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The treatment of patients with acute promyelocytic leukemia (APL)
can serve as a paradigm for cancer therapy.1 The outcome of this
disease, in adults and in children, has significantly improved with
the introduction of target-specific agents, such as all-trans retinoic
acid (ATRA) and arsenic trioxide (ATO), providing long-term sur-
vival for most patients.2,3 Althoughmorphologic and clinical suspi-
cion is sufficient to immediately initiate ATRA, definitive diagnosis
relies on the demonstration of PML/RARA translocation, on alter-
native RARA rearrangements represented by RARA gene fusion to
other partners, cryptic insertion into the PML gene, or vice versa
that altogether occur in more than 98% of APL cases.4-6 Here
we describe an evenmore challenging situation where all conven-
tional diagnostic approaches failed to detect an oncogenic event
associated with the diagnosis of APL.

A6-year-old girl was admitted to the emergencydepartmentwith a
3-day history of shoulder pain and fever. On physical examination,
she presented with pallor and ecchymosis of the lower limbs.
A full blood count showed a hemoglobin concentration of 9.7
g/dL, and leukocyte and platelet counts of 2.8 3 103/mL and
101 3 103/mL, respectively. Coagulation tests showed consump-
tive coagulopathy with slightly prolonged prothrombin and
activated partial thromboplastin times, an increased D-dimer con-
centration, and hypofibrinogenemia. A peripheral blood smear
showed atypical promyelocytes packed with numerous azurophilic
granules (Figure 1A), whereas analysis of the bonemarrow aspirate
demonstrated markedly hypercellular marrow containing 85%
abnormal promyelocytes with Auer rods (CD331, CD131,
CD381, CD991, HLA-DRlow), with strong and diffuse reactivity to
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myeloperoxidase staining. Molecular analysis was negative for
PML/RARA fusions, and karyotype analysis did not show
t(15;17)(q24;q21). Fluorescence in situ hybridization with RARA
break-apart probe confirmed the negativity of all RARA rearrange-
ments andof the crypticRARAgene insertion. Basedon the charac-
teristic morphologic features, the review of the peripheral blood
and bonemarrow was consistent with a diagnosis of hypergranular
(or typical) APL, and therapy with ATRA was immediately started.
Thepatient receivedtreatmentcombiningstandard inductionacute
myeloid leukemiatherapyandATRA, followedby3high-dosecytar-
abine-based courses of consolidation therapy. Complete remission
was achieved after the first induction cycle and persisted until the
end of treatment.

Eight months later, the child presented with fever, hemorrhagic
findings, and abdominal and muscular pain. Bone marrow aspira-
tion revealed an APL relapse with the same morphologic and
immunophenotypic characteristics of the diagnosis, as well as a
normal karyotype and the absence of the PML/RARA rearrange-
ment and its isoforms.

Whole-transcriptome sequencing (WTS) of the relapse sample
was then carried out, showing the aberrant expression of a small
portion of RARA intron 2 (Figure 1B), not belonging to any known
isoform and not expressed in a series of other pediatric acute
myeloid leukemias (AMLs). The 5' sequence extension from
RARA exon 3 revealed the abundant presence of a fusion
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Figure 1. Morphologic features of the APL case and characterization of the TTMV/RARA chimeric fusion transcript. (A) Morphology of the case of APL, negative for
RARA rearrangement. Nuclear size and shape are irregular, whereas the cytoplasm is for the most part occupied by densely packed granules. (B) Average relative expression
level from WTS data of RARA exons 2 and 3, and the expressed intronic region is shown for the index case (blue squares) and for another 12 AMLs with known chromosomal
aberrations. (C) Schematic representation of the fusion between the TTMV sequence and RARA exon 3. The chimeric transcript shows the conserved TTMV UTR sequence
followed by the ORF2, immediately upstream of the short sequence of retained RARA intron 2, in frame with the full RARA exon 3. A new splicing event that joins this part of
the retained intron 2 to exon 3 and removes the intervening intronic sequence occurs during splicing. Some representative sequencing reads that support the presence of
the fusion transcript are shown. The exon–intron gene structure and the location of the integrated viral sequence is indicated at the bottom. (D-E) Sanger sequencing elec-
tropherograms of the downstream (D) and upstream (E) breakpoints of TTMV integration on the leukemia relapse sample genomic DNA. (F) Detection of viral integration
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APL case and in another 6 AML samples. (G-H) Detection of the TTMV/RARA chimeric fusion in genomic DNA (G) and cDNA (H) in sequential samples of the APL case from
diagnosis to relapse, during remission–induction therapy, and after HSCT. (I) Quantitative real-time PCR detection of the TTMV/RARA fusion transcript decrease during
induction therapy and after HSCT.
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transcript involving the integration of 209 nucleotides upstream
of exon 3, linked by the previously identified short sequence of
retained intron 2. The insertion was located at chr17:40334196
and estimated to be 1045 bp in size, of which only the last 209
nucleotides were expressed in the fusion transcript, in-frame
with RARA exon 3, and linked by 38 nucleotides of retained
intron.

