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Abstract: We recently described the genetic antimicrobial resistance and virulence profile of a col-
lection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. 
Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-
intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential Ex-
PEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline 
(76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole 
(71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly as-
sociated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphon-
amides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was 
the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and 
emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identi-
fied among the collection, especially in poultry source. Both ST groups carried high number of Ex-
PEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed 
phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging Ex-
PEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic 
resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggest-
ing commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance 
(mean = 1.69) determinants. 
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1. Introduction 
Escherichia coli represents a commensal colonizer of human and animal gastrointesti-

nal microbiota [1] and it is the most frequently isolated Gram-negative pathogen impact-
ing human health [2]. E. coli is a worrisome public health threat due to its outstanding 
variability in pathotypes (enteropathogenic E. coli—EPEC, enterohaemorrhagic E. coli—
EHEC, enterotoxigenic E. coli—ETEC, enteroaggregative E. coli—EAEC, enteroinvasive E. 
coli—EIEC, diffusely adherent E. coli—DAEC, uropathogenic E. coli—UPEC, meningitis 
associated E. coli—MNEC, sepsis associated E. coli—SEPEC), multiple infection sites (in-
testinal or extraintestinal), clinical symptomatology [1] and concerning antimicrobial re-
sistance (AMR) profile, especially to carbapenemase and extended-spectrum beta-lactams 
[3,4]. The different E. coli pathotypes have been associated to specific phylogroups, each 
one showing distinct phylogenetic relatedness [5,6]. 

In particular, ExPEC represents one of the most common causes of bloodstream in-
fections and community/hospital associated urinary tract infections worldwide [7,8]). 
They are also responsible for other extraintestinal diseases, being an important cause of 
neonatal meningitis [1]. Multiresistant ExPEC strains constitute ongoing healthcare con-
cern and are associated with an increase in infection severity, treatment failure, hospitali-
sations and mortality, with growing costs for health care [2]. ExPEC mostly belonged to 
phylogroup B2 and, to a lesser extent, to phylogroup D [9,10]. 

It has been hypothesised that ExPEC are opportunistic pathogens. They may occupy 
a niche in human and animal intestinal microflora, showing their virulence potential 
while colonising extraintestinal sites [11]. Discrimination with molecular epidemiological 
approaches between potential ExPEC and commensals could be challenging to afford, be-
cause of the share of large genomic fractions and different VAGs, involved in common 
fitness function [12,13]. Therefore, ExPEC could be hidden among commensal flora, which 
could also represent a reservoir of virulence genes for these pathogens. 

Commensal E. coli is also recognised as an AMR barometer among Gram-negative 
bacteria, due to its ubiquity and genomic plasticity. Indeed, E. coli represents the prevail-
ing organism able to grow in aerobic conditions in the gastrointestinal microbiota of 
warm-blooded animals [14] and is also an environmentally adapted bacterium [15]. Its 
genomic plasticity allows constant and efficient exchange of genomic fractions, including 
genes conferring resistance to antimicrobials, with other enteric bacteria and the environ-
ment. Hence, AMR data acquired from E. coli indicator is considered representative of the 
overall bacterial population [16]. 

AMR epidemiological surveillance is an important tool, signaling changes in current 
bacterial AMR trends [17]. The data gathered from epidemiological surveillance allow the 
implementation of preventive and control strategies, including suitable antimicrobial 
stewardship programs, therapeutic guidelines and infection control policies [18]. 

E. coli indicator is routinely used in European AMR monitoring to oversee AMR in 
FPAs and related food since 2014 [16]. Attention has been focused on specific FPA catego-
ries (poultry, swine, turkey and bovine), because of their high population size and im-
portant meat demand (http://www.fao.org/faostat/en/, last accessed 30 June 2020). Addi-
tionally, overall antimicrobial consumption in the European Union (EU) is mostly associ-
ated to livestock, hence exposed to high antimicrobial selective pressure [19]. 

FPAs could play a primary role in AMR diffusion through direct/indirect contact 
with humans, related food and environmental (land and water) manure contamination 
[20–24]. Furthermore, they could represent an important AMR reservoir, where foodborne 
pathogens may obtain new antimicrobial resistance genes and develop novel resistance 
patterns [25]. 

In the last few decades AMR sources other than livestock have proved to be particu-
larly concerning. 

AMR bacteria and genes have been identified in human related environments (live-
stock, companion animals, animal and non-animal origin food) as well as remote ecosys-
tems (wildlife), where antimicrobial selective pressure is supposed to be absent [23,26–

ditions of the Creative Commons At-
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30]. These data suggest the complexity of AMR dynamics, influenced by the thriving an-
timicrobial resistance gene (ARG) bacterial trade and the interconnection between differ-
ent ecosystems. 

AMR arises from selective pressure induced by antimicrobial treatments. Resistant 
bacteria and genes can be gathered, maintained and transmitted through horizontal gene 
transfer (HGT) within any environmental niche, determining the diffusion of novel AMR 
profiles in the overall bacterial population [31]. The complex interconnection between dif-
ferent ecosystems, sharing common habitats and water sources, is responsible for the wide 
AMR geographical distribution. Water and soil faecal contamination plays a primary role 
in AMR spread, establishing a link between various environments [32]. Further investiga-
tions are needed to achieve a better comprehension of AMR dynamics, focusing on the 
identification of potential AMR sources and transmission paths that are posing a risk to 
human health. 

In our recent paper [33] we described the population structure, ARG and VAG car-
riage in a collection of 279 E. coli indicator of animal (livestock, pets, wild animals), food 
(vegetable and animal origin products) and human origin collected in Italy. E. coli strains 
were grouped in 12 sources (dairy, beef, wild boar, rabbit, poultry, swine, companion an-
imal, vegetable, fishery, mollusc, wild animal and human), according to their origin. Con-
cerning genetic AMR profile have been identified, including to highest priority critically 
important antimicrobials (HP-CIAs). Different typical ExPEC VAGs and pandemic and 
emerging ExPEC STs were observed among the overall collection. 

Considering these previous findings, the current study aims to investigate (i) pheno-
typic antimicrobial resistance profile of the collection and concordance with genetic AMR 
profile previously identified, in order to establish the potential AMR risk associated with 
animals (livestock, companion animals, wildlife), food and human, (ii) ExPEC virulence 
potential of commensal E. coli, association with concerning AMR profile and their role of 
ExPEC VAG reservoir, (iii) phylogroup distribution, considering the revisited phylotyp-
ing method proposed by Clermont et al., (2013) [6], for further epidemiological evalua-
tions. 

2. Results 
2.1. Occurrence of E. coli Strains in Animal, Food and Human Samples 

E. coli was identified in 169/415 (40.72%) samples analysed. In particular, E. coli was 
detected in all companion animal (12/12) and swine (6/6) samples and in 25/27 (92.59%) 
human faeces analysed (Table 1). High E. coli occurrence was observed in poultry (25/33, 
75.76%), rabbit (10/14, 71.43%), wild boar (22/31, 70.97%) and beef (21/34, 61.76%) samples. 
Fishery and vegetables were the sources with the lowest occurrence of E. coli, identified 
in only 24/94 (25.53%) and 24/164 (14.63%) samples, respectively. It was not possible to 
establish E. coli occurrence in mollusc, dairy and wild animal sources, since related strains 
were provided from the Experimental Institute for Zooprophylaxis in Lombardy and Emi-
lia Romagna. 

Table 1. Number of processed samples and number of isolated strains in the different sources considered in the study. 

Source Number of Samples Number of Isolated E. coli E. coli Occurrence (%) 
Beef 33 21 63.64 

Wild Boar 31 22 70.97 
Vegetable 164 24 14.63 

Fishery 94 24 25.53 
Companion Animal 12 12 100.00 

Swine 6 6 100.00 
Poultry 33 25 75.76 
Rabbit 14 10 71.43 

Human 27 25 92.59 
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2.2. Antimicrobial Resistance Phenotypes 
Among the 279 E. coli strains, 107 (38.35%) showed resistance to at least one antimi-

crobial and 79 (28.32%) were MDR (Table 2). The most common phenotypic resistances 
were to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), 
streptomycin and sulfisoxazole (71/279, 25.45% both), ampicillin (66/279, 23.66%), fol-
lowed by nalidixic acid (48/279, 17.20%), enrofloxacin (44/279, 15.77%), chloramphenicol 
(23/279, 8.24%) and gentamicin (11/279, 3.94%). Lastly, 3GC (ceftiofur and ceftazidime) 
and colistin resistances were observed in 6/279 (2.15% each) strains. The most common 
antimicrobials implicated in MDR were tetracycline, sulphonamides, streptomycin and 
ampicillin. 

Four out of 279 strains (1.43%) were designated as ESBL producers. Notably, all ESBL 
producers were MDR, including to other HP-CIAs (nalidixic acid, enrofloxacin, colistin). 

