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3D multicellular spheroids quickly emerged as in vitro models because they represent the in vivo tumor
environment better than standard 2D cell cultures. However, with current microscopy technologies, it
is difficult to visualize individual cells in the deeper layers of 3D samples mainly because of limited light
penetration and scattering. To overcome this problem several optical clearing methods have been pro-
posed but defining the most appropriate clearing approach is an open issue due to the lack of a gold stan-
dard metric. Here, we propose a guideline for 3D light microscopy imaging to achieve single-cell
resolution. The guideline includes a validation experiment focusing on five optical clearing protocols.
We review and compare seven quality metrics which quantitatively characterize the imaging quality
of spheroids. As a test environment, we have created and shared a large 3D dataset including approxi-
mately hundred fluorescently stained and optically cleared spheroids. Based on the results we introduce
the use of a novel quality metric as a promising method to serve as a gold standard, applicable to compare
optical clearing protocols, and decide on the most suitable one for a particular experiment.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Two dimensional (2D) monolayer cell cultures have been used
extensively as model systems to evaluate the efficacy of com-
pounds in drug discovery studies for decades. However, it has been
demonstrated that culturing cells in 2D does not properly reflect
the physiological properties of tissues and tumor-specific microen-
vironments [1]. As an attempt to find a more relevant model sys-
tem for drug testing, three dimensional (3D) cell cultures have
gained increasing attention [2]. Several 3D in vitro models are cur-
rently used in biological laboratories [3], the most common of
which are spheroids where the cells are arranged into clusters in
a sphere-like structure [4]. Spheroids mimic in vivo conditions
and preserve the structure of the cells, making this model system
remarkable for many biological research fields, such as drug dis-
covery, tumor biology or immunotherapy [5–7]. Despite their
advantages exploited in screening studies, large-scale image acqui-
sition is still challenging in case of 3D samples. Single-cell pheno-
typing is one of the most promising drug screening approaches
emerging nowadays [8,9]. It is one of the most relevant techniques
to monitor the morphological changes induced by pharmacological
treatments in drug screening studies, allowing to understand the
effects of the compounds tested. Light sheet-based fluorescence
microscopy (LSFM) is widely used to visualize single cells compos-
ing the inner core of the spheroids [10]. LSFM obtains optical sec-
tions by moving the sample through a thin layer of laser light, also
called a light sheet, which illuminates the focal plane of the detec-
tion path. Since LSFM provides high imaging speed with remark-
ably low photobleaching and high penetration depth [11], the
technique is well suited for the imaging of large spheroids,
typically up to 500 mm [12].
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However, in spheroids, light scattering strongly limits imaging
depth: scattering of both the excitation and emission lights results
in a loss of fluorescence intensity and contrast. As a consequence,
the imaging depth is restricted, practically allowing the screening
of cells in the outer layer of the spheroids only. This light scattering
effect is mainly explained by the discontinuities of the refractive
index (RI) between and within spheroids [13]. To overcome this
problem, many optical clearing protocols were established during
the last decade [14]. Most of these methods aim to increase trans-
parency of spheroids chemically, by equilibrating RI throughout
the sample to reduce inhomogeneities in light scattering. To
achieve this, various approaches have emerged, such as dehydra-
tion, solvent- and water-based techniques [13]. Although clearing
protocols have been increasingly adopted for 3D cultures in cellu-
lar phenotyping assays [15,16], the quantitative assessment of the
efficiency of these methods is still challenging. Most of the studies
focusing on newly developed clearing protocols used diverse qual-
itative and quantitative efficacy measures to assess the perfor-
mance of the newly established clearing technique. However, due
to the subjective aspects of human perception and the lack of gold
standard metrics, many optical clearing protocols are available and
used without a proper evaluation of their efficacy.

In this article, we report on developing and comparing novel
metrics that measure the efficiency of optical clearing protocols
for 3D images in an uniform way. We considered seven no-
reference sharpness metrics for evaluating the clearing protocols
and implemented those in a user-friendly open-source ImageJ/Fiji
[17,18] plugin named Spheroid Quality Measurement (SQM). To
test their performance and usability, we created and shared a large
3D dataset [19] composed by 90 cancer spheroids and established
a 3D analysis pipeline using five popular water-based clearing pro-
tocols, namely ClearT [20] ClearT2 [20] CUBIC [19,21], ScaleA2 [22]
and Sucrose [19,23]. We used the human experts’ evaluation of the
3D dataset as the ground truth and compared the correlation
between the metrics and the human experts. We found that among
the seven metrics, only intensity variance is suitable to quantita-
tively measure and evaluate different optical clearing protocols.
Fig. 1. Representation of the 3D pipeline summarizing the concept of our experiments. Sp
250 mm) were cleared with ClearT, ClearT2, CUBIC, ScaleA2, and Sucrose protocols, and the
light-sheet microscope was used, yielding z-stack images. Ten experts evaluated the sh
quality metrics. Correlations between the quality metrics and human evaluation were c
used to compare the efficacy of the optical clearing protocols applied on three types of

1234
Finally, we compared the efficiency of the clearing protocols on
spheroids derived from three different human carcinoma cell lines
with intensity variance metric and identified the best clearing pro-
tocols for each cell line. Based on these findings we support inten-
sity variance as the gold standard metric to evaluate the efficacy of
optical clearing protocols on 3D multicellular spheroids.

