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FANO VARIETIES OF K3 TYPE AND IHS MANIFOLDS

ENRICO FATIGHENTI AND GIOVANNI MONGARDI

Abstract. We construct several new families of Fano varieties of K3 type. We give a geometrical ex-
planation of the K3 structure and we link some of them to projective families of irreducible holomorphic
symplectic manifolds.

1. Introduction

Fano varieties and Irreducible Holomorphic Symplectic manifolds (for short, IHS) are two of the
most studied classes of varieties in algebraic geometry. They are very different in nature (for example,
they have different Kodaira dimensions) and they are often studied using different tools. Fano varieties
are at the core of birational geometry, while IHS manifolds (sometimes called hyperkähler when the
context is more differential-geometric) can be considered as a higher dimensional analogue of K3
surfaces, with lattice theory as one of the most relevant operative tools.

One of the most important properties of Fano varieties is their boundedness: it is well known that
in every dimension there exists a finite number of families of Fano varieties up to deformations. It is
therefore natural to aim for a classification, but such a problem is currently out of reach. A complete
answer is known when the dimension is up to three, see for example [IP99]. From dimension four
onwards, only partial results and at best a few hundreds examples in each dimension are known.

On the contrary the main problem in the study of IHS is the lack of examples. Although no result
of boundedness is known in general for IHS manifolds, the known deformation types include two series
of examples found by Beauville for every even dimension and two sporadic examples in dimension 6
and 10, found by O’Grady. Even if we fix the deformation type and we look for polarized families
(in analogy with the K3 surfaces case) the situation does not improve much: very few examples of
projective families are known. A survey can be found for example in [Bea11].
The interplay between special classes of Fano varieties and IHS manifold is not new: an important
example by Beauville and Donagi is the Fano variety of lines on a smooth cubic fourfold, which
describes a maximal family of polarized IHS. We remark that this is not the unique IHS manifold
that can be linked to a cubic fourfold, as the recent constructions of Lehn-Lehn-Sorger-van Straten,
[LLSvS17] (an 8-fold of K3[4]-type) and Laza-Saccà-Voisin, [LSV17] (example of OG10 manifold)
highlight. The cubic fourfold is not the only Fano variety to which we can associate polarized families
of IHS manifolds: this is indeed a common feature of a special subclass of Fano varieties, called Fano
varieties of K3 type (FK3 for short) whose study is the central topic of this paper.

These Fano varieties of K3 type are, roughly speaking, Fano varieties whose Hodge theory contains
one (or more) K3 structure as summand. The reader should refer to 1.2 for a precise definition. We are
going to deal as well with Fano varieties with more than one K3 and in more generality CY structure,
see for example 3.31, in the sense of definition 1.1.

Our main motivation for the study of the FK3 case is their relation with IHS manifolds. Indeed,
a result of Kuznetsov and Markushevich in [KM09] shows that if M is a moduli space of stable or
simple sheaves on X, then any form in Hn−q−2(X,Ωn−q) defines a closed 2-form in H0(Msmooth,Ω2).
This is therefore a good starting point in the hunt for examples of IHS manifolds. In particular, let us
mention the IHS manifolds linked to FK3 varieties e.g. to the Debarre-Voisin twentyfold hypersurface,
or to a Gushel–Mukai fourfold, or to a section of a product of P3, see [DV10], [DK18], [IM19].

Although FK3 are definitely easier to hunt than IHS manifolds, there are not many known examples
in the literature. For example, as complete intersections in (weighted) projective spaces one finds
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2 ENRICO FATIGHENTI AND GIOVANNI MONGARDI

only the cubic fourfold, see [PS20]. More examples are found if one allows terminal and Q-factorial
singularities, see [FRZ19] but no new examples of IHS manifolds are produced anyway. In [FM18] we
conjectured that even taking complete intersection in Grassmannian one does not get any new example
other than a complete intersection with four linear hypersurfaces in the Grassmannian Gr(2, 8) and
the above mentioned examples.

This paper deals with the construction of examples of FK3 as zero locus of general global section
of homogeneous vector bundles in Grassmannians or products of such. This is motivated by Küchle’s
list, see [Ku95], of index 1 Fano fourfolds obtained in such a way, where few more interesting FK3 are
found. Therefore the aim of this paper is twofold: construct new examples of Fano varieties of K3
type and construct examples of polarized families of IHS manifolds from our FK3. We can summarise
our results as follows, cf. Thm 1.3 and 1.5.

Results of this paper. We construct 23 new families of FK3 varieties as in Table 1, and we link
some of them to projective families of IHS manifolds as in Table 2.

We give now the key definitions and the general strategy of the paper.

1.1. Definitions and strategy. A Fano variety is a smooth projective variety X such that its anti-
canonical bundle −KX is ample. For a Fano variety X the index ιX is defined as the greatest positive
integer that divides −KX as a class in the Picard group.

An IHS manifold Y is a compact Kähler manifold Y such that π1(Y ) = {∗} and H0(Y,Ω2
Y ) ∼= C ·σY ,

with σY everywhere non-degenerate. From these two conditions it follows that Y has even dimension
and KY

∼= OY . We will only consider polarized (therefore projective) examples.
A Fano variety of CY type is a Fano variety with special Hodge–theoretical properties closely

resembling those of a Calabi-Yau manifold.

Definition 1.1. Let X be a smooth, projective n-dimensional Fano variety and j be a non-negative
integer. The cohomology group Hj(X,C) ∼=

⊕
p+q=j H

p,q(X) (with j ≥ k) is said to be of k–Calabi-Yau
(k–CY) type if

• h
k+j

2 , j−k
2 = 1;

• hp,q = 0, for all p+ q = j, p > k+j
2 .

X is said to be of k–CY type if there exists at least a positive j such that Hj(X,C) is of k–CY. Similarly,
X is said to be of (k1, . . . , ks)–CY type if the cohomology of X has different level CY structures in
different weights.

Definition 1.2. A smooth projective Fano variety X is a Fano variety of K3 type (FK3 for short) if
it is a Fano variety of 2–CY type.

Fano varieties of CY type were first introduced and studied by Iliev and Manivel in [IM15]. The
authors focus on the case k = 3, adding moreover an extra condition on H1(TX) (which we do not
ask, since it would rule out already the cubic fourfold and many other interesting examples). They
classify Fano varieties of 3–CY type that can be obtained by slicing homogeneous spaces with linear
and quadratic equations. We remark that our definition is purely Hodge-theoretical, but there are
deep links with the concept of CY subcategories, see for example [Kuz19]. In particular, constructing
examples of Fano varieties of K3 and CY type might help in finding new playground for testing
Kuznetsov’s conjecture on rationality.

The main problem here is that in general translating the (Hodge-theoretical) requirement of being
of K3 type into algebraic conditions is not easy. Using some tools that we developed in [FM18] we were
anyway able to find some numerological condition useful to produce examples of FK3, see Construction
Method 1. Unfortunately the conditions in 1 are still too general for replicating a classification-type
argument. However, 1 has the advantage of highlighting the connection between FK3 and central
Fano varieties, that is Fano varieties of Hodge level 0 for all cohomology group, see Subsection 2.2 for
a definition. It would therefore be interesting to classify such varieties.



FK3 AND IHS 3

1.2. How we subdivide the examples. We first write down the list of examples that we have found.
Later on in the paper we will explain the numerology behind our list, and give a detailed geometrical
description of our examples. Our purpose its twofold. Indeed to a Fano variety of K3 type we want
to associate (whenever possible) both a K3 category and an IHS manifold. For the definition of K3
or CY (sub) category we follow [Kuz19]. Before doing this, we need to prove first that the families
of Fano varieties that we consider are of K3 type. This is done usually with either Riemann-Roch
type computations as for example in Lemma 3.10 or using our Griffiths ring-type construction as in
Proposition 3.13, or via a Borel-Bott-Weil computation, as in Proposition 3.27. In particular we divide
our list into three distinct blocks. We say that a FK3 X is of blow-up type (B) if there exists a pair
(Y, S), with S ⊂ Y , Y Fano variety, S K3 surface such that X ∼= BlSY . Examples of this type are
already included in Küchle’s list [Ku95], called c7 and d3. We say that a FK3 X is of Mukai type
(M) if we can reduce systematically the study of its derived category to Mukai’s classification of Fano
threefolds. We say that a FK3 X is sporadic (S) if it does not fall in one of the two previous categories.
We collect all our list of examples of FK3 in Table 1.
For FK3 of blow-up and Mukai type the question on the existence of a K3-subcategory admits always
a positive answer. This is the content of Propositions 2.3, 2.5 and Theorem 2.4. However the question
of existence of an IHS manifold linked to any FK3 is far from being answered. We give an example
in Proposition 3.12. For the FK3 of sporadic type, we do not have any information a priori. For all
of them the question on the existence of a K3-subcategory is open, and we have to cook up ad-hoc
methods even to show that they are of K3 type (in the Hodge theoretical sense). Here as well there is
no easy answer from the IHS viewpoint. A new construction is given for example in Proposition 3.17.
Special attention must be placed upon examples (S6) and (S7). Indeed they are cut by irreducible
vector bundles which are not linear. We observe as well the appereance of mixed structures of (2, 3)-
CY type. The last part of the paper is devoted to the study of these varieties. The results about IHS
manifolds are collected in Table 2. We point out that we believe that to any of the example in Table
1 we will eventually be able to construct an example of polarized IHS manifolds. We added in both
our tables two examples found independently by Iliev and Manivel in [IM19], while our work was still
in the very early stage. These are the families B1 and S3. Although they were already known we
decided to include them anyway in our list, since they fit perfectly in our pattern.

We highlight now the main results and the structure of this paper.

1.3. Results and Structure. This paper is devoted to the construction of a meaningful set of
examples of Fano varieties of K3 type. We mainly exploit our condition in 1, coming from a similar
analysis to the one we carried out in [FM18]. Our main result can be summarised in

Theorem 1.3. There exist 23 examples of families of Fano varieties of K3 type obtained as zero
loci of general global section of homogeneous vector bundles over Grassmannians or products of such.
These Fano varieties have dimension 4 ≤ n ≤ 20, Picard rank 1 ≤ ρX ≤ 3 and index n−1

2 ≤ ιX ≤ n
2 .

See Table 1 for the list of these Fano varieties. For each of these Fano varieties, we first needed to
prove that they are of K3 type. We either explain geometrically in a systematic way (whenever pos-
sible) the presence of a K3 structure (both from a Hodge-theoretical and derived category viewpoint)
or we give an ad-hoc description for the sporadic cases. We point out that new examples may and
will be discovered and analysed in a series of future works.

Some of the Fano varieties we analyse have new and interesting behaviours. We collect some of the
results here.

Theorem 1.4. There exist prime Fano varieties with multiple CY structures (see Proposition 3.29)
and with mixed Calabi-Yau (2,3) structure, (see Proposition 3.31).

To the best of our knowledge, these are the first examples known of prime Fano varieties with this
property. The prime hypothesis eliminates the possibility for these CY structures to come from a
blow-up, a projective bundle or other related constructions. We link some of these Fano varieties
to projective families of IHS manifolds. Unfortunately, up to now we have only found new ways of
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describing old examples, but we believe that a further extensive examination of our list could lead to
new constructions. We collect our results here and in Table 2.

Theorem 1.5. We show that the Hilbert square on a K3 surface of genus 8 is isomorphic to the zero
locus of a certain bundle on Gr(4, 6)×Gr(2, 6), see Proposition 3.12. We show that the Debarre-Voisin
IHS 4-folds are isomorphic to the space of special rational fourfolds on varieties of type T1(2, 10), see
Proposition 3.30 and to the compactification of the space of (P1)3 on a linear section of S2Gr(3, 8),
see Theorem 3.26.

Plan of the paper. In Section 2 we explain how our numerological condition creates the list and we
explain some straightforward geometric tricks and a general strategy to attack these Fano varieties. In
Section 3 we perform a case–by–case analysis of the most interesting examples and we prove our main
results, including the above theorem on IHS manifolds. We finish with some Appendices, where we
describe three related cases we encountered: some extra Fano varieties of 3CY type, a trio of infinite
series of Calabi–Yau varieties and a Fano variety with an unexpected lack of a K3 structure.

