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A B S T R A C T

In this paper we deal with the problem of accurately and automatically detecting the orientation of general
images, for instance, of holiday snapshots. Detecting image orientation is an easy task for a human being but
can be a long and tedious activity during processing and management of digital photos. Several attempts have
been made in the design of systems for automated displaying images in their correct orientation, however,
this is still an open problem. In this work we exploit the power of deep learning proposing a transfer learning
approach that adjusts pre-trained convolutional neural networks to this classification task. We create ensembles
of different Convolutional Neural Network models designed by randomly changing the activation functions in
all the activation layers of a given network. Along with several known activation functions we also include the
novel Soft Learnable activation function in the ‘‘random set’’. Our resulting ensembles have been extensively
evaluated on more than 45,000 images taken from four different public datasets, showing a remarkable
performance improvement with respect to other state-of-the-art approaches. All the source code used for this
work is freely available at https://github.com/LorisNanni/.
. Introduction

The advances of digital imaging and the large number of digital
ameras, smartphones and other devices have led to a significant
ncrease in the number of photographs captured by people. Since the
amera is not always horizontal during the capturing process, the
esulting photos often need rotation correction in order to be displayed
n the correct orientation, i.e. the orientation in which the scene
riginally occurred. Most digital cameras have a built-in orientation
ensor and allow to record the orientation of the camera during shot in
he EXIF metadata of the image, however this field is not consistently
anaged and updated by several image processing application and im-

ge formats. Thus, automatic detection of canonical image orientation
s an important task for several applications e.g. automated creation
f digital albums, digitization of analogic photos, computer vision
pplications which require input images in the upright orientation.
ven if any angle of rotation is possible, rotations by multiple of 90◦

re the most common, and are also straightforward to correct once
etected. Moreover, among the possible four orientations 0◦ rotation is
he most likely, since most of the photos acquired by a digital camera
re landscapes, sometimes the acquisition device is rotated by 90◦ or
70◦, and very seldom rotated by 180◦.

Even if human beings can solve this problem with high accuracy
about 98% with a resolution of 256 × 348 according to (Ciocca
t al., 2015)), automated image orientation detection is a challenging
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task due to the great variance of image content. Older approaches
(i.e. Ciocca et al., 2015; Lumini & Nanni, 2006) were based on low-
level features of an image, but recent advances in deep learning have
changed the entire landscape over the past few years, thanks to their
ability to deal with most image processing tasks very effectively and
efficiently.

Convolutional Neural Networks (CNNs) are one of the most effective
tools in modern computer vision. Most state-of-the-art performances on
tasks like image classification, image segmentation and object recogni-
tion are currently achieved using CNNs. However, experiments show
that the performance of CNNs can be improved by training a large
number of models and averaging their results. Such a set of neural
networks is called an ensemble. The idea behind averaging the results
of multiple classifiers is that multiple opinions are better than only one
opinion. Besides, in this way every network can specialize on a specific
part of the data. Finally, a method to fuse the decision of the different
networks is required.

Ensembles are very old tools in machine learning and date back to
much earlier than the rise of modern deep learning (Tukey, 1977). The
difference between the performance of single models and ensembles
has been widely investigated in the literature and there is strong evi-
dence that ensembles outperform single models (Kuncheva & Whitaker,
2003). The key to improve the generalization ability of an ensemble
is to have a diverse and accurate set of classifiers which are at least
somewhat uncorrelated. Ensemble research is a very active area and
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a lot of methods have been proposed to generate ensemble methods
able to solve the existing trade-off between diversity and accuracy
(Brown et al., 2005). The combination approaches in ensembles can
be classified into two main categories: learned and not learned. In
the former case, the rule for combining the results is trained using
training or validation data. For example, the rule might be a weighted
average of the single softmax output of a classifier. In the latter case,
the choices might be the average of the softmax output or the class that
represent the mode of the model predictions. A more complex learned
model is, for example, the evolutionary learned method proposed in
(Chandra & Yao, 2006) for the development of ensembles tackling the
trade-off between diversity and accuracy. Anyway, the computational
complexity of such methods makes them unsuitable to be coupled with
deep networks.

The main drawback of ensemble methods is the fact that they
require more computation than a single model and they have more
memory requirements. The application of ensemble techniques to CNNs
is more recent and follows the popularity of deep learning for com-
puter vision problems: in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2012, the winner was an ensemble of the well-
known AlexNet. These ensembles were made by simple retraining
the same architecture multiple times with different initializations and
using the stochasticity of the training process. This approach has been
proved (Fort et al., 2020) to be very effective: the trajectories of ran-
domly initialized neural networks explore different modes in function
space, which explains why deep ensembles trained with just random
initializations work well in practice.

In general, there are many ways to create a diverse ensemble. The
easiest one consists in using different models and architectures. The
hypothesis is that every model will learn a specific feature of the train-
ing data. Then, one might train the same model on different training
sets. This can be done by randomly splitting the training data into
subsets, or by using different data augmentation techniques in every
training (i.e. a different pre-processing for every network (Brahnam
et al., 2020). Another method relies on the difference of the training
processes, even when the models and the datasets are the same.

