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Three consecutive dry winters (2015-2017) in southwestern South
Africa (SSA) resulted in the Cape Town “Day Zero” drought in early
2018. The contribution of anthropogenic global warming to this pro-
longed rainfall deficit has previously been evaluated through obser-
vations and climate models. However, model adequacy and insuffi-
cient horizontal resolution make it difficult to precisely quantify the
changing likelihood of extreme droughts given the small regional
scale. Here we use a new high-resolution large ensemble to estimate
the contribution of anthropogenic climate change to the probability
of occurrence of multi-year SSA rainfall deficits in past and future
decades. We find that anthropogenic climate change increased the
likelihood of the 2015-2017 rainfall deficit by a factor of five-to-six.
The probability of such an event will increase from 0.7% to 25% by
the year 2100 under an intermediate-emission scenario (SSP2-4.5)
and to 80% under a high-emission scenario (SSP5-8.5). These re-
sults highlight the strong sensitivity of the drought risk in SSA to
future anthropogenic emissions.
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The Day Zero Cape Town drought was one of the worst1

water crises ever experienced in a metropolitan area (1, 2).2

Droughts are a regular occurrence in SSA, having occurred3

during the late 1920s, early 1970s, and more recently during4

2003-2004 (Fig. 1a,b). However, the extended winter (April-5

September, AMJJAS) three-year rainfall deficit (Fig. 1a-b; SI6

Appendix, Fig. S1) which drove the 2015-2017 Cape Town7

drought (2–8) was exceptional over the last century (4, 9).8

Storage in reservoirs supplying water to 3.7 million people in9

the Cape Town metropolitan area dropped to about 20% of10

capacity in May 2018. As a consequence, strict water usage11

restrictions were implemented to delay water levels reaching12

13.5%, the level at which much of the city’s municipal supply13

would have been disconnected (7), a scenario referred to as14

“Day Zero” by the municipal water authorities (7). Above15

average winter rain over the rest of the 2018 austral winter16

allowed Cape Town to avoid the Day Zero scenario.17

While poor water management practices and infrastructure18

deficiencies worsened the crisis (10, 11), the 2015-2017 rainfall19

deficit was the main driver of the drought (5). To facilitate20

the improvement of water management practices and the21

infrastructure necessary to make the system more resilient,22

it is critical to first determine how likely a meteorological23

drought like the one in 2015-2017 might be in the coming24

decades. Increased aridity is expected in most of southern25

Africa (12–14) as a consequence of the Hadley Cell poleward26

expansion (4, 15–18) and southward shift of the Southern27

Hemisphere jet stream (19). Second, the risk of more extreme28

droughts should be quantified to understand the potential for29

emerging risks that could make a Day Zero event in Cape 30

Town unavoidable. 31

Previous work (5) has suggested that the Day Zero drought 32

may have been made 1.4-to-6.4 times more likely over the last 33

century due to +1K of global warming, with the risk expected 34

to scale linearly with one additional degree of warming. Such 35

estimates make use of statistical models of the probability dis- 36

tribution’s tail (e.g., the Generalized Extreme Value) applied 37

to observations and previous-generation (i.e., as those partici- 38

pating to the Coupled Model Intercomparison Project Phase 3 39

(20) and 5 (21)) climate models. CMIP3 and CMIP5 models 40

have been shown to have a systematically biased position of 41

the Southern Hemisphere jet stream toward the equator due 42

to insufficient horizontal resolution (19). This produces a large 43

uncertainty in model projections of jet stream shifts (22, 23), 44

thus hindering realistic projections of Southern Hemisphere 45

climate change. Furthemore, for hydroclimatic variables, a 46

statistical extrapolation of the probability distribution’s tail 47

might have inherent limitations in providing precise estimates 48

of the event probability of future extreme events, although its 49

precision profits from the use of large ensembles (24, 25). 50

Large ensembles of comprehensive climate models provide 51

thousands of years of data that allow direct construction of the 52

underlying probability distribution of hydroclimatic extremes 53

without relying on a hypothesized statistical model of extremes 54

(25, 26). South African winter rains have high interannual and 55

decadal variability due to El Niño-Southern Oscillation (27), 56
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the Southern Annular Mode (28) and interdecadal variability57