Considering the different sources investigated, the mean number of resistance was: 
rabbit, 6; poultry, 4; dairy, companion animal, swine and human, 2 each; beef, fishery and 
wild animal, 1 each. The lowest resistance (mean ≤ 1) was observed in mollusc, vegetable 
and wild boar sources, with 4, 2 and 1 resistant strains, respectively. Notably, rabbit and 
poultry were the sources displaying the most extensive AMR, with 23/23 (100%) and 23/25 
(92%) strains resistant to at least one antimicrobial agent, respectively. Most of the strains 
(22/23, 95.7% in rabbit; 16/25, 64% in poultry) were MDR from 3 up to 8 different antimi-
crobial classes. Furthermore, rabbit was the niche mainly associated to colistin resistance 
(3/6). 

3-GC resistance was mainly reported in dairy (2) and beef (2) strains. Interestingly, 
the dairy source carried the highest number of ESBL producers (2/4). 

Wild animal, vegetable, fishery and companion animal niches generally displayed 
low resistance when compared to the other sources. MDR strains were detected with a 
lesser extent (companion animal, 3/12, 25%; wild animal, 6/25, 24%; fishery, 3/24, 12.5%; 
vegetable, 2/24, 8.33%), though resistance to HP-CIAs (Qs, 3-GCs) was observed in 6 
strains (5 wild animals, 1 companion animal). 

Notably, one ESBL producer was associated to wildlife (wild animal and wild boar 
sources). 

Wild boars and molluscs revealed the lowest antimicrobial resistance among all the 
collection. Five strains showed resistance to at least one antimicrobial agent (1/22, 4.54%, 
wild boar; 4/25, 16%, mollusc), of which 4 (wild boar, 1; mollusc, 3) were MDR. Resistance 
to HP-CIAs was detected in 1 wild board and in 1 mollusc FQ resistant strains. The de-
tailed phenotypic antimicrobial profile of the overall collection is shown in Figure 1. 

 



A
nt

ib
io

tic
s 2

02
1,

 1
0,

 3
51

 
5 

of
 2

9 
  

Ta
bl

e 
2.

 A
M

R 
re

si
st

an
ce

 ra
te

 to
 th

e 
m

ol
ec

ul
es

 te
st

ed
 a

nd
 E

SB
L 

pr
of

ile
 a

m
on

g 
th

e 
so

ur
ce

s i
nv

es
tig

at
ed

. 

 
 

 
 

 
 

 
 

 
 

 
 

H
P-

C
IA

 
 

 
 

So
ur

ce
s 

n 
R

 ≥
 1

 
M

D
R

 
C

N
 

S 
C

 
ST

 
SX

T 
TE

 
N

A
 

EN
R

 
EF

T 
C

A
Z

 
C

O
L 

ES
BL

 

D
ai

ry
 

25
 

6 
(2

4%
) 

6 
(2

4%
) 

1 
(4

%
) 

6 
(2

4%
) 

3 
(1

2%
) 

6 
(2

4%
) 

6 
(2

4%
) 

6 
(2

4%
) 

3 
(1

2%
) 

3 
(1

2%
) 

2 
(8

%
) 

2 
(8

%
) 

1 
(4

%
) 

2 
(8

%
) 

Be
ef

 
24

 
7 

(2
9.

17
%

) 
4 

(1
6.

66
%

) 
2 

(8
.3

3%
) 

5 
(2

0.
83

%
) 

2 
(8

.3
3%

) 
4 

(1
6.

67
%

) 
4 

(1
6.

67
%

) 
3 

(1
2.

5%
) 

1 
(4

.1
7%

) 
1 

(4
.1

7%
) 

2 
(8

.3
3%

) 
2 

(8
.3

3%
) 

0 
(0

%
) 

0 
(0

%
) 

W
ild

 b
oa

r 
22

 
1 

(4
.5

5%
) 

1 
(4

.5
5%

) 
0 

(0
%

) 
1 

(4
.5

5%
) 

0 
(0

%
) 

1 
(4

.5
5%

) 
1 

(4
.5

5%
) 

1 
(4

.5
5%

) 
1 

(4
.5

5%
) 

1 
(4

.5
5%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
V

eg
et

ab
le

 
24

 
2 

(8
.3

3%
) 

2 
(8

.3
3%

) 
0 

(0
%

) 
2 

(8
.3

3%
) 

0 
(0

%
) 

1 
(4

.1
7%

) 
1 

(4
.1

7%
) 

1 
(4

.5
5%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
Fi

sh
er

y 
24

 
5 

(2
0.

83
%

) 
3 

(1
2.

5%
) 

1 
(4

.1
7%

) 
3 

(1
2.

5%
) 

0 
(0

%
) 

2 
(8

.3
3%

) 
3 

(1
2.

5%
) 

3 
(1

2.
5%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
C

om
pa

ni
on

 a
ni

m
al

 
12

 
4 

(3
3.

33
%

) 
3 

(2
5%

) 
0 

(0
%

) 
1 

(8
.3

3%
) 

1 
(8

.3
3%

) 
3 

(2
5%

) 
3 

(2
5%

) 
4 

(3
3.

33
%

) 
1 

(8
.3

3%
) 

1 
(8

.3
3%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
0 

(0
%

) 
Sw

in
e 

25
 

16
 (6

4%
) 

6 
(2

4%
) 

0 
(0

%
) 

8 
(3

2%
) 

2 
(8

%
) 

5 
(2

0%
) 

5 
(2

0%
) 

10
 (4

0%
) 

3 
(1

2%
) 

3 
(1

2%
) 

0 
(0

%
) 

0 
(0

%
) 

2 
(8

%
) 

0 
(0

%
) 

Po
ul

tr
y 

25
 

23
 (9

2%
) 

16
 (6

4%
) 

1 
(4

%
) 

13
 (5

2%
) 

8 
(3

2%
) 

14
 (5

6%
) 

15
 (6

0%
) 

13
 (5

2%
) 

13
 (5

2%
) 

11
 (4

4%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

R
ab

bi
t 

23
 

23
 (1

00
%

) 
22

 (9
5.

65
%

) 
6 

(2
6.

09
%

) 
22

 (9
5.

65
%

) 
3 

(1
3.

04
%

) 
22

 (9
5.

65
%

) 
22

 (9
5.

65
%

) 
22

 (9
5.

65
%

) 
15

 (6
5.

22
%

) 
13

 (5
6.

52
%

) 
0 

(0
%

) 
0 

(0
%

) 
3 

(1
3.

04
%

) 
0 

(0
%

) 
M

ol
lu

sc
 

25
 

4 
(1

6%
) 

3 
(1

2%
) 

0 
(0

%
) 

2 
(8

%
) 

0 
(0

%
) 

1 
(4

%
) 

1 
(4

%
) 

2 
(8

%
) 

1 
(4

%
) 

1 
(4

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

0 
(0

%
) 

H
um

an
 

25
 

9 
(3

6%
) 

7 
(2

8%
) 

0 
(0

%
) 

5 
(2

0%
) 

3 
(1

2%
) 

6 
(2

4%
) 

6 
(2

4%
) 

6 
(2

4%
) 

6 
(2

4%
) 

6 
(2

4%
) 

1 
(4

%
) 

1 
(4

%
) 

0 
(0

%
) 

1 
(4

%
) 

W
ild

 a
ni

m
al

 
25

 
7 

(2
8%

) 
6 

(2
4%

) 
0 

(0
%

) 
3 

(1
2%

) 
1 

(4
%

) 
6 

(2
4%

) 
6 

(2
4%

) 
5 

(2
0%

) 
4 

(1
6%

) 
1 

(4
%

) 
1 

(4
%

) 
1 

(4
%

) 
0 

(0
%

) 
1 

(4
%

) 

To
ta

l 
27

9 
10

7 
(3

8.
35

%
) 

79
 (2

8.
32

%
) 

11
 (3

.9
4%

) 
71

 (2
5.

45
%

) 
23

 (8
.2

4%
) 

71
 (2

5.
45

) 
73

 (2
6.

16
%

) 
76

 (2
7.

24
%

) 
48

 (1
7.

20
%

) 
44

 (1
5.

77
%

) 
6 

(2
.1

5%
) 

6 
(2

.1
5%

) 
6 

(2
.1

5%
) 

4 
(1

.4
3%

) 
R 
≥ 

1:
 re

si
st

an
t t

o 
at

 le
as

t o
ne

 a
nt

im
ic

ro
bi

al
; M

D
R:

 m
ul

tir
es

is
ta

nt
 is

ol
at

e;
 C

N
: g

en
ta

m
ic

in
; S

: s
tr

ep
to

m
yc

in
; C

: c
hl

or
am

ph
en

ic
ol

; S
T:

 s
ul

fis
ox

az
ol

e;
 S

XT
: t

ri
m

et
ho

pr
im

/s
ul

fa
m

et
ho

xa
zo

le
; 

TE
: t

et
ra

cy
cl

in
e;

 N
A

: n
al

id
ix

ic
 a

ci
d;

 E
N

R:
 e

nr
of

lo
xa

ci
n;

 E
FT

: c
ef

tio
fu

r; 
C

A
Z:

 c
ef

ta
zi

di
m

e;
 C

O
L:

 c
ol

is
tin

; E
SB

L:
 e

xt
en

de
d 

sp
ec

tr
um

 b
et

a 
la

ct
am

as
e 

pr
of

ile
; H

P-
C

IA
: h

ig
he

st
 p

ri
or

ity
 

cr
iti

ca
lly

 im
po

rt
an

t a
nt

im
ic

ro
bi

al
. 