In this work we propose an image orientation detection algorithm
based on deep ensembles based on a perturbation of the network
architecture. We deal with the most common classification problem in
four classes related to rotations by multiples of 90◦. We train several
convolutional neural networks (CNNs) to automatically determine the
original image orientation. We create different CNN models by ran-
domly changing the activation functions in all the activation layers of
a given network. The set of activation functions used in this work in-
cludes several known activation functions which are listed in Section 3
and a novel Soft Learnable activation function here proposed. The use
of different activation functions allows each network to learn different
patterns while achieving good performances. In this way, we managed
to create an ensemble of neural networks that outperforms every single
network. The resulting ensembles are trained on an extensive dataset
of more than 45,000 images and tested on four different datasets. The
average classification accuracy of the system is more than 90%, which
is a better performance with respect to the existing state-of-the-art
approaches (Ciocca et al., 2015; Swami et al., 2017).

The rest of the paper is organized as follows. In Section 2 we discuss
some related works. We outline the CNN architectures tested in this
work in Section 3, along with some details about the training proce-
dure. In Section 4 we present the datasets used for experiments and
the testing protocol and we discuss our experimental results comparing
them to prior work. The main contribution of this work consists of
an approach obtaining improvement of performance with respect to
published state-of-the-art methods on the task of image orientation
classification. Besides, the source code will be freely available at https:
//github.com/LorisNanni/.
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2. Related work

Most of the related works that deal with this problem restrict the
classification to the main 4 standard orientations, while there are few
works that aimed at regressing the exact orientation angle (Cao et al.,
2016; Fischer et al., 2015; Olmschenk et al., 2017; Prince et al., 2019).
We are mainly interested in the literature about the classification into
the 4 canonical classes, since orientation regression is a slightly dif-
ferent task, as the angle of rotation is usually more limited, and hence
outside the scope of this paper. This problem is a long-standing topic of
research. Before the deep learning revolution, existing approaches were
based on low level features, such as color histograms, edge direction
histograms, and texture features (Vailaya et al., 2002), edge-based
structural features and color moment features (Wang & Zhang, 2004),
a set of natural image statistics collected from a multi-scale multi-
orientation image decomposition (Lyu, 2005), Harris corner, phase
symmetry, edge direction histogram (Lumini & Nanni, 2006), Local
Binary Patterns (Ciocca et al., 2015), or domain specific visual cues,
such as object recognition and the contextual information present in
the image (i.e. text Solanki et al., 2004), faces, horizon (Fefilatyev
et al., 2006)). The main drawback of such approaches is that hand-
crafted features are limited due to the semantic gap between low-level
features and high level image semantics, while visual cues are domain
specific and fail when dealing with general images including a wide
variety of both indoor and outdoor photos. For these reasons, more
recent studies have turned to convolutional neural networks to predict
the orientation of an image. In Swami et al. (2017) a transfer learning
approach based on a pretrained AlexNet architecture is proposed and
trained on a balanced dataset (images were equally distributed among
the 4 classes). In (Shima et al., 2017) a face orientation problem is
handled using AlexNet as a feature extractor and SVM as trainable
classifier. In Joshi and Guerzhoy (2018) the authors used a pretrained
VGG16 network: their results include performance on a large consumer
dataset (balanced by including all the possible rotations of each photo)
and a visual analysis about how the CNN detects photo orientation.
In Morra et al. (2019) the authors propose a method based on fine
tuning a slightly modified version of VGG16: some fully connected
layers are removed in order to make the network lighter, and the
dropout and batch normalization layers are used differently from the
original VGG16. Another interesting aspect of that work is that a further
class, labeled undefined, is introduced to deal with images whose
original orientation is not available/sure. In Prince et al. (2019) a two-
stage method is introduced: the first step of the method uses deep
learning (specifically a fine-tuned AlexNet) to determine the canonical
orientation, and in the second step fuzzy logic is used to determine a
more precise angle of the image.

3. Proposed method

The method proposed in this work is based on a variant of known
CNN architectures (i.e. ResNet, GoogleNet, MobileNet, Densenet), based
on the stochastic substitution of activation layers (Nanni et al., 2020).
Activation functions play a crucial role in discriminative capabilities of
the deep neural networks and the design of new ‘‘static’’ or ‘‘dynamic’’
activation functions is an active area of research. In this work, we
propose an ensemble of models obtained by using a mixture of ‘‘static’’
and ‘‘dynamic’’ activation functions, which are stochastically selected at
each activation layer to substitute the standard ReLU (Rectified Linear
Unit) function.

As proposed in Nanni et al. (2020), we randomly substitute all
the ReLU activations in our starting model with a random activation
function selected among a given pool of activations. Hence, multiple
activation functions are used inside the same network at different
levels, creating a stochastic version of the original model. We refer to
this stand-alone network as SingleStoc. A SingleStoc model is obtained
iterating along the layers of an input model (i.e. a ResNet) and replac-
ing each activation layer of the input model by a different activation

https://github.com/LorisNanni/
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layer randomly selected among a pool of functions. The selection of the
activation functions is not optimized to the specific classification task
in order to avoid overfitting on the training set. On the other hand it is
well known that one of the main problem of modern machine learning
techniques is underspecification (D’Amour et al., 2020), i.e. when there
are many distinct solutions that solve a given problem equivalently.
Underspecification is a core idea in deep ensembles: in Fort et al. (2020)
the authors claim that different solutions of the same model exhibit
functional dissimilarity, hence, they are suitable to build ensembles.
In this work we exploit dissimilarity given by diversifying activation
functions used inside each model to design an ensemble.