(29). A multi-decade to multi-century record may be required58

to detect the emergence of statistically significant trends in59

regional precipitation extremes. A large ensemble is thus a60

powerful method to isolate, at the decadal timescale, internal61

natural variability (e.g., SI Appendix, Fig. S2) from the forced62

signal (30–32).63

The SPEAR large ensemble64

To tackle this problem, we use a comprehensive suite of new65

large ensemble simulations from the newly developed Seamless66

System for Prediction and EArth System Research (SPEAR)67

global climate model developed (33) at the Geophysical Fluid68

Dynamics Laboratory (GFDL, see Methods). SPEAR is the69

latest GFDL modeling system for seasonal to multidecadal70

prediction and projection, and it shares underlying component71

models with the CM4 (34) climate model, which participates to72

the Coupled Model Intercomparison Project Phase 6 (CMIP6)73

(35). In particular, we use the medium horizontal atmospheric74

resolution (50 km) version of SPEAR, i.e., SPEAR_MED,75

which has been designed to study regional climate and ex-76

tremes. The SPEAR_MED simulations include a 3,000-year77

preindustrial control simulation (CTRL), and three 30-member78

ensembles that account for changing atmospheric compositions79

arising from natural sources only (NATURAL), and natural80

plus anthropogenic sources (HIST+SSP2-4.5, HIST+SSP5-8.5,81

Methods for details). The relatively high horizontal resolution82

of SPEAR_MED – which makes this large ensemble unique – is83

key to better resolve the steep coastal SSA topography, which84

leads to orographic enhancement of rainfall during frontal85

days (4). SPEAR_MED is an excellent tool to investigate86

SSA droughts because it has a realistic representation of the87

SSA winter rainfall pattern (Fig. 1c-d) and seasonal cycle88

(Fig. 1f), and it correctly reproduces the amplitude of the89

interannual, multiannual and decadal natural variability of90

the SSA winter rainfall (SI Appendix, Fig. S3).91

Event attribution to anthropogenic climate change92

As anthropogenic global warming weakens the basic stationar-93

ity assumption which has historically been at the foundation of94

water management (36), two key questions are: to what extent95

did anthropogenic global warming make the Day Zero drought96

more likely? And: how will the probability of occurrence of97

another similar or worse meteorological drought change in the98

coming decades? To address these questions, we first assess99

if the probability distribution of anomalies of the three-year-100

mean Winter Rainfall Index (WRI, see Methods) has already101

significantly changed. We directly compare the time-evolving102

probability distribution associated with successive twenty-year103

time windows with that associated with only internal climate104

variability obtained from a long control run at preindustrial105

forcing (CTRL; see Methods for details). The two probability106

distributions are statistically indistinguishable at the 99.9%107

level per the Kolmogorov-Smirnov test, during the twenty-year108

period 1980-2000 (Fig. 2a), but then start to significantly dif-109

fer from 1990-2010 onward (Fig. 2b-d). Hereafter we refer to110

the 2015-2017 WRI negative anomaly as “event_1517”. The111

average of the event_1517 probabilities in the five decades112

1921-1970 is approximately 0.7% (Fig. 2e). This is slightly113

smaller than the value from the 3,000-year preindustrial con-114

trol run and with the NATURAL experiment (1%) – which115

profit from the much longer time span (SI Appendix, Fig. S4a) 116

– but nevertheless consistent within the 95% uncertainty in- 117

terval. The event probability is stationary up to 1980-2000, 118

after which it starts increasing (Fig. 2e). For 2015-2017 the 119

event probability – obtained by linear interpolation of the 120

2000-2020 and 2010-2030 values, is 3.7 % with a [2.5%,4.7%] 121

95% confidence interval. This implies a risk ratio – i.e., the 122

ratio of the probability of the event at at given time to its 123

probability in the early 20th century – of 5.5 times, with a 124

confidence interval of 4 to 8 (Fig. 2g). Thus, an extreme event 125

that had an average recurrence interval (37) of one hundred 126

years in the early 20th century reduces to 25-year recurrence 127

interval by present day. This is consistent with previous work 128

(5) in spite of the different event definition between the two 129

studies. 130

Drought risk projections 131

In the high-emission scenario SSP5-8.5 (intermediate-emission 132

scenario SSP2-4.5), the event_1517 probability – i.e., the 133

likelihood that rainfall is below the event_1517 threshold for 134

any random three year segment within the twenty-year window 135

– is projected to rise to 20% (13%) around 2045 (Fig 2f and SI 136

Appendix, Figs. S5 and S6) and to reach 80% (25%) by the 137

end of this century. For the SSP5-8.5 (SSP2-4.5) scenario, the 138

likelihood of an event_1517 would thus increase by a factor of 139

120 (40) relative to earlier in the twentieth-century (Fig. 2h). 140

This implies that the expected number of such droughts in 2081- 141

2100 will be approximately probability×(20 years/3 years), i.e., 142

5.3 (2.3) under SSP5-8.5 (SSP2-4.5). Extending the finding 143

of previous studies (5) beyond +2K of mean global surface 144

temperature increase, we find that, for each degree of warming, 145

the risk ratio grows at a slower rate after a fast, ongoing 146

acceleration (SI Appendix, Fig. S7). This implies a transition 147

to substantially drier and persistent wintertime conditions 148

over SSA. 149

Using the same methodology (see Methods), we can also 150

estimate the distribution and the probability of occurrence of 151

a four-year WRI anomaly at the same intensity of event_1517 152

(Fig. 2i-j). This has not occurred yet but, if it occurred, could 153

lead to an unavoidable Day Zero. In the absence of anthro- 154

pogenic forcing (i.e., CTRL and NATURAL), such an event 155

has a probability of occurrence of 0.4% (vs. approximately 156

1% for a three-year drought). Presently, the probability of 157

occurrence for it to happen has already substantially increased 158

relative to the early 20th century (2%), and it is projected 159

to be 15% (8%) by mid-century under SSP5-8.5 (SSP2-4.5). 160

By the end of the 21st century, a four-year WRI anomaly will 161

be almost as likely as three-year rainfall anomaly of intensity 162

comparable to the 2015-2017 event. 163

This suggests that the duration of meteorological droughts 164

will increase in SSA. We estimate the probability distribution 165

of the severe (i.e., ≤ -6 mm month−1) winter (i.e., AMJJAS) 166

WRI anomalies as a function of duration and intensity under 167

the SSP2-4.5 (Fig. 3a-c) and SSP5-8.5 scenario (Fig. 3d-f). 168

Historically, the largest (in magnitude) negative WRI anoma- 169

lies typically last 1 year. There is a non-negligible probability 170

of two-to-three-year persisting anomalies at about -10 mm 171

month−1, while anomalies lasting longer than three years are 172

unlikely (Fig. 3). Anthropogenic climate change will make 173

meteorological winter droughts lasting three to ten years more 174

likely and more acute, especially under the SSP5-8.5 scenario 175

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Pascale et al.
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(Fig. 3d-f).176