2. Results

2.1. 3D pipeline

To evaluate the quality assessment metrics, we designed a 3D
pipeline (Fig. 1). The seven metrics we consider here are commonly
used to benchmark image sharpness in photos and videos, however,
they characterize different aspects of the images. In order to validate
these metrics, we first created a 3D dataset of clearedmono-culture
spheroids (Fig. 2). All details are reported in [19]. Then,we asked ten
microscopy experts (researchers that have been working with
spheroid images and possess at least 5 years of experience inmicro-
scopy) to visually evaluate the sharpness of the images and we cor-
related their evaluations with the results of the seven metrics.
Finally, to measure the efficacy of the clearing protocols, we used
the metric that best correlated with the evaluation of the experts.
In this article we report on our findings, organized as follows: Sec-
tion 2.2 (i.e. ‘‘Human evaluation”) summarizes the results of the
human evaluation of the 3D dataset. In Section 2.3 (i.e. ‘‘Quantita-
tive metrics”) we discuss the results for image quality assessment
using the seven objective no-reference sharpness metrics that we
implemented as an ImageJ/Fiji plugin. The correlation between the
quality metrics and human evaluation, as well as the performance
of the 5 optical clearing protocols tested are presented in Section 2.4
(i.e. ‘‘Correlation and clearing results”).

2.2. Human evaluation

For a quantitative testing of the proposed metrics, a 3D light-
sheet dataset of spheroids was used [19]. The dataset contained
heroids from T-47D, 5-8F, and Huh-7D12 cell lines with a similar size range (approx.
nuclei of the cells were labeled with DRAQ5 staining. For imaging, a Leica SP8 digital
arpness of the fluorescent images, and we compared their scoring with the tested
alculated using Pearson’s correlation, and the metric with the best correlation was
spheroids originating from different cell lines.



Fig. 2. 3D representation of the dataset. (A) 3D representation of a nuclei-labeled
Huh-7D12 spheroid cleared with Sucrose optical clearing protocol. For visualiza-
tion, a square (110 � 110 � 300 mm) from the middle part of the original spheroid
was extracted. (B) For all the five clearing protocols, the same area was extracted
from all the three cell lines. The scale bar represents 100 mm. The images were taken
and visualized with a LAS X microscope software developed by Leica.
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fluorescence stack images of 90 spheroids that included three cell
lines (T-47D, 5-8F, and Huh-7D12), five clearing protocols (ClearT,
ClearT2, CUBIC, ScaleA2, and Sucrose), and an uncleared group as
a control (the number of spheroids was n = 5 for each group).
Ten microscopy experts scored the LSFM images of the spheroids
cleared with the optical clearing methods. The scores ranged from
1 to 5 (1 for the worst image quality and 5 for the sharpest image).
To assess the consistency of each expert’s evaluation, some of the
images were repeated. On average, the self-accuracy of the ten
experts reached 81.6% for the evaluation of repeated images. The
best-case consistency was 92.1% and the worst-case one was
74.5%, and only four of the experts recognized the repeated images
during the evaluation process. In general, the experts were more
uncertain in case of the highest scores (i.e. ‘‘good” – 4 or ‘‘very
good” – 5) were considered to be appropriate. Therefore, the scores
for the T-47D and the 5-8F spheroids were less consistent com-
pared to the Huh-7D12 spheroid. According to the experts, they
could differentiate between the top, the middle and the bottom
regions of the spheroids. The average results for the evaluation
executed by the ten experts are represented on a heatmap
(Fig. S1A). In general, the experts scored the T-47D spheroids
higher, followed by the 5-8F spheroids, whereas the Huh-7D12
spheroids were characterized by the lowest scores. Comparing
1235
the optical clearing protocols, the results for ClearT and ClearT2

were similar to the uncleared group, as the experts could hardly
differentiate them from one another, however both of these clear-
ing protocols decreased the size of the spheroids. Meanwhile,
CUBIC, ScaleA2, and Sucrose protocols got higher scores for all
the three regions of the spheroids, indicating that these optical
clearings improved the transparency of the spheroids. We con-
cluded that Sucrose was the only protocol that improved the image
quality even at the bottom region for the Huh-7D12 spheroids,
while the 5-8F and the T-47D spheroids had better scores when
CUBIC and ScaleA2 protocols were applied. Both of these protocols
reached very similar scores upon the experts’ evaluation, as no sig-
nificant differences between these images could be detected by the
human experts. Among the mentioned clearing protocols Sucrose
resulted in minimal shrinkage, meanwhile CUBIC and ScaleA2
increased the volume of the spheroids. Regarding that currently
there is no gold standard metric capable of assessing the differ-
ences between the different protocols, we considered the results
for the experts’ evaluation as ground truth to compare the metrics
for their appropriateness to quantify the performance of the clear-
ing protocols tested.