 



Antibiotics 2021, 10, 351 6 of 29 
 

 

 
Figure 1. Heat map depicting phenotypic AMR and carriage of typical ExPEC VAGs in the strain 
collection. The dendogram on the left represents clustering of E. coli isolates according to their 
phenotypic AMR profile. Presence of phenotypic AMR and carriage of typical ExPEC VAGs are 
shown in red, with a green (for phenotypic AMR) or blue (for ExPEC VAGs) square indicating 
their absence. Additional strain information is provided in column 1- 3 and includes: source (col-
umn beside the dendogram), ST (first column after the heatmap) and phylogroup (second column 
after the heatmap). Sources, STs and phylogroups are colour-coded as described in the legend. 

The phenotypic AMR pattern identified among the collection was generally concord-
ant with the genetic AMR profile previously identified (Table 3). Discrepancies only oc-
curred with nalidixic acid/enrofloxacin (6 strains), chloramphenicol (1 strain) and colistin 
(1 strain) antimicrobials. 
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Table 3. Concordance between phenotypic and genetic AMR profile identified among the collection. 

Phenotypic Resistance n Genetic Determinants 
Beta-lactams 

amipicillin 60 blaSHV73, blaTEM-1b (2) 
  blaTEM-1a (4) 
  blaTEM-1b (38) 
  blaTEM-1c (8) 
  blaTEM-1d (4) 
  blaTEM-214 (1) 
  blaTEM-220 (3) 

ampicillin, ceftiofur, ceftazidime 6 ampC # (2) 
  blaCMY-2, blaCTX-M55, blaTEM-1b (1) (1) 
  blaCTX-M1 (1) 
  blaCTX-M1, blaTEM-1b (1) 
  blaCTX-M15, blaTEM-1b (1) 

Chloramphenicol 23 catA1 (8) 
  catA1,cmlA1 (2) 
  catA2 (1) 
  cmlA1 (11) 
  mdfA, acrAB-TolC (1) 

Aminoglycosides 
gentamicin 1 aac(3)_IIa (1) 

streptomycin 61 aadA1 (16) 
  aadA2 (1) 
  aadA2b (1) 
  strA (2) 
  strB(1) 
  aadA1, aadA2 (2) 
  strA, strB (20) 
  aadA1, aadA2b (6) 
  strA, strB, aadA5 (2) 
  aadA1, aadA2b, strB (1) 
  aadA1, strA, strB (7) 
  aadA1, aadA2b, strA, strB (2) 

gentamicin, streptomycin 10 aac(3)_IIa, aadA1, aadA2b, strA, strB (1) 
  aac(3)_IIa, aadA1, strA, strB (1) 
  ant2_Ia, aadA1 (1) 
  aac(3)-IId, aadA5, strA, strB (2) 
  aac(3)_IIa, aac3_IV, aadA1, aadA2b, strA, strB (1) 
  aac(3)_IV, strA, strB (1) 
  aac(3)_IV, aadA1, strA, strB (2) 
  aac)(3)_IIa, strA, strB (1) 

Sulphonamides 
sulfisoxazole, sulfametoxazole/trimethoprim 71 sul1 (2) 

  sul1, dfrA1 (13) 
  sul1, dfrA12 (1) 
  sul2 (17) 
  sul2, dfrA1 (3) 
  sul2, dfrA14 (6) 
  sul2, dfrA17 (1) 
  sul1, sul2 (1) 
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  sul1, sul2, dfrA1 (7) 
  sul1, sul2, dfrA17 (3) 
  sul1, sul2, dfrA7 (1) 
  sul1, sul2, dfrA1, dfrA14 (1) 
  sul1, sul2, dfrA1, dfrA7 (1) 
  sul3 (2) 
  sul2, sul3, dfrA14 (2) 
  sul3, dfrA1 (3) 
  sul3, dfrA12 (2) 
  sul3, dfrA14 (1) 
  sul1, sul2, sul3, dfrA1 (2) 
  sul1, sul3, dfrA1 (2) 

Sulfamethoxazole/trimethoprim 2 dfrA1 (1) 
  dfrA12 (1) 

Tetracycline 76 tetA (54) 
  tetB (19) 
  tetA, tetM (1) 
  tetA, tetB (2) 

Colistin 4 mcr1 (4) 
 1 * pmrB # (1) 

ESBL profile 4 blaCTX-M1 (2) 
  blaCTX-M15 (1) 
  blaCTX-M55 (1) 

(Fluoro)quinolones  
nalidixic acid 4 gyrA # (D87G) (3) 

  gyrA # (A84P), parC # (S57T) (1) 
nalidixic acid, enrofloxacin 45 gyrA # (S83L) (21) 

   
  gyrA # (S83L-D87N), parC # (S80I) (13) 
  gyrA # (S83L-D87N), parC # (S80I-E84G) (2) 
  gyrA # (S83L-D87N), parC # (S80I-E84A) (1) 
  gyrA # (S83L-D87N), parC # (S80I-E84G-A56T) (1) 
  gyrA # (S83L-D87N), parC # (S80I), pare # (S458A) (3) 
  gyrA # (S83L-D87N), parC # (S80I), pare # (L416F) (1) 
  gyrA # (S83L-D87Y), parC # (S80I) (1) 
  gyrA # (S83L-D87Y), parC # (S80I), parE# (S458A) (1) 
  qnrB19, pare # (I355T) (1) 
  pare # (I355T) (5) 
 4 * parC # (A56T)(1) 
  qnrS1 (3) 

#: chromosomal mutation; *: presence of genetic virulence determinant not associated to the expected phenotypic re-
sistance. 

2.3. Phylogroups 
Seven different phylogroups (A, B1, B2, C, D, E and F) were identified in the collec-

tion, as described in Table 4. Phylogroup B1 was the most common (127/279, 45.52%), fol-
lowed by C (43/279, 15.41%), A (38/279, 13.62%), E (25/279, 8.96%), B2 (20/279, 7.17%), F 
(13/279, 4.66%) and D (9/279, 3.23%). 

Four strains were designated as unknown since it was not possible to assign them to 
any phylogroup. 

One specific phylotype was usually representative in each source despite variability 
in phylogroup distribution and abundance. Phylogroup B1 was mainly associated to beef 
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(22/24, 91.67%), rabbit (20/23, 86.96%), wild animal (18/25, 72%), mollusc (15/25, 60%), veg-
etable (14/24, 58.3%), companion animal (6/12, 50%) and dairy (9/25, 36%) sources. Phy-
logroup A was most common in fishery (10/24, 41.67%), meanwhile phylogroup C was 
mostly represented in poultry (8/25, 32%). Swine strains were equally associated to phy-
logroup A (8/25, 32%), B1 (8/25, 32%) and C (8/25, 32%). Interestingly, “pathogen” phy-
logroups were mainly associated to human (F, 7; E, 3; B2/D, 2 both) and wild boar (E, 11; 
B2, 6) strains. 

Notably, strains showing resistance to the highest number of antimicrobials (≥5) were 
mainly associated to “non pathogen” phylogroups (B1, 33; A–C, 6 both) and with a lesser 
extent to the “pathogen” ones (F, 6; E, 3; D, 2). 

Comparison between molecular and in silico phylotyping data showed important 
concordance. Only 4 strains, properly assigned to a phylotype with ARIBA [34], were des-
ignated as unknown with the quadruplex PCR method (Figure 2). 

Table 4. Representation of phylogroup distribution, Shannon Index (H’) and Simposon index (D) among the sources in-
vestigated. 

Source n A B1 B2 C D E F unknown H’ D 
Dairy 25 8 (32%) 9 (36%) 2 (8%) 4 (16%) 1 (4%) 1 (4%) 0 (0%) 0 (0%) 1.485 0.763 
Beef 24 0 (0%) 22 (91.67%) 0 (0%) 1 (4.17%) 1 (4.17%) 0 (0%) 0 (0%) 0 (0%) 0.345 0.163 

Wild boar 22 0(0%) 3 (13.64%) 6 (27.27%) 0(0%) 0 (0%) 11 (50%) 0 (0%) 2 (9.09%) 0.973 0.68 
Vegetable 24 1(4.17%) 14 (58.33%) 1 (4.17%) 6 (25%) 0 (0%) 1 (4.17%) 0 (0%) 1 (4.17%) 1.191 0.616 

Fishery 24 10 (41.67%) 4 (16.67%) 2 (8.33%) 5 (20.83%) 0 (0%) 3 (12.50%) 0 (0%) 0 (0%) 1.457 0.764 
Companion ani-

mal 
12 0 (0%) 6 (50%) 2 (16.67%) 2 (16.67%) 0 (0%) 2 (16.67%) 0 (0%) 0 (0%) 1.089 0.644 

Swine 25 8 (32%) 8 (32%) 0 (0%) 8 (32%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 1.223 0.720 
Poultry 25 2 (8%) 6 (24%) 1 (4%) 8 (32%) 0 (0%) 2 (8%) 5 (20%) 1 (4%) 1.691 0.817 
Rabbit 23 0 (0%) 20 (86.96%) 1 (4.35%) 0 (0%) 2 (8.70%) 0 (0%) 0 (0%) 0 (0%) 0.470 0.245 