Notation. With R and Q we denote (respectively) the rank k tautological and the rank n−k quotient
bundle on the Grassmannian of subspaces Gr(k, n). We fix the convention that OG(1) = det(Q) =
det(R∨). We will use the shorthand XF ⊂ G to denote the zero locus of a general global section of
the vector bundle F over G. We denote with

• Si Gr(k, n) the i-th symplectic Grassmannian, or simply SGr(k, n) if i = 1.
• OGr(k, n) the orthogonal Grassmannian and Sn denotes one of the two connected components
of OGr(n, 2n) in its spinor embedding.
• T1(k, n) denotes the subvariety of Gr(k, n) cut by the zero locus of a general three-form σ ∈∧3 V ∨n . Whenever the ambient Grassmannian is fixed and there is no danger of confusion, we
will sometimes in proofs shorten T1(k, n) with T1 to help the readability.

The notation Hn
van(X) (and similarly for the (p, q) part) will denote the vanishing subspace of the

cohomology group, see [Voi02, 2.27] for a definition. If X and Y are smooth projective varieties we
will use the shortandDb(X) ↪→ Db(Y ) to mean that one can construct a semiorthogonal decomposition
for Db(Y ) where Db(X) appears as one of the factors, up to a fully faithful functor. The notation Sg
means a K3 surface of genus g. With Qk we indicate the k-dimensional quadric hypersurface.

Acknowledgements. This paper was completed throughout the course of the past year and a half.
The work was carried out mainly at Roma Tre and Bologna University, in several of its campus sites
(although some of the latter were not officially recognised by its own administration). Many people
gave useful comments and suggestions throughout the whole process. We mention in particular Atanas
Iliev, for sharing with us some of the ideas that led to Theorem 3.26, and Alexander Kuznetsov, for
many suggestions, ideas shared and comments on an early draft of this manuscript. Many of the
computations were carried out using a Macaulay2 code written by the first author together with
Fabio Tanturri. We thank as well for various ideas, conversations and support Hamid Ahmadinezhad,
Vladimiro Benedetti, Marcello Bernardara, Daniele Faenzi, Lorenzo Federico, Camilla Felisetti, Michal
and Grzegorz Kapustka, Laurent Manivel, Luca Migliorini, Claudio Onorati, Miles Reid and Jørgen
Rennemo. EF was supported by MIUR-project FIRB 2012 "Moduli spaces and their applications"
and by an EPSRC Doctoral Prize. GM was supported by “Progetto di ricerca INdAM per giovani
ricercatori: Pursuit of IHS”. Both authors are member of the INDAM-GNSAGA and received support
from it.

2. The quest for examples

2.1. Tables of FK3 and IHS. In the tables below we collect the results about FK3 and IHS in a
schematic way. We give a few extra data useful for better comprehension here, and in the rest of the
paper.

• Si Gr(k, n) can be characterised as X(∧2R∨)⊕i ⊂ Gr(k, n).
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• In the table, HSGr(3, 6) will denote a linear section of SGr(3, 6).
• According to k, T1(k, n) can be represented as the zero locus of a general global section of a
different vector bundle. For example the bundle is Q∨(1) for k = 2, O(1) if k = 3 and

∧3R∨
when k = 4.
• T1(2, 7) is classically known in the literature as G2, and we will refer to it as such.
• We use X1 ⊂ G to denote a linear section of the variety G (and similarly for higher degree or
multidegree). Whenever there might be ambiguity or we want to emphasize the choice of the
linear subspace we might write XH .

no. X ⊂ Y dimX ιX ρX Comments
B1 X(2,1,1) ⊂ P3 × P1 × P1 4 1 3 X ∼= BlS7(P3 × P1)
B2 X(2,1) ⊂ Gr(2, 4)× P1 4 1 2 X ∼= BlS5 Gr(2, 4)
M1 X(1,1,1) ⊂ P3 × P3 × P3 8 3 3 Db(S3) ↪→ Db(X) [IM19, Section 4]
M2 X(1,1,1) ⊂ Q3 × P2 × P2 6 2 3 Db(S4) ↪→ Db(X)
M3 X(1,1) ⊂ Gr(2, 5)×Q5 10 4 2 Db(S6) ↪→ Db(X)
M4 X(1,1) ⊂ SGr(2, 5)×Q4 8 3 2 Db(S6) ↪→ Db(X)
M5 X(1,1) ⊂ S2Gr(2, 5)×Q3 6 2 2 Db(S6) ↪→ Db(X)
M6 X(1,1) ⊂ S5 × P7 16 7 2 Db(S7) ↪→ Db(X)
M7 X(1,1) ⊂ Gr(2, 6)× P5 12 5 2 Db(S8) ↪→ Db(X)
M8 X(1,1) ⊂ SGr(2, 6)× P4 10 4 2 Db(S8) ↪→ Db(X)
M9 X(1,1) ⊂ S2Gr(2, 6)× P3 8 3 2 Db(S8) ↪→ Db(X)
M10 X(1,1) ⊂ SGr(3, 6)× P3 8 3 2 Db(S9) ↪→ Db(X)
M11 X(1,1) ⊂ HSGr(3, 6)× P2 6 2 2 Db(S9) ↪→ Db(X)
M12 X(1,1) ⊂ G2 × P2 6 2 2 Db(S10) ↪→ Db(X)
M13 X(1,1) ⊂ Gr(2, 8)× P3 14 1 2 Db(S3) ↪→ Db(X)
S1 X14 ⊂ Gr(2, 8) 8 4 1 Db(S3) ↪→ Db(X)
S2 X1 ⊂ OGr(3, 8) 8 3 2 Db(S7) ↪→ Db(X)
S3 X1 ⊂ SGr(3, 9) 14 6 1 [IM19, Section 5]
S4 X1 ⊂ S2Gr(3, 8) 8 3 1
S5 X1 ⊂ T1(2, 9) 6 2 1
S6 T1(2, 10) 8 3 1 3× K3 structure
S7 X1 ⊂ T1(2, 10) 7 2 1 2× K3 structure, 1× 3CY
S8 X1j ⊂ T1(k, 10) 1 invariants depending by k, j

Table 1. Fano of K3 type with invariants

no. X ⊂ Y IHS Z Comments
M1 X(1,1,1) ⊂ P3 × P3 × P3 [IM19, Section 4] Z ∼= Hilb2S3
M7 X(1,1) ⊂ Gr(2, 6)× P5 Prop.3.12 Z ∼= Hilb2S8
S2 X1 ⊂ OGr(3, 8) Prop.3.17 Z ∼= S7
S3 X1 ⊂ SGr(3, 9) [IM19, Section 5] Z ∼= ZDV
S4 X1 ⊂ S2Gr(3, 8) Thm. 3.26 Z ∼= ZDV
S6 T1(2, 10) Prop. 3.30 Z ∼= ZDV

Table 2. Projective families of IHS linked to FK3
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2.2. What are we looking for? Many of the examples in the above table are obtained by chasing
up the same numerology. Indeed from arguments similar to the one used in [FM18] one can come
up with a numerical criterion (cf. [IM15] and [Kuz19] for comparison and similar criteria). For a
smooth projective variety we define the level (lv) of Hj(X,C) as the largest difference |p−q| for which
Hp,q(X) 6= 0, with p + q = j. It is obvious that lv(Hj(X,C)) ≤ wt (Hj(X,C)) ≤ dimX. For a
Fano variety by Kodaira vanishing the first inequality is always strict. For example, if X is a Fano of
dimension n, then lv(Hn(X,C)) ≤ dimX − 2. Moreover we say that a variety X is central if all of its
Hj have level zero, or equivalently if hp,q(X) = 0 for p 6= q.

Method 1. Let Y be a smooth projective Fano variety of dimension 2t + 1 and index ιY . Assume
that t divides ιY and that lv(H2t+1(Y )) ≤ 1. Then a generic X ∈ | − 1

tKY | is a Fano variety of K3
type, with the K3 type structure located in degree 2t.

Thanks to the above method, we can search for Fano varieties with the properties above. These are
definitely satisfied when a Fano is a homogeneous (or quasi-homogeneous) variety. In particular we
started by considering some varieties of this type, to see if any interesting example could be found.

In this case we can rewrite the condition 1 above and consider the positive integer m such that
ωG ∼= OG(−m) and D = dimG. The equations in 1 becomes
(1) 2t+ 1 = D and at = m.

Gr(k, k + l). For the Grassmannian Gr(k, k + l) the dimension is D = lk and the index equals k + l.
First notice that D must be odd, and that we can suppose l 6= 1. The equations are 2t+ 1 = kl and
at = k+ l, some a. Substituting we get a(kl−1)

2 = k+ l and thus akl = a+2k+2l. Since a ≥ 1 we have
kl ≤ a+2k+2l. It is easy to see that there are no solutions if k ≥ 5, and for obvious reasons the cases
k = 2, 4 are excluded. In the case case k = 3 substituting we get l = a+6

3a−2 . This implies a < 3 for the
previous number to be an integer. The case a = 2 gives an even dimensional Grassmannian, so we
discard it. The case a = 1 corresponds to G = Gr(3, 10). The associated FK3 is the Debarre-Voisin
variety.

SGr(k, k + l). The symplectic Grassmannian SGr(k, k + l) has dimension kl −
(k

2
)
and index equal to

l + 1. If we substitute this in the equation above and look for solutions we find as triple (k, l, a) =
(2, 3, 2), (3, 6, 1), (5, 3, 2), (10, 6, 1). However, if ω is a non-degenerate skew symmetric (k+ l)× (k+ l)
matrix, there are no k-dimensional isotropic subspaces if k > l and k+l even. We can therefore discard
the last two triples and we are left with X2 ⊂ SGr(2, 5) (Gushel-Mukai fourfold) and X1 ⊂ SGr(3, 9),
which was already considered in [IM19, Section 6].

S2Gr(k, k+ l). The bisymplectic Grassmannian S2Gr(k, k+ l) has dimension kl− k(k− 1) and index
equal to l − k + 2. If we substitute in the equation above and look for solutions we find as triple
(k, l, a) = (3, 5, 1), (5, 5, 1). The second one can be identified with a (multi)-linear section of (P1)5, see
[Kuz15], the first one, an 8-fold linear section of S2Gr(3, 8) is new.
A similar computation can be done for the tri-symplectic Grassmannian S3 Gr(k, k+l). This is relevant
since two K3 surfaces by Mukai (genus 6 and genus 12) can be considered as (respectively) quadratic
and linear section of it. However, no more examples have been found.

OGr(k, k + l). The orthogonal Grassmannian OGr(k, k + l) has dimension kl −
(k+1

2
)
and index l− 1

(with respect to the Plücker line bundle OG(1), albeit non-irreducible in the Picard group). The only
admissible triple is (3, 5, 1). This is a linear section of the orthogonal Grassmannian OGr(3, 8).

ZQ∨(1). This variety is the zero locus of a general global section of the bundle Q∨(1) on Gr(k, k + l).
If k = 2, it is T1(k, k + l). It has dimension l(k − 1) and index k + 1. There are two admissible
triples, (2, 7, 1), (6, 3, 1). However the second one can be identified with X1 ⊂ SGr(3, 9). The first one
X1 ⊂ T1(2, 9) is new. Notice that we find as well the generic K3 surface of genus 4 as (2, 3, 3) since
the zero locus of Q∨(1) on Gr(2, 5) is a quadric threefold. There are as well some FK3 obtained by
T1(2, n). However, they do not fall in this pattern, and we will examine them separately.
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Other varieties. We tried other bundles to produce varieties of K3 type, such as R∨(1) or the locus of
Sym2R∨ ⊕

∧2R∨ (the orthosymplectic Grassmannian). Even without no guarantee on the weight of
the Hodge structure, our attempt was motivated by some examples in the list of Küchle, see [Kuz15,
Subsection 2.1]. However, we found no more new example.

