectic compactification (see for example [DM96]
and [LSV16]). The same holds for the twisted case, and we denote by J t

U1
→ U1

the corresponding partial compactification. The reason for introducing JU1
and

J t
U1

is that the complements IJ(V ) \JU1
and IJ(V )t \J t

U1
have codimension bigger

or equal to 2.

When the cubic fourfold becomes more special, Laza–Saccà–Voisin and Voisin’s
constructions do not necessarily produce a smooth compactification. We remark
though that in [LSV16, Section 3.2] it is proved that the LSV compactification
exists for a general Pfaffian cubic fourfold. Moreover, in this case the two varieties
JU1 and J t

U1
are isomorphic (e.g. [Ono18, Example 4.3.6]), so that by construction

([Voi18]) also IJt(V ) exists and is isomorphic to IJ(V ).
In general, ifX ⊃ JU1 (resp.X ⊃ J t

U1
), we say thatX is a smooth and irreducible

symplectic compactification if X is an irreducible holomorphic symplectic manifold
and there exists a regular morphism X → P5 extending the natural fibration JU1

→
U1 (resp. J t

U1
→ U1). In particular we want that X → P5 is a lagrangian fibration.

By [Sac20, Theorem 1.6] smooth and irreducible symplectic compactifications
of JU1

and J t
U1

exist for every smooth cubic fourfold. The proof uses deep and
recent results in the minimal model program theory. In particular, the existence
of such compactifications is not constructive and a priori there may exist more
compactifications of the same object (preserving the lagrangian structure). The
main result of this section (see Theorem 6.6) deals with this unicity problem in the
twisted case.

In the following we denote by XV and Xt
V any smooth and irreducible symplectic

compactification of JU1
and J t

U1
. We remark that they are all irreducible holomor-

phic symplectic manifolds of OG10-type ([Sac20, Theorem 1.6]). Moreover, if XV

and X ′
V are two such compactifications, then they are birational by construction.

We finish this introductory section by studying two distinguished divisor classes
on the varieties XV and Xt

V . Let FV be the relative Fano variety of lines: it
exists as a projective variety of dimension 7, fibred over P5. We notice that F is a
generic P3-bundle over F (V ), the Fano variety of lines of V . Consider the rational
morphism

(4) st : FV ×FV 99K J t
U1
,
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defined on the locus fibred over smooth linear sections by sending two disjoint
lines l and l′ to the (twisted) Abel–Jacobi invariant of their sum l + l′ (see [Voi02,
Section 12.3.3] for the definition of the twisted Abel–Jacobi map via Deligne coho-
mology). By [Dru00, Théorème 1.4] (see also the proof of [Bea02, Corollary 6.4]),
this map is birational, hence the closure in Xt

V of its image (with reduced scheme
structure) defines a divisor TXt

V
in Xt

V , called relative twisted theta divisor.
Similarly, consider the rational morphism

(5) s : FV ×V FV 99K JU1 ,

defined on the locus fibred over smooth linear sections by sending two disjoint lines
l and l′ to the Abel–Jacobi invariant of the difference l− l′. By [CG72], the closure
in XV of its image (with reduced scheme structure) is a relative theta divisor, which
we denote by TXV

.
Finally, if pXV

: XV → P5 and pXt
V
: Xt

V → P5 are the lagrangian fibrations,

then we denote by bXV
= p∗XV

OP5(1) and bXt
V
= p∗Xt

V
OP5(1) the respective classes.

Remark 6.1. Let V → B be a family of smooth cubic fourfolds and let q : XV → B
be an associated family of compactified intermediate jacobians fibrations. Then the
classes TXV

and bXV
extend to flat sections TXV and bXV of the local system R2q∗Z

that remains of type (1, 1) on all the members of the family. The same holds for
the twisted case.

Lemma 6.2. Let V be a smooth cubic fourfold and XV and Xt
V as above. Then

PXV
:= ⟨TXV

, bXV
⟩ =

(
−2 1
1 0

)
and

PXt
V
:= ⟨TXt

V
, bXt

V
⟩ =

(
−18 3
3 0

)
.