The procedure used to generate each SingleStoc model is iterated
ten times yielding a different network every time. Then the resulting
networks are fused together by the sum rule used to create an ensemble
of classifiers. We refer to this ensemble as FusStoc10. The sum rule, used
for the inference of the ensemble, consists in summing all the output
probability vectors of the networks in the ensemble and choosing the
class whose sum of the probabilities is the highest. The idea behind
the method is that all these networks are similar enough to the base
CNN model to have similar or superior performances, but, at the same
time, they are different enough to bring new useful information in the
ensemble.

3.1. Activation functions

We shall now list all the activation functions contained in our pool.
ReLU (Glorot et al., 2011), Leaky ReLU (Maas et al., 2013), Exponential
Linear Unit (ELU) (Clevert et al., 2016), Parametric ReLU (PReLU),
S-Shaped ReLU (Jin et al., 2016), Adaptive Piecewise Linear Unit
(Agostinelli et al., 2015), Mexican Linear Unit (Maguolo et al., 2019)
and Gaussian Linear Unit are used, as proposed in Nanni et al. (2020).
Some of these functions depend on a parameter called maxInput. This
parameter controls the shape of the activation and it is recommended
to be set at the maximum value of the input images, i.e: 255. However,
we tested some of those functions both with maxInput equal to 1 and
some of them with maxInput equal to 255. Among the functions already
used in Nanni et al. (2020), we assume that ReLU, leaky ReLU, ELU
and PReLU are already well known and we are going to explain S-
Shaped ReLU, Adaptive Piecewise Linear Unit, Mexican Linear Unit and
Gaussian Linear Unit.

S-Shaped Linear Unit (SReLU) is defined as

𝑦𝑖 = 𝑓
(

𝑥𝑖
)

=

⎧

⎪

⎨

⎪

⎩

𝑡𝑙 + 𝑎𝑙(𝑥𝑖 − 𝑡𝑙), 𝑥𝑖 < 𝑡𝑙

𝑥𝑖, 𝑡𝑙 ≤ 𝑥𝑖 ≤ 𝑡𝑟

𝑡𝑟 + 𝑎𝑟(𝑥𝑖 − 𝑡𝑟), 𝑥𝑖 > 𝑡𝑟
(1)

where 𝑡𝑙 , 𝑡𝑟, 𝑎𝑙 , 𝑎𝑟 are learnable real numbers. The name of the activation
comes from the fact that its shape recalls the one of the letter S. In our
implementation, the parameters 𝑎𝑙 , 𝑎𝑟 are respectively initialized to 0
and 1, in order to make SReLU equal to ReLU in its first steps. The
parameters 𝑡𝑙 , 𝑡𝑟 are respectively initialized to 0 and 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡.

Adaptive Piecewise Linear Unit (APLU) is defined as

𝑦𝑖 = ReLU
(

𝑥𝑖
)

+
𝑛
∑

𝑐=1
𝑎𝑐 max(0,−𝑥𝑖 + 𝑏𝑐 ) (2)

where 𝑎𝑐 , 𝑏𝑐 are real numbers that are different for every channel of the
input. This is a piecewise linear function whose slopes and points of
non-differentiability are learnable. In order to ensure a stable training,
its creators suggest to use a 0.001 𝐿2-penalty.

Mexican Linear Unit (MeLU) is defined as

𝑦𝑖 = 𝑀𝑒𝐿𝑈
(

𝑥𝑖
)

= 𝑃𝑅𝑒𝐿𝑈
(

𝑥𝑖
)

+
𝑘−1
∑

𝑗=1
𝑐𝑗𝜙𝑎𝑗 ,𝜆𝑗 (𝑥𝑖) (3)

where
𝜙𝑎,𝜆 (𝑥) = max (𝜆 − |𝑥 − 𝑎| , 0) (4)

3

is a function that has its maximum in 𝑎 and linearly decreases in both
directions until it reaches zero. It has the shape of a Mexican hat, which
gives the name to the activation. The hyperparameter 𝑘 is the number
of learnable parameters in every channel. These learnable parameters
are the 𝑐𝑗 and the one of PReLU. 𝑎𝑗 and 𝜆𝑗 determine the height and the
position of the function 𝜙𝑎,𝜆 and they are chosen recursively so that, for
every function 𝜙𝑎,𝜆, the next two functions have a height which is one
half of the original one and have a support which is exactly one half of
the original support. We refer to the original paper for further details.

Gaussian Linear Unit (GaLU) is defined in the same way as MeLU,
with the difference that the basis function is defined as

𝜙𝑎,𝜆 (𝑥) = max (𝜆 ⋅ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 − |𝑥 − 𝑎 ⋅ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡| , 0)

+ min(|𝑥 − 𝑎 ⋅ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 − 2𝜆 ⋅ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡| − 𝜆 ⋅ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡, 0) (5)

GaLU receives its name from the fact that its basis function recalls the
shape of a Gaussian. The parameter maxInput is set at the maximum
value of the input images, i.e: 255.