Products. Products of projective spaces do produce a handful more of examples. One can easily
see that no more than 5 projectives can be involved, by bounding t from above with the index of
the smallest projective factor, and from below with the number of factors times the dimension of the
smallest factor using (1). Here, the extremal case isX(15) ⊂ (P1)5. Other examples areX(1,1,1) ⊂ (P3)3,
and X(2,1,1) ⊂ P3 × P1 × P1. In the products of Grassmannians when k > 1, no further example is
found. Indeed the index of a product of Grassmannians has index the gcd(ki + li). Substituting in
the equations, one first find that no more than two Grassmannians can be used, and only one of them
can have k > 1. The possible cases are X(1,1) ⊂ Gr(2, 6) × P5 and X(2,1) ⊂ Gr(2, 4) × P1. Identical
computations yield all the remaining cases.

2.2.1. Remarks on our method. We want to highlight with a couple of remarks how the method given
in 1 could be turned into a Theorem.

Remark 2.1. The condition in 1 is not necessary. In fact notable exceptions are (S1) (where the
divisibility relation does not hold) and (S6), where there the decomposition in irreducibles of the bundle
that cuts the variety has no linear factor (albeit the variety has the correct ratio between dimension
and index), and moreover two K3 sub-Hodge structures are present, in degree 6 and 8.

Remark 2.2. As it is stated, the method 1 is not an exact result. To turn it into a Theorem one
would need to impose specific cohomological vanishing in each case. Therefore what could be gained
in accuracy would be lost in terms of general applicability. There could be ways of turning it into a
statement or a conjecture. For example we could ask for Y to have a rectangular Lefschetz decompo-
sition in the categorical sense. Or, whenever Y itself is cut by a section of an homogeneous vector
bundle F =

⊕
Fi on Gr(k, n), we might ask that the slope µ(−1

tKY ) > µ(Fi) for all i. However, for
the purpose of the current paper, we prefer to leave it as is is, and we plan to formalise this statement
in a future work.

However not formal, Method 1 is a cheap and easy way to produce several candidates, which turn
out to be all of the desired type. We believe that this condition will be useful as well in the future to
produce new examples of Fano varieties of K3 and CY type.

2.2.2. Further discussion and examples. The list of FK3 in the tables has no presumption of being
complete. The main problem is the condition on the level of Hodge theory of the ambient variety,
which is quite hard to control. The first case to investigate is the one of complete intersections in
homogeneous varieties. We conjectured in [FM18] that there are no more FK3 as complete intersection
in Gr(k, n) other than the well-known cubic fourfold, the Gushel-Mukai fourfold, the Debarre-Voisin
twentyfold hypersurface and a codimension four linear section of Grassmannian Gr(2, 8). We have
not been able to prove this conjecture yet, but no counterexample has been found either. We tried
as well hypersurfaces in other homogeneous varieties other than Gr(k, n), for example using the list
of Konno in [Ko86], but none of them satisfied the above condition. For the complete intersections in
homogeneous space, we do not have any reasonable conjecture. Atanas Iliev informed us that a FK3
variety can be obtained by taking a 6-codimensional linear section of the E6 variety OP2, but we have
not pursued this direction yet. We did not include in this paper some of the well-known Fano varieties
of K3 type, such as the cubic fourfolds, the Gushel-Mukai 4-folds and 6-folds, the Debarre-Voisin
20-fold, and the Küchle 4-folds of K3 type (c5, c7 and d3, following [Ku95]).

2.3. Geometric tools and tricks.
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2.3.1. A blow-up lemma. We state here a blow up lemma. Although it merely descends from defini-
tions, it is worth to recall it. It is worth to point out that a similar lemma is used in [Kuz15, Lemma
3.4 and Corollary 3.5].

Lemma 2.3. Let X = X(d,1) ⊂ Z × P1. Then X ∼= BlSZ, where S is the intersections of 2 divisors
of degree d on Z.

Proof. Let P1 = Proj(C[y0, y1]) and V ∨ ∼= C[y0, y1]1 (that is, homogeneous forms of degree 1). Denote
by W∨ ∼= H0(OZ(d)). X is given by definition by a choice of λ ∈W∨ ⊗ V ∨, or equivalently by a map
(that we will still denote by λ) λ : V −→ W∨. This map gives a 2-dimensional subspace of W∨, or
equivalently a pencil of divisors in Z. The base locus of this pencil coincides with the S defined in the
lemma. The (only) incidence equation for the blow up of Z in S is y0fd + y1gd and this is of course
the same equation defining X. �

2.3.2. Higher codimension case and Cayley trick(s). The above blow-up lemma admits a higher-
codimensional generalisation. Indeed, when X is the zero locus of a (1, 1) divisor in U × Pr−1 (with
the obvious generalisation if ρ(U) > 1) then X can be given either by an element of W∨ ⊗ V ∨r or as a
map

λ : Vr −→W∨.

If r > 2 we cannot identify X with any birational modification of the pair (U, S), where S is the base
locus of the above linear system. However X and S share a deep relation, known as the Cayley trick.
More precisely the result is the following

Theorem 2.4 (Thm. 2.10 in [Orl06], Thm 2.4 in [KKLL17]). Let q : E → U be a vector bundle
of rank r ≥ 2 over a smooth projective variety U and let S = s−1(0) ⊂ U denote the zero locus
of a regular section s ∈ H0(U,E) such that dimS = dimU − rankE. Let X = w−1(0) ⊂ PE∨ be
the zero locus of the section w ∈ H0(PE∨,OPE∨(1)) determined by s under the natural isomorphism
H0(U,E) ∼= H0(PE∨,OPE∨(1)). Then we have the semiorthogonal decomposition

Db(X) = 〈q∗Db(U), · · · , q∗Db(U)⊗OX
OX(r − 2), Db(S)〉.

When this happens, we will write Db(S) ↪→ Db(X). There is as well an (older) analogue Hodge-
theoretic statement, cf. Prop. 4.3 in [Ko91], stating that the vanishing cohomologies of S and X are
isomorphic up to a shift. When the hypotheses of the above Theorem are verified, this therefore proves
at once that X is of K3 type. The Cayley trick can be generalised in the following way, using the
formalism of Homological projective duality. For a concise survey of Homological projective duality,
we refer to [Pe19, Section 1]. It is a generalization of classical projective duality, where the dual objects
are a variety X with a map to a projective space X → P(V ) (which need not be an immersion) such
that its derived category has a Lefschetz decomposition and a variety X∨ with a map to the dual
projective space P(V ∨). The variety X∨, when it exists, can be thought of as a family of the non
trivial subcategories of X ×P(V ) P(L) as the hyperplane L varies.

Lemma 2.5. Let Y1 and Y2 be a pair of varieties with Lefschetz decompositions and embedded in
P(V ). Let ZH be the intersection of Y1 × Y2 with a general (1,1)-divisor H. Let fH be the map that
H naturally defines from P(V ) to P(V ∨). Let XH = Y1 ∩ f−1

H (Y ∨2 ), where Y ∨2 is the Homological
Projective dual to Y2. Then D(XH) ↪→ D(ZH).

Proof. Let D(Y2) = 〈A0, A1(1), . . . Am(m)〉 be the given Lefschetz decomposition of Y2. The divisor
H parametrizes, for every point of Y1, a hyperplane section of Y2, hence it defines a map fH : Y1 →
P(V ∨). In this way, ZH is identified with the pullback through fH of the universal hyperplane section
Y2 ⊂ Y2 × P(V ∨). Now, by [Kuz14, Lemma 2.3] we have

D(Y2) = 〈D(Y ∨2 ), A1(1)�D(P(V ∨)), . . . , Am(m)�D(P(V ∨))〉.
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By applying base change [Kuz11, Thm 5.6] to the diagram

ZH

ι

��

// Y2

π2
��

Y1
fH
// P(V ∨),

we obtain:
D(ZH) = 〈D(Y ∨2 ×P(V ∨) Y1), A1(1)�D(Y1), . . . , Am(m)�D(Y1)〉.

And the variety in the first factor here is precisely XH = Y ∨2 ×P(V ∨) Y1 = Y1 ∩ f−1
H (Y2)∨. �

3. Case-by-case analysis

3.1. Identifications. Before analysing in details the examples in our list, we want to eliminate some
varieties that are well-known examples in disguise. We recall some results of Kuznetsov, that we
conveniently bundle together. Recall that the variety S2Gr(k, n) is the bisymplectic Grassmannian. It
can be thought either as the intersection of two symplectic Grassmannian SGr(k, n) inside Gr(k, n)
or as the zero locus over Gr(k, n) of a general global section of the bundle

∧2R∨ ⊕
∧2R∨. We will

better describe this variety later in the paper.

Theorem 3.1 (Thm 3.1 and Cor. 3.5 in [Kuz15]). The following hold:
• There is an isomorphism S2Gr(n, 2n) ∼= (P1)n;
• The variety X(1,1,1,1,1) ⊂ (P1)5 is isomorphic to W = BlS((P1)4), where S = S(1,1,1,1)2 is a
non-generic K3 surface of genus g = 13, given as the intersection of two divisors of multidegree
(1, 1, 1, 1).

Some of the Fano of K3 type that we found in our search can be actually identified with the W
above. For this reason they are not included in our main table. More precisely we have

Lemma 3.2. Let W be the Fano of K3 type in [Kuz15] defined above. Then the following Fano of K3
type

• X(1,1,1,1,1) ⊂ Q2 ×Q2 × P1;
• X(1,1,1,1,1) ⊂ S2Gr(4, 8)× P1;
• X(1,1,1,1,1) ⊂ S2Gr(3, 6)× S2Gr(2, 4);

are isomorphic to W .

Proof. The first case is obvious, since Q2 ∼= P1 × P1. For the other two cases, by definition and
Kuznetsov’s result S2Gr(n, 2n) coincides with (P1)n. �

There is one more identification between two descriptions.

Lemma 3.3. X(1,1,1) ⊂ S3 × P1 × P1 ∼= X(2,1,1) ⊂ P3 × P1 × P1.

Proof. It follows from the well known identification S3 ∼= P3, see for example [Kuz18, (2.2)]. The
difference in the degree is explained since the line bundle giving the spinor embedding for S3 is the
square root of one giving the Plücker embedding. �

3.2. Blow-up and Mukai type. To prove that each of the variety of type M and B are of K3
type one can use the Cayley trick statement, as in Theorem 2.4. Indeed the (stronger) derived
category statement implies the Hodge theoretical one, see [Add16] for a comparison of open conjectures
regarding Hodge and derived invariants in our setting. Indeed this can be seen by writing down
such a semiorthogonal decomposition as prescribed by 2.4 and then taking Hochschild homology.
Alternatively one can use Riemann-Roch and standard exact sequences to compute the relevant Hodge
numbers. We did these calculations as sanity checks for all our examples, however we believe it is
neither worth nor interesting to list all of them, since they are quite similar. Therefore we will include
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just one example, namely Proposition 3.6, where Theorem 2.4 does not apply in a straightforward
way. For the families B1 and B2, Lemma 2.3 settles the matter.

In terms of construction of polarized families of IHS, we investigate another construction of the
Hilbert scheme of points on a genus 8 K3 surface, see Proposition 3.12. We believe that each of the
examples in our list of Fano could lead to similar constructions: this would be especially interesting,
considering the lack of examples of polarized families of Hilbert schemes of points on K3 surfaces.

3.3. M3: a (different) computation in intersection theory. The variety M3 isX(1,1) ⊂ Gr(2, 5)×
Q5. It has dimension 10 and index 4. It is neither a blow up with a center in a K3 surface, nor we
can apply the Cayley trick. However we can show that it is a Fano of K3 type using Proposition 2.5.
Indeed we have

Lemma 3.4. Let S6 be a K3 surface of genus 6 in the Mukai model and X the variety M3 from the
table. Then Db(S6) ↪→ Db(X).