Large scale circulation shifts177

The future increase in the probability of occurrence of intense178

and prolonged rainfall deficits (Fig. 2f and Fig. 3) is suggestive179

of a substantial climatic shift in the mean wintertime condi-180

tions of SSA in the coming decades. In agreement with state-181

of-the-art general circulation models (6, 38), SPEAR_MED182

indicates a substantial AMJJAS WRI reduction during the183

twenty-first century (SI Appendix, Fig. S8a), especially in184

the shoulder seasons of April-May and August-October (SI185

Appendix, Fig. S8b). In both scenarios, the amplitude of the186

shift will be outside the range of what could occur from low-187

frequency internal climate variability in the decade 2020-2030188

(Fig. 4a-c), but the magnitude of the negative anomaly will189

be substantially larger under a high-emission scenario.190

The prolonged rainfall deficit experienced during winters191

2015-2017 occurred along with positive large scale anomalies in192

sea level pressure on the southern flank of the South Atlantic193

and South Indian Subtropical High (4, 18). Higher sea level194

pressure has been invoked as the cause of fewer extratropical195

cyclones over the South Atlantic and of a southward shift of the196

moisture corridors contributing to winter rainfall (3). Other197

studies (4) find no significant regional trends over the last forty198

years in the number of cold fronts making landfall over SSA,199

but highlight the shorter duration of rainfall events associated200

with cold fronts due to larger sea level pressure during post-201

frontal days. Positive significant trends in sea level pressure202

have been observed in the Southern Hemisphere over the last203

forty years and have been related to the multidecadal expansion204

of the Southern Hemisphere’s summer and fall Hadley Cell205

(15, 16, 18). In SPEAR_MED, the forced (i.e., ensemble mean)206

decadal changes in sea level pressure are visible in the period207

1980-2020 (SI Appendix, Fig. S9), with the typical patterns208

that might dominate at end of the twenty-first century (SI209

Appendix, Fig. S10) emerging around 2000-2010. This is in210

agreement with previous studies (16, 17) suggesting that the211

forced signal associated with the expansion of the Hadley212

Cell has emerged above the noise of internal variability in the213

Southern Hemisphere in the 2000-2010 decade.214

There is an evident seasonality in the projected large scale215

circulation anomalies over the South Atlantic Ocean and south216

of SSA, with the most evident forced signals in April-May and217

August-September (Fig. 5). Positive anomalies of mean sea218

level pressure are overall suggestive of a poleward shift of the219

Hadley cell. Projected changes in the 300 hPa eddy kinetic220

energy (a proxy for the storm track) show a southward shift of221

the midlatitude storm track in AM and AS, but not JJ. Indeed,222

the weakest forced signals are projected in SPEAR_MED at223

the peak of the rainy season in June-July (Fig. 5), consistent224

with the decadal forced mean sea level pressure signals in the225

2010-20 decade (SI Appendix, Fig. S9) and with the percent226

WRI reductions (SI Appendix, Fig. S8b). Remarkably, the227

2015-2017 meteorological drought was also driven mainly by228

April-May and August-September rainfall deficits, associated229

with large scale anomalies more evident in, e.g., April-May, and230

similar to those just described above (3, 4, 6). These seasonal231

aspects of the Southern Hemisphere forced circulation changes232

coherently suggest that future meteorological droughts might233

indeed have a similar seasonal evolution as that in 2015-2017.234

Comparison with other large ensembles 235

We analyzed additional large ensembles from coupled models 236

with the same or coarser resolution that can provide an impor- 237

tant context to our results and inform us about uncertainties 238

due to model differences (32, 39): SPEAR_LO, the Forecast- 239

Oriented Low Ocean Resolution model with flux-adjustment 240

(FLOR_FA), the Community EARTH System Model Large 241

Ensemble, CESM-LENS (30), and the Max Planck Institute 242

Grand Ensemble, MPI-GE (26) (see Methods and SI Appendix 243

for the evaluation of these models). 244

All models suggest a substantial rainfall reduction (SI Ap- 245

pendix, Figs. S8b, S11, S12), with CESM-LENS and MPI-GE 246

projecting a percent precipitation reduction pretty uniform 247

throughout AMJJAS. Mean sea level pressure changes are 248

overall suggestive of a poleward expansion of the descending 249

branch of the Hadley Cell (SI Appendix, Fig. S10), but with 250

anomaly patterns that are more consistent across models in 251

April-May and less consistent in June-September. Indeed, the 252

Subtropical Anticyclone response in the Southern Hemisphere 253

features larger intermodel uncertainty in the austral winter 254

(40). A more prolonged dry season into the late austral fall 255

(AM) over SSA is therefore a robust indication in terms of 256

future precipitation reduction and droughts risk. 257

Relative to SPEAR_MED, the risk estimate is lower in 258

SPEAR_LO (Fig. 2g), while FLOR suggests similar values. 259

MPI-GE, FLOR_FA and CEMS-LENS have a risk ratio larger 260

than SPEAR_MED by a factor 1.5, 1.8 and 2.8, respectively. 261

By the end of this century, all models agree on a probability 262

of occurrence for the event_1517 at least ninety times larger 263

than in the twentieth century (Fig. 2h) under the highest 264

emission scenarios (SSP5-8.5 or RCP8.5). Middle-of-the-road 265

scenarios (SSP2-4.5 or RCP4.5) tend to suggest a risk ratio 266

of about thirty, while the low-emission RCP2.6 scenario (only 267

available for MPI-GE), aiming to limit the increase of global 268

mean temperature to 2K, project a risk ratio of about 13. 269

Conclusions 270

The use of a new high-resolution large ensemble provides a 271

significantly improved ability to simulate regional-scale SSA 272

droughts in both present and future conditions despite large 273

internal climate variability. We find that the rainfall deficit 274

that led to the Day Zero drought was 5.5 times more likely due 275

to anthropogenic climate change, with a confidence interval of 276

[4,8]. We therefore are able, through the use of a model with 277

higher resolution and better climatology, to further constrain 278

the risk ratio of SSA drought at and above the original [1.4,6.4] 279

estimate from ref. (5). This highlights the usefulness of high 280

resolution climate models to study future drought risk and 281

provides additional guidance to design water management to 282

avoid extreme drought. 283

Looking at the future, our results point to a dramatic 284

increase in the risk of meteorological droughts of similar or even 285

more serious magnitude by the end of the twenty-first century. 286

Similarly to what occurred in 2015-2017, this increased risk of 287

meteorological droughts is associated with a substantial rainfall 288

reduction, especially in the shoulder season (April-May and 289

August-September). 290

A high-emission and intermediate-emission future scenario 291

are analyzed, highlighting that while there is uncertainty in 292

the increase in drought risk due to future uncertainty in forc- 293

ings, both scenarios lead to substantial increases, such that a 294

Pascale et al. PNAS | December 14, 2020 | vol. XXX | no. XX | 3
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drought becomes a common occurrence. Combined with the295