We also included in our pool new activation functions that we shall
now list and describe. These functions are Parametric Deformable Ex-
ponential Linear Unit, Swish, Mish, Soft Root Sign and Soft Learnable.

Parametric Deformable Exponential Linear Unit (PDELU) was intro-
duced in Cheng et al. (2020). It is defined as:

𝑦𝑖 = 𝑓
(

𝑥𝑖
)

=

⎧

⎪

⎨

⎪

⎩

𝑥𝑖, 𝑥𝑖 > 0

𝑎𝑖 ⋅
(

[1 + (1 − 𝑡)𝑥𝑖]
1
1−𝑡
+ − 1

)

, 𝑥𝑖 ≤ 0
(6)

It was designed to have mean equal to zero, which allows faster
training. Its output belongs to the range [−𝑎 , +∞).

Swish is an activation function introduced in Ramachandran et al.
(2018), it is a smooth, non-monotonic activation function which was
automatically learnt through reinforcement learning. It is defined as:

𝑦 = 𝑓 (𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝛽𝑥) = 𝑥
1 + 𝑒−𝛽𝑥

(7)

where 𝛽 is a parameter. We included two versions of Swish in this
paper: one with 𝛽 learnable and one with 𝛽 fixed.

Mish was introduced in Misra (2019): it is a smooth and non-
monotonic activation function defined as:

𝑦 = 𝑓 (𝑥) = 𝑥 ⋅ 𝑡𝑎𝑛ℎ (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 (𝛼𝑥)) = 𝑥 ⋅ 𝑡𝑎𝑛ℎ (𝑙𝑛 (1 + 𝑒𝛼𝑥)) (8)

In our experiments the parameter 𝛼 is also learnable.
Soft Root Sign (SRS) was introduced in Zhou et al. (2020). It is

defined as:

𝑦 = 𝑓 (𝑥) = 𝑥
𝑥
𝛼 + 𝑒−

𝑥
𝛽

(9)

where 𝛼 and 𝛽 are a pair of trainable non-negative parameters. SRS is
not monotone and it has a region where it is negative. According to the
authors, if the distribution of the input 𝑥 is a standard normal, SRS has
zero mean, which helps to speed up training.

A new activation function is proposed in this work, named Soft
Learnable activation function, which is defined as:

𝑦 = 𝑓 (𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥, 𝑥 > 0

𝛼 ⋅ 𝑙𝑛
(

1+𝑒𝛽𝑥
2

)

, 𝑥 ≤ 0
(10)

where 𝛼 is a trainable parameter and 𝛽 is optionally trainable. They
are both constrained to be positive. We used two versions of this
function in the paper, one with 𝛽 fixed (SoftLearnable) and one with
𝛽 learnable (SoftLearnable2). The function takes its name from the Soft
Plus function (i.e: 𝑓 (𝑥) = log(𝑒𝑥+1)), that inspired this one, and from its
learnable parameters. Soft Learnable is similar to the Soft Plus function
for negative values, except from the two parameters and from the fact
that, even when 𝛼 = 𝛽 = 1, Soft Learnable is ln(2) lower than Soft

Plus. Notice that in this way Soft Learnable is continuous in zero. For
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Fig. 1. Plot of some activation functions: ReLU, MeLu and SoftLearnable.

ositive values Soft Learnable is equal to the identity function. In this
ay, we created a new activation that does not saturate on the right,

hat is bounded from below and that controls its slope on the left. A plot
f SoftLearnable compared to ReLu and MeLU is reported in Fig. 1.

.2. CNN architectures

CNNs are deep neural networks designed for image classification;
NNs are feed-forward multilayer networks designed to work similarly
o the human brain in visually perceiving the world. CNNs may include
everal types of layers:

• Convolutional layers, whose aim is to substitute conventional
handcrafted feature extractors by convolving input to filters that
preserve the spatial relationship between pixels.

• Activation layers, which are used to introduce nonlinearity to the
system;

• Pool layers reduce the dimensionality of each feature map but
retain the most important information with the purpose of mak-
ing the input representations smaller and reduce the risk of
overfitting.

• Fully-connected layers connect every neuron in the previous layer
to every neuron on the next layer. They are used at the end of the
network for classification purposes. They are usually coupled to a
SoftMax or a Sigmoid function to transform a vector of arbitrary
real-valued scores to a vector of values between zero and one.

n this work we use four different pre-trained models modified in
rder to fit the new classification problem (i.e. changing the last fully-
onnected layer to fit the number of classes, without freezing the
eights of the previous layers) and ‘‘fine-tuned’’ with the training set
f the current problem. In our experiments, we test and combine the
ollowing different CNN architectures available in the MATLAB Deep
earning Toolbox; all the models, which are pre-trained on a large
ataset of objects (the ImageNet database) are ‘‘fine-tuned’’ on the
urrent problem:

• GoogleNet (Szegedy et al., 2015) is a 22 layers deep network
including the so-called ‘‘Inception’’ module, i.e. a subnetwork con-
sisting of parallel convolutional filters whose outputs are concate-
nated, with the aim of making the network deeper, but strongly
reducing the number of parameters. This network has been se-
lected since it is a good compromise among complexity and
performance.
4

• ResNet50 (He et al., 2016) was the winner of ILSVRC 2015.
ResNet introduces a new kind of layer, named residual, including
a ‘‘network-in-network’’ architecture. This model, here used in the
middle-size version of 50 layers, is one of the best performing and
most popular architecture used for image classification.