Proof. It suffices to apply Lemma 2.5, since the Grassmannian Gr(2, 5) is projectively self-dual. The
intersection of the Grassmannian Gr(2, 5) with a 5-dimensional quadric (or, equivalently, the intersec-
tion of Gr(2, 5) with a quadric and 3 hyperplanes in its Plücker embedding) is a K3 surface of genus
6 and degree 10 by Mukai’s classification. �

The following Lemma allows us to pass from the derived categorical to the Hodge-theoretical state-
ment.

Lemma 3.5. X is of K3 type.

Proof. By Hochschild-Konstant-Rosenberg isomorphism, cf. [Kuz16b, Theorem 1.16], for Y smooth
and projective of dimension n and T := Db(Y ), one has

HH•(T ) :=
n⊕
k=0

HHk(T ) ∼=
⊕
k

⊕
p−q=k

Hp,q(Y ) ∼= H•(X,C).

Moreover, by [Kuz09, Theorem 7.5], for any semiorthogonal decomposition T = 〈A1, . . . , Am〉 one
has HH•(T ) ∼=

⊕
i HH•(Ai). Moreover if E is an exceptional object, HH•(E) ∼= HH0(E) ∼= C. By

Lemma 2.5, X (the Fano M3) admits a semiorthogonal decomposition whose first piece is Db(S6), and
the other objects are all exceptional. It follows that

⊕2
k=0H

p,q(S6) ⊂
⊕10

k=0H
p,q(X). Moreover each

exceptional object contributes only to Hp,p(X). It follows that X is of K3 type. �

As an alternative method one could show that M3 is of K3 type using a lengthy (but rather standard)
computation with long exact sequences and cohomological vanishings.

Proposition 3.6. Let X = X(1,1) ⊂ Gr(2, 5)×Q5. Then X is of K3 type.

The proof of the above proposition can be split in two lemmas. The first one is a Chern class
computation, the second one is essentially an application of Bott’s theorem.

Lemma 3.7. The topological Euler characteristic of X is e(X) = 72.

Proof. This is a lengthy (but direct) exercise in intersection theory, and we will spare the details to
the reader. Let us denote Y = Gr(2, 5) × Q5. Denote by α1 = c1(OQ(−1)) and β1 = c1(OG(−1)).
Denote by β2 = c2(R). One has H4(Gr(2, 5),Z) = 〈β2

1 , β2〉. One easily compute c(Q), c(G) and
c(Y ) = c(G)c(Q). In particular c11(Y ) = −6α5

1β
6
1 and

e(Y ) =
∫
Y
−6α5

1β
6
1 = 60.

We then use the normal sequence associated to X

0→ TX → TY |X → OX(1, 1)→ 0.
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This implies c(TY |X) = c(X)(1−α1− β1). We can compute recursively the Chern classes of X, with
in particular

c10(X) = (9α5
1β1β

2
2 + 9α4

1β
2
1β

2
2)|X .

To compute the restriction we evaluate against the class of X, and we have c10(X) ·X = 18α5
1β

2
1β

2
2 .

Using the relation in A(G) given by 2β5
1 = 5β1β

2
2 we get

c10(X) ·X = −2 · 18
5 α5

1β
6
1 = 6

5e(Y ) = 72.

�

Lemma 3.8. For 0 ≤ i ≤ 3 we have hi,10−i(X) = 0. Moreover h6,4(X) = h4,6(X) = 1.

Proof. As before let us denote Y = Gr(2, 5)×Q5, and with L ∼= OY (1, 1) (and its restriction to X as
LX). We use the following two exact sequences

(2) 0→ Ωk−1
X ⊗ L∨ → Ωk

Y |X → Ωk
X → 0

and

(3) 0→ Ωk
Y ⊗ L∨ → Ωk

Y → Ωk
Y |X → 0,

possibly twisting by some positive multiple of L∨ when required. The computation is rather lengthy
and technical, and we will skip most of the details. To find similar computations the reader can refer
to, e.g., [FM18, Lemma 4.9]. For the results on the cohomological vanishings for both Gr(2, 5) and
Q5 one can consult for example [PW95], [Snow86]. The first vanishing h0,10(X) is obvious. Let us
show the first non-obvious one, that is h1,9(X) = 0. Consider the two sequences 2 and 3 above with
k = 1. Using the Künneth formula one easily see that the cohomology of Gr(2, 5)×Q5 is of level zero.
Moreover from Kodaira vanishing and since H10(X,L) ∼= H0(X,OX(−3,−3)) = 0 one reduces to

0→ H9(Ω1
Y |X)→ H9(Ω1

X)→ 0

and
0→ H9(Ω1

Y |X)→ H10(Ω1
Y ⊗ L∨)→ 0.

However, if we denote with π1 (resp. π2) the projection on Gr(2, 5) (resp. Q5) we have Ω1
Y
∼=

π∗1Ω1
Gr(2,5)⊕π

∗
2Ω1

Q, and from the Künneth formula for the box product and the well known vanishings
for the twisted cohomologies of Gr(2, 5) and Q5 we have

H10(Ω1
Y ⊗ L∨) ∼= H9(Ω1

Y |X) ∼= H9(Ω1
X) = 0.

For h2,8(X) we use the sequences 2 and 3 with k = 2 and k = 1 twisted by L∨. Indeed one has from 2

0→ H8(Ω2
Y |X )→ H8(Ω2

X)→ H9(Ω1
X)→ H9(Ω2

Y |X )→ 0.

The two external terms can be checked to be 0 using 3, again together with the Künneth formula and
the usual vanishings (using the decomposition for Ω2

Y ). Using the twisted version of 2 and 3 we reduce
to the isomorphism H8(Ω2

X) ∼= H10((L∨X)⊗2) = 0. The same argument works as well for h3,7(X) = 0,
where for h4,6(X) we get

H6(Ω4
X) ∼= H10((L∨X)⊗4) ∼= H0(OX) ∼= C.

�

The last Lemma is enough to prove thatX is of K3 type. In fact by Lefschetz theorem on hyperplane
section hp,p(X) = 0 unless p + q = 10. By Künneth formula it is easy to compute directly these
numbers. Moreover the two above Lemmas prove that the level of H10(X) is 2. The knowledge of
h4,6 = h6,4 = 1 and the Euler characteristic from 3.7 allows us to explicitly compute all the Hodge
numbers.
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Corollary 3.9. Suppose p+ q 6= 10. The only non-zero Hodge numbers hp,q of X are
h0,0 = h10,10 = 1, h1,1 = h9,9 = 2, h2,2 = h8,8 = 4, h3,3 = h7,7 = 6, h4,4 = h6,6 = 8.

For p+ q = 10 the only non-zero Hodge numbers are
h6,4 = h4,6 = 1, h5,5 = 28,

with moreover the dimension of the vanishing cohomology subspace h5,5
van = 19.

3.4. From M7 to S[2]
8 . The 12-fold XM7 is given by the zero locus of a (1,1) section on Gr(2, 6)×P5.

Let S8 = Gr(2, 6)∩H1 ∩ . . .∩H6. Then S8 is a general K3 surface of genus 8 in Mukai’s model. From
the Cayley trick argument one has that Db(S8) ↪→ Db(XM7). On the Hodge-theoretical level indeed
we have:

Lemma 3.10. Let XM7 as above. Then XM7 is of K3 type with h6,6 = 31 and the vanishing subspace
h6,6

van = 19.

Proof. Since Gr(2, 6)× P5 is a central variety, it is enough to compute the Euler characteristics χ(Ωi)
for i = 5, 6. This can be done for example via Riemann-Roch or using Macaulay2. �

As expected, we can associate to XM7 an IHS, which is linked to the genus 8 K3 surface. To do
this, let Z be given by the zero locus of a general global section of the bundle

∧2R∨4,6 ⊗ R∨2,6 on
Gr(4, 6)×Gr(2, 6). We have the following proposition.

Proposition 3.11. Z is an IHS fourfold.

Proof. Recall the formula for the first Chern class of a product c1(
∧2R∨4,6 ⊗ R∨2,6) = rk(R∨2,6) ·

c1(
∧2R∨4,6) + rk(

∧2R∨4,6) · c1(R∨2,6). By adjunction it follows that for a general section Z is a smooth
fourfold with c1 = 0. We compute now its holomorphic Euler characteristic χ(OZ). This can be done
for example via a Riemann-Roch computation, since

χ(OZ) = c2
2 − c4
720 .

We will use a Macaulay2 code in order to speed up the calculation.

loadPackage "Schubert2"
k1=2, l1=4, k2=4, l2=2;
G26=flagBundle({k1,l1}, VariableNames=>{r1,q1});
(R1,Q1)=G26.Bundles;
V=abstractSheaf(G26, Rank=>6);
G46=flagBundle({k2,l2}, V, VariableNames=>{r2,q2});
(R2,Q2)=G46.Bundles;
p=G46.StructureMap;
R1G46=p^*(dual R1);
F=R1G46**exteriorPower_2 dual R2;
Z=sectionZeroLocus F;
chi(OO_Z);

Running the previous code one verifies χ(OZ) = 3. In particular the statement follows by simply
applying Beauville-Bogomolov decomposition theorem. �

The deformation type of Z can be shown to be the expected one as follows.

Proposition 3.12. Z is isomorphic to Hilb2(S8).

Proof. Let h ∈
∧2 V ∗6 ⊗ V ∗6 defining XM7 . As above, we can consider h as a morphism

h : V6 →
2∧
V ∗6 .
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A point in Hilb2(S8) is therefore given by a pair (u1, u2), ui ∈
∧2 V6 on both of which h vanishes.

Consider W ⊂
∧2 V6 spanned by u1, u2. Consider further the restricted morphism h

t : W → V ∨6 .
This has rank 2, and we can take P = Im(ht). By construction h vanishes on the pair (W,P ) ∈
Gr(4, 6)×Gr(2, 6), thus defining a point in Z. From this construction, it is clear that W determines
P . Moreover, the map we constructed inside Gr(4, 6) can be seen as the same map (after duality)
which associates to Hilb2(S8) a line in the pfaffian cubic fourfold, hence it is an isomorphism. �

We point out the similarities between this contruction and [KPS18, Proposition B.6.3]. Here it
is proved how the variety of lines (resp. conics) of a smooth cubic threefold (resp. a generic Fano
threefold of genus 8) is isomorphic to a section of the bundle

∧2R∨4,5 ⊗R∨2,5 over Gr(4, 5)×Gr(2, 5).
In turn, their proof can be modified to give an alternative proof of 3.12.

3.5. Sporadic examples. This subset of the list is the most interesting one. For each one of these
Fano already proving that they are of K3 type requires an ad-hoc strategy. Our most interesting
results comes indeed from this section: indeed we reinterprete the Debarre-Voisin IHS fourfold as
moduli space of relevant objects on a Fano of K3 type in two different ways, as in Theorem 3.26 and
Proposition 3.30. Moreover we produce the first examples of a Fano with multiple K3 structures, cf.
Proposition 3.29 and with a mixed (2, 3) CY structure, cf. Proposition 3.31. We also give geometrical
descriptions of many of the examples we consider, since we believe them to be a rich and beautiful
sources of geometries.

3.6. S1: four codimensional linear section of Gr(2, 8). We already considered this example in our
previous work [FM18, Proposition 5.2], therefore we will not spend too much time on it. It is described
in a surprisingly simple way as a codimensional 4 linear section of the Grassmannian Gr(2, 8).

Proposition 3.13. Let X1,1,1,1 ⊂ Gr(2, 8) be given by a generic section of OG(1)⊕4. Then X is an
8-fold of K3 type, with h4,4

van(X) = 19.

We remark that there is another FK3 closely related to S1. This is X(1,1) ⊂ Gr(2, 8) × P3. In our
main table this is listed as M13. We chose this notation since, although there is no K3 in the Mukai
model related, it shares many similarities with the other Fano in the M group. In particular one can
apply directly Cayley trick to prove that this Fano is of K3 type.