2.3. Quantitative metrics

We implemented seven metrics in a user-friendly ImageJ/Fiji
plugin to assess the quality of microscopy images, namely intensity
variance, Laplacian variance, gradient magnitude variance, his-
togram threshold, histogram entropy, kurtosis, and frequency
threshold [24–28], and benchmarked them on 3D datasets. The
metrics were applied on each optical section of the whole z-
stacks independently, and the results were visualized. For his-
togram, gradient, and intensity based metrics, we enabled the
threshold option to obtain information from the area of the spher-
oid. To handle the sharpness and contrast differences between the
outer and inner layers of the spheroids, caused by the lateral light
scattering effect, an internal circle option was also enabled which
evaluates images inside the spheroids only. A schematic represen-
tation of the metrics is shown in Fig. 3, and an extended compar-
ison of them is presented in Table 1. Detailed results for all the
metrics evaluated on the Huh-7D12 cell line are shown in Fig. S2.

2.3.1. Intensity variance
Intensity variance clearly differentiated the uncleared group

from those that were cleared. The plot reaches the maximum vari-
ance in the top region of the spheroid, and constantly decreases
towards the deeper layers. Higher steepness of the plot indicates
that visibility inside the spheroid is limited. In general, the
uncleared spheroids lost intensity variance from top to the center,
mainly in the first outer third, while the cleared and more trans-
parent spheroids retained higher values through their whole thick-
ness (Fig. 3 and Fig. S2). The results for the internal circle yielded
plots of similar shape, but separated the cleared spheroids better.
This metric is one of the most basic methods, and it is a relatively
fast approach for assessing image quality.

2.3.2. Derivative based metrics
Gradient magnitude variance and Laplacian variance metrics

are also pixel based. Metrics that use image derivatives require
pixel operations in order to yield a transformed image on which
the final assessments are executed. These derivative metrics pro-
vided plots similar to those yielded by the intensity variance
method. Based on the evaluation of the whole spheroid, no differ-
ences between these metrics were detected, however, the results
for internal circle assessment separated the uncleared and cleared
groups, and changed the order of the clearing protocols (Fig. 3 and



Fig. 3. Conceptual figure for the workflow of the quantitative metrics. The metrics based on Fourier transformation were evaluated on the whole image, whereas for the other
metrics the automatic Otsu threshold was applied. For histogram, edge and intensity based metrics, the internal circle option was also enabled to assess the information
content at the center of the objects only. The results for each metric were visualized as a plot describing sharpness across the spheroid, where the coordinate in the x-axis
represents the number of the image within the stack, and the y-axis is the score obtained by the metric. For histogram, edge and intensity based metrics, only the results for
the internal circle are represented. Dark blue curves represent the uncleared spheroid, and gray curves represent the cleared spheroid. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. S2). These findings suggest that the internal circle option is
suitable to compare the optical clearing protocols.

2.3.3. Histogram based metrics
The histogram of a digital image shows the frequency of pixel

intensities. Here we used two of the most popular histogram based
methods for quality assessment, called histogram entropy and his-
togram thresholding. Analysing the entire spheroids, histogram
threshold reached the maximum values at the middle and it sepa-
rated clearing groups from each other (Fig. S2). While, histogram
entropy metric yielded consistent plots and the differences
between the clearing groups were hardly visible. Based on the
evaluation of the internal circle, the difference between the
uncleared and cleared spheroids were remarkable when using his-
togram thresholding metric, while histogram entropy plots
showed the same consistent values across the spheroids. However,
the assessment of the internal circle increased the differences and
some of the cleared groups were separated from the uncleared
group.

2.3.4. Frequency based metrics
To investigate the frequency space, frequency threshold and

kurtosis were implemented in SQM and were evaluated on the
whole image, without internal circle option. Frequency threshold
metric failed to visualize the differences between the cleared and
uncleared spheroids. Overall, frequency threshold yielded consis-
tent plots, and the different optical clearing protocols were charac-
terized by similar curves (Fig. 3 and Fig. S2). On the other hand, the
kurtosis metric distinguished the cleared groups from one another,
and the shapes of the curves were similar to those yielded by the
intensity and derivative based metrics. This finding suggests that
the frequency space can provide additional information about the
images. However, performing all the necessary calculations to get
1236
the bivariate kurtosis proved to be highly time consuming com-
pared to the other metrics, and this drawback makes kurtosis less
suitable for routine assessments.
2.4. Correlation and clearing results