Mollusc 25 2 (8%) 15 (60%) 0 (0%) 4 (16%) 3 (12%) 1 (4%) 0 (0%) 0 (0%) 1.185 0.617 
Human 25 6 (24%) 2 (8%) 2 (8%) 3 (12%) 2 (8%) 3 (12%) 7 (28%) 0 (0%) 1.814 0.850 

Wild animal 25 1 (4%) 18 (72%) 3 (12%) 2 (8%) 0 (0%) 0 (0%) 1 (4%) 0 (0%) 0.951 0.477 
Total 279 38 (13.62%) 127 (45.52%) 20 (7.17%) 43 (15.41%) 9 (3.23%) 25 (8.96%) 13 (4.66%) 4 (1.43%)   

2.4. Expec Virulence Potential 
Thirty-one typical ExPEC VAGs were identified among the overall collection (Table 

6). All strains carried between 1 and 17 VAGs (Figure 2), assembled in variable virulence 
profiles (Figure 1). Among the collection, VAG occurrence was as follow: fimH (270/279; 
96.77%), iss (162/279; 58.06%), traT (125/279; 44.8%), sitA (100/279; 35.84%), fyuA (55/279; 
19.71%), irp2/iucD (53/279; 18.90%), iroN/malX (50/279; 17.92%), ompT (45/279; 16.13%), 
iutA (41/279; 14.70%), cvaC (37/279; 13.26%), iha/kpsMT (23/279; 8.24%), ireA (21/279; 
7.52%), vat (16/279; 5.73%), usp (15/279; 5.38%), papC/tsh/ibeA/pic (11/279; 3.94%), neuC 
(10/279; 3.58%), papG (7/279; 2.51%), sat (6/279; 2.15%), cdtB (5/279; 1.79%), bmaE/gimB 
(4/279; 1.43%), hlyE (3/279; 1.08%), sfaS/cnf1 (1/279; 0.36%). 

Thirteen strains belonged to pandemic ExPEC STs, namely 10 ST69/69* (dairy, 1; wild 
boar, 2; poultry, 1; mollusc, 3; human, 3), 2 ST95 (human) and 1 ST131 (poultry). As ex-
pected, pandemic ExPEC STs showed the highest number of VAGs (mean = 8.92) and 
AMR phenotypes (mean = 2.23). 
Interestingly, 7/13 (53.85%) pandemic ExPEC STs were associated to AMR, of which 6 
were multidrug-resistant. Notably, ST131 showed the highest number of resistance to 9 
antimicrobials. HP-CIA resistance was observed in 3 FQ resistant ST69 strains of poultry, 
mollusc and human origin. All pandemic ExPEC STs belonged to typical ExPEC phy-
logroups (B2, 3; D, 5; E, 5). 
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Thirty-seven emerging ExPEC STs were detected in different sources, namely 19 
ST10/ST10* (dairy, 3; beef, 1; vegetable, 1; companion animal, 1; swine, 7; poultry, 2; mol-
lusc, 2; human, 2), 6 ST23 (poultry, 3; mollusc, 1; wild animal, 2), 4 ST58 (dairy, 1; beef, 2; 
companion animal, 1), 6 ST117 (1 wild boar; 5, poultry), 1 ST405 (human) and 1 ST648 
(wild animal). Most of the strains were associated to commensal phylotypes (A, 4; B1, 4; 
C, 21), with the exception of ST117 (5, F; 1F), ST405 (E) and ST648 (F) belonging to typical 
ExPEC phylogroups. VAG carriage and AMR phenotype mean were 6.43 and 2.43 respec-
tively. MDR was observed in 14/37 (37.84%) strains. Notably 10 Q and 1 colistin resistant 
strains were identified. 

The remaining 229 strains carried the lowest AMR phenotypes (mean = 1.69) and 
VAG number (mean = 3.80) among the 3 groups identified. Variable phylogroup distribu-
tion (A = 34; B1 = 123; B2 = 17; C = 22; D = 4; E = 18; F = 7) was observed. Fifty-three out of 
59 MDR strains detected belonged to commensal phylogroups. Uncommon ExPEC STs 
showed the highest HP-CIA resistance, with 35 Q, 4 colistin resistant strains and 4 ESBL 
producers. 

Pandemic, emerging and uncommon ExPEC STs showed variable distribution of 
genes coding for the 5 functional categories involved in ExPEC pathogenesis (Table 5). 

Table 5. Association between pandemic (ST69/69*, ST95, ST131), emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648), 
uncommon (the remaining ones) ExPEC lineages and functional category profile identified among the collection. 

Lineages n Functional Category Profile 
Pandemic ExPEC 13 adhesin, iron acquisiton system (2) 

 adhesin, iron acquisiton system, protectin (8) 
 adhesin, toxin, iron acquisition system, protectin, invasin (3) 

Emerging ExPEC 37 adhesin (2) 
 iron acquisition system (1) 
 adhesin, protectin (11) 
 adhesin, iron acquisition system, protectin (18) 
 adhesin, iron acquisition system, toxin, protectin (5) 

Uncommon ExPEC 229 adhesin (68) 
 protectin (4) 
 adhesin, invasin (1) 
 adhesin, toxin (3) 
 adhesin, protectin (68) 
 adhesin, iron acquisition system (9) 
 protectin, iron acquisition system (1) 
 adhesin, toxin, protectin (2) 
 adhesin, iron acquisition system, protectin (50) 
 adhesin, invasin, iron acquisition system, toxin (1) 
 adhesin, invasin, iron acquisition system, protectin (2) 
 adhesin, toxin, iron acquisition, system, protectin (12) 
 adhesin, toxin, iron acquisition system, protectin, invasin (8) 

Interestingly, eleven strains carried genes coding for all 5 functional categories. 
Threestrains belonged to typical ExPEC STs (ST131, 1; ST95, 2) and phylotypes (B2, 9; D, 
1; E, 1), meanwhile 8 strains were associated to uncommon ExPEC STs (ST141, ST680, 
ST1170, ST80, ST706*, ST420*, ST136, ST372) but typical ExPEC phylogroups (B2, 6; D, 1; 
F, 1). MDR was observed in ST131 (1), ST95 (2), ST706* (1) strains. 

Complete phenotypic AMR and genetic virulence profile, STs and phylogroup dis-
tribution among the collection are reported in Supplementary Materials (Tables S2–S4). 
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2.5. Statistical Results 
Statistical analysis identified poultry and rabbit as the most important AMR sources 

among the collection. In these niches, the occurrence of resistance to at least one molecule 
and of MDR was statistically significant (p-value < 0.01) if compared to the other sources. 
Poultry and rabbit strains exhibited significantly higher (p-value < 0.01) resistant rates to 
Qs, streptomycin, sulfisoxazole, sulfamethoxazole/trimethoprim and tetracyline than the 
remaining collection. Furthermore, significant ampicillin and chloramphenicol resistance 
was observed in poultry (p-value < 0.01). 

Considering the other sources, no significant resistance was detected, except for tet-
racycline resistance in swine strains (p < 0.01). 

Important differences in phylogroup richness and eveness were identified among the 
sources (Table 4), with the highest diversities in human (H’ = 1.814; D’ = 0.850) and poultry 
(H’ = 1.691; D’ = 0.817) and the lowest in rabbit (H’ = 0.470; D’ = 0.245) and beef (H’ = 0.345; 
D’ = 0.163). Association between specific phylogroups and phenotypic antimicrobial pat-
terns was investigated. Statistical analysis identified a significant association for ampicil-
lin resistance—E/F phylotype and sulfisoxazole resistance—F phylotype (p < 0.05 both). 

3. Discussion 
AMR is a complex and ever-changing phenomenon, whose dynamics are still not 

completely understood. Epidemiological surveillance is an essential weapon against AMR 
threat, allowing to define key point sources where AMR could develop, evolve and 
spread. AMR monitoring in different environments represents a fundamental cornerstone 
for epidemiological evaluation and preventive/control measure implementation [18]. In-
deed, multiple sources (animals, agriculture, human, food) have been investigated as a 
potential reservoir of AMR in the last decades [23,26,28–30,35]. 

Our previous study aimed to provide an overview of AMR genetic profile currently 
circulating in E. coli indicator in Italy. E. coli from different origins have been considered, 
including environments playing a well documented (FPAs, food, pets, human) or emerg-
ing (wildlife) role in AMR dynamics. Greater emphasis was given to livestock due to their 
important epidemiological role in AMR spread through human contact [36,37], environ-
mental manure contamination [21,38] and related foodstuff [23,39–42]. FPAs may play an 
important role in the development of new antimicrobial resistance patterns, increasing the 
AMR gene pool available for foodborne pathogens [25]. 

Particular attention was given to HP-CIAs (including extended-spectrum cephalo-
sporins, quinolones and colistin), recognised as the last treatment option for serious hu-
man infections with a possible FPA/food origin [7]. 

Antimicrobial susceptibility testing results were interpreted using ECOFF in order to 
perform an epidemiological evaluation about phenotypic AMR circulating in E. coli indi-
cator of different origins. 