• DenseNet (Huang et al., 2017) is a very deep network having
201 layers. DenseNet in an evolution of ResNet which connects
each layer to every other layer in a feed-forward fashion, thus
increasing the number of connections. This architecture has been
selected for its higher performance, even if it is a quite heavy
architecture.

• MobileNet (Sandler et al., 2018) a light-weight architecture that
uses depth-wise separable convolutions to perform well in mobile
devices. The architecture has been selected for its low computa-
tional requirements.

In all the experiments aimed at comparing the activation functions,
the ResNet50 architecture is used. Each model obtained by substituting
all the ReLU activation layers by the same activation function (fixed,
not stochastically selected) is named by the name of the activation, i.e
MeLU is the model where all the ReLU layers have been replaced by
MeLU layers. When the activation function is ReLU the model is the
original architecture (ResNet50, or others).

4. Datasets and evaluation

This section describes the datasets used in this paper and explains
how the data was prepared for training and testing. To assess the
performance of the proposed system we have used the testing pro-
tocol proposed by (Swami et al., 2017) consisting in a cross dataset
evaluation.

4.1. Datasets

The datasets used in our experiments are the following (summarized
in Table 1):

• SUN397 (SUN) is a large scale database (Xiao et al., 2016) for
scene recognition which contains 103,754 images in 397 different
categories (each category having at least 100 images). For train-
ing purposes, we selected 45,000 images from this dataset, while
leaving the remaining in the test set.

• INRIA Holidays (INRIA) dataset (Jegou et al., 2008) includes
1491 images from a very large variety of scene types (natural,
man-made, water and fire effects, etc.). The dataset is divided into
500 image groups, each of which represents a distinct scene or
object.

• MIT INDOOR (MIT) (Quattoni & Torralba, 2009) dataset contains
15620 indoor images in 67 categories (with at least 100 images in
each category). We used only the recommended test set of 1340
images for testing.

• PascalVOC 2012 (PASCAL) (Everingham et al., 2010) is a dataset
for object recognition including 11540 images. Each image con-
tains a set of objects, out of 20 different classes. We used only the
training and validation dataset of 6233 images for testing.

• HUMAN (https://zenodo.org/record/4758038#.YJ1aDqgzY2w).
It is a human centric dataset created by the authors of this paper
for training purposes, in order to improve the performance for
orientation classification in presence of a human being. It contains
images from several public datasets for skin segmentation: in total
5541 images representing one or more human beings.

All the images in the five datasets are in their correct orientation,
even if some orientation-ambiguous images are present. Since all our
CNN models require input images to be of size 224 × 224 × 3, we simply
resize all the images to the required dimensions (without padding).

https://zenodo.org/record/4758038#.YJ1aDqgzY2w
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Table 1
Datasets description.

Dataset Short name Ref. #images #training #test #classes

SUN397 SUN Xiao et al. (2016) 103754 45000 58754 397
INRIA Holidays INRIA Jegou et al. (2008) 1491 0 1491 500
MIT INDOOR MIT Quattoni and Torralba (2009) 15620 0 1340 67
PascalVOC 2012 PASCAL Everingham et al. (2010) 11540 0 6233 20
HUMAN HUMAN Self-collected 5541 5541 0 –
Table 2
Performance of ResNet50 varying the activation function: average accuracy and
rank on 13 medical datasets for image classification.

Activation function Average accuracy Rank

ReLU 84.54 5
Leaky ReLu 80.30 16
ELU 82.79 15
PReLU 79.26 17
softLearnable2 83.45 11
softLearnable 83.17 14
PDELU 83.81 8
Learnable Mish 83.28 13
SRS 83.98 7
Swish Learnable 83.60 10
Swish 83.42 12
MeLU (𝑘 = 8) 85.26 1
MeLU (𝑘 = 4) 85.26 1
SReLU 85.15 3
APLU 84.35 6
Small GaLU 85.08 4
GaLU 83.73 9

For training purposes, we selected 45,000 images from the SUN
ataset: each image has also been rotated by 90◦, 180◦ and 270◦

egrees and labeled accordingly. Only for the last two experiments the
UMAN dataset has been added to the training set.

For testing purposes we used 58,754 images from the SUN dataset,
340 images from the MIT dataset and 6233 images form the PASCAL
ataset, which are the same subsets proposed in Swami et al. (2017).
he authors of (Swami et al., 2017) selected a subset of INRIA by
emoving images with uncertain orientation. Since such subset was not
vailable, we used the whole dataset (therefore the performance on
NRIA is not comparable with Swami et al., 2017). All the test images
ave been transformed as in the training set (i.e. resizing and random
otation), with the difference that every image has been rotated only
nce, while in the training set for each original image we had four
raining images, i.e. one for each rotation.

.2. Experiments

The first experiment aims to compare the activation functions in-
luded in our pool. To this aim we performed a standard image clas-
ification experiment using several medical datasets (please see (Nanni
t al., 2020) for a detailed description of the datasets). In Table 2 the
verage accuracy and the rank are reported for each activation function
5

Table 4
Accuracy of different models (stand-alone or ensembles ) on the 4 testing datasets.