likelihood of increased water demand due to a growing popula-296

tion (3) and increased evaporation due to higher temperatures297

(41), the more frequent occurrence of wintertime droughts will298

likely present a major challenge for managing water resources299

in the region without adaptation and preparation. While these300

results are for SSA, such shifts in drought risk are likely to301

occur in other arid locations with variable precipitation and302

large scale circulation shifts increasing the likelihood of multi-303

year extreme droughts. These methods could then be applied304

elsewhere to identify emerging drought risks.305

Materials and Methods306

307

SPEAR model and experiments. The main conclusions of308

this study are obtained from the Seamless System for309

Prediction and EArth System Research (SPEAR) (33).310

SPEAR represents the newest modeling system for seasonal311

to multidecadal prediction which incorporates new model312

development components that have occurred in the last decade313

at NOAA Geophysical Fluid Dynamics Laboratory. These314

include: a new dynamical core (42), revised atmospheric315

physics (43), a new sea ice and ocean model (44) and316

an enhanced land model (45). The SPEAR atmospheric317

model uses 33 levels in the vertical and is run at different318

atmospheric-land horizontal resolutions: 0.5◦(SPEAR_MED)319

and 1◦ (SPEAR_LO) in this paper. The intermediate 0.5◦
320

configuration, SPEAR_MED, is a compromise between321

the possibility to run a large ensemble of simulations with322

available computation resources and retaining enough323

horizontal resolution to study regional climate and extremes.324

It is worth noting that the SPEAR_MED large ensemble325

features a horizontal grid-spacing (0.5◦) that is finer than326

those used in most of the previously used large ensembles327

(with the exception of FLOR, (31)), thus making these GFDL328

ensembles a unique and unprecedented tool to study extremes329

and regional climate.330

331

We use four different numerical experiments: (1) a long-332

term control simulation (CTRL) to evaluate unforced natural333

variability; (2) an ensemble driven by natural forcing only334

(NATURAL) to provide a baseline with only natural forcing335

(i.e., volcanic eruptions and solar cycles); (3) an ensemble336

driven by observed natural and anthropogenic forcing up to337

2014 (HIST) and then according to the intermediate (≈+3K of338

global warming by the end of the twenty-first century) Shared339

Socioeconomic Pathway (SSP2-4.5) developed for the Coupled340

Model Intercomparison Project Phase 6 (CMIP6) (35, 46); and341

(4) an ensemble driven by observed natural and anthropogenic342

forcing up to 2014 (HIST) and then according to the CMIP6343

high-emission, fossil fuel dominated (≈+5K of global warming344

by the end of the twenty-first century) Shared Socioeconomic345

Pathway (SSP5-8.5).346

The 3000-year CTRL simulation is driven by CO2 forcing347

kept constant at 1850 levels. Climate drifts associated with348

this long-term integrations are estimated to be very small and349

statistically insignificant for the winter SA rainfall. The 30350

members of the NATURAL ensemble are driven by the same 351

observed natural forcing (i.e., solar and volcanic) until year 352

2014, and by only solar forcing (quasi-11-year cycle) after 353

2014, with the anthropogenic forcing held fixed at the 1921 354

level. In the HIST+SSP5-8.5 (HIST+SSP2-4.5) ensemble, 355

each member is driven by observed natural and anthropogenic 356

forcing (greenhouse gases, anthropogenic aerosols, ozone) 357

up to year 2014, and by the SSP5-8.5 (SSP2-4.5) forcing 358

afterwards. More details about how the SPEAR large en- 359

semble is designed can be found in Delworth et al. (2020) (33). 360

361

Model Evaluation. In addition to the model’s ability to repro- 362

duce the wintertime southern African climatology (Fig. 1c- 363

e), the performance of SPEAR_MED in simulating winter- 364

time rainfall variability and historical trends (1951-2017) over 365

SSA is evaluated against three different observational land 366

rainfall datasets: the Global Precipitation Climatology Cen- 367

tre (GPCC) dataset (47) version 7, the Climate Research 368

Unit high-resolution grids of monthly rainfall at the Uni- 369

versity of East Anglia (48), version 3.24, and the Univer- 370

sity of Delaware (UDEL) precipitation dataset, version 5 371

(http://climate.geog.udel.edu/∼climate/), all at 0.5◦ resolu- 372

tion. The choice of these three gridded observed datasets, 373

in place of scattered measurements from the South African 374

Weather Service meteorological stations, is dictated by the 375

need to be able to compare models with observations, as done 376

in previous studies (5). The values of these three precipita- 377

tion datasets for SSA are obtained from a limited number 378

of stations and different interpolation algorithms. As a con- 379

sequence, they can feature, locally, considerable differences 380

(e.g., Fig. 1a and SI Appendix, Fig. S1). However, differ- 381

ences in area-averaged metrics like, e.g., the WRI, are minimal 382

(Fig. 1b), thus making our results independent from the choice 383

of the single precipitation dataset. 384

In order to have a realistic representation of the width of the 385

distribution of rainfall anomalies, it is key that SPEAR_MED 386

reproduces the interannual, multiannual and decadal natural 387

variability of the SSA winter rainfall. To check this, we work 388

out the standard deviation of the detrended full, three-year and 389

ten-year low-pass-filtered WRI from the three observational 390

datasets and the SPEAR_MED ensemble members over the 391

common period 1921-2010 (SI Appendix, Fig. S3). The stan- 392

dard deviation of the observations is between 5 mm month−1
393

(CRU) and 6 mm month−1 (GPCC, UDEL) for the three-year 394

low-pass-filtered WRI. The standard deviation values from the 395

model range from 4 to 6.3 mm month−1. The observed values 396

are therefore within the range from the model, suggesting that 397

the model has the ability to properly estimate the magnitude 398

of three-year lasting droughts. Similarly, a good agreement 399

between SPEAR_MED and observations exist for the stan- 400

dard deviations calculated from the unfiltered WRI time series 401

(interannual variability) and from ten-year low-pass-filtered 402

WRI (decadal and longer variability) too. 403

The effect of internal natural variability is large for SSA 404

winter rainfall (27–29), thus it is not appropriate to compare 405

observed AMJJAS rainfall trends directly with the ensemble 406

mean or with each single ensemble member, which may show 407

contrasting signs (SI Appendix, Fig. S2). Instead, we evaluate 408

if SPEAR_MED’s historical trends of AMJJAS rainfall are 409

consistent with observations over SSA. To do so, we compute 410

rainfall trends over the last 67 years (1951-2017) in GPCC, 411

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Pascale et al.
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CRU and UDEL, and compare them with individual members412