In the present paper, wild type (WT) strains, without an acquired phenotypically de-
tectable resistance mechanism, were defined as “susceptible”. Non-WT strains, related to 
acquired or mutational resistance to antimicrobials, were addressed as “resistant”. 

Unfortunately, ECOFFs were not available for all the molecules tested, hence clinical 
breakpoints were adopted. Clinical breakpoints represented predictors of clinical success 
of antimicrobial treatments, but could not afford evaluation related to emergence and evo-
lution in bacterial resistance profiles [43,44]. Nevertheless, they could provide worthwhile 
information about consolidated resistance patterns in the bacterial population. Changing 
in consolidated clinical resistant profiles could indirectly suggest the emergence of new 
resistance patterns among bacteria. 
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3.1. Tetracycline, Sulfonamide, Streptomycin and Ampicillin Resistance Is the Most Common 
Among the Overall Collection 

The most common phenotypic resistance was to tetracycline, sulfonamides (sulfisox-
azole and sulfamethoxazole/trimethoprim), streptomycin and ampicillin among 
FPAs/food, companion animal, wildlife and humans. 

The wide diffusion of resistance to tetracycline, sulfonamides and ampicillin is prob-
ably attributable to antimicrobial usage in different human and animal sectors in Europe. 
Sulfonamides and tetracycline represent the most common treatment in FPAs (swine, 
poultry, beef, rabbit and dairy), as well as ampicillin in FPAs (swine, poultry, beef, rabbit 
and dairy), companion animals and human [45]. In particular, the zootechnical system is 
associated to the highest antimicrobial consumption in Europe [19], turning livestock into 
an important reservoir of AMR bacteria and genes. Indeed, the high frequency of re-
sistance to sulfonamide-ampicillin-tetracycline in swine, poultry, beef, rabbit and dairy 
strains was generally congruent with AMR profiles previously reported in Europe [16,46–
52]. The same resistance pattern (sulfonamide-ampicillin-tetracycline resistance) was also 
observed in the strictly connected human environment, linked in turn with companion 
animals. High ampicillin resistance rate probably derived from the wide use of these mol-
ecules in human and pets [45], whereas sulfonamide and tetracycline resistance presum-
ably originated from agricultural settings. Sulfonamide-ampicillin-tetracycline resistance 
has also been previously observed in human and pets strains [53,54]. 

Interestingly, streptomycin resistance was the third-highest phenotypic resistance 
(together with sulfisoxazole) (24.45%) among all the collection and it was identified in at 
least one strain of each source. These data are generally consistent with previous studies 
in animal and human [32,47,55–59]. Exceptions are represented by pig, poultry and beef, 
usually showing low level of aminoglycoside resistance. Streptomycin resistance is incon-
sistent with the seldom use of aminoglycosides in both human and animal therapeutic 
treatment [45,60], which account for low gentamycin resistance among the collection 
(3.94%) instead. So far, the evidence leads to the hypothesis of streptomycin resistance 
wide diffusion being referable to ARGs co-selection mechanisms, mediated by multire-
sistant plasmids [61] and transposons [62,63]. Additionally, streptomycin is one of the 
oldest antimicrobials discovered in 1943 [64] and its past use could explain the active re-
sistance circulation detected nowadays. 

3.2. The Potential Role of Aquaculture, Vegetable and Wildlife as AMR Source Sentinels 
Generally, aquaculture, vegetable and wildlife (wild animal and wild boar) are 

sources slightly connected to AMR. In aquaculture (mollusc and fishery) antimicrobial 
treatments are rare [65], meanwhile vegetable and wildlife are not directly exposed to an-
timicrobials. The consistency of AMR profile identified in these niches with those ob-
served in the remaining collection (livestock, human, companion animals) suggested an 
important AMR environmental pollution from settings highly associated to antimicrobial 
use, in line with findings reported by Giacometti et al., (2021) [66]. Water and environment 
faecal contamination appear the most important path allowing ARGs dissemination in 
ecosystems where antimicrobial use is rare or absent [32]. Irrigational water/manure 
[57,67] and sewage/runoff from land [68–70] have already been implicated in AMR emer-
gence in aquaculture and vegetable products, respectively. Likewise, remoteness of area, 
zootechnical activity and human proximity represented the most important parameters 
influencing AMR occurrence in wildlife [71,72]. 

Interestingly, resistance to sulfonamide-ampicillin-tetracycline in aquaculture 
[56,73], vegetable [56,57,74] and wildlife [75,76] has already been reported in different 
countries suggesting the wide extension of AMR diffusion problem in outlying environ-
ments. 

Considering all these assumptions, aquaculture, wildlife and vegetable could repre-
sent important AMR source-sentinel, giving useful information about specific AMR 
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spread and the degree of AMR environmental contamination. However, the low E. coli 
indicator occurrence in fishery, mollusc and vegetable sources could suggest wildlife as 
the most promising and concrete AMR spread indicator. Additionally, low E. coli occur-
rence indicates fishery, mollusc and vegetable as low risk food-sources associated to trans-
mission of potential pathogenic E. coli to human, when compared to swine, poultry and 
rabbit niches, where E. coli was frequently identified. 

3.3. Phenotypic Q Resistance Is the Most Common Among HP-Cias 
HP-CIA resistance represents a worrisome event, associated with significant morbil-

ity/mortality and treatment alternatives reduction, and has required considerable control 
during food production [7]. Qs are included in the HP-CIA list and represent the last treat-
ment options in serious Salmonella spp. and E. coli infections [7]. Notably, Q resistance was 
mainly observed in FPAs, with a lesser extent in human and wildlife strains, and not de-
tected in companion animals and vegetable. 

Considering FPAs, the most common HP-CIA resistance was to Qs (21.05%, nalidixic 
acid; 18.71%, enrofloxacin), identified in all the livestock categories but in fishery source. 
The highest FQ resistance was observed in rabbit (nalidixic acid, 15/25; enrofloxacin, 
13/25) and poultry (nalidixic acid, 13/25; enrofloxacin, 11/25) strains, presumably because 
of the common use of these antimicrobials in related breeding systems [65]. Resistance 
rates in these niches were significantly higher (p < 0.01) than those detected in the other 
FPA categories, where Q detection was notably lower. Our data are in accordance with 
previous studies reporting generally high Q resistance in poultry and rabbit in contrast to 
other livestock [47–49,52,77–79]. 

As for livestock, the highest HP-CIA resistance observed in human and wildlife was 
to Qs (24% and 15%, respectively). Notably, our data showed considerable higher Q re-
sistance in human, as well as in wildlife, than those reported in previous studies 
[53,75,76,80–83]. 

These findings are particularly concerning, considering the increasing trend of Q re-
sistance in human clinical E. coli in Europe, with Italy as the country showing the highest 
resistance [8] 

3.4. Poultry and Rabbit Are the Sources Mainly Associated to AMR 
AMR was mainly associated to livestock, with poultry and rabbit as the sources 

showing significant higher resistant rate (p < 0.01 or p < 0.05) to most molecules (Qs, strep-
tomycin, sulfisoxazole, sulfametoxazole/trimethoprim, ampicillin and chloramphenicol in 
poultry), when compared to other niches. 

These data are not surprising considering poultry intensive breeding systems are 
characterised by notably higher population density compared to the other FPAs catego-
ries [84]. Population size is strictly interconnected with antimicrobial usage, often charac-
terised by collective treatments, and therefore influencing antimicrobial selective pressure 
[85]. Indeed, poultry have been frequently associated with generally higher AMR than 
other livestock in European countries [86]. These considerations could be extended also 
to rabbit farming. 

Poultry AMR profile was generally in accordance with previous studies reporting 
tetracycline, Qs (nalidixic acid and enrofloxacin), ampicillin, sulfamethoxazole, trime-
thoprim resistance as frequently detected, meanwhile those to 3GCs and colistin were 
overall low. Contrary to our results, resistance to chloramphenicol was variable, mean-
while aminoglycoside resistance was generally rare [48–50,78,79]. Our findings in rabbit 
were in accordance with the seldom AMR data available in rabbit breeding system, re-
porting resistance to tetracyclines, ampicillin, aminoglycosides (streptomycin, gentami-
cin), Qs (ciprofloxacin, nalidixic acid) and sulfonamides (sulfadiazine, sulfamethoxa-
zole/trimethoprim) as common phenotypic AMR profile [47,87–89]. Interestingly, rabbit 
was the source mostly associated to colistin resistance. Recent studies described colistin 
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resistance in rabbit farms [88], also in Italy, where colistin treatment is reported as com-
mon [90]. In our knowledge, this is the first report identifying phenotypic colistin re-
sistance associated to rabbit meat, highlighting the possible involvement of rabbit breed-
ing system in colistin resistance diffusion through the food-chain. 

Interestingly, poultry and rabbit resistant strains were mostly isolated from food 
products of animal origin (poultry meat, 13; rabbit meat, 10) and with a lesser extent from 
animals (poultry, faeces, 2; rabbit, intestine, 5). The low number of samples analysed could 
not afford a proper evaluation of AMR epidemiological risk associated to animal and re-
lated foodstuff. However, our data could suggest an important involvement of the food 
chain in AMR transmission, presumably from zootechnical settings up to consumers. This 
hypothesis is supported by different studies, suggesting poultry as a feasible origin of 
AMR clinical E. coli identified in human [91–94]. The scarce European data on AMR in 
rabbit breeding and foodstuff [47,87–89] encouraged further investigations to better elu-
cidate the role of rabbit in AMR transmission to human. 