2.8.1. Results of the metrics
According to the experts’ evaluation, the Uncleared, ClearT and

ClearT2 image groups were characterized by lower scores, while
CUBIC, ScaleA2, and Sucrose got higher scores (Fig. S1A). Accord-
ingly, we expected a gap between the well-performing and worse
performing clearing protocols. Frequency threshold metric was
unable to differentiate between the clearing protocols (Fig. S2).
Kurtosis metric, which can be calculated for the whole image only,
yielded results similar to those obtained by intensity and edge
based metrics, however, the slow processing time make this metric
less effective. Histogram threshold metric distinguished between
the optical clearing protocols, but the results did not match the
ground truth: the ScaleA2 and the CUBIC protocols did not improve
transparency compared to the uncleared group, which is in con-
trast to the results for the experts’ evaluation. We also measured
the histogram threshold metric in the internal circle of the spher-
oids, where it showed greater differences between the cleared and
uncleared groups, but the overall rank of the clearings was the
same as for the whole spheroid. On the other hand, the histogram
entropy metric, besides revealing differences among the clearing
protocols, also matched the ground truth’s order of the protocols.
Furthermore, the assessment of the internal circle separated the
clearing groups revealing greater differences between the proto-
cols. Intensity variance, gradient magnitude variance, and Lapla-
cian variance metrics yielded plots with very similar shape and
almost the same order of the clearing protocols. Furthermore,
intensity variance metric yielded similar results for the whole



Table 1
Comparison of the metrics used in our experiments to quantitatively evaluate the imaging quality of spheroids. For the time comparison, 5 z-stacks with overall 295 images were
processed using a consumer level laptop (Intel Core i5, CPU 1.80 GHz, 8 GB RAM).

Metric name Value(s) used Calculation of the
metric

High value
obtained

Low value
obtained

Advantages Drawbacks Computational
time (average)

Intensity variance Grayscale pixel
values

Variance of intensity
values

There are many
different
intensities in the
image which are
far away from one
another in
brightness

There is just one
intensity value
in the image

General
usability,
strongly
associated with
image sharpness,
fast

Needs fine-
tuning in
specific cases

0.82 s/image

Gradient magnitude
variance

Magnitude of
the partial
image
derivative
vectors

Variance of gradient
magnitudes

There are many
edges in the image
with various
magnitude values

There are no
edges in the
image, the
image is
homogeneous

Strongly
associated with
image sharpness,
widely used in
autofocus
detection, fast

Very sensitive
to noise, yields
high values for
blurred images
with very sharp
regions

0.86 s/image

Laplacian variance Second order
image
derivative
values

Variance of the sum of
second order
derivatives

There are many
edges in the image
with various
sharpness

There are no
edges in the
image, the
image is
homogeneous

Strongly
associated with
image sharpness,
widely used in
autofocus
detection, fast

Noise sensitive,
edges are not
always
indicative of
image quality

0.92 s/image

Histogram
thresholding

Image
histogram
values

Sum of histogram bin
values above a
predefined threshold
(mean grayscale
value), multiplied by
their occurrence
values

There are a lot of
bright pixels in the
image
(theoretically
when every pixel
has the brightest
value)

The pixels in the
image have low
brightness
(theoretically
when every
pixel has 0
value)

Easy to calculate,
fast

Applicable for
image quality
assessment in
very specific
cases only

0.88 s/image

Histogram entropy Image
histogram
values

Shannon entropy of
the histogram as a
vector of the
occurrence values

Every histogram
bin has the same
value

Only 1
histogram bin
has all the
values

Strong
theoretical
background,
used for image
quality
assessment, fast

Not closely
related to
image
sharpness,
histogram
information
might be
misleading

0.94 s/image

Frequency
thresholding

FFT magnitude
image
intensities

Sum of the intensities
in the FFT image with
a high-pass filter

Image contains a
lot of high
frequency
components
(edges, sharp
noise)

Image is mostly
made of low
frequency
components
(homogeneous
objects)

Edges can be
detected very
effectively in the
FFT image, which
is closely related
to sharpness

Noise sensitive,
threshold value
is important

0.35 s/image

Kurtosis FFT magnitude
image of the
autocorrelation
image

Kurtosis of the
periodogram as a
bivariate probability
distribution

There are less high
frequency
components on the
FFT of the
autocorrelation
image

There are more
high frequency
components on
the FFT of the
autocorrelation
image

Theory suits well
to sharpness
assessment

Very slow, less
intuitive than
some other
metrics

2.78 s/image
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spheroids and for the internal circle of the spheroids. Meanwhile,
gradient magnitude and Laplacian metrics revealed greater differ-
ences between the clearings, based on the internal circle assess-
ments. Histogram entropy, histogram threshold, and frequency
threshold methods yielded different line charts. Besides from the
different line charts, all the metrics were reckoned to be worthy
of further investigation to compare their correlation with the
experts’ evaluation.
2.8.2. Correlation
To check if there is a quantitative metric able to reflect the