Proof. We start by remarking that the special case in which V is general and
XV = IJ(V ) is proved in [Ono20, Proposition 4.1], using [Sac20, Theorem 2] for
the square of TIJ(V ).

If V is general andXt
V = IJt(V ), then we can deform V to a general Pfaffian cubic

fourfold V0. In this case we have already remarked that IJt(V ) ∼= IJ(V ); moreover,
T t
V0

= 3TV0
(see proof of [Bea02, Corollary 6.4]), while btV0

= bV0
. Therefore, by

Remark 6.1, the claim follows from the untwisted case3.
Let now V be any smooth cubic fourfold and XV any smooth and irreducible

symplectic intermediate jacobian fibration. We can deform V to a general cubic
fourfold V0 such that the LSV variety IJ(V0) exists. By Remark 6.1 again, the claim
follows from the analogous claim for the variety IJ(V0).

Finally, the case of varieties of the form Xt
V follows from the case IJt(V ) as

before. □

6.2. The second integral cohomology of Xt
V . In this section we work with

preferred varieties of the form Xt
V that are birational to a non-commutative moduli

space of Bridgeland stable objects on the cubic fourfold V . We start by recalling
which moduli space we consider.

3The same construction already appeared in [Ono18, Section 4.5], but there was an initial step
to prove a wrong result, namely the existence of a twisted theta divisor of divisibility 1.
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Let V be a smooth cubic fourfold. We refer to Huybrechts’ lecture notes [Huy19]

for generalities on the derived category Db(V ) of V and the geometry of the cor-

responding K3 category AV . The Mukai lattice H̃(AV ,Z) contains a distinguished
sublattice isometric to the A2 lattice. This sublattice is generated by two classes
λ1 and λ2 corresponding to the projection in AV of the classes of the structure
sheaves of a line and a point, respectively. In particular, λ2i = 2 and (λ1, λ2) = 1
([Huy19, Remark 1.17]). If λ0 = λ1 + λ2, then Li, Pertusi and Zhao construct in
[LPZ20] a Bridgeland stability condition τ such that the moduli space M2λ0

(V, τ)
of τ -semistable objects in AV of class 2λ0 is a normal projective symplectic vari-

ety, and a symplectic desingularisation πV : M̃2λ0
(V, τ) such that M̃2λ0

(V, τ) is an
irreducible holomorphic symplectic manifold of OG10-type. Moreover, by [LPZ20,

Theorem 1.3], M̃2λ0(V, τ) is birational to Xt
V . In the following we abuse notation

and simply write MV for M2λ0
(V, τ) and M̃V for M̃2λ0

(V, τ).
Since MV is a normal symplectic variety admitting an irreducible symplectic

desingularisation and using a deformation argument as in [BLM+, Theorem 29.2]
(see [LPZ20, Proposition 3.7]), one can prove the following statement.

Lemma 6.3 ([GGO]). H2(MV ,Z) has a pure Hodge structure of weight two induced

by the injective pullback π∗
V : H2(MV ,Z) → H2(M̃V ,Z). Moreover, the Beauville–

Bogomolov–Fujiki form on H2(M̃V ,Z) restricts to a non-degenerate bilinear form

on H2(MV ,Z) such that the latter is Hodge isometric to the lattice λ⊥0 ⊂ H̃(AV ,Z).

The Hodge isometry between λ⊥0 and H2(MV ,Z) is constructed as in the com-
mutative case by using a quasi-universal family E of objects parametrised by MV .
In particular, this produces a morphism

fE : H̃(AV ,Z) −→ H2(MV ,Z)

that restricts to the needed isometry on λ⊥0 .

Proposition 6.4. There is an isometric immersion

ξ : H4(V,Z)prim −→ H2(M̃V ,Z).

whose image is orthogonal to a lattice isometric to U(3), where U is the unimodular
hyperbolic plane.

Proof. First of all, there is a Hodge inclusion H4(V,Z)prim ⊂ λ⊥0 (see [Huy19,
Theorem 3.1]), so that the morphism ξ is obtained by composing the restriction of

the morphism fE above with the pullback by the desingularisation map πV : M̃V →
MV .