3.5. Phenotypic Pattern Is Generally Concordant with Genotypic AMR Profile 
The phenotypic AMR pattern identified among the collection was generally concord-

ant with the genetic AMR profile previously identified (Table 5). Discrepancies only oc-
curred with Qs (6 strains), chloramphenicol (1 strain) and colistin (1 strain) antimicrobials. 
Qs resistant strains carrying qnr genes generally provided low level of resistance [95], but 
in our collection qnrS1 gene (3) did not present with the expected phenotype. Their im-
portance is mostly associated to the selection of specific chromosomal mutations, favoring 
the emergence of strain with higher FQ resistance [96]. 

FQ inefficacy is frequently associated to mutations in the quinolone resistance-deter-
mining region (QRDR: gyrA/gyrB and parC/parE), coding for the drug targeting enzymes 
DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) subunits. 

Generally, single or combined mutations in gyrA, parC, parE were associated with the 
phenotypic resistance profile. Interestingly, in some cases, substitutions Ala-56 → Thr in 
the ParC (ATC → ACC in parC) and Ile-355 → Thr in the ParE (ATC → ACC in parE) 
proteins, previously associated to resistant E. coli [97,98], were identified in nalidixic acid 
and enrofloxacin susceptible strains. 

Chloramphenicol resistance was usually explained by the identification of genes cod-
ing for chloramphenicol acetyltransferases (cat) or specific chloramphenicol exporters 
(cml) [99]. Interestingly, cat and/or cml genes were not identified in one chloramphenicol 
resistant strain. Carriage of mdfA and acrA-acrB-TolC genes, coding for the aspecific mul-
tidrug transporter MdfA [100] and AcrAB-TolC [101], could explain the observed resistant 
phenotype. 

In the present study, colistin resistance was associated to plasmid mediated mcr1 
gene, coding for a phosphoethanolamine transferase. This enzyme is responsible for a cat-
ionic modification of the LPS of the bacterial outer cell membrane, target of polymyxin 
antimicrobials [102]. 

One colistin susceptible strain carried Val-161 → Gly mutation in PmrB, associated 
to both polymyxin resistance and susceptibility [103–105]. pmrB, together with pmrA gene, 
coded for the PmrAB two-component system activation, typically involved in bacterial 
survival against cellular mediated immune response [106]. Mutations in these genes could 
potentially lead to resistance, changing lipopolysaccharide charge and reducing poly-
myxin attachment to the external surface of Gram-negative bacteria [107]. 

3.6. Important Phylogroup Variability Occurred Among the Different Sources 
Clermont revisited phylotyping method [6,108] identified up to 7 different phylo-

types among the collection, with important variability among FPAs, pets, human and 
wildlife. 
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As expected, B1 (127/279; 45.52%), C (43/279; 15.41%) and A (38/279; 13.62%) were the 
most common phylogroups among all the collection and also in most sources. These phy-
lotypes are considered “generalists” of multiple hosts and are commonly identified in the 
commensal population [109]. 

Notably, typical ExPEC phylotypes were mainly observed in wild boar (17/23, 
73.91%; 11, E; 6, B2) and human (14/25, 56%; 7, F; 3, E; 2, B2; 2, D) sources. Our findings 
are generally in accordance with previous studies describing wild boar strains mostly be-
longing to B2 and D (including derivatives) [110–112] and D (including derivatives) as the 
second most common phylogroup in human commensal isolates worldwide [6]. 

Important variability in phylogroup distribution has been observed among sources 
(table), especially in human (H’ = 1.814; D = 0.850) and some FPA categories (poultry H’ = 
1.691, D = 0,817; dairy: H’ = 1.485, D = 0.763; fishery: H’ = 1.457, D = 0.764) showing the 
highest phylogroup richness. 

A proper comparison between phylogroup distribution in our collection and those 
reported in previous studies is hard to perform, due to the phylotyping method used and 
the multiple factors influencing phylogroup appearance. 

Phylogroup determination is mostly performed according to Clermont scheme, tar-
geting two genes (chuA, yiaA) and a DNA fragment (TSpE4.C2) [5]. This method allows to 
identify only the four main phylogroup A, B1, B2, D. The lack of proper C, E, F identifica-
tion prevents detailed epidemiological evaluation of E. coli population genetics in differ-
ent environments. Furthermore, important information regarding AMR and virulence po-
tential associated to these minor phylogroups are lacking. 

Differences in phylogroup distribution are mainly ascribable to geographical (loca-
tion and climate) and host (diet, gut morphology, body mass) factors [113], explaining 
variable animals and human phylogroup identification in different studies [109,110,113–
120]. 

Generally, human commensal E. coli are worldwide mostly associated to phylogroup 
A and D [6,114], meanwhile FPAs mostly belonged to phylogroup A and B1 [109,110]. 
Differences in wild animal phylotype distribution have been observed, with D and B1 as 
the most common in birds, A in wild rabbits and D and B2 in wild boars [110]. 

3.7. Clermont Quadruplex PCR Is a Valid Alternative to in Silico Phylotyping Technique 
Molecular and in silico phylotyping data were compared, considering that C, E, F 

phylotypes, identified with the revisited Clermont scheme [108], would be included in the 
four main phylogroups (A, B1, B2, D) in the original triplex phylogroup assignment 
method [5]. 

Important concordance between results obtained with the two phylotyping tech-
niques was observed. Only exceptions were represented by 4 strains designated as un-
known with the quadruplex PCR method and properly assigned to a phylotype with 
ARIBA. 

These findings suggest Clermont quadruplex PCR as a suitable alternative for phy-
logroup determination to in silico phylotyping. Indeed, quadruplex PCR implementation 
had contained costs, is time sparing and does not need specific and expensive technology 
for its implementation. 

3.8. Commensal E. coli Conceal Potential Multiresistant Pandemic and Emerging Expec 
Pathogens 

ExPEC are responsible for a majority of human extraintestinal infections worldwide. 
Actual ExPEC pathogenic potential is interconnected with VAG number [121], as with the 
expression of specific VFs involved in ExPEC pathogenesis. Indeed, studies in animal 
models of extraintestinal infection suggest VF profile as an in vivo virulence predictor 
[122,123]. 

Successful ExPEC pathogens must perform a range of functions during pathogenesis, 
namely adhesion/colonisation, host defence evasion, multiplication, tissue damage and 
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diffusion [1]. Specific VFs are essential in each phase of pathogenesis and are generally 
divided in 5 functional categories [11]: (i) adhesins, important adherent factors promoting 
host cell contact, hence adhesion and colonisation [124]; (ii) invasins, mediating cell inva-
sion into the host tissues [124]; (iii) iron acquisition systems, allowing iron uptake in low 
iron conditions (i.e., in host fluids and tissue) [125]; (iv) toxins, responsible of tissue lesion 
and promoter of local bacteria diffusion, cytotoxicity and insensitivity to neutrophils 
[126]; (v) protectins, structural components of the bacterial outer membrane involved in 
host defense evasion (including resistance to innate immunity and serum survival in-
crease) [127]. 

Notably, 50 pandemic and emerging ExPEC lineages were identified in our collec-
tion. Both groups showed high number of typical ExPEC VAGs (pandemic ExPEC mean 
= 8.92; emerging ExPEC mean = 6.43), including those coding for adhesins (fimH and 
papG), invasins (ibeA and gimB), iron acquisition systems (ireA, iroN, fyuA, irp2, iucD, iutA, 
sitA), serum survival protectins (iss and traT) and toxins (usp, vat, pic, sat, hlyE). 

ST131, ST95 and ST69/69* are members of the predominant clonal ExPEC group, with 
ST131 as the most common ExPEC lineage isolated worldwide [128]. 

B2 ST131 (1) and B2 ST95 (2) strains carried an outstanding number of VAGs (17 and 
12 respectively), coding for VFs of all the functional categories involved in ExPEC patho-
genesis. 

Their genetic virulence pattern showed similarities to clinical ST131 and ST95 proto-
typic virulence profile [129], suggesting the virulence potential of these strains. 

Notably, ST95 strains carried papG_II, a specific papG allele coding for the P pilus tip 
adhesin, responsible for UPEC adhesion in the urinary tract [130,131]. papG_II adhesin 
recognises glycolipid receptors located in the human kidney [132] and is frequently asso-
ciated with pyelonephritis [133]. Also toxin genes (usp and vat), typically identified in 
UPEC [35,134–136], were observed in both ST131 and ST95 strains. 

On the other side, ST69/69* strains showed significant variability in VAGs carriage 
(between 2 and 12) with rather different genetic traits compared to those commonly de-
scribed in clinical strains [129]. For example, toxin genes (cdtB, hlyD, cnf1) were not iden-
tified, though they are commonly reported in this lineage [137]. 