of the HIST+SSP5-8.5 ensembles over the same time period.413

If the observed trend at one grid point is within the range of414

those simulated by the 30 HIST ensemble members, then we say415

that the model is consistent with observations in that grid box.416

We find that SPEAR_MED is consistent with observations417

over most of southern Africa (SI Appendix, Fig. S13).418

Additional large ensembles. To assess the robustness and419

model-dependence of our results, we analyze five additional420

large ensembles (see Table S1): (1) the SPEAR_LO ensemble421

(33), (2) the GFDL Forecast-Oriented Low Ocean Resolution422

(FLOR) model, at 0.5◦ land/atmosphere resolution, (3) the423

flux-adjusted FLOR (FLOR_FA) large ensembles, obtained424

imposing temperature and salinity flux adjustments at the425

ocean surface to FLOR (49) (both with a land-atmospheric426

horizontal resolution of 0.5◦), (4) the Community EARTH427

System Model Large Ensemble, CESM-LENS (30), with land-428

atmospheric horizontal resolution of approximately 1◦, and429

(5) the Max Planck Institute Grand Ensemble, MPI-GE (26),430

with land-atmospheric horizontal resolution of 1.8◦ These ad-431

ditional large ensembles are available with various CMIP5432

scenarios and are documented in Table S1. An evaluation of433

the wintertime climatology over SSA shows that these models434

all underestimate AMJJAS mean rainfall (Fig 1c-e and SI435

Appendix, Fig. S14 and Table S2). With the exception of436

SPEAR_LO, these models also underestimate the standard437

deviation of the full three-year and ten-year low-pass-filtered438

Winter Rainfall Index (SI Appendix, Fig. S3). Critically, this439

means they also underestimate the width of the probabil-440

ity distribution of the three-year AMJJAS rainfall anomalies441

(SI Appendix, Fig. S15). In particular, CESM-LENS and442

FLOR_FA have standard deviations that are 50% and 40%443

smaller, respectively, suggesting that they are poor tools for444

risk analysis over SSA. As they substantially underestimate the445

probability of occurrence of event_1517, to quantify changes446

in risk in a manner that implicitly account for model biases we447

use a three-year Winter Rainfall Index anomaly corresponding448

to the 1st percentile, which is the percentile to which -11.5449

mm/month corresponds to in observations and SPEAR_MED.450

Winter Rainfall Index. In this study we focus on the regional451

scale drought of the Western Cape. We thus use the annual452

time series of the Winter Rainfall Index (WRI) (29) to monitor453

interannual variability and monthly rainfall anomalies. To454

define the WRI, we first select the grid points where at least455

65% of the total annual rainfall occur from April to September456

(Fig. 1c-e) and SI Appendix, Fig. S13. Then, we take the457

areal mean of the extended winter (i.e., April-September)458

rainfall over the irregular region defined above (Fig. 1c-e, SI459

Appendix, Fig. S13). The WRI is thus the area-averaged460

rainfall over the portion of SSA that experiences a dry461

summer and a wet winter, that is a Mediterranean rainfall462

regime. This area encompasses the region of intensely463

irrigated agriculture surrounding the metropolitan area of464

Cape Town as well as the water basins of the Breede and Berg465

Rivers, where dams supplying water to Cape Town are located.466

467

Detectability of the mean rainfall change. To determine where468

and when the decadal changes in AMJJAS rainfall starts being469

caused by external forcing and not by multidecadal variability,470

we apply a Monte Carlo approach to the long CTRL run: 471

at each grid box, we randomly choose a 10-yr period and 472

a nonoverlapping 50-yr period (to mimic 1921-1970). Then, 473

we compute the time mean difference between the 10-yr and 474

50-yr time series. This difference is solely associated with 475

internal natural variability of the climate system. This process 476

is repeated 30 times (to mimic the 30-member ensemble), we 477

then take the ensemble mean of these differences. The whole 478

process is then repeated 10,000 times to create an empirical 479

probability distribution of these ensemble mean differences, 480

which is used to assess the detectability of decadal changes 481

in rainfall. Anomalies outside the range of the distribution 482

are attributed to external forcing and considered detectable 483

against internal climate variability (Fig. 4 and SI Appendix, 484

Figs. S11-S12). 485

Estimation of the probability distribution. We derive a prob- 486

ability distribution of the three-year mean WRI anomalies 487

due to natural variability alone from the long CTRL run. 488

We randomly select a 50-year and three-year sequence (non- 489

overlapping), and then calculate the anomaly of the three-year 490

period relative to the 50-year climatology. This choice mimics 491

the 2015-2017 mean minus the 1921-1970 mean. We repeat 492

this process N times (N=10,000) to form a distribution of 493

the three-year WRI anomalies (Fig. 2a-d). The probability of 494

occurrence of experiencing a three-year WRI anomaly equal 495

to or less than the 2015-2017 anomaly – as per the gridded 496

datasets – is about 1% in CTRL, and 0.7% from HIST taking 497

the average of decadal probabilities over 1921-1970, respec- 498

tively (Fig. 2e). Similarly, we estimate the distribution of 499

the four-year WRI anomaly. The probability of occurrence of 500

a WRI anomaly of the same intensity but of one additional 501

year of duration is 0.4% and 0.2% from the CTRL and HIST, 502

respectively. 503

To evaluate the decadal change in the probability of occur- 504