As already remarked in our previous work the conjectural homological projective dual of X1,1,1,1 ⊂
Gr(2, 8) is quartic K3 surface S3 ⊂ P3. An embedding of the derived category of the quartic K3 inside
the derived category of the above linear section is proved in [ST18], Thm 2.8.

We already conjectured in [FM18, Conjecture 5.3] that this complete intersection in Gr(k, n) should
be the only FK3 obtained in this way. We repeat the conjecture here for completeness.

Conjecture 3.14. Let X = Xd1,...,dc ⊂ Gr(k, n) be a Fano smooth complete intersection of even
dimension. Then X is not of K3 type unless

({di}, k, n) = ({3}, 1, 6), ({2, 1}, 2, 5), ({1, 1, 1, 1}, 2, 8), ({1}, 3, 10).

3.7. S2: a K3 of genus 7 from OGr(3, 8). This sporadic example is a linear section X = OGr(3, 8)∩
H of the orthogonal Grassmannian OGr(3, 8). It is worth to spend few words on the ambient variety.
In general the orthogonal Grassmannian OGr(n − 1, 2n) behaves differently from OGr(k, 2n), which
for k 6= n−1 is a prime Fano variety. Indeed OGr(n−1, 2n) can be realised as a Pn−1 bundle over each
of the two connected components S1

n and S2
n of the maximal orthogonal Grassmannian OGr(n, 2n) in

the spinor embedding. In particular the Picard group of OGr(n− 1, 2n) has rank 2 with the Plücker
line bundle L := OS1(1) � OS2(1) is very ample. OGr(n − 1, V2n) is non-degenerate in the Plücker
embedding, and

H0(OGr(n− 1, 2n),L) ∼=
n−1∧

V ∨2n.

With X = X1 ⊂ OGr(3, 8) in the introductory table we mean the zero locus of a generic global section
of L. Such X is an 8-fold of index ι = 3. Since it is a linear section of a central variety, to compute its
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Hodge numbers it suffices to compute the Euler characteristics χ(Ωi
X), together with the knowledge

of the cohomology of OGr(3, 8). A full computation by the means of Borel-Bott-Weil theorem, can be
found in the PhD thesis of the first author, in Appendix A. We recall here the result.

Lemma 3.15 (cf. [Fa17], Proposition A.1.1). X is a Fano 8-fold of K3 type with h4,4(X) = 24, and
its vanishing subspace of rank 19.

We explain now a link between this 8-fold X and a genus 7 K3 surface. Recall from the work of
Mukai that a such a generic K3 surface can be obtained by cutting S10 with 8 hyperplanes. Here we
use a different description for the K3 surface. Let X ⊂ OGr(3, 8) defined by V (σ), σ ∈ H0(L). Let S8
be (one of the two connected component of) the orthogonal Grassmannian OGr(4, 8), denote with R
the restriction of the tautological bundle. Since σ can be seen as an element in H0(S8,

∧3R∨), which
is as well isomorphic to

∧3 V ∨8 by Borel-Bott-Weil, we can denote by S = V (σ) ⊂ S8. It is easy to
check that S is a K3 of genus 7 (notice that S8 is nothing but a 6-dimensional quadric hypersurface
in disguise, either using triality or checking dimension and invariants). Such S is responsible for the
interesting part of the derived category (and therefore the Hodge theory of X). Indeed we quote the
following result of Ito-Miura-Okawa-Ueda. Denote π the restriction of the projection p from X to (one
of the two) S8.

Lemma 3.16 (Lemma 2.1 in [IMOU20]). The morphism π is a P2-bundle over S8rS and a P3-bundle
over S, locally trivial in the Zariski topology.

In turn we can use an adapted version of Orlov’s blow-up formula to this case. This is indeed a
generalisation of the Cayley trick. We borrow this result from [BFM19, Proposition 47]. For this
reason, the proof will be omitted here.

First, in the notation above, denote by ι : S ⊂ S8. The above Lemma is equivalent to the following
commutative diagram

F �
� j

//

p

��

X

π
��

S �
� ι // S8,

with F a smooth projective subvariety, j : F ⊂ X of codimension d = 4 + 2 − 3 = 3 and a locally
free sheaf F of rank 4 on S such that p : F ' PS(F) → S. We denote by OF (H) the relative ample
bundle of p and we assume that there is a line bundle OX(H) such that OX(H)|F ' OF (H) and
that there is a vector bundle E of rank d on X such that F is the zero locus of a general section of
π∗E ⊗ OX(−H).

We define the functors Φl : Db(S)→ Db(F ) by the formula Φl(A) = j∗(p∗A⊗O(lH)).

Proposition 3.17. In the configuration above, Φl is fully faithful for any integer l, and there is a
semiorthogonal decomposition:

Db(X) = 〈Φ−1 Db(S), π∗Db(S8), . . . , π∗Db(S8)⊗OX(2H)〉

3.8. S4: bisymplectic Grassmannian S2Gr(3, 8) and Debarre-Voisin IHS. The variety S2Gr(k, n)
is given by the vanishing of a global section of the bundle

∧2R∨⊕
∧2R∨ on the Grassmannian Gr(k, n).

Equivalently, given a pencil λ : C2 →
∧2 V ∨ it parametrises those k-dimensional subspaces which are

isotropic for all skew-forms in the pencil. This variety is studied by Kuznetsov in [Kuz15] in the case
k = n/2 and by Benedetti in [Be18b] with a strong emphasis in the case k = 2. Let us recall some key
facts of the construction. Assume that n = 2m is even. To a general pencil λ are canonically associated
m degenerate skew-forms {λ1, . . . , λm}, given by the intersection bewteen the line Lλ ⊂ P(

∧2 V ∨) and
the (Pfaffian) discriminant hypersurface D, corresponding to degenerate skew-forms. Denote by Ki

the kernel of λi. The smoothness of S2Gr is equivalent to the λi being distinct, and moreover we can
decompose V = K1 ⊕ . . .⊕Km as a direct sum.
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Kuznetsov gives as well the canonical form for the pencil, espressing the two generators (up to
dividing by 2) as

ω1 = x1,2 + x3,4 + . . .+ xn−1,n, ω2 = a1x1,2 + a2x3,4 + . . .+ amxn−1,n,

with the ai pairwise distinct, and xi,j := xi∧xj . This way, we can identifyK1 := 〈e1, e2〉, K2 := 〈e3, e4〉
and so on. When m = k one has S2Gr(k, 2k) ∼= (P1)k, see the Theorem 3.1. When m 6= k however we
do not have such a nice description as a product. For k = 2 for example S2Gr(2, n) is an intersection
of Gr(2, n) with a linear subspace of codimension 2.

Let us now focus on the case S2Gr(3, 8). We compute first the cohomology of a linear section of
S2Gr(3, 8). We first prove an auxiliary lemma.

Lemma 3.18. S2Gr(k, n) is a central variety, with e(S2Gr(k, n)) = 2k
(n
k

)
.

Proof. There are many ways of proving this statement. One could for example use Borel-Bott-Weil, or
a more conceptual argument as follows. In [Be18b, Proposition 2.10] it is proved that there is a torus
T ∼= (C∗)n acting on S2Gr(k, n) with the fixed locus constituted only by 2k

(n
k

)
points. This implies,

thanks to [CS79, Theorem 2] that the S2Gr(k, n) is a central variety, with 2k
(n
k

)
being its topological

Euler characteristic. �

Proposition 3.19. A linear section X1 = V (σ1) ⊂ S2Gr(3, 8) is of K3 type.

Proof. We already proved in Lemma 3.18 that S2Gr(3, 8) is a central variety. Lefschetz theorem on
hyperplane section enables us to describe the cohomology of X except all the Hodge groups hp,q(X)
with p+ q = 8. We can determine these dimensions by computing the Euler characteristics of χ(Ωi

X).
The latter can be computed via a direct but lengthy computation, and computer algebra systems as
Macaulay2 can speed up everything. One has in particular

χ(Ω1
X) = χ(Ω1

S2Gr(3,8)) = 1

χ(Ω2
X) = χ(Ω2

S2Gr(3,8)) = 2

χ(Ω3
X) = χ(Ω3

S2Gr(3,8)) + 1 = 7

χ(Ω4
X) = 26.

�

This gives as well all the Hodge numbers. We collect them in the next corollary for the reader’s
convenience.

Corollary 3.20. The only non-zero Hodge numbers hp,q of S2Gr(3, 8) are

h0,0 = h9,9 = 1, h1,1 = h8,8 = 1, h2,2 = h7,7 = 2, h3,3 = h6,6 = 6, h4,4 = h5,5 = 6.

Corollary 3.21. Suppose p+ q 6= 8. The only non-zero Hodge numbers hp,q of X are
h0,0 = h8,8 = 1, h1,1 = h7,7 = 1, h2,2 = h6,6 = 2, h3,3 = h5,5 = 6.

For p+ q = 8 the only non-zero Hodge numbers are
h3,5 = h5,3 = 1, h4,4 = 26,

with moreover h4,4
van = 20.

We want now to associate to a Fano X of type S4 an IHS Z. To do this, at first notice that
S2Gr(3, 8) is degenerate in the Plücker embedding in P(

∧3 V8). It lies indeed in P(U), where

U := ker(ϕ :
3∧
V8

(y1,y2)−→ V8 ⊕ V8),

where yi denotes the contraction with the 2-skew form ωi. Equivalently, we have that S2Gr(3, 8) is
defined by a general σ1 ∈ U∨.
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Consider now the Grassmannian Gr(6, 8). Denote by ȳi the contraction with the restriction of the
two form ωi|W to a 6-space W . For the generic [W ] ∈ Gr(6, 8) the map

ϕ :
3∧
W

(ȳ1,ȳ2)−→ W ⊕W

remains surjective, since the rank of ω1|W and ω2|W is still maximal. However, when W is such that
every element of the pencil restricted to such W has rank 4, then the above map is not surjective
anymore. As a special example, one can take a subspace given by x1 = x3 = 0. Then for example
the vector (e5, de5), d 6= 1 is not in the image of ϕ. To identify in general the locus D where ϕ is not
surjective let us write (in the notation above) V8 = K1 ⊕K2 ⊕K3 ⊕K4. We can then describe D as

D := {W6 ⊂ V8 | dim(W6 ∩Ki) ≥ 1, ∀i}.
D is therefore isomorphic to a Gr(2, 4)-bundle over (P1)4 ∼= S2Gr(4, 8), where the four dimensional
space is the quotient of V by the intersections W6 ∩ Ki (as the forms have rank 4, we cannot have
Ki ⊂ W6). Over D we have a cokernel sheaf G of rank 4 on its support, given by the Kernel of the
rank 4 map W →W ∗ ⊕W ∗. Summing up, we have the following result

Proposition 3.22. On Gr(6, 8) there is an exact sequence of sheaves

0→ F →
3∧
R → R⊕R → G → 0.

Corollary 3.23. F∨ is a globally generated vector bundle of rank 8 and H0(F∨) = U∨.

Proof. Dually, there is a surjective morphism of sheaves
∧3R∨ → F∨, which is surjective on stalks.

Hence, global sections of F∨ which are images of global sections of
∧3R∨ are sufficient to generate

stalks, so that F∨ is globally generated. �

Moreover, since G is a torsion sheaf supported in codimension 4 we have the following corollary.

Corollary 3.24. c1(F∨) = 8h, where h is the class of the Plücker hyperplane.

Proposition 3.25. Let Z ⊂ Gr(6, 8) defined by the zero locus of a general global section of the vector
bundle F∨. Then Z is a fourfold with canonical class ωZ ∼= OZ .

Theorem 3.26. Let Z as above, and let ZDV ⊂ Gr(6, 10) the Debarre-Voisin IHS. Then Z is isomor-
phic to ZDV . Moreover, Z can be interpreted as (the compactification of) the space of S2Gr(3, 6) ∼=
(P1)3 inside X1 ⊂ S2Gr(3, 8).