The high number of strains carrying typical ExPEC VAGs is particularly worrisome. 
It has been hypothesised that ExPEC represent facultative pathogens. They may occupy a 
niche in human and animal intestinal microflora, showing their virulence potential while 
colonising extraintestinal sites [11]. Discrimination with molecular epidemiological ap-
proaches between potential ExPEC and commensals could be challenging to afford, be-
cause of the share of large genomic fractions and different VAGs, involved in common 
fitness function [11]. 

ExPEC could be hidden among commensal flora, arising and showing their virulence 
with favourable conditions occurrence. Further studies are needed to better investigate 
commensal E. coli virulence traits and to elucidate their role in ExPEC infections. Identifi-
cation of commensal E. coli virulence profile could be useful to determine sources poten-
tially associated to ExPEC transmission. 

Additionally, the highest phenotypic AMR was observed in both pandemic (mean = 
2.23; MDR = 46.15%) and emerging (mean = 2.43; MDR = 37.84%) STs. A possible reason 
could be the potential co-carriage of virulence and antimicrobial determinants on the same 
genetic platform (plasmids, transposons, integrons), co-mobilized under antimicrobial se-
lective pressure [138]. A typical example is represented by F plasmid replicons that are 
considered the E. coli major virulence-associated plasmids, as well as multiple ARG carri-
ers [139–141]. Interestingly, HP-CIA resistance was mainly described in uncommon Ex-
PEC lineages, though this AMR profile is more likely identified in ExPEC STs [142]. 
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3.9. E. coli Indicator Are Expec VAG Reservoir 
Although uncommon ExPEC lineages group was associated to the lowest number of 

VAGs (mean = 3.80), the virulence profile showed extreme variability in VAG number 
(from 1 up to 15 VAGs) and presence of VFs related to different functional categories (from 
1 up to 5). In our findings, uncommon ExPEC lineages seem unlikely associated to viru-
lence potential. However, ExPEC genetic traits in the commensal population may be ac-
quired from potential ExPEC pathogens, coexisting in the gastrointestinal tract. Therefore, 
commensal E. coli could represent a critical VAG reservoir, increasing virulent armament 
of potential ExPEC pathogen or allowing the acquisition of virulence traits in traditionally 
avirulent bacteria. A notable exception is represented by 8 strains, carrying genes coding 
for all functional category members. Phylogroup association (6 B2, 1 D, 1 F) and virulence 
profile were similar to those observed in B2 ST131 and B2 ST95 strains, suggesting that in 
some cases unconventional ExPEC lineages may display ExPEC potential. 

3.10. Pandemic and Emerging Expec STs Mainly Belonged to Poultry Source 
Variable ExPEC profile has been observed in various sources, with poultry as the 

niche mostly associated to ExPEC potential. Indeed 11/25 (44%) poultry (ST117, 5; ST23, 
3; ST131, 1; ST69, 1; ST10, 1) strains belonged to emerging or pandemic ExPEC STs and 
carried high number of VAGs (poultry: mean = 11.73). 

Poultry has been suspected to represent an ExPEC animal reservoir for humans, due 
to the close genetic relationship between human EXPEC and avian pathogenic E. coli 
(APEC). Indeed, ExPEC and APEC may share genome content, phylogeny and genetic 
virulence profile [143]. Additionally, experimental studies suggest APEC as potential 
pathogen in mammals, as well as human-derived ExPEC showing their virulence in avian 
animal models [144]. Concerningly, different studies identified potential ExPEC STs in 
poultry meat, suggesting its role as a vector of potential ExPEC pathogen to human 
[145,146]. 

Faeces contamination of carcasses during slaughtering procedures seems to be the 
most feasible path of ExPEC diffusion through the food chain [147,148] as APEC are as-
sumed to coexist with commensal microflora in gastrointestinal tract of asyntomatic ani-
mals [149]. 

4. Materials and Methods 
4.1. Samples Collection 

This study analysed a collection of 279 commensal E. coli, arranged in 12 sources: 
poultry (n = 25), swine (n = 25), vegetable (n = 24), fishery (n = 24), mollusc (n = 25), wild 
animal (n = 25) and human (n = 25). 

For bacterial strain gathering, a total of 433 samples of food, animal and human origin 
(beef, 33; wild boar, 31; vegetable, 164; fishery, 94; companion animal, 12; swine, 6; poul-
try, 33; rabbit, 14; human, 27) were assembled and processed in the period between 2010 
and 2018. After analysis, 169 E. coli were collected (beef, 21; wild boar, 22; vegetable, 24; 
fishery, 24; companion animal, 12; swine, 6; poultry, 25; rabbit, 10; human, 25). 

Additionally, 110 presumptive E. coli isolates were provided by the Department of 
Veterinary Medical Science—University of Bologna—Service of Food Safety (dairy, 25) 
and Experimental Institute for Zooprophylaxis in Lombardy and Emilia Romagna (beef, 
3; rabbit, 13; swine, 19; mollusc, 25; wild animal, 25) and included in the study. 

The strains retain their original name and the respective genome sequences are avail-
able in the National Center for Biotechnology Information (NCBI) 
(https://www.ncbi.nlm.nih.gov/ )(30 Jane 2020). Accession numbers are listed in Supple-
mentary Materials Tables S2–S4. 
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4.2. Genetic Features of the Collection 
In our previous study an overall description of E. coli population structure, genetic 

virulence and antimicrobial resistance profile and phylogroups was described and her-
after summarised. One hundred-eight out of 279 (38.71%) strains carried between 1 and 
18 ARGs, with consistent variability in genetic resistance profile among sources. The most 
common ARGs were tetracycline resistance gene tetA (57/279, 20.43%), sulfonamide re-
sistance gene sul2 (45/279, 16.12%), penicillin resistance gene blaTEM-1b (43/279, 15.41%) and 
streptomycin resistance genes strA/B (42/279; 15.10%) among the overall collection. In that 
study, genes and chromosomal point mutations conferring resistance to HP-CIAs were 
widely detected, including to quinolones (Qs) (qnrS1, qnrB19, gyrA/parC/parE), colistin 
(mcr1, pmrB) and 3d generation cephalosporins (3GC) (blaCMY-2, ampC). Q resistant determi-
nants were mainly observed in rabbit (17/57; 29.82%) and poultry (13/57; 22.81%) sources, 
meanwhile colistin ARGs were detected in rabbit (3), swine (3) and dairy (1) strains. 3GC 
resistance genes were identified in 2 beef and 1 human strains, respectively. Extended-
spectrum beta-lactamase (ESBL) genes (blaCTX-M1,15,55) were rarely observed and identified 
in animal (2 dairy and 1 wild animal strains) and human (1) samples. One hundred and 
eleven different VAGs were detected among the collection. All strains carried between 1 
and 37 VAGs. Virulence profile often included typical ExPEC VAGs. Notably, different 
pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) Ex-
PEC lineages were observed, especially in poultry meat strains (ST131, ST69, ST10, ST23, 
and ST117). Considering Clermont triplex PCR phylotyping method [5], the most com-
mon phylogroup identified among the collection was B1 (130; 46.6%), followed by A (81, 
29%) D (47; 16.8%) and B2 (21; 7.5%). 

4.3. Bacterial Isolation and Molecular Identification 
A comprehensive description of the isolation and the molecular identification proto-

cols are available in Massella et al., (2020) [33]. 
Briefly, lactose fermenting colonies were selected on MacConkey’s (Oxoid, Basing-

ton, UK) and Levine’s (Oxoid, Basington, UK) agar plates and were incubated for 18–24 h 
at 37 ± 1 °C. In food sample processing, an additional enrichment step in EC-Broth (Oxoid, 
Basington, UK) preceded strain isolation on agar plates. Gram stain and standard bio-
chemical test (indole probe) were used for presumptive E. coli identification. Genomic 
DNA was extracted using a commercial kit (DNeasy Blood and Tissue Kit, Qiagen, Hil-
den, Germany), following the manufacturer’s instruction. Species identification was per-
formed using the multiplex PCR designated by Horakova et al., (2008) [150]. 

4.4. Antimicrobial Resistance 
Antimicrobial resistance phenotyping was performed with the Kirby-Bauer disk agar 

diffusion method in accordance with the Clinical and Laboratory Standards Institute 
guidelines (CLSI) [151]. The antimicrobial panel was chosen considering the antimicrobial 
genetic profile of the collection, the importance of antimicrobial classes in the treatment 
of human infections and the intrinsic resistance of E. coli [152]. Particular attention was 
focused on HP-CIAs, whose resistance is highly suspected to be linked to food-producing 
sector [7]. 

The following antimicrobials were tested: nalidixic acid (30 µg), ampicillin (10 µg) 
ceftazidime (10 µg), ceftiofur (30 µg), chloramphenicol (30 µg), enrofloxacin (10 µg), gen-
tamicin (10 µg), streptomycin (10 µg), sulfisoxazole (300 µg), tetracycline (30 µg) and tri-
methoprim-sulfamethoxazole (25 µg). 

Results were interpreted referring to the epidemiological cut-off values (ECOFFs) for 
E. coli proposed by the European Committee on Antimicrobial Susceptibility Testing (EU-
CAST) (http://www.eucast.org; last accessed 30 June 2020). The EUCAST clinical break-
points for Enterobacteriaceae [153] or the CLSI clinical breakpoints for Enterobacteriaceae 
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[151,154,155] were considered when cut-off values were not available (Supplementary 
Materials Table S1). 