rence of a three-year WRI anomaly equal to or worse than 505

that of 2015-17, we empirically estimate a decadal-varying 506

probability distribution using the HIST and SSP5-8.5 (SSP2- 507

4.5) experiments. The probability distribution is estimated for 508

a 20-year time window, so that, for example, that referred to 509

2010 is built from all years from 2001 to 2020. This choice is 510

motivated by the need to have a time period not too wide in 511

order to assume the stationarity of the probability distribution, 512

but at the same time a number of instances large enough to 513

allow for sufficiently accurate estimates of probabilities of rare 514

events (e.g., 100-year return time). In a 20-year time window 515

there are eighteen different three-year WRI anomalies (relative 516

to the climatological reference period 1921-1970). This leads 517

to 18×30=540 different values when considering all the 30 en- 518

semble members, from which we empirically build the decadal 519

probability distribution. Once we have decadal probability 520

distribution, we can estimate the probability of occurrence, for 521

each bi-decadal period, of three-year WRI anomaly equal to 522

or less than that observed in 2015-2017 (-11.5 mm month−1, 523

obtained averaging GPCC, CRU and UDEL) for any random 524

three year segment within the 20-year time window. The 525

95% confidence interval in these probabilities are estimated by 526

applying bootstrap-with-replacement resampling 10,000 times. 527

The same methodology is applied to estimate the probability 528

of occurrence of four-year droughts. 529

We quantify the uncertainty in the estimate of the decadal 530

probability of occurrence, derived from only 540 different 531
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three-year rainfall anomaly values, as follows: we take the long532

3,000-year CTRL and randomly select a 50-year and three-533

year non-overlapping periods and estimate the difference. We534

repeat this step N times (with N=10,000) to obtain a large535

population sample of N three-year anomalies, from which the536

probability of the event_1517 is estimated to be ≈1%. From537

this large sample we then randomly draw M realizations (with538

replacement), with M ≤ N and estimate the probability of539

occurrence. For each value of M we repeat the last step 10,000540

times and obtain 10,000 different probability estimates which541

allows us to estimate the 95% confidence interval (SI Appendix,542

Fig. S4b). As expected, the confidence interval decreases with543

M up to approximately [0.9%,1.2%] for M=10,000. For values544

of M less than 300, the uncertainty is so large that it is impos-545

sible to have any sensible estimate of the probability of the546

event. For M=540, the confidence interval is approximately547

[0.5%,1.7%], which we can consider sufficiently accurate for548

our purposes.549

Joint probability distribution of drought intensity and dura-550

tion. The probability distribution of a drought in the Cape551

Town’s Mediterranean area as a function of duration and in-552

tensity is estimated from the historical and projected AMJJAS553

WRI anomaly time series. The focus in this paper is on severe554

droughts, therefore we select, for each time series, all contigu-555

ous years for which the WRI anomaly is below -0.75 standard556

deviation (≈ -6 mm month−1). With this choice we exclude557

years that were moderately and very moderately dry. For558

each of these segments, we work out the mean WRI anomaly559

by averaging the annual WRI anomaly values over the whole560

segment. We choose a 2 mm month−1 × 1 year bin (Fig. 3) to561

work out the percentage of the droughts within each bin. The562

analysis is performed for the 1921-1970 time period, and for the563

periods 2011-2040, 2041-2070, 2071-2100. To evaluate if the564

probability differences relative to 1921-1970 are attributable565

to anthropogenic climate change, we apply the same method566

to the 3,000-year CTRL. We randomly select a 50-year and a567

30-year non-overlapping time spans, and compute the number568

of droughts for each duration-drought intensity bin. We repeat569

this 30 times to mimic the 30-member ensemble and so work570

out the probability differences between the 50-year and 30-year571

periods. The whole process is then repeated 10,000 times to572

create an empirical probability distribution of the probability573

differences for each bin: anomalies outside the range of the574

distribution are attributed to external forcing and considered575

detectable against internal climate variability.576

ACKNOWLEDGMENTS. We thank A. T. Wittenberg, H. Mu-577

rakami, P. C. D. Milly and two anonymous reviewers for their578

comments and suggestions. This report was prepared by S. P.579

under award NA18OAR4320123 from the National Oceanic and580

Atmospheric Administration, U.S. Department of Commerce. The581

statements, findings, conclusions, and recommendations are those of582

the author(s) and do not necessarily reflect the views of the National583

Oceanic and Atmospheric Administration, or the U.S. Department584

of Commerce.585

1. E Archer, W Landman, J Malherbe, M Tadross, S Pretorius, South Africa’s winter rainfall586

region drought: A region in transition? Clim. Risk Manag. 25, 100188 (2019).587

2. R Parks, M McLaren, R Toum, U Rivett, Experiences and lessons in managing water from588

Cape Town. Grantham Inst. Brief. Pap. 29, 1–18 (2019).589

3. PM Sousa, RC Blamey, CJC Reason, AM Ramos, RM Trigo, The ‘Day Zero’ Cape Town590

drought and the poleward migration of moisture corridors. Env. Res. Lett. 13, 124025 (2018).591