Model Variant SUN INRIA MIT PASCAL

ResNet50 ReLU 97.37 75.79 97.76 90.82
FusStoc10 98.01 76.59 98.66 92.54

GoogleNet ReLU 96.57 74.92 97.24 89.99
FusStoc10 97.21 75.12 98.21 91.06

MobileNet ReLU 96.91 74.92 97.91 90.45
FusStoc10 97.73 76.73 98.58 91.93

DenseNet ReLU 98.08 76.86 98.36 92.67
SingleStoc 97.70 76.79 99.10 91.42

(𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 255 when appliable, i.e. for the last 6 approaches). For the
sake of space, the whole table is included as supplemental material (see
Table A.1), as medical image classification is not the focus of this work.

In this experiment the backbone CNN is ResNet50, and the other
models are obtained by substituting all the ReLU activation layers by
the same activation function. The best average accuracy on 13 datasets
is obtained by MeLu.

The second experiment is aimed at evaluating the proposed ap-
proaches on the orientation classification problem. To this aim we
fine-tuned several CNN of the SUN training set. In Table 3 we report the
classification accuracy in each test dataset of both stand-alone meth-
ods and ensembles obtained starting from 2 different architectures:
ResNet50 and GoogleNet.

The stand-alone models are the base ResNet50/GoogleNet with
ReLU, the modified version using MeLU (the best activation function
according to the previous experiment) and the SingleStoc stand-alone
model where all the ReLU layers have been replaced by randomly
selected activation functions. The ensembles are the sum rule between
ReLU and Melu, the fusion of 10 SingleStoc models (FusStoc10) and
the fusion of 10 base ReLU models having the same architecture (but
different initialization before training).

In this experiment, all the models have been fine-tuned for image
orientation detection according to the following parameters: batch size
50, learning rate 0.0001, max epoch 20. The only layer with a different
learning rate is the last fully-connected, whose learning rate is 0.002
to better exploit transfer learning. Data augmentation includes random
rescaling in both axes by two factors uniformly sampled in [1,2].
The following conclusions can be drawn from the reported results:
Table 3
Accuracy of ResNet50 and GoogleNet models varying the activation function on the 4 testing datasets.

Model Variant SUN INRIA MIT PASCAL

ResNet50

ReLU 96.51 74.70 97.46 88.50
MeLU 96.48 75.59 97.24 88.37
SingleStoc 96.60 75.65 96.87 89.14
ReLU+MeLU 96.74 75.43 97.54 89.06
FusReLU10 96.77 75.05 97.39 88.80
FusStoc10 97.58 75.99 97.91 90.74

GoogleNet

ReLU 96.21 75.52 97.01 88.71
MeLU 96.26 75.52 97.10 88.77
SingleStoc 95.32 73.71 95.82 86.70
ReLU+MeLU 96.48 75.92 97.24 89.09
FusReLU10 96.76 76.12 97.54 89.59
FusStoc10 97.11 76.32 98.06 90.00
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Fig. 2. Example of images non-correctly reoriented (one for each dataset).
Table 5
Accuracy on the MIT dataset and its variants of MobileNet models: stochastic, 2 base model with different initialization,
ensemble of 10 stochastic.

MIT PIXEL CON. BRI. BLUR

AVG(SingleStoc) 97.71 ± 0.42 77.90 ± 4.72 79.78 ± 2.72 76.09 ± 3.43 73.92 ± 1.79
MobileNet 97.91 76.79 86.19 85.00 81.41
MobileNet2 98.05 80.74 85.67 84.17 75.37
FusStoc10 98.58 85.90 86.79 82.16 80.97
• ReLU and MeLU obtain similar performance but their fusion
(i.e. ReLU+MeLU) outperforms ReLU in all the four datasets.

• FusReLU10 (i.e. the ensemble of 10 models based on ReLU)
has performance similar to a standalone ReLU, this means that
running more times the same network does not permit to build a
high performing ensemble.

• The ensemble named FusStoc10 clearly outperforms all the other
methods for both the base architectures, therefore stochastic se-
lection of activation functions is a feasible approach for building
a high performing ensemble of networks.

• There is no tangible difference between ResNet50 and GoogleNet,
they perform quite similar in this problem.

In two datasets (i.e. SUN and MIT), our ensemble of ResNet50
amed FusStoc10 obtains a similar performance to that obtained by
uman beings and reported in Luo et al. (2003), which is around 98%.

As a further analysis on the networks involved in the ensembles, we
ave measured the error independence among the classifiers combined
n FusReLU10 and FusStoc10 by evaluating Q-statistic (Kuncheva &

hitaker, 2003) among them. Q-statistic measures the homogeneity
f a group of classifiers, which should be minimized to increase their
iversity.

For ResNet50 the Q-statistic among the 10 FusReLU10 networks is
.993, while it is lower in FusStoc10: 0.972. The same result can be ob-
erved for ensembles of GoogleNets: Q-statistic is 0.987 in FusReLU10
nd 0.947 in FusStoc10.

This result means that stochastic selection of activation functions is
better way to increase the diversity of CNNs used to build an ensemble
f networks.

We have carried out a visual analysis of the errors: in Fig. 2 some
xamples of images for which the system failed to predict the correct
rientation are reported. In most cases, the correct orientation could be
redicted by a human observer thanks to the presence of some details
a person, an object etc.). On the other hand, for the images in Fig. 3
he orientation is inherently more difficult to detect, also for humans,
ainly due to a too restricted point of view.