Colistin MIC was determined by the broth microdilution method using customized 
Sensititre™ 96-well microtitre plates (Trek Diagnostic Systems, East Grinstead, UK). Fol-
lowing manufacturer instructions, 10 µl of bacterial suspension (0.5 McFarland) were 
placed in 11 mL Mueller-Hinton Broth cation adjusted (Oxoid, Basington, UK). Fifty mi-
croliters of the final suspension were put into all wells of the same strip within 30 min 
after its preparation. Plates were incubated for 18–24 h at 35 °C. Strains were considered 
susceptible/resistant considering EUCAST ECOFF (2 mg/L) for E. coli (http://www.eu-
cast.org; last accessed 30 June 2020). 

The combination disk test [152] was implemented for the evaluation of ESBL produc-
ing E. coli. Briefly, the strains were tested for cephalosporins (ceftazidime and cefuroxime) 
alone and in combination with clavulanic acid, performing disk agar diffusion method. 
When an increase ≥ 5 mm in zone diameter was observed in the presence of clavulanic 
acid compared with the cephalosporin alone, the strain was considered an ESBL producer. 

E. coli ATCC 25,922 was used as control strain for antimicrobial testing and as nega-
tive control for the evaluation of ESBL profile. 

Strains were considered multidrug resistant (MDR) when showing resistance to three 
or more antimicrobial classes [156]. 

Lastly, we evaluated concordance between E. coli phenotypic AMR pattern and gen-
otypic AMR profile, identified in the previous publication [33]. 

4.5. Phylogrouping 
Phylogroup evaluation was performed using the quadruplex PCR and primers de-

scribed by Clermont et al., (2013) [108], able to identify 7 different phylogroups (A, B1, B2, 
C, D, E and F) and cryptic clade I. Strains generically designated as cryptic clade members 
in the quadruplex PCR were then screened to establish the specific cryptic clade (II-III-IV-
V), according to Clermont et al., (2011) method [157]. 

Finally, results were compared to phylogroup distribution obtained with in silico 
phylotyping technique reported in the previous publication [33]. 

4.6. Expec Virulence Potential 
Evaluation of ExPEC virulence potential considered different epidemiological traits, 

such as ST and virulence gene profile (both identified in the previous study) and phy-
logroup belonging (according to revisited Clermont scheme) [6]. The collection was di-
vided into 3 main groups according to ST epidemiological role in ExPEC infections [158]: 
the first was characterised by pandemic ExPEC STs; the second consisted of emerging 
ExPEC STs; the third included the remaining lineages not specifically associated to ExPEC 
pathogens. Attention was focused on B2 and D strains, as these phylogroups have been 
historically associated to ExPEC pathogens [108]. 

Genes coding for typical ExPEC virulence factors (VFs) of 5 functional categories (ad-
hesins, invasins, iron acquisition systems, toxins and protectins) [11] were selected from 
the original virulence profile. Additional genes were also included, such as ones coding 
for vacuolating autotransporter toxin (vat), genetic island associated with newborn men-
ingitis (gimB) [125] and uropathogenic specific protein (usp) [159] (Table 6). 

The resulting ExPEC genetic profile, associated to a specific phylogroup and ST be-
longing, was then considered in order to establish ExPEC pathogenic potential of the col-
lection. Association of virulence and important AMR traits (MDR, HP-CIA resistance, 
ESBL profile) was also investigated. 
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Table 6. Representation of virulence genes identified in the collection and related virulence factors/functional categories. 
Each VAG is associated to specific ExPEC pathovars, where they have been commonly identified according to Kaper et 
al., (2004) [1], Sarowska et al., (2019) [124], Kudinha et al., (2012) [160] (bmaE), Tóth et al., (2009) [161] (cdtB), Ostblom et 
al., (2011) [162] (malX) and Schierack et al., (2008) [125] (gimB). 

Functional Category Virulence Factor Gene Pathotype 
Adhesin M-agglutinin subunit bmaE UPEC 

 type 1 fimbrial adhesin fimH 
UPEC, NMEC, SEPEC, 

APEC 
 iron-regulated-gene-homologue adhesin iha UPEC 
 pilus associated with pyelonephritis papC UPEC, SEPEC, APEC 

 pilus associated with pyelonephritis 
papG_II; 
papG_III 

UPEC, SEPEC, APEC 

 S fimbrial adhesin sfaS UPEC, NMEC 
 bifunctional enterobactin receptor/adhesin iha UPEC, NMEC 

 temperature sensitive hemagglutinin tsh 
UPEC, NMEC, SEPEC, 

APEC 
Inasin invasion of brain endothelium ibeA NMEC, SEPEC, APEC 

 
genetic island associated with newborn men-

ingitis 
gimB NMEC 

Iron acquisiton system iron-responsive element ireA UPEC 

 catecholate siderophore receptor iroN 
UPEC, NMEC, SEPEC 

APEC 
 ferric yersinia uptake fyuA UPEC, NMEC 
 iron repressible protein irp2 NMEC 
 l-lysine 6 monooxigenase iucD UPEC, APEC 
 ferric aerobactin receptor precursor iutA UPEC,NMEC 
 periplasmic iron binding protein sitA UPEC, APEC 

Toxin cytolethal distending toxin B cdtB 
UPEC, NMEC, SEPEC 

APEC 
 cytotoxic necrotising factor cnf1 UPEC, MNEC, SEPEC 
 haemolysin E hlyE UPEC 
 serine protease autotransporters pic UPEC 
 serine protease autotransporters sat UPEC 
 uropathogenic specific protein usp UPEC 
 vacuolating autotransporter toxin vat UPEC, APEC 

Protectin increased serum survival iss NMEC, SEPEC, APEC 
 structural component of colicin V operon cvaC NMEC, SEPEC,APEC 
 group II capsule antigens kpsMT_II NMEC, SEPEC 
 outer membrane protein ompT UPEC, NMEC 
 transfer protein traT NMEC, SEPEC 
 K1 capsular polysaccharide neuC NMEC, UPEC 

Other pathogenicity-associated island marker malX 
UPEC, NMEC, SEPEC, 

APEC 
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4.7. Statistical Analysis 
Differences in the occurrence of resistance to antimicrobial agents in E. coli strains 

among different sources were tested by Pearson’s chi-square. The same statistical test was 
used to assert differences in phylogroup distribution among E. coli of different niches and 
association between specific resistance and phylogroup. A p value < 0.05 was considered 
statistically significant. 

Diversities in phylogroup assignment in terms of number and phylotype among E. 
coli of different origin were calculated using Shannon–Weaver diversity index (H′), H′ = 
−∑si = 1Pi ln(Pi), where Pi is the percentage of strains belonging to the i-th phylotype of the 
total number of strains surveyed [163], and Simpson’s diversity index (D’), D = −∑si = 1Ni 
(Ni − 1)/N (N − 1), where Ni is the number of strains in the i-th phylotype and N is the total 
number of strains [163]. 

5. Conclusions 
In conclusion, our study provides an important overview of phenotypic AMR, Ex-

PEC virulence potential (according to the revisited Clermont scheme) and phylogroup 
distribution in commensal E. coli of animal, food and human origin. 

AMR pattern in human, companion animal and most FPA categories reflected gen-
eral phenotypic resistance trends and antimicrobial stewardship in Europe. Identification 
of human and animal (livestock and companion animal) AMR profiles in niches with a 
rare (fishery, mollusc) or absent (vegetable, wild animal, wild boar) direct exposure to 
antimicrobials suggested widespread environmental AMR pollution. Some sources (wild 
animal and wild boar) may represent important AMR source sentinel. AMR was mainly 
associated to FPAs, already suspected to play a major role in AMR diffusion. 

The important virulence profile identified among the collection proposed commensal 
E. coli as ExPEC VAG source, from which potential pathogen may acquire new virulence 
traits. Identification of different pandemic/emerging ExPEC STs and similarities in viru-
lence profile between commensal and clinical human ExPEC lineages could suggest Ex-
PEC virulence potential of commensal bacteria. 

Rabbit and poultry were the most concerning sources, associated to the highest AMR 
among all the collection and suggested as potential AMR reservoirs. Additionally, differ-
ent pandemic/emerging ExPEC STs and important virulence profiles were observed in 
poultry strains, as already described in the literature. In poultry and rabbit sources, iden-
tification of concerning AMR and virulence profile in an important number of meat origin 
strains suggested the food chain as a feasible transmission path of potential multiresistant 
pathogens to human. 

Phylogrouping revealed a complex phylotype distribution, attributed to different 
host and geographical factors. General concordance was observed between phenotypic 
and genetic AMR profile, as between molecular and in silico and phylogrouping, suggest-
ing the revisited Clermont method as a reliable and cheaper phylotyping technique alter-
native. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-
6382/10/4/351/s1, Table S1: AMR breakpoint and cut-off considered in the present study; Table S2: 
phenotypic AMR profile of the collection; Table S3: genetic AMR profile of the collection; Table S4: 
genetic virulence profile of the collection. 
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