For the last claim, we start by remarking that the class of the exceptional divisor

Σ̃V of πV belongs to Im(fξ)
⊥ by construction. If α is a primitive generator of

H4(V,Z)⊥prim in λ⊥0 , then we denote by P the sublattice in H2(M̃V ,Z) generated

by the image of α and the class of Σ̃V . Since both the construction of ξ and the
desingularisation πV are functorial in the cubic fourfold, the lattice P deforms to
the very general cubic fourfold V . In this case H4(V,Z)prim ∩ H2,2(V,Z) = 0 and

M̃V is birational to IJt(V ). It follows that H2(M̃V ,Z) ∼= H2(IJt(V ),Z) and the
image of P under this Hodge isometry must be a sublattice of the lattice PIJt(V ).
Since both P and PIJt(V ) have rank 2 and PIJt(V ) = U(3) by Lemma 6.2, the claim
follows as soon as P contains a class of divisibility 3. On the other hand, the class of
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Σ̃V has divisibility 3 (and square −6): this can be seen, for example, by deforming
the very general cubic fourfold to a cubic fourfold having an associated K3 surface

(in the sense of Kuznetsov), so that Σ̃V deforms to the exceptional divisor of a
commutative moduli space. □

Corollary 6.5. Let V be a smooth cubic fourfold and Xt
V a smooth and irreducible

symplectic intermediate jacobian fibration. Then the orthogonal complement P⊥
W t

V

in H2(Xt
V ,Z) is Hodge isometric to H4(V,Z)prim.

Proof. By [LPZ20, Theorem 1.3], Xt
V is birational to M̃V so that there is a Hodge

isometry H2(Xt
V ,Z) ∼= H2(M̃V ,Z). The claim follows from Proposition 6.4 and the

last part of its proof. □

6.3. Uniqueness of the compactification. Let V be a smooth cubic fourfold.
As before we denote by J t

U1
→ U1 the intermediate jacobian fibration over linear

sections with at worst an ordinary double point. Let

pXt
V
: Xt

V −→ P5

be a smooth and irreducible symplectic compactification of J t
U1

→ U1, whose exis-
tence is guaranteed by [Sac20, Theorem 1.6]. The goal of this section is to investi-
gate the uniqueness of such compactification, under one additional assumption on
the fibres of pXt

V
.

Theorem 6.6. Let V be a smooth cubic fourfold and Xt
V a smooth and irreducible

symplectic compactification as before. Assume that the fibres of pXt
V
: Xt

V → P5 are
irreducible.

Let pY t
V
: Y t

V → P5 be another smooth and irreducible symplectic compactification

of J t
U1

→ U1. Then Xt
V
∼= Y t

V are isomorphic.

Proof. By hypothesis, since Xt
V and Y t

V compactify the same space, they are bira-
tional. Therefore there is a Hodge isometry

H2(Xt
V ,Z) ∼= H2(Y t

V ,Z)
that restricts to an isometry PXt

V

∼= PY t
V

(see Lemma 6.2 for the notation). More

precisely, since the birational morphism between Xt
V and Y t

V commutes with the
lagrangian fibration by hypothesis, the classes bXt

V
and bY t

V
are sent one in to the

other; furthermore, since the twisted relative divisors TXt
V

and TY t
V

are obtained
by closure of the same divisor on JU1 , they are also sent one in to the other.

Now, notice that the divisor bXt
V

is nef and TXt
V

is relatively ample on U1 by

construction. Moreover, by [Voi18, Lemma 4.4] (see also item (1) of [Sac20, Propo-
sition 3.1]), since the fibres of pXt

V
: Xt

V → P5 are irreducible by hypothesis, TXt
V

is relatively ample on the whole base P5. It follows that TXt
V
+ cbXt

V
is big and nef

for c≫ 0.
Let us suppose that Xt

V is not isomorphic to Y t
V . Then TXt

V
+ cbXt

V
cannot be

ample, and moreover it does not intersect some curves in the indeterminacy locus of
the birational morphism between Xt

V and Y t
V . Therefore, by definition, there must

exist a wall divisor orthogonal to TXt
V
and bXt

V
. By Theorem 5.5, a wall divisor is

a divisor satisfying one of the following:

(1) D2 = −2 and div(D) = 1,
(2) D2 = −6 and div(D) = 3,
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(3) D2 = −24 and div(D) = 3,
(4) D2 = −4 and div(D) = 1.