4. NJ Burls, et al., The Cape Town “Day Zero” drought and Hadley cell expansion. npj Clim.592

Atmospheric Sci. 2, 2–27 (2019).593

5. FEL Otto, et al., Anthropogenic influence on the drivers of the Western Cape drought 2015-594

2017. Environ. Res. Lett. 13, 124010 (2018).595

6. P Mahlalela, RC Blamey, CJC Reason, Mechanisms behind early winter rainfall variability in 596

the southwestern Cape, South Africa. Clim. Dyn. 53, 21–39 (2019). 597

7. City of Cape Town, Water Outlook 2018 (Rev. 25) 20 May 2018. Dep. Water Sanitation, 1–16 598

(2018). 599

8. G Simpkins, Running dry. Nat. Clim. Chang. 8, 369–369 (2018). 600

9. P Wolski, How severe is Cape Town’s “Day Zero” drought? Significance 15, 24–27 (2018). 601

10. M Muller, Cape Town’s drought: don’t blame climate change. Nature 559, 174–176 (2018). 602

11. Z Bischoff-Mattson, et al., Shape of a water crisis: practitioner perspectives on urban water 603

scarcity and ‘Day Zero’ in South Africa. Water Policy 22, 193–210 (2020). 604

12. J Huang, et al., Dryland climate change: Recent progress and challenges. Rev. Geophys. 55, 605

719 – 778 (2017). 606

13. F Lehner, et al., Projected drought risk in 1.5◦ C and 2◦ C warmer climates. Geophys. Res. 607

Lett. 44, 7419–7428 (2017). 608

14. BI Cook, JE Smerdon, R Seager, S Coats, Global warming and 21st century drying. Clim. 609

Dyn. 43, 2607–2627 (2014). 610

15. J Lu, GA Vecchi, T Reichler, Expansion of the Hadley cell under global warming. Geophys. 611

Res. Lett. 34, L06805 (2007). 612

16. DJ Amaya, N Siler, SP Xie, AJ Miller, The interplay of internal and forced modes of Hadley 613

Cell expansion: lessons from the global warming hiatus. Clim Dyn 51, 305–319 (2018). 614

17. PW Staten, J Lu, KM Grise, SM Davis, T Birner, Re-examining tropical expansion. Nat. Clim. 615

Chang. 8, 768–775 (2018). 616

18. K Grise, et al., Recent Tropical Expansion: Natural Variability or Forced Response? J. Clim. 617

32, 1551–1571 (2019). 618

19. PE Curtis, P Ceppi, G Zappa, Role of the Mean State for the Southern Hemispheric Jet 619

Stream Response to CO2 Forcing in CMIP6 models. Environ. Res. Lett. 15, 064011 (2020). 620

20. GA Meehl, et al., THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change 621

Research. Bull. Amer. Meteor. Soc. 88, 1383–1394 (2007). 622

21. KE Taylor, SR J., GA Meehl, An overview of CMIP5 and the experiment design. Bull. Amer. 623

Meteor. Soc. 93, 485–498 (2012). 624

22. J Kidston, EP Gerber, Intermodel variability of the poleward shift of the austral jet stream in 625

the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett. 37, 626

L09708 (2010). 627

23. P Ceppi, YT Hwang, DMW Frierson, DL Hartmann, Southern Hemisphere jet latitude biases 628

in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett. 39, L19708 (2015). 629

24. C Li, F Zwiers, X Zhang, G Li, How much information is required to well constrain local 630

estimates of future precipitation extremes? Earth’s Futur. 7, 11–24 (2019). 631

25. K Van der Wiel, N Wanders, FM Selten, MFP Bierkens, Added value of large ensemble 632

simulations for assessing extreme river discharge in a 2◦ C warmer world. Geophys. Res. 633

Lett. 46, 2093–2102 (2019). 634

26. N Maher, et al., The Max Planck Institute Grand Ensemble: Enabling the Exploration of 635

Climate System Variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019). 636

27. N Philippon, M Rouault, Y Richard, A Favre, The influence of ENSO on winter rainfall in South 637

Africa. Int. J. Clim. 32, 2333–2347 (2012). 638

28. C Reason, M Rouault, J Melice, D Jagadheesha, Interannual winter rainfall variability in SW 639

South Africa and large scale ocean-atmosphere interactions. Meteorol. Atmos. Phys. 80, 640

19–29 (2002). 641

29. B Dieppois, et al., Interannual to interdecadal variability of winter and summer southern 642

African rainfall, and their teleconnections. J. Geophys. Res. Atmos. 121, 6215–6239 (2016). 643

30. JE Kay, et al., The Community Earth System Model (CESM) Large Ensemble Project: A 644

community resource for studying climate change in the presence of internal climate variability. 645

Bull. Amer. Meteor. Soc. 96, 1333–1349 (2015). 646

31. H Zhang, T Delworth, Detectability of Decadal Anthropogenic Hydroclimate Changes over 647

North America. J. Clim. 31, 2579–2597 (2018). 648

32. C Deser, et al., Insights from Earth system model initial-condition large ensembles and future 649

prospects. Nat. Clim. Chang. 10, 277–286 (2020). 650

33. TL Delworth, et al., SPEAR - the next generation GFDL modeling system for seasonal to mul- 651

tidecadal prediction and projection. J. Adv. Model. Earth Syst. 12, e2019MS001895 (2020). 652