experts’ evaluation, the Pearson’s correlation coefficient was com-
puted between each metric and the ground truth by normalizing
the results for all the spheroids. Here, we only discuss the intensity
variance metric that showed the highest correlation with the
experts either when applied to the whole spheroid or to the inter-
nal circle only. This makes it an optimal candidate to assess quality
differences. Considerations for the other metrics are reported in
Supp. Note 1, with a detailed version of all the correlations and
the individual normalization depicted in Fig. S3.
1237
The Pearson’s correlation coefficient for intensity variance
resulted in 0.67 (Fig. 4A). The internal circle option improved the
overall match with the experts’ evaluation and showed a higher
correlation (0.80, Fig. 4A and E). The correlation between intensity
variance and the experts’ scores was highest at the bottom regions
of the spheroids and decreased at the middle and top regions. The
Pearson’s correlation coefficient for the top, the middle, and the
bottom regions were 0.46, 0.84, and 0.92 (Fig. 4B-D). Better image
quality (like at the top region of the spheroids) and higher trans-
parency of the spheroids weakened the correlations. This result
might be contradictory, but it can be explained by the fact that
the human decisions were less consistent with images of better
quality because the experts found it difficult to decide the optimal
score for them. In general, intensity variance metric showed the
strongest correlation with the human scores in cases when the
experts well distinguished the groups from one another (like at
the bottom regions), independently of the type of the spheroids.
Moreover, a stronger correlation between intensity variance and
the experts’ scores was revealed for the Huh-7D12 spheroids com-
pared to the T-47D and 5-8F spheroids. We reckon that the fairly
good overall 0.80 Pearson’s coefficient for the correlation between



Fig. 4. Correlation between the metrics and the experts’ evaluation. (A) Results for the Pearson’s correlation analysis between the metrics and the experts’ assessment.
Metrics were evaluated considering all the cell lines together. Bounding boxes with dashed lines represent the results of the internal circle assessment. (B-D) Correlation
results for the three regions of the spheroids. (E) For a reliable calculation of the correlation between a metric and the experts’ assessment (i.e. the ground truth), all three
regions of spheroids were included. Dark-blue dots represent the Huh-7D12 spheroids; blue dots the 5-8F spheroids; light-blue dots the T-47D spheroids. The correlation was
visualized with linear regression, and the Pearson’s correlation coefficient was calculated for all the spheroids. In total, 54 pairs were tested to assess the overall correlation
between the metrics and expert assessment, whereas only 18 pairs were tested to demonstrate the correlations at the different regions. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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intensity variance metric and the experts’ scores, indicates that
intensity variance might be reliably used for the quality assess-
ment of optical clearing protocols.

2.8.3. Clearing efficacy based on the intensity variance metric (based
on internal circle assessment)

The correlation analysis confirmed that intensity variance met-
ric yielded the highest scores both for the whole spheroid and for
the internal circle assessments. Thus, in our further experiments
we used this metric to visualize the spheroids treated by the five
optical clearing protocols tested. Our primary aim was to find the
best optical clearing protocol which is capable of clearing all the
three types of spheroids in an appropriate manner. The metrics
do not require a similar efficacy between the protocols to be com-
pared. However, comparing clearing methods with a similar effi-
1238
cacy it is easier. Regarding the methodology, it must be
emphasized that the comparison of different clearing protocols
presumes that every single protocol is applied on all different
spheroid types, one by one, and the cleared spheroids are ana-
lyzed by the chosen metric to reveal how each protocol performs
on the different cell lines (Fig. 5A). In contrast, when different
clearing protocols are applied in parallel on a well-defined spher-
oid type, the results can only show the best protocol for the cell
line of interest, but this type of experiment is inappropriate for
the evaluation of the relative efficacy of the different clearing pro-
tocols on various spheroid types (Fig. 5B). This methodological
issue is explained by the fact that different normalization scales
are used for the assessment of each sample type (Fig. 5 and
Fig. S4). All three types of spheroids were treated with each clear-
ing protocol, and were analyzed using intensity variance metric,



Fig. 5. Results for the clearing protocols (A) Performance (efficacy) of the clearing protocols on the spheroid types derived from different cell lines. Three types of spheroids
were compared at three regions (top, middle, bottom) using intensity variance metric with the internal circle option, after applying each clearing protocol. The scores
represent the results for the different types of spheroids treated with the same clearing protocol. (B) Comparison of the clearing protocols on each spheroid type to reveal the
most appropriate method for each cell line. Intensity variance was used with the internal circle option to assess the quality of each protocol. The efficacy of each clearing
protocol was compared to the uncleared spheroids of the same type. Each cleared group contains five spheroids that were divided into three regions (top, middle and bottom),
yielding 15 values per group for quality assessment. *p � 0.05; **p � 0.01; ***p � 0.001.
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separated to top, middle and bottom regions. Using intensity vari-
ance, the T-47D spheroid reached the highest scores, followed by
5-8F and Huh-7D12, which confirmed the transparency differ-
ences among the spheroids derived from various cell lines. In
all cases, the top and the middle regions of the spheroids reached
higher scores than the bottom, which also confirms the presence
of vertical light scattering. The results for internal circle assess-
ments differed from the results related to the whole spheroid.
Regarding the efficacy of the optical clearing protocols, the anal-
ysis revealed that Sucrose increased transparency for all the
spheroids (Fig. 5A), but the total score for the three spheroid
types were not similar in all the regions. The efficacy of the clear-
ing protocols revealed that ScaleA2 and CUBIC clearing protocols
were successful on certain cell lines only, but not on all the three
types of spheroids (Fig. 5B). When the cleared groups were com-
pared to the control group, we noticed that ClearT and ClearT2