While it is difficult to train the network to correctly recognize such
ases of restricted point of view, we felt it was possible to teach the
odel to infer the correct orientation in presence of human being in

he image. Since we noticed that the training set was mainly composed
y images collected for scene recognition, thus not including human be-
ngs, we enlarged the training set adding the images from the HUMAN
ataset. The training options have been set to: batch size 50, learning
ate 0.0003, max epoch 20 (no data augmentation). We shuffle the
raining data before each training epoch.
6

Fig. 3. Example of images non-correctly reoriented from the INRIA dataset.

In Table 4 we report the classification accuracy in each test dataset
for the following stand-alone models and their related ensemble
FusStoc10 (due to excessive training time the ensemble FusStoc10 of
DenseNet is substituted by stand-alone SingleStoc). All the networks
have been trained used the enlarged SUN+HUMAN training set.

From Table 4 it is interesting to note the improvement with re-
spect to previous results in all the datasets. As the architectures are
concerned, DenseNet gains very valuable result, but at the expense of a
very long training time. MobileNet, which is a lightweight architecture,
gains result only slightly lower than that of ResNet50 and similar to
GoogleNet.

As a final experiment we perform a stress test to evaluate the
robustness of the proposed ensemble under distribution shift, i.e. on
some stress tests that have been proposed in the image classification
robustness literature (D’Amour et al., 2020), which consist in applying
synthetic but realistic corruptions to the test images, such as pixela-
tion, high contrast, brightness and motion blur. Table 5 reports the
performance of MobileNet FusStoch10 ensemble compared with the
average accuracy (± standard deviation) of the 10 networks composing
the ensemble and of two stand-alone MobileNets (MobileNet2 is the
same network with a different initialization). The testing sets are,
respectively, the original MIT dataset and 4 modified versions of MIT by
pixelization, contrast, brightness, motion blur. The MATLAB statements
used to produce the above transformations are listed in Table 6. In
Fig. 4 some modified images from the same sample are reported: due
to the high level of stress, some images are difficult to orient even for
a human.

The results in Table 5 prove the superiority of ensembles in stress
conditions: while the difference of performance is very low in the
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Fig. 4. From left to right: a sample image from MIT dataset, pixelation, high contrast, high brightness, motion blur.
i

Table 6
Image transformations applied to the MIT dataset (‘‘im’’ is the input image).

Transformation MATLAB statement

Pixelization imresize(imresize(im, 1/4), 4,’nearest’)
contrast imadjust(im,[0; 1],[0.4;0.6])
Brightness im=im*3
Motion Blur imfilter(im, fspecial(’motion’, 25, 25))

original test set, it strongly increases in the other cases. Underspeci-
fication causes substantially different results in stress tests: while the
10 SingleStoc networks perform very similarly in MIT (as confirmed by
standard deviation), they achieve different prediction performance in
stress tests: in such cases it is evident the advantage of an ensemble.
The variability of results is also evident comparing the two versions of
MobileNet: they gain very different results under stress conditions.

Finally, we provide a comparison between our best ensembles and
the state-of-the-art approaches in the literature (Table 7). The accu-
racies reported in Table 7 are compared with three state-of-the-art
approaches (Ciocca et al., 2015; Shima et al., 2017; Swami et al., 2017)
and an older handcrafted method (Lumini & Nanni, 2006) validated
using the same testing protocol (some INRIA results are not present due
to a different testing protocol). DenseNet is clearly the best architecture
and a fusion of only 3 DenseNets (two base and one SingleStoc) per-
forms very well. The best result is obtained fusing, by the weighed sum
rule, our two best approaches based on different architectures and three
DenseNet: the last part is weighted by 10 to give it more significance
in the ensemble. The classification performance of this big ensemble
strongly outperforms other published methods. A further increasing of
accuracy can be obtained by using a reject option which discard 10%
of samples which are hard to classify (as shown in the last three rows
of the table).

5. Conclusions and future works

In this work we discussed a deep learning approach for the detec-

tion of image canonical orientation. Our system, based on stochastic

7

variants of ResNet50 and other models, significantly outperforms other
state-of-the-art methods in literature. As expected, it gains much better
performance of traditional approaches based on hand-crafted features,
but it also outperforms previous deep neural networks. Automated
orientation recognition is still a hard problem, particularly in a dataset
as INRIA, which includes several images with uncertain orientation,
as proven by the low accuracy of all methods. However, in simpler
collections including outdoor scenes the proposed method achieves
an impressive accuracy higher than 98%, which is those obtained by
humans.

One of the main disadvantages of deep neural networks is that the
network must be very deep to reach good accuracy. To reduce the
complexity of the network, we plan as a future work to investigate the
influence of image resolution on the performance, to reduce the size of
the input image and the number of convolution layers.
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Table 7
Accuracy on the 4 testing datasets (comparison with literature).