Proof. With a non canonical choice of a two-space 〈v, w〉 = V2 ⊂ V10, the three form ω defining ZDV
can be written as ω = ω8 + v∨ ∧σ1 +w∨ ∧σ2, where ω8 is a three form on an eight dimensional vector
space V8 and σi are two forms on the same space. The natural projection from P(V10) to P(V8) induces
a rational map π from Gr(6, 10) to Gr(6, 8). For this map, there are three kinds of six-spaces:
Type 0 Six spaces which do not intersect the fixed two space V2.
Type 1 Six spaces meeting the fixed V2 in a line U1.
Type 2 Six spaces containing the fixed V2.
By a dimension count and the genericity assumption on ZDV , spaces of type 2 do not occur inside
ZDV . Spaces of type 1 are given by the Schubert cycle σ3,05(V2), and inside ZDV this is a curve of
degree 132, as computed by Macaulay2, which is smooth since one can check that the Schubert cycle
we use to obtain it is smooth as well (see e.g. [HP18, Section 2.2]). The blow up of ZDV along this
curve maps into a subvariety of Gr(6, 8) given by six spaces where the three form ω8 is σ1∧ t∨1 +σ2∧ t∨2
for some vectors t1, t2 of the six space itself. Thus, the image of ZDV is precisely the variety Z for the
forms ω8, σ1, σ2. The local picture in the exceptional divisor is given by sending a six plane U1 ⊂ U6 to
the set of all possible six planes in V8 containing U6/U1, which is a P2. The image π(U6) of a six space
U6 ∈ ZDV contains three spaces parametrized by X1 ⊂ S2Gr(3, 8) where the form ω8 restricts to zero,
hence also the two forms σ1, σ2 are zero. That is, a point of Z parametrizes a copy S2Gr(3, 6) ∼= (P1)3
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contained in X1 as claimed above. We proved that Z has trivial canonical bundle and, if the rational
map we defined above from ZDV has degree one, Z and ZDV would be birational minimal models,
hence the map given by the blow-up of ZDV along the curve composed with the projection would
be a flop. But a flop is not defined in codimension at most two on an IHS fourfold, hence the map
was already well defined and is an isomorphism. Let us prove that this map has indeed degree one:
Let V6 and W6 be two points of ZDV with the same projection. Therefore, their basis differ only
for multiples of v and w and, after a linear combination, we can suppose that at most two elements
differ by these vectors. Let us treat first the case of a single vector: let V6 = 〈v1, v2, v3, v4, v5, v6〉
and let W6 = 〈v1, v2, v3, v4, v5, v6 + av + bw〉. As the choice of V6 varies, the coefficients a, b are not
constant, hence we can suppose a = 1, b = 0 (which happens in codimension one). Thus on W6 we
have ω(v6 + v, x, y) = v ∧ σ1(x, y). So, if the six space annihilates such a three form, it must be
isotropic for σ1, which is clearly impossible on a six space, unless the two form degenerates, which
happens in codimension two.

On the other hand, if W6 = 〈v1, v2, v3, v4, v5 + w, v6 + v〉 we have ω(v6 + v, x, y) = v ∧ σ1(x, y)
and ω(v5 + w, x, y) = w ∧ σ2(x, y). This implies that the residual four space is isotropic with respect
to both forms, which is a codimension twelve condition on the six spaces themselves. Indeed, this is
S2Gr(4, 8) ∼= (P1)4 inside Gr(4, 8). Hence, by the genericity assumption on ω, this does not happen in
our case.

�

3.9. S5: a section of a non-central variety. This sporadic Fano of K3 type is rather different from
the others. It is a linear section of a certain 7-fold of index 3 that we call T1(2, 9), which is not even
central, let alone homogeneous. This 7-fold is the zero locus of a general global section of the bundle
Q∨(1) on the Grassmannian Gr(2, 9). By Borel-Bott-Weil we interpret H0(Gr(2, 9),Q∨(1)) ∼=

∧3 V ∨9 ,
therefore T1(2, 9) is given by the locus of two-spaces in a 9-dimensonal space which are annihilated
by a 3-form. This 7-fold, which is indeed a congruence of lines has been considered in the recent work
([DFMR17], Ex. 4.14). As we said, the variety T1(2, 9) is not central, therefore we cannot apply any
trick as in Lemma 2.3 to compute the Hodge numbers of its linear section. Therefore we will need to
go through a proper Borel-Bott-Weil computation.

We will start by stating the final result on the Hodge numbers.

Proposition 3.27. The Hodge numbers of T1(2, 9) are

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 2 2 0 0

0 0 0 2 0 0 0
0 0 0 2 2 0 0 0

0 0 0 2 0 0 0
0 0 2 2 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

From the above diamond it immediately follows that holomorphic Euler characteristics for T1 are
χ(Ω1

T1
) = −1, χ(Ω2

T1
) = 0, χ(Ω3

T1
) = 2. These can be easily double-checked using Macaulay2.

Moreover the topological Euler characteristic etop(T1) = 0 (cf. [DFMR17], Ex. 4.14).
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Corollary 3.28. Let X = T1(2, 9)∩H be a linear section of T1(2, 9). This is a Fano of K3 type with
Hodge diamond

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 2 2 0 0

0 0 1 22 1 0 0
0 0 2 2 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

The vanishing subspace is h3,3
van(X) = 20. The holomorphic Euler characteristics for X are χ(Ω1

X) =
−1, χ(Ω2

X) = 1, χ(Ω3
T1

) = −18. Moreover the topological Euler characteristic etop(X) = 24.

Proof. The Hodge numbers for X follow from those of T1(2, 9) together with the computations of
χ(Ωi), which can be easily done a priori via Riemann-Roch and the help of computer algebra. �

3.9.1. Borel-Bott-Weil computation for T1(2, 9). Borel-Bott-Weil theorem is a powerful tool for com-
puting cohomologies of vector bundles on homogeneous spaces. Together with some well-known se-
quences it is often sufficient to compute Hodge numbers for varieties cut by general global sections of
homogeneous vector bundles. Although rather long and involved, the procedure is mostly algorithmic.
We will include the general setup (skipping most details for the sake of readability) in order to give
the reader a toolbox for further computations. We refer to [Wey03] for the full picture on the subject.

General BBW strategy. Let Gr(k, n) be the Grassmannian of k-dimensional subspaces of Vn. Consider
two dominant weights α = (α1, . . . , αn−k) and β = (β1, . . . , βk) for the Schur functors Σ applied to Q
and R and their concatenation γ = (γ1, . . . , γn). Let δ be the decreasing sequence δ = (n − 1, . . . , 0)
and consider γ + δ. Write sort(γ + δ) for the sequence obtained by arranging the entries of γ + δ in
non-increasing order, and define γ̃ = sort(γ + δ)− δ. If γ + δ has repeated entries, then

H i(Gr(k, n),ΣαQ⊗ ΣβR) = 0
for all i ≥ 0. Otherwise, writing l for the number of disorders, that is the number of pairs (i, j) with
1 ≤ i < j ≤ n and γi − i < γj − j we have

H l(Gr(k, n),ΣαQ⊗ ΣβR) = Σγ̃V

and H i(Gr(k, n),ΣαQ⊗ΣβR) = 0 for i 6= l. Let now Z ⊂ Gr(k, n) be a variety which is the zero locus
of a general section of a rank r globally generated vector bundle F∨. We have the Koszul complex for
Z, which is indeed a resolution

(4) 0→ det(F )→
r−1∧

F → . . .→ F → OG → OZ → 0.

If H is another globally generated vector bundle on Gr(k, n) we can tensor the above sequence by H:
we have the spectral sequence

E−q,p1 = Hp(Gr(k, n), H ⊗
q∧
F )⇒ Hp−q(Z,H|Z),

if moreover both F and H are homogeneous we can compute all terms on the left by BBW formula.
We can now compute the Hodge numbers for our X. Notice that the F in the Koszul complex above
is the dual of bundle we start with. In this case it will be Q(−1).
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The Hodge numbers h1,i(T1(2, 9)). We apply the above formula together with the conormal sequence,
which since N∨T1 /Gr

∼= F becomes

0→ F |T1 → Ω1
G|T1 → Ω1

T1 → 0.
We can compute the cohomologies of the first two bundles using the above strategy. F |X turns out to
be acyclic, whereas the only non-zero cohomology of Ω1

G|T1 is H1(Ω1
G|T1) ∼= H1(Ω1

G) ∼= C. It follows
that the Hodge numbers h1,i(T1) = 0, i 6= 1 and h1,1(T1) = 1.

The Hodge numbers h2,i(T1(2, 9)). In order to compute these other Hodge numbers we need to rise
the conormal sequence to the second exterior power, that is

0→ Sym2 F |T1 → (F ⊗ Ω1
G)|T1 → Ω2

G|T1 → Ω2
T1 → 0.

Sym2 F⊗
∧i F is acylic for i 6= 7. This can be checked using first the Littlewood-Richardson formula to

determine the irreducible decomposition of each of these bundles, and then applying several iteration
of the BBW formula. For i = 7 it is Σ3,16Q⊗Σ9,9R that has H12(Sym2 F ⊗

∧7 F ) ∼= C (and therefore
H5(Sym2 F |T1) ∼= C). The bundle Ω1 ⊗ F ⊗

∧i F is acylic for all i. The bundle Ω2 ⊗
∧i F is not

acylic for i = 0 (and H2(Ω2
G|T1) ∼= C2) and for i = 3. Indeed in the case i = 3 its decomposition in

irreducibles contains the summand Σ3,3,3,2,2,1,1Q⊗Σ7,5R. This gives H6(Ω2⊗
∧3 F ) = C. Putting all

these data together one obtains H2(Ω2
T1

) = H3(Ω2
T1

) ∼= C2 with the other Hodge numbers h2,i = 0.

The Hodge numbers h3,i(T1(2, 9)). By Riemann-Roch one gets χ(Ω3
T1

) = 2. Thanks to the knowledge
of hi,3(T1) for i 6= 3, 4, this implies h3,3(T1) = h4,3(T1). We use the third power of the conormal
sequence, namely

0→ Sym3 F |T1 → (Ω1 ⊗ Sym2 F )|T1 → (Ω2 ⊗ F )|T1 → Ω3
G|T1 → Ω3

T1 → 0.
One strategy is to split the sequence above in three short ones, namely

(5) 0→ Sym3 F |T1 → (Ω1 ⊗ Sym2 F )|T1 → J2 → 0,

(6) 0→ J2 → (Ω2 ⊗ F )|T1 → J1 → 0,

(7) 0→ J1 → Ω3
G|T1 → Ω3

T1 → 0.
The only cohomological contributions come from
(a) H12(Sym3 F ⊗

∧6 F ) = C81 ∼= End(V9) ∼= gl(V9);
(b) H12(Sym3 F ⊗

∧7 F ) = C84 ∼=
∧3 V9;

(c) H13(Ω1 ⊗ Sym2 F ⊗
∧7 F ) = C ∼= H6((Ω1 ⊗ Sym2 F )|T1);

(d) H6(Ω2 ⊗ F ⊗
∧2 F ) = C ∼= H4((Ω2 ⊗ F )|T1);

(e) H10(Ω2 ⊗ F ⊗
∧5 F ) = C ∼= H5((Ω2 ⊗ F )|T1);

(f) H3(Ω3) = C2 ∼= H3(Ω3
G|T1);

(g) H7(Ω3 ⊗
∧3 F ) = C ∼= H4(Ω3

G|T1);
(h) H11(Ω3 ⊗

∧6 F ) = C ∼= H5(Ω3
G|T1).

Except in the case of (a) and (b) one can compute immediately the cohomology of the restriction
of the bundles to T1. The only non obvious case is given by the exact sequence

0→ H5(Sym3 F |T1)→
3∧
V

φf→ End(V9)→ H6(Sym3 F |T1)→ 0.