increased transparency especially at the top region of the spher-
oids. Although they both slightly improved the scores, the results
1239
did not differ significantly from the scoring of the uncleared
spheroids (Fig. 5A and B). In case of the T-47D spheroids, CUBIC,
ScaleA2, and Sucrose protocols improved transparency signifi-
cantly, but the differences among these groups were minimal.
In case of the 5-8F spheroids, ScaleA2 protocol significantly
improved image quality, yielding high quality images with low
background signals. For the Huh-7D12 spheroids, Sucrose reached
the highest scores (Fig. 5B). In general, the scores for the whole
spheroid assessments were higher than those for the internal cir-
cle assessments, because the outer parts of the spheroids
improved the values (Fig. S4). Due to the lateral illumination by
the light-sheet microscope, the higher contrast of the nuclei at
the outer shell reduced the accuracy of the comparison, leading
to modified overall results. Based on the whole spheroid assess-
ments, all clearing protocols improved the overall scores for each
cell line. The differences among CUBIC, ScaleA2 and Sucrose clear-
ing protocols decreased, but the order of the protocols slightly
changed in case of the 5-8F and Huh-7D12 spheroids (Fig. S4B).
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3. Discussion

Regarding microscopy image analysis of 3D in vitro models, the
quality of the acquired images depends on the size, shape and
incubation time and cell line composing the 3D model. These fea-
tures and conditions often lead to inconsistency in the acquired
images’ quality. The efficacy of optical clearing protocols applied
to enhance image quality highly depends on the cell line. Thus,
choosing the best optical clearing protocol for the target 3D model
is crucial. Currently, plenty of different approaches are utilized to
assess the efficiency of clearing protocols for 3D samples. However,
there is no gold standard metric to quantitatively evaluate and
compare the different clearing protocols. In most studies of newly
developed clearing protocols both qualitative and quantitative
approaches were used to assess clearing efficacy. Among the qual-
itative approaches, most of the researchers simply used subjective
scoring, based on microscopy images before and after optical clear-
ing. These experiments are based on the ratings of brightfield and
fluorescence microscopy images [29]. In fact, this method is appro-
priate when we simply have to decide whether fluorescent signals
are present or absent after the clearing process, or when we simply
need to distinguish different clearing protocols based on bright-
field images. However, these measurements are time-consuming,
and are not feasible when hundreds of 3D images are to be
compared.

Some of the qualitative metrics aim to assess the changes in
various fluorescence intensity profiles: intensity/contrast increases
in both lateral and axial dimensions; tissue transparency improves
due to clearing. The basic concept of this approach is the signal-to-
background (SNB) ratio, which is defined as the ratio between the
mean signal and the standard deviation of the background signal in
the intensity profile. To obtain this ratio, an intensity threshold is
usually applied to determine background (values below threshold)
and signal intensities (values above threshold) [30]. As another
option, calculating the changes in mean fluorescence intensity at
different imaging depths of a 3D sample can also be used to assess
lateral or axial imaging depth [31,32]. Furthermore, corrected total
cell fluorescence (CTCF) was also introduced to monitor the loss of
the fluorescent signal in response to optical clearing [31–34]. A
recent study has developed an improved signal-to-noise ratio
(SNR) based method to characterize depth-dependent signal inten-
sity [35]. Regarding the well-established correlation between
image quality improvement and fluorescence intensity changes,
assessing these alterations is quite a popular approach in literature.
However, as a disadvantage of intensity values, the results are
highly sensitive to staining quality and imaging settings, such as
exposure time. Furthermore, the results of these analyses are
highly dependent on the applied threshold as well, which might
easily lead to the misinterpretation of total intensity changes for
a whole spheroid.

A different approach to assess the performance of an optical
clearing protocol is based on the concept that the number of
well-segmented nuclei should be increased within the entire
spheroid as image quality improves [36]. An obvious drawback of
using the segmentation-based approach (to compare the efficacy
of various clearing protocols) is that the results are highly depen-
dent on the precision of the applied segmentation approach.