34. I Held, et al., Structure and Performance of GFDL’s CM4.0 Climate Model. J. Adv. Model. 653

Earth Syst. 11, 3691–3727 (2020). 654

35. V Eyring, et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 655

experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016). 656

36. P Milly, et al., Stationarity is dead: whither water management? Science 319, 573–574 657

(2008). 658

37. Jakob, D., Nonstationarity in Extremes and Engineering Design in Extremes in a Changing 659

Climate: Detection, Analysis and Uncertainty, ed. AghaKouchak A. and Easterling D. and 660

Hsu K. and Schubert S. and Sorooshian S. (Springer, New York), pp. 363–417 (2013). 661

38. SD Polade, A Gershunov, DR Cayan, MD Dettinger, DW Pierce, Precipitation in a warming 662

world: Assessing projected hydro-climate changes in California and other Mediterranean cli- 663

mate regions. Sci. Rep. 7, 10783 (2017). 664

39. M Hauser, et al., Methods and model dependency of extreme event attribution: The 2015 665

european drought. Earth’s Futur. 5, 1034–1043 (2017). 666

40. A Fahad, NJ Burls, Z Strasberg, How will southern hemisphere subtropical anticyclones re- 667

spond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projec- 668

tions. Clim. Dyn., https://doi.org/10.1007/s00382–020–05290–7 (2020). 669

41. P Milly, K Dunne, Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 670

946–949 (2016). 671

42. LM Harris, SJ Lin, A two-way nested global-regional dynamical core on the cubed-sphere 672

grid. Mon. Weather. Rev. 141, 283–306 (2013). 673

43. M Zhao, et al., The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model De- 674

scription, Sensitivity Studies, and Tuning Strategies. J. Adv. Model. Earth Syst. 10, 735–769 675

(2018). 676

44. A Adcroft, et al., The GFDL global ocean and sea ice model OM4.0: Model description and 677

simulation features. J. Adv. Model. Earth Syst. 11 (2019). 678

45. P Milly, et al., An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth- 679

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Pascale et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

System Studies. J. Hydrometeorol. 15, 1739–1761 (2014).680

46. BC O’Neill, et al., The roads ahead: Narratives for shared socioeconomic pathways describ-681

ing world futures in the 21st century . Glob. Environ. Chang. 42, 169–180 (2017).682

47. U Schneider, et al., GPCC’s new land surface precipitation climatology based on quality-683

controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol.684

115, 15–40 (2013).685

48. I Harris, P Jones, TJ Osborn, DH Lister, Updated high-resolution grids of monthly climatic686

observations – the CRU TS3.10 Dataset. Int. J. Clim. 34, 623–642 (2013).687

49. G Vecchi, et al., On the Seasonal Forecasting of Regional Tropical Cyclone Activity. J. Clim.688

27, 7994–8016 (2014).689

Pascale et al. PNAS | December 14, 2020 | vol. XXX | no. XX | 7



DRAFT
15E 20E 25E

36S

34S

32S

30S

28S

26S
GPCC

20 30 40 50 60 70 80 90

15E 20E 25E
36S

34S

32S

30S

28S

26S
SPEAR MED

20 30 40 50 60 70 80 90

15E 20E 25E
36S

34S

32S

30S

28S

26S
SPEAR LO

20 30 40 50 60 70 80 90 1 2 3 4 5 6 7 8 9 10 11 12
months

0

10

20

30

40

50

60

m
m

SPEAR_lowSPEAR_med

SPEAR_LO
SPEAR_MED
GPCC

15E 20E 25E

35S

30S

25S
GPCC

-8 8

-6

-4

-3

-2

-1

0

1

2

3

4

6

(mm/month)

-1

-1.5

GPCC
CRU

1900 1920 1940 1960 1980 2000
Year

-30

-20

-10

0

10

20

30

W
R

I 
a

n
o

m
a

ly
 (

m
m

/m
o

n
th

)

Cape Town

2015-2017 AMJJAS mean 

a b

c d

e f

Fig. 1. a, Mean 2015-2017 AMJJAS rainfall anomaly relative to 1921-1970. The dashed (continuous) line denotes negative anomalies beyond 1 (1.5) standard deviation.
b, Time series of the observed (GPCC, blue; CRU, red) 3-yr running mean AMJJAS Winter Rainfall Index (WRI, see Methods) from 1901 to 2017. The 2015-2017 mean
is a record-breaking over the period 1901-2017. Mean 1921-1970 AMJJAS rainfall (mm/month) in c, observations (GPCC), d, SPEAR_MED, and e, SPEAR_LO. The red
lines encircles the area receiving at least 65% of the total annual rainfall during AMJJAS used to define WRI. f, Monthly WRI in observations and models. Comparison of
SPEAR_MED with SPEAR_LO shows how an enhanced resolution is key to capture finer scale regional details of winter rainfall in the relatively small SSA Mediterranean
region.
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encircles values that are outside the range of natural variability. d-f As in a-c but for the SSP5-8.5 pathway.
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Fig. 4. Decadal evolution of wintertime (AMJJAS) rainfall mean anomalies (ensemble average, shading) relative to the 1921-1970 climate from the a, HIST, b, SSP2-4.5. and c,
SSP5-8.5 runs. Gray crosses denote changes in wintertime rainfall mean state that are not distinguishable from internal climate variability as estimated from fully coupled
control simulations (see Methods for details).
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Fig. 5. Ensemble mean anomalies (shading) of April-May (AM), June-July (JJ) and August-September (AS) sea level pressure (upper row; hPa) and 300-hPa eddy kinetic
energy (m2 s−2) for the period 2071-2100 relative to 1921-1970. Contours denote the 1921-1970 climatological values.
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