Proposed SUN INRIA MIT PASCAL

Lumini and Nanni (2006) 65.73 61.34 61.04 45.40
(Ciocca et al., 2015) 81.69 – 70.52 70.64
Swami et al. (2017) 95.16 – 95.28 90.77
Shima et al. (2017) 93.70 71.83 94.55 84.10
ResNet50_FusStoc10 98.01 76.59 98.66 92.54
MobileNet_FusStoc10 97.73 76.73 98.58 91.93
DenseNet 98.08 76.86 98.36 92.67
ResNet50_FusStoch10 + Mobile_FusStoch10 98.21 76.93 98.81 93.02
DenseNet + DenseNet2 + DenseNet_SingleStoc 98.47 78.14 98.81 93.55
ResNet50_FusStoc10 + MobileNet_FusStoc10 + 10×DenseNet 98.47 77.46 98.96 93.55
ResNet50_FusStoc10 + MobileNet_FusStoc10 + 10×(2×DenseNet +
DenseNet_SingleStoc)

98.54 77.60 99.10 93.79

ResNet50_FusStoc10 + Mobile FusStoc10 with reject option 10% 99.84 81.52 99.83 97.15
ResNet50_FusStoc10 + MobileNet_FusStoc10 + 10×DenseNet with reject option 10% 99.90 81.89 100 97.74
ResNet50_FusStoc10 + MobileNet_FusStoc10 + 10×(2×DenseNet +
DenseNet_SingleStoc) with reject option 10%

99.90 82.19 99.92 97.65



A. Lumini, L. Nanni, L. Scattolaro et al. Machine Learning with Applications 6 (2021) 100090

C

C

C

F

Table A.1
Performance of ResNet50 varying the activation functions: accuracy on 13 medical datasets for image classification.

Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR Avg

MaxInput = 1

ReLu 93.54 89.88 95.60 90.00 55.00 58.45 77.87 90.00 93.00 85.14 94.92 88.67 87.05 84.54
MeLU (𝑘 = 8) 92.92 86.40 91.80 82.91 25.50 56.29 67.47 76.25 91.00 82.48 94.82 89.67 88.79 78.94
Leaky ReLu 89.23 87.09 92.80 84.18 34.00 57.11 70.93 79.17 93.67 82.48 95.66 90.33 87.27 80.30
ELU 90.15 86.74 94.00 85.82 48.00 60.82 65.33 85.00 96.00 90.10 95.14 89.33 89.92 82.79
MeLU (𝑘 = 4) 91.08 85.35 92.80 84.91 27.50 55.36 68.53 77.08 90.00 79.43 95.34 89.33 87.20 78.76
PReLU 92.00 85.35 91.40 81.64 33.50 57.11 68.80 76.25 88.33 82.10 95.68 88.67 89.55 79.26
SReLU 91.38 85.58 92.60 83.27 30.00 55.88 69.33 75.00 88.00 82.10 95.66 89.00 89.47 79.02
APLU 92.31 87.09 93.20 80.91 25.00 54.12 67.20 76.67 93.00 82.67 95.46 90.33 88.86 78.98
SmallGaLU 92.31 87.91 93.20 91.09 52.00 60.00 72.53 90.00 95.33 87.43 95.38 87.67 88.79 84.12
GaLU 92.92 88.37 92.20 90.36 41.50 57.84 73.60 89.17 92.67 88.76 94.90 90.33 90.00 83.27
softLearnable2 93.93 87.33 93.60 92.55 46.00 60.31 69.07 89.58 94.67 86.10 95.00 89.67 87.05 83.45
softLearnable 94.15 87.44 93.40 90.36 47.00 59.18 67.73 88.33 95.00 85.52 95.52 89.33 88.26 83.17
pdeluLayer 94.15 87.21 92.00 91.64 51.50 56.70 70.93 89.58 96.33 86.67 95.08 89.67 88.18 83.81
learnableMishLayer 95.08 87.56 93.20 91.82 45.00 58.45 69.07 86.67 95.33 86.67 95.48 90.00 88.41 83.28
SRSLayer 93.23 88.84 93.40 91.09 51.50 60.10 69.87 88.75 95.00 86.48 95.72 88.33 89.47 83.98
swishLearnable 93.54 87.91 94.40 91.64 48.00 59.28 69.33 88.75 95.33 83.24 96.10 90.00 89.32 83.60
swishLayer 94.15 88.02 94.20 90.73 48.50 59.90 70.13 89.17 92.67 86.10 95.66 87.67 87.65 83.42

MaxInput = 255

MeLU (𝑘 = 8) 94.46 89.30 94.20 92.18 54.00 61.86 75.73 89.17 97.00 88.57 95.60 87.67 88.71 85.26
MeLU (𝑘 = 4) 92.92 90.23 95.00 91.82 57.00 59.79 78.40 87.50 97.33 85.14 95.72 89.33 88.26 85.26
SReLU 92.31 89.42 93.00 90.73 56.50 59.69 73.33 91.67 98.33 88.95 95.52 89.67 87.88 85.15
APLU 95.08 89.19 93.60 90.73 47.50 56.91 75.20 89.17 97.33 87.05 95.68 89.67 89.47 84.35
SmallGaLU 93.54 87.79 95.60 89.82 55.00 63.09 76.00 90.42 95.00 85.33 95.08 89.67 89.77 85.08
GaLU 92.92 87.21 92.00 91.27 47.50 60.10 74.13 87.92 96.00 86.86 95.56 89.33 87.73 83.73
Appendix

See Table A.1.
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