The situation is analogous to ([KMM10], Appendix B). Indeed the dual of the map φf is the map
ϕf : End(V9) →

∧3 V ∨9 mapping u 7→ u(f), where f is the defining section for T1 and u is the Lie
action. This is because one can do the same computation in family, use the GL(V ) equivariance to
ensure that ϕf depends linearly on f . Since up to a scalar there is a unique equivariant map from∧3 V ∨ to Hom(End(V ),

∧3 V ∨) we can conclude. Therefore for general f the map ϕf is injective (this
can be verified for example using the general form for f given in ([DFMR17], 4.14) with sufficiently
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general coefficients and therefore φf is surjective as required.
If we plug in these cohomological informations in the long exact sequence associate to the sequence
(7) we get several non-zero cohomology groups. In particular the final groups in this sequence are

. . .→ C ε→ H4(Ω3
T1) µ→ C2 ν→ C→ 0

Therefore h3,3(T1) = h3,4(T1) = dim(kerµ) + dim(Im µ) and by standard properties of long exact
sequences h3,3(T1) = h3,4 ≤ 2. On the other hand by Hard Lefschetz h3,3(T1) = h3,4 ≥ 2. This
concludes the proof of the Proposition.

3.9.2. Geometry of T1(2, 9) and X. This rather atypical (for our setting) Hodge structure for T1(2, 9)
has a geometrical explanation.

First consider a linear section XH ⊂ Gr(3, 9). It is a Fano 17-fold of index 8. One can compute that
its central Hodge structure has level 1, with the same numerology of a genus 2 curve. Consider the
configuration in the diagram below. The map p : Fl(2, 3, 9) → Gr(3, 9) is a P2 bundle, given by the
choice of V2 ⊂ V3. It remains as well a P2 bundle if we restrict p to Xp∗H , p : Xp∗H → XH . The Hodge
structure of XH ⊂ Gr(3, 9) is therefore repeated three times in Xp∗H . Consider as well the projection
φ from Fl(2, 3, 9) ∼= PGr(2,9)(Q(−1)) to Gr(2, 9), that is a P6-bundle. Restricting φ to Xp∗H this gives
a P5 bundle generically on Gr(2, 9), that degenerates to a P6 on the zero locus ZH of a section of the
dual of Q(−1), that is T1(2, 9).

(8) F

{{

Xp∗H

p

%%
φzz

� � // Fl(2, 3, 9)
p

&&

ZH
� � // Gr(2, 9) XH

� � // Gr(3, 9)

One can prove that the Hodge structure of T1(2, 9) can be pushed down from Xp∗H , which in turn
can be calculated from XH ⊂ Gr(3, 9). This can be considered as an alternative (and a bit more
geometrical) proof of Proposition 3.27. The precise details of this construction and extension to
the derived category case appeared in [BFM19]. In particular a similar argument, albeit in a more
complicated version, can be used to derive directly Corollary 3.28 and geometrically explain the K3
structure. We do not produce here a result interpreting some moduli space on X as an IHS: however
we expect a similar result to Proposition 3.30 to hold here as well.

3.10. S6 and its three K3 structures. This sporadic Fano has some interesting features. First of
all, unlike all our other examples, it is not a section of another Fano by the zero locus of a line bundle.
Then it is a Fano of K3 type in two different ways.
The variety T1(2, 10) is the zero locus of a general global section of the bundle Q∨(1) on the Grass-
mannian Gr(2, 10). As in the previous case S5 we have

H0(Gr(2, 10),Q∨(1)) ∼=
3∧
V ∨10,

therefore T1(2, 10) is given by the locus of two-spaces in a 10-dimensonal space which are annihilated
by a 3-form. It is straightforward to check that T1(2, 10) is a Fano 8-fold of index ι = 3. We compute
first its Hodge numbers

Proposition 3.29. The Hodge numbers of T1(2, 10) are
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1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 1 22 1 0 0
0 0 0 0 0 0 0 0

0 0 0 1 23 1 0 0 0
0 0 0 0 0 0 0 0

0 0 1 22 1 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

As we can see from the above theorem, T1(2, 10) has a Hodge structure of K3 type both in H6

(and therefore in H10 by duality) and in H8, making it a rather peculiar example. Indeed by Hard
Lefschetz the K3 structure in H6 immediately implies the presence of a K3 sub-structure in H10. The
surprising bit is that this gives also the whole of H8, with the exception of a non primitive cycle
inherited from the ambient Grassmannian. The computation of the above Hodge numbers is done via
a Borel-Bott-Weil computation, as in the previous section. Since these are rather long computations
(and not really different from the previous case) we will just sketch it.

Proof. Let F be the dual of the bundle that cuts T1.The computations of the Hodge numbers until
h2,i does not present any challenge. In the third exterior power of the conormal exact sequence

0→ Sym3 F |T1 → (Ω1 ⊗ Sym2 F )|T1 → (Ω2 ⊗ F )|T1 → Ω3
G|T1 → Ω3

T1 → 0

we have that (Ω2 ⊗ F )|T1 is acylic, for (Ω1 ⊗ Sym2 F )|T1 the unique cohomology group is H7((Ω1 ⊗
Sym2 F )|T1) ∼= C and for the third cotangent we have H3(Ω3

G|T1) ∼= C2. The only tricky part comes
when considering Sym3 F |T1 . Indeed from the spectral sequence associated to the Koszul resolution
for Sym3 F |T1 one finds an exact sequence

0→ H13(K7)→ H14(
8∧
F ⊗ Sym3 F )→ H14(

7∧
F ⊗ Sym3 F )→ H14(K7)→ 0

whereK7 is the sheaf which we used to complete the sequence 0→
∧8 F⊗Sym3 F →

∧7 F⊗Sym3 F .
The above sequence is equal to:

0→ H13(K7)→
3∧
V10 → End(V10)→ H14(K7)→ 0

As in the previous section case, one can argue that the middle map is surjective, and therefore chasing
the sequence one gets that the unique cohomology group for Sym3 F |T1 is H6(Sym3 F |T1) ∼= C20.
Collecting all these data together in the above long exact sequence we get h3,3(T1) = 22 and h5,3(T1) =
1. The missing number can be obtained from the computation of the Euler characteristic. �

This peculiar Hodge structure can be explained with a construction absolutely equivalent to the
one of (8), with of course Fl(2, 3, 10). In particular, one can repeat the construction of 3.9.2 and do
the computations in K0(Var) as an alternative way of computing Hodge numbers. Indeed this is the
same Hodge structure coming from the Debarre-Voisin twentyfold Y1 ⊂ Gr(3, 10). It is therefore not
surprising that we can relate the IHS fourfold ZDV ⊂ Gr(6, 10) to T1(2, 10).
Define first ZO(1)4 to be the zero locus of four general linear sections in the Grassmannian Gr(2, 6).
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Moreover we denote by T1,ω(2, 10) a distinguished element of the family defined by a specified 3-form
ω.

Proposition 3.30. The Debarre-Voisin fourfold Fω is birational to the moduli space (contained in
the Hilbert scheme) of fourfolds ZO(1)4 contained in the variety T1,ω(2, 10).

Proof. Let W be a general point in the Debarre-Voisin fourfold given by a general three form ω. Let
us consider the subscheme of T1,ω(2, 10) given by all two spaces contained inside W . This does not
coincide with the full Grassmannian Gr(2, 6), as the condition ω(W ) = 0 does not imply ωy

∧2 U = 0
for all U ⊂ W two-spaces. Notice that this is not the case if one considers three spaces contained in
W , that is the construction of the Debarre-Voisin IHS fourfold as a moduli space of Gr(3, 6) contained
in the respective twentyfold.
On Gr(k, 10) for all k we have a sequence 0→ R → V10 ⊗O → (V10 ⊗O)/R → 0 which dually gives
a sequence 0→ R⊥ → V ∨10 ⊗O → R∨ → 0. This gives a filtration of

∧3 V ∨10 ⊗O with factors
∧3R⊥,∧2R⊥ ⊗ R∨, R⊥ ⊗

∧2R∨ and
∧3R∨. The three-form ω is a section of the last factor

∧3R∨ on
Gr(6, 10). On the zero locus of such a section, this lift to a section of R⊥⊗

∧2R∨, which corresponds
to a map V10/W →

∧2W∨. The image of such a map is a four dimensional space H4 of two forms on
W , for every six space W in the Debarre-Voisin twentyfold given by ω.
Let U ⊂ W be a point of T1,ω(2, 10). The space U is isotropic for all two forms in H4, indeed if this
were not the case we would have a two form σ ∈ H4 such that σ|U is non degenerate and, by how
forms in H4 are obtained, this would imply ωy

∧2 U 6= 0. On the contrary, in an appropriate basis,
it is not difficult to show that ωy

∧2 U = 0 is implied by σ(U) = 0 for all σ ∈ H4. Thus, the scheme
of subspaces U ⊂ W with fixed W is parametrized by a fourfold ZO(1)4 ⊂ Gr(2,W ), which a Fano
fourfold of index two, rational by [Fei12, Thm. 2.2.1], with central cohomology (h1,1, h2,2) = (1, 8).
This gives a rational map between the Debarre-Voisin fourfold and the space of ZO(1)4 contained
in T1(2, 10) (and in a fixed Gr(2, 6)). As by changing the point of the Debarre Voisin fourfold we
change the ambient Grassmannian Gr(2, 6), it is clear that such a map is generically injective, hence
birational. �

3.11. S7: a mixed (2,3) CY structure. A curious yet interesting thing happens when we take a
linear section XH of the above T1(2, 10). Indeed by Lefschetz’s hyperplane section theorem we know
that the K3 structure of T1(2, 10) in H6 and H8 must transfer to its linear section: what is most
interesting is that the H7 presents as well a Calabi-Yau structure of level three. To the best of our
knowledge, this is the first example of a prime variety that has 2 different examples of CY-structure,
of course in different weights. The precise result is

Proposition 3.31. The Hodge numbers of a linear section XH ⊂ T1(2, 10) are

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 1 22 1 0 0
0 0 1 44 44 1 0 0

0 0 1 22 1 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1
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The above proposition can be proved with a Borel-Bott-Weil computation similar to the ones above.
We will not add further details here in order to preserve the readability of the current paper. We will
indeed give a sketch of a geometrical explanation of why such numbers appear.
Indeed as an expert reader might notice, the 3CY structure in our XH has the same dimension of the
3CY structure appearing in theH23 of a linear sectionX1 ⊂ Gr(3, 11). We will give now an explanation
on why and how this 3CY structure gets projected from such varieties to our XH ⊂ T1(2, 10). This
will be only sketched, since the details (in a more general context) can be found in [BFM19, Theorem
3]. The first steps are the following lemmata.

Lemma 3.32. A linear section X1 ⊂ Gr(3, 11) is a Fano 23-fold of 3CY type. Indeed its non-zero
Hodge numbers of weight 23 are (h10,13, h11,12, h12,11, h13,10) = (1, 44, 44, 1).

This lemma can easily be proved, for example using our results in [FM18]. We notice that such a
variety is of 3CY even in the (stronger) categorical sense, see [Kuz19, 4.5]. The orthogonal complement
to the Calabi-Yau category is generated by 150 exceptional objects. The following Lemma is less
obvious

Lemma 3.33. A linear section Y1 ⊂ SGr(3, 10) is a Fano 17-fold of 3CY type. Indeed its non-zero
Hodge numbers of weight 17 are (h7,10, h8,9, h9,8, h10,7) = (1, 44, 44, 1).

This Lemma can be proven for example with similar calculations to Corollary 3.21, since we already
know that the symplectic Grassmannian SGr(k, n) is a central variety. However one can prove that the
above statement is more than merely a coincidence of Hodge numbers. Indeed, one can show the exis-
tence of a fully faithful functor Φ : Db(Y1)→ Db(X1) and a semiorthogonal decomposition of Db(X1)
with ΦDb(Y1) as first component, together with several exceptional objects. This obviously proves
the Hodge-theoretical statement as well. This in turn explains the 3CY structure in XH ⊂ T1(2, 10).
Indeed it is possible to write a diagram like the one for T1(2, 9) in (8), appropriately modified; in
particular we have to pass through the symplectic partial flag SFL(2, 3, 9). The construction is more
involved, but it is enough to explain that this mixed (2,3) Calabi-Yau structure ultimately comes
from a hyperplane section of (respectively) Gr(3, 10) and Gr(3, 11). An interesting problem is there-
fore to look for other examples of varieties with mixed CY structure that are not induced by these
constructions tricks outlined in [BFM19].