The integrated sequence was not homologous to any human
sequencebut revealedasignificantalignment todifferentAnellovir-
idae isolates from torque tenoMini virus (TTMV; 67% to 69% cover-
age; 74% to 85% identity; Figure 1C-E). It also showed the putative
conserved domain of the Torque Teno Open Reading Frame 2
(ORF2) superfamily in the coding region (E value 5 3.44e209),
with a protein identity of 48% and a coverage of 72% with respect
to TTMV-ORF2. This ORF displays the conserved amino acid motif
WX7HX3CXCX5H located at theN terminus, shared amongall anel-
loviruses. Thepresenceof the sequencemapping to thehighly con-
served Anellovirus untranslated region (UTR) was identified,7,8

specifically the 1 characterizing TTMV isolates,7 only in the index
case and not in other 6 AML DNAs (Figure 1F). The full-length
TTMV/RARA fusion transcript was predicted to encode a 485-
amino-acid protein containing the DNA-binding and ligand-binding

domain of RARA. No evidence of the TTMV/RARA fusion sequence
was found in AML samples from Leucegene and Therapeutically
Applicable Research to Generate Effective Treatments (TARGET)
cohorts and in a publicly available dataset of APL, that anyway did
not include any case negative for known RARA rearrangement.

Thepatient receivedacombinationofATRAandATOaccording to
emerging evidence9-14 and to the discovery of the novel RARA
fusion transcript. Therapy consisting of 2 courses of ATO and
ATRA was administered. Complete morphologic remission was
achieved on day 121 of the first cycle. After 2 consolidation
courses of ATO, given the availability of an HLA-matched sibling
donor, she underwent hematopoietic stem cell transplantation
(HSCT), resulting in a second complete remission. Bone marrow
evaluations performed after HSCT confirmed complete morpho-
logic remission, and analysis of the peripheral blood cells showed
stable full donor chimerism. The patient is presently alive and well
at 4 years after HSCT. Molecular analysis of leukemic samples
before HSCT confirmed the presence of TTMV DNA integration
in genomic DNA upstream of RARA exon 3 by polymerase chain
reaction (PCR), whereas reverse transcription (RT)-PCR showed
the expression of the chimeric fusion in both the diagnosis and the
relapse samples (Figure 1G-H). Quantitative RT-PCR revealed the
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Figure 2. Phenotypic characterization of TTMV/RARA fusion transcript. (A) Detection of the TTMV/RARA chimeric fusion in cDNA of patient 2 diagnosis and relapse and of the
index case for comparison. Patient 2 carried a longer insert sequence from TTMVORF2, with respect to the index case (Pt1). (B) Overexpression of the top-scoringM3-AML–specific genes
in the 2 cases carrying TTMV-RARA chimeric fusion (blue bars) similarly to the 11 APL cases from the SRA bioproject PRJNA721935 (red bars) and with respect to another 15 non-APL AML
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cloned full-length TTMV-RARA in frame with the AcGFP fluorescent tag sequence. (E) Effect of different ATRA concentrations on cell growth of U937 cells transfected with cloned
full-length TTMV-RARA compared with the parental cell line after 4 days of treatment (*P , .05; **P , .01; ***P , .001).
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progressive decrease of RARA fusion transcript expression along
with remission-induction therapy, with complete clearance of the
pathogenic allele after HSCT (Figure 1I).