Recall that TXt
V

and bXt
V

generate the lattice PXt
V

by definition, and that P⊥
Xt

V

∼=
H4(V,Z)prim is a Hodge isometry by Corollary 6.5. Therefore

H4(V,Z)prim ∩H2,2(V,Z) ̸= 0

and so the cubic fourfold must be special in the sense of Hassett. More precisely,
using the numerical characterisation in [Has00] of the divisors Cd parametrising
special cubic fourfolds, the four cases above correspond, respectively, to the four
situations below:

(1) chordal cubics (divisor C2);
(2) nodal cubics (divisor C6);
(3) cubics containing a plane (divisor C8);
(4) cubics containing a cubic scroll (divisor C12).

By [Bro18, Corollary 1.6], if the compactification Xt
V has irreducible fibres, then

for every linear section Y ⊂ V we have an equality d(Y ) = b2(Y ) − b4(Y ) = 0.
As already remarked in [Sac20, Remark 3.11], d(Y ) > 0 if Y contains a plane;
on the other hand, by [Dol16, Section 6], d(Y ) < 0 if Y contains a rational cubic
scroll. Since the first two cases in the list above correspond to singular cubics, these
situations are all excluded and the theorem follows. □

Remark 6.7. Notice that in the statement of Theorem 6.6 we do not assume that
Y t
V has irreducible fibres, but this must be true a posteriori.

6.4. Proposition 5.3 revisited. We conclude the paper with the following corol-
lary of Theorem 6.6. The key argument of Proposition 5.3 was a lattice-theoretic
argument which allowed us to conclude that divisors of square −42 and divisibility
3 are not wall divisors. Here we give a geometric proof of this claim. In [LSV16,
Section 3.2], the authors prove that the intermediate jacobian construction works
well for general Pfaffian cubic fourfolds and use this geometry to prove that their
construction gives irreducible holomorphic symplectic manifolds deformation equiv-
alent to O’Grady’s tenfolds. This geometric construction is precisely what we will
use.

Proposition 6.8. Let X be a manifold of OG10-type and let D ⊂ Pic(X) be a
divisor such that D2 = −42 and div(D) = 3. Then D is not a wall divisor.

Proof. As divisors with these discrete properties form a single monodromy orbit, it
is enough to prove our claim on a well chosen X. Let V be a general Pfaffian cubic
fourfold, and let IJ(V ) → P5 be the compactification of its intermediate jacobian
fibration. Recall that in this case IJ(V ) ∼= IJt(V ) (see beginning of Section 6.1).
By [LSV16, Section 3.2, Theorem 4.20, Theorem 5.7], it is smooth. Therefore, the
primitive cohomology of V embeds into H2(IJ(V ),Z) by Lemma 6.4. By work of
Hassett [Has00], H2,2(V,Z) = ⟨h2, d⟩ where (h2)2 = 3, d2 = 10 and (h, d) = 4.
It follows that H2,2(V,Z)prim = ⟨3d − 4h⟩. Put D = 3d − 4h and, by abuse of
notation, let us denote with D also its image in Pic(IJ(V )) under the isomorphism
in Lemma 6.4. Clearly, D2 = −42 and div(D) = 3. However, D⊥ ⊂ Pic(IJ(V ))
is isometric to the hyperbolic plane PIJ(V ). As the isotropic class bIJ(V ) is nef and
the relative theta divisor TIJ(V ) is relatively ample, it follows that TIJ(V ) + cbIJ(V )

is big and nef for c ≫ 0. Moreover, since there exists a unique compactification
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for Pfaffian fourfolds (see Theorem 6.6), this class must be ample. However, D is
orthogonal to this ample class, hence it cannot be a wall divisor. □
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via della Ricerca Scientifica 1, 00133 Roma, Italy

Email address: onorati@mat.uniroma2.it


	Copertina_postprint_IRIS_UNIBO (2)
	OG10_birat-1