3.12. S8: other K3 structures as XL ⊂ T1(k, 10). A similar construction can be applied to
T1(4, 10), T1(5, 10) and their linear sections. Indeed both of them will inherit several K3 type struc-
tures as in 8. As an example, in the case of T1(4, 10) the diagram will be

(9) F

φ
zz

Xπ∗H

p

%%
φyy

� � // Fl(3, 4, 10)
p

&&

ZH
� � // Gr(4, 10) XH

� � // Gr(3, 10)

The map p is a P6 bundle, whereas φ is generically a P2 bundle specialising to a P3 bundle over
ZH . This suggests that T1(4, 10) should have 7xK3 type structure, and a Borel-Bott-Weil calculation
confirms this. A similar construction, albeit more complicated can be performed as well for T1(5, 10),
where the fibers of the map on the right hand side of the diagram are Gr(2, 7). Moreover on the left
side of the diagram there are three type of fibers, corresponding to (generically) smooth hyperplane
sections of Gr(2, 5), singular sections in codimension 3 and the whole of Gr(2, 5) in codimension
10. The linear sections of both T1(4, 10) and T1(5, 10) inherit a structure of K3 type by Lefschetz
theorem (depending of course by the dimension of the linear subspace). It is interesting to notice that
codimensional 1 and 2 linear sections will be of mixed CY type, with a similar argument to the one
of the previous section.
Finally, we remark that T1(6, 10) and T1(1, 10) admit structures of K3 type: the first type of variety
is nothing but the IHS fourfold of Debarre-Voisin, while the second one can be used to construct the
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Peskine variety in P9.In [BFM19, Theorem 19], this approach was indeed used to compute the Hodge
numbers of the Peskine variety.

Appendix A: some extra Fano of 3-CY type

The methods of this paper can be used to produce Fano of k-CY type for every k. Other than
the case k = 2 analyzed in the rest of the paper, the case of 3-CY varieties is of interest, and it has
been already considered by Iliev and Manivel in [IM15]. They classified the Fano varieties of 3-CY
type that can be obtained as a linear or quadratic section of homogeneous space, under the additional
assumption that the H1(TX) was to be isomorphic to one of the Hodge groups of X. Many more
examples can be found using our method, especially if this condition is not assumed. We refrain to
write a full list. However it is worthy to point out that many of the examples can be produced as
linear sections of symplectic and bisymplectic Grassmannian, with a proof as in Lemma 3.33.
Indeed such examples include X1 ⊂ SGr(3, 10) and X1 ⊂ SGr(4, 9) in the symplectic Grassmannian
and X1 ⊂ S2Gr(3, 9), X1 ⊂ S2Gr(4, 9) and X2 ⊂ S2Gr(2, 6) for the bisymplectic. We point out that
the Hodge structure of the linear section of SGr(3, 10) and S2Gr(3, 9) comes from a hyperplane section
of Gr(3, 11) (which is as well of 3-CY type) with an argument similar to Lemma 3.33 to be fully
spelled out in [BFM19]. A different but not dissimilar argument can be made for X2 ⊂ S2Gr(2, 6) to
explain how this structure of 3-CY comes from X2 ⊂ Gr(2, 6). In the symplectic Grassmannian we
find as well X2 ⊂ SGr(4, 7). In the orthogonal Grassmannian we find the examples of linear sections
of OGr(3, 9),OGr(4, 9) and OGr+(5, 10). The latter is equivalent to a quadratic section of S10 in the
spinor embedding (since the Plücker line bundle of OGr+(5, 10) is the square of the hyperplane line
bundle of S10). This last case is already in the list of Iliev and Manivel, so we will not include it.
Another interesting example is a section XH ⊂ SO(3, 8) the ortho-symplectic Grassmannian. The
latter is given by the zero locus of

∧2R∨ ⊕ Sym2R∨ on Gr(3, 8). We use the notation XH to point
out that, as in the case of Orthogonal Grassmannian OGr(3, 8), SO(3, 8) has Picard rank equal to 2. We
checked that there are no other examples of Fano of 3-CY type in the orthosymplectic Grassmannian.
The cohomology of the orthosymplectic Grassmannian can be computed using a torus action on it (as
remarked also in [BePhD]), and then Lefschetz’s theorem and Borel-Bott-Weil theorem allow us to
compute the cohomology of its linear sections in many cases. First, notice that two general symmetric
and skew symmetric forms s, λ on a space of dimension 2n can be put in the following canonical form:

s =
2n∑
six

2
i ; λ =

n∑
x2i ∧ x2i+1.

In this way, the stabilizer of these forms contains (C∗)n as a maximal torus. In a similar fashion
to [BePhD, Prop 4.2.1], one can prove that this maximal torus has only isolated fixed points (more
precisely, 2k

(n
k

)
) and therefore the cohomology of the orthosymplectic grassmannian is concentrated

in the (p, p) part (and the characteristic of the cotangent sheaf and its exterior powers give us the
desired cohomology).
From this, we obtain the following cohomology for XH :

1
0 0

0 2 0
0 0 0 0

0 0 7 0 0
0 1 45 45 1 0

0 0 7 0 0
0 0 0 0

0 2 0
0 0

1



FK3 AND IHS 25

We point out that XH ⊂ SO(3, 8), X2 ⊂ SGr(4, 7) and X2 ⊂ S2Gr(2, 6) are particularly interesting
as Fano of 3-CY type, since they are of dimension 5 (the minimal possible) and therefore relevant
for testing a modified version of Kuznetsov’s conjecture on rationality and derived categories [Kuz10,
Conjecture 1.1]. The original conjecture states that a cubic fourfold is rational if and only if it contains
the derived category of a K3, and its generalization is that a Fano n-fold is rational if and only if its
derived category can be obtained by derived categories of n− 2 folds.
We collect in the next table the 3-CY structure mentioned in the above discussion. We mention that
in analogy with the K3 case, T1(2, 11) can be considered as well as an example of 3×CY structure.
Taking other k and appropriate number of linear sections is possible as well to produce examples of
mixed (3, j)-CY structure. However we do not include them in the following table. Of course more
examples could be found by considering products and such as in the FK3 case, but we decided to not
consider them here in order to keep the length of this paper within an acceptable limit. We of course
do not include the examples already considered in [IM15].

Type dim. ιX hn−1/2,n+1/2

X1 ⊂ OGr(3, 9) 11 4 49
X1 ⊂ OGr(4, 9) 9 3 70
X1 ⊂ SGr(3, 10) 17 7 44
X1 ⊂ SGr(4, 9) 13 5 45
X1 ⊂ S2Gr(3, 9) 11 4 44
X1 ⊂ S2Gr(4, 9) 7 2 45
X2 ⊂ S2Gr(2, 6) 5 2 67
XH ⊂ SO(3, 8) 5 1 45
X2 ⊂ SGr(4, 7) 5 2 72

Table 3. 3CY structure in OGr,SGr,S2Gr and SO

Appendix B: infinite CY series

During our search we identified some interesting class of varieties. Even if they are not directly
related to the search of Fano manifolds of k-CY type, we decided to include some of them in this
appendix. We identified some interesting infinite families of varieties (of every dimension) with trivial
canonical bundle obtained using the same bundles in different Grassmannians. We checked that these
varieties are actually Calabi-Yau for low dimension (up to 6). We expect them to be always like this.
We describe now these series of varieties, according to the type of bundles involved.

A(k, l) := Q(1)⊕
2∧
R∨ on Gr(k, k + l);

B(k, l) := Q∨(1)⊕ Sym2R∨ on Gr(k, k + l);

C(k, k + 1) := Sym2R∨ ⊕
2∧
R∨ ⊕O(1) on Gr(k, 2k + 1).

We will denote with capital letters a variety defined as the zeroes of a general section of the corre-
sponding bundle. Thus, A(k, l) has dimension l(k−1)−

(k
2
)
, B(k, l) has dimension l(k−1)−

(k+1
2
)
and

C(k) has dimension k − 1. Notice that A(k, l) can naturally be seen as ZQ(1) ⊂ SGr(k, k + l), B(k, l)
as ZQ∨(1) ⊂ OGr(k, k + l) and C(k, k + 1) is a linear section of the ortho-symplectic Grassmannian.
In particular, as in [Kuz16] in the case of bisymplectic Grassmannian, one can prove that

C(k, k + 1) ∼= X(2,...,2) ⊂ (P1)k.

When k = 2, A(2, l) is indeed a deformation of a complete intersection given by (O(1))l+3 on Gr(2, l+
3). Indeed, first notice that on Gr(2, l + 3) we have (O(1))l+3 ∼= Q(1) ⊕ R(1) ∼= Q(1) ⊕ R∨. Then
notice that the zero locus of a general global section of Q(1)⊕R∨ on Gr(2, l+ 3) is isomorphic to the
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zero locus of a general global section of Q(1) ⊕O(1) on Gr(2, l + 2). This follows from the standard
fact that Gr(k, n) ⊃ ZR∨ ∼= Gr(k, n − 1) and under the previous isomorphism Q(1)k,n projects to
Q(1)k,n−1 ⊕O(1) .
For dimensions d = 2, 3, 4 we refer to [Be18], [IIM19]. For d = 5, 6 the Calabi-Yaus in the series A and
B are listed below. We do not include B(5, 5), since it can bee seen as a deformation of the double
spinor variety studied by Manivel in [Man19]. In loc.cit. Manivel computed the Hodge numbers of
this family and its locally completeness, cf. Proposition 3.1 and Proposition 3.3. Since C(k, k + 1) is
indeed a well-known class of varieties in disguise, we will not compute the Hodge numbers for the first
values of the series. In the following list of invariants we do not include either trivially known Hodge
numbers such as h0,n. Moreover the number not listed are always 0.

dim. Type h1,1 h2,2 h4,1 h3,2

5 A(2, 6) 1 2 163 1784
5 A(3, 4) 1 2 148 1619
5 B(4, 5) 1 2 165 1806

Table 4. First values of infinite series for fivefolds

dim. Type h1,1 h2,2 h5,1 h4,2 h3,3

6 A(2, 7) 1 2 251 5202 14004
6 A(4, 4) 1 1 251 5181 13960
6 B(2, 9) 1 2 120 2254 6274
6 B(3, 6) 1 2 125 2380 6596

Table 5. First values of infinite series for sixfolds

An interesting question, which however falls beyond the scope of this paper, is to investigate whether
the varieties constructed in this way are generic in moduli, that is whether all of their deformations
are embedded in the same Grassmannian. This can be done by a direct computation of h1(TG|X)
using Koszul complex and Borel-Bott-Weil theorem, however these calculations are quite demanding
in each specific case, and a general argument is out of reach.

Appendix C: unexpected lack of K3 structure

The numerical condition in (1) restricted most of our search to vector bundles in which one of the
irreducible summand is linear. One can of course try to rearrange this condition in order to eliminate
the constraint. Indeed this is geometrically meaningful, as for example T1(2, 10) shows (it is a zero
locus of an indecomposable bundle that is non-linear, with slope µ = c1(E)/r(E) = 7/8). It is possible,
and we plan to do so, to fully investigate this case.
During a preliminary search we found this example, the zero locus XR∨(1) ⊂ Gr(2, 6). It is a sixfold of
index 3, defined by a bundle of slope µ = 3/2, satisfying all our preliminary numerological condition.
Although it is not of K3 type, it is rather curious, and we decided to add it anyway. Indeed its Hodge
numbers are
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1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 0 22 0 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

The absence of the 1 in h4,2 is explained by a Borel-Bott-Weil computation, since an inconvenient
cancellation in the spectral sequence occurs. It is possible that some higher-dimensional analogue of
this false positive may occur, although we expect this to be quite an exception and not the general
rule.
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