A retrospective in silico analysis in ourWTSdatabaseof 22pediatric
cytogeneticallynormalAMLcases identifiedasecondcaseofTTMV
integration upstream of RARA exon 3 in a 3-year-old child affected
by an AML lacking any cytogenetic abnormality or pathogenic
somatic mutation. The integrated TTMV sequence was highly
homologous to that of the index case (97.1% homology in theover-
lapping sequence), even if theexpressedsequencewas longer (328
bp; Figure 2A). The insertion was located upstream of a different
segment of retained intron at chr17:40333779, in which only the
last 328 nucleotides were expressed in the fusion transcript,
in-framewithRARAexon3, and linkedby45nucleotidesof retained
intron. Actually, the RARA intron 2 is 16.9 kb in length, and, in all
PML/RARA-rearranged APL, the breakpoints are dispersed
throughout the RARA intron 2 both within repetitive and unique
regions.15 To thebest of our knowledge, neither patient had clinical
evidence of immune deficiency.

To ascertain that both patients harbored transcriptionally active
RARA rearrangements, we analyzed the expression of the
M3-oncogenic signature,16 showing that only the 2 cases displayed
the overexpression of the top-scoring M3-specific genes, similarly
to other pediatric APL and with respect to non-APL AML repre-
sented by normal-karyotype AMLs (Figure 2B). Last, to prove that
the viral chimeric fusion was transcriptionally functional, we
expressed the entire coding sequence of TTMV/RARA in frame
with Aequorea coerulescens (AcGFP) fluorescent tag into HEK-
293 cells, which resulted in a high expression of the chimeric tran-
script (Figure 2C) and in the presence of a significant population
of AcGFP-positive cells (Figure 2D). Moreover, we showed that,
besides increasing the percentage of CD11b1 cells, treatment
with ATRA induced a significant decrease in cell growth of the
U937myeloid leukemia cell line transducedwith TTMV/RARAcom-
paredwith the parental cell line (Figure 2E), proving that TTMV viral
insertion upstream of RARA exon 3 produces a functional chimeric
protein.

Virus infections cause at least 12% of human cancers, but this is the
first report suggesting a direct oncogenic role for an isolate of the
Anelloviridae family. Anelloviruses are nonenveloped, circular,
single-stranded DNA viruses,17 recently identified as one of the
prevalent components of the human blood virome.18 Becausee
Anelloviruses appear to be ubiquitous in the human population,
are acquired very early in life, and maintain persistent active infec-
tions, they are thought of as nonpathogenic to human beings.
However, increased viremia levels of Anelloviruses have been
found in immune-suppressed individuals,19 whereas Anelloviridae
viral load was linked to long-term nonprogression in HIV-infected
children,20 and TTMV was associated with overall survival in pedi-
atric patients undergoing lung transplant,21 suggesting that these
viruses are normally kept under immunologic control. Neverthe-
less, this is the first report supporting a direct role of TTMV in
malignant transformation, partly reinforced by the report of novel
TTMV isolates in the plasma of patients with lymphomaormultiple
myeloma.22,23

In summary, we herein report the first case of childhood APL car-
rying a TTMV/RARA chimeric transcript successfully treated with

ATRA and ATO and subsequent HSCT, which supports the
need to investigate the putative oncogenic role of TTMV in hema-
tologic malignancies.
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Endothelial cell (EC) injury has emerged as a hallmark of infec-
tion resulting from severe respiratory coronavirus 2.1–3 Comple-
ment activation or dysregulation is another notable feature of
COVID-19,4,5 and elevated plasma levels of sC5b-9, a marker of
activation of the complement terminal pathway, have been
reported in up to 2/3 of COVID-19 patients,6 and correlate with
disease severity.4,6

Complement dysregulation is also a well-established pathogenic
mechanism of a rare form of renal thrombotic microangiopathy

(TMA), the atypical hemolytic uremic syndrome (aHUS), triggered
by complement-induced EC damage.7

To date, renal TMA has been very rarely documented in the
COVID-19 setting.8,9 We report on 5 patients with COVID-19-
associated renal TMA, among whom 4 tested patients carried
complement genetic susceptibility factors for aHUS.

Patients with COVID-19-associated renal TMA were identified
using the databases of the French HUS Registry and the
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