Based on these considerations, instead of using only the inten-
sity values of the images or the information for the segmented
nuclei, we tested seven metrics which are used to characterize
blurriness of general photos and videos. Implemented in a user-
friendly ImageJ/Fiji plugin, the seven metrics were tested on a large
public available 3D dataset [19], quantifying the quality of micro-
scopy images of different spheroid types. The results for these
metrics-based analyses were compared to the sharpness ratings
of the images executed by ten human experts, and the correlation
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between the two approaches was assessed. Among the seven met-
rics tested, intensity variance obtained the highest correlation with
the experts’ evaluation. In this case, the results for the whole
spheroid and for the internal circle showed relatively strong corre-
lations with ground truth. Comparing the results for the different
regions (top, middle, bottom) of the spheroid, we found that this
metric strongly correlated with ground truth at the bottom and
middle regions, while the correlation was only acceptable in the
top region. The correlation between intensity variance metric and
the human scores was the strongest in those cases when the
experts could consistently differentiate the groups from one
another, like in case of images of the bottom and middle regions.
Meanwhile, for images of similar quality, such as images of the
T-47D and 5-8F spheroids or images of the top regions, the experts
could not distinguish the different clearings protocols. Since, the
experts’ evaluation was the least consistent with the T-47D and
5-8F spheroids, we have concluded that even the best metric
may not definitely show a really strong correlation with human
assessment in these cases. However, an overall good correlation
(Pearson 0.80) between the metrics and the experts suggests that
intensity variance metric in point may serve as a quantitative tool
to evaluate the relative efficacy of optical clearing protocols. Our
results indicated that the appropriate protocol for optical clearing
strongly depends on the cell line composing the spheroid. Further-
more, by comparing the results for the whole spheroid and for the
internal part separately, we were able to measure the lateral light
scattering effect. This effect is common with light-sheet micro-
scopy systems where the samples are illuminated from the side
resulting in great differences between the outer region and the
internal parts of the spheroid. The results for the internal circle
showed higher correlation with the experts’ evaluation, suggesting
that image analysis data related to the internal part of the spheroid
could be applicable in practice.

As expected, none of the tested optical clearing protocols per-
formed equally well on all three cell lines. In case of the T-47D cell
line, which forms the least compact spheroids, Sucrose, CUBIC and
ScaleA2 protocols proved to be equally effective, yielding no signif-
icant quality differences among the cleared groups. The 5-8F
spheroids showed the best image quality with the ScaleA2 clearing
protocol. Finally, regarding the Huh-7D12, only Sucrose clearing
protocol was able to visualise single nuclei located at the bottom
regions of the spheroids. We also tested the reversible ClearT and
ClearT2 protocols and found that in case of the ClearT protocol
image analysis improved after the spheroids were washed, which
suggests that this clearing method is in fact not completely rever-
sible. Also, we could measure the differences between ClearT and
ClearT2 precisely, which provides a practical benefit to distinguish
between slightly different clearings. Specifically, as these two pro-
tocols differ in a single component only, the effects of a protocol’s
composition on spheroid transparency can also be evaluated based
on image analysis.

In summary, we introduced seven metrics for image quality
assessment, implemented in SQM, a user-friendly open-source
ImageJ/Fiji plugin. We aimed to find a metric suitable for the
quantitative assessment of z-stack images of 3D spheroids, allow-
ing to compare optical clearing protocols without pre-processing
of images. We tested the correlation between the metrics and the
human experts’ evaluation (regarded as the ground truth), and
found that of the seven implemented metrics, only intensity vari-
ance showed a good correlation, at least in the bottom and mid-
dle regions, with the experts’ assessment. This metric is suitable
to quantitatively compare different optical clearing protocols
and spheroids derived from various human carcinoma cell lines.
Based on these findings, we support intensity variance as the gold
standard metric to quantitatively compare optical clearing
protocols.
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4. Materials and methods

4.1. Intensity variance

For the intensity metric [25] the average and variance are calcu-
lated with the following formulas:

Iaverage ¼ 1
MN

XN

i¼1

XM

j¼1
Iði; jÞ; ð1Þ
Var ¼ 1
MN

XN

i¼1

XM

j¼1
I i; jð Þ � Iaverage
� �2

; ð2Þ

where I is the image with a resolution of M � N. Images with high
variance indicate that there are pixels from very dark to bright val-
ues, which may suggest that the image is not blurred.
4.2. Derivative based metrics

Image gradient calculation is based on the differentiation of
multivariable functions [25]: the partial derivatives of the image

function I x; yð Þ rI x; yð Þ ¼ @I
@x ;

@I
@y

� �T
� �

represent the sharpness of

the horizontal and vertical edges in the original image. This can
be visualized by the magnitude of the gradients

(jrIðx; yÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@I
@xÞ

2 þ ð@I
@yÞ

2
q

). After that, the mean and the variance

of the gradient image can be calculated. Our implementation con-
tains the variance of the gradient magnitude values:

G ¼ 1
MN

XN

i¼1

XM

j¼1
jrI i; jð Þj � jrIjaverage

� �2
; ð3Þ

where

jrIjaverage ¼
1

MN

XN

i¼1

XM

j¼1
jrIði; jÞj: ð4Þ

Second order derivatives can also be used for focus detection,
for example with the Laplacian operator [26]. The Laplacian of an
image can be calculated with the following formula:

Lðx; yÞ ¼ @2I
@x2

þ @2I
@y2

: ð5Þ

Next, we calculate the variance of the Laplacian the same way
as we did for the gradient magnitudes.
4.3. Histogram based metrics

The approach defines a threshold value T , and sums brightness
values above that threshold, weighted by the number of pixels
with that particular intensity. T is usually chosen as the average
intensity in the image. Histogram threshold [27] metric is calcu-
lated with the following equation:

Mhist ¼
X

ijxi>T
xif ðxiÞ; ð6Þ

where xi are the pixel intensities and f is the histogram function.
Another histogram metric can be calculated using entropy [27],

which is more precise for image quality assessment. The entropy is
higher when the intensities are less predictable, i.e. they are more
varied and not homogeneous. It is calculated as follows:

Ment ¼ �
X

i

f xið Þ
Hmax

log2
f xið Þ
Hmax

� �
; ð7Þ

where Hmax is the vertical maximum of the histogram.
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4.4. Frequency based metrics

Frequency based metrics rely on the 2 dimensional Fourier
transformation, which converts an image from its original space
to frequency space. It breaks down the image to a sum of weighted
sine and cosine waves. Each pixel intensity at a position ðu;vÞ rep-
resents the amplitude of the function with a certain frequency
component characterized by u and v : Around the center of the
resulting image lower frequency components are found, so a high
amplitude in the middle corresponds to a homogeneous territory
in the original image. With a growing distance from the center
alongside concentric circles, higher frequency components are
found. High amplitudes at the sides of the Fourier image usually
correspond to sharp edges or noise in the original image.

The discrete Fourier transformation of an image can be formal-
ized as follows:

F u;vð Þ ¼
X1

m¼�1

X1
n¼�1Iðm;nÞe�2piðumþvnÞ: ð8Þ

The calculated function F u;vð Þ is a complex function, so for
visualization, jF u;vð Þj is typically used:

F u; vð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re F u;vð Þð Þ2 þ Im F u;vð Þð Þ2

q
; ð9Þ

where ReðzÞ and ImðzÞ are the real and imaginary parts of a complex
number z.

One metric that can be calculated in the Fourier space is the fre-
quency threshold metric [25]. Exactly how to measure sharpness in
this domain varies. In this study, we defined a frequency threshold,
and summed the amplitude values above that value only. This
means that we sum the pixel values in the Fourier space outside
a circle mask with radius r. Applying the mask is equivalent to
multiplying the Fourier transformed image by a high-pass filter:

mask1 :¼ f i; jð Þjj2 þ i2 > r2g;

Mfreq ¼
X

i;jð Þ2mask1
F i; jð Þj j: ð10Þ

Kurtosis was proposed as an image sharpness measure [28]. The
frequency space is utilized here as well, however, instead of using
the Fourier magnitude image, kurtosis metric is calculated on the
periodogram of the image, which is the Fourier transform of the
autocorrelation image. The periodogram can be calculated as

A u; vð Þ ¼ jF u;vð Þ � F u; vð Þj ð11Þ
where F u;vð Þ is the complex conjugate of F u;vð Þ. To calculate
the kurtosis of the periodogram, it is beneficial to regard it
as a probability distribution. This can be achieved by normal-
ization. We denote the frequencies at certain points of the peri-
odogram by ui;v jði ¼ 1;2; � � � ;NÞ, and calculate the normalized
image with

h ui;v j
� � ¼ A ui;v j

� �
P

n

P
mA un;vmð Þ ð12Þ

for every i; j ¼ 1;2; � � � ;N.
The bivariate kurtosis of our probability distribution is calcu-

lated as

b2;2 ¼ c4;0 þ c0;4 þ 2c2;2 þ 4q12ðq12c2;2 � c1;3 � c3;1Þ
1� q2

12

� �2 ; ð13Þ

where

ck;l ¼
PN

i¼1

PN
j¼1hðui; v jÞðui � luÞkðv j � lvÞl

rk
url

v
; ð14Þ

and q12 is the normalized correlation between u and v (q12 ¼ ruv
rurv).

The marginal means and variances of h u; vð Þ are
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lu ¼
XN

i¼1
ui

XN

j¼1
hðui;v jÞ;lv ¼

XN

j¼1
v j

XN

i¼1
hðui; v jÞ; ð15Þ

and

r2
u ¼

XN

i¼1
ðui � luÞ2

XN

j¼1
hðui;v jÞ;

r2
v ¼

XN

j¼1
ðv j � lvÞ2

XN

i¼1
hðui; v jÞ: ð16Þ

Contrary to other metrics, a low number for kurtosis indicates a
well-focused image, whereas high metric values suggest that the
measured image is blurry.

4.5. Variance of normalized values inside the spheroid

We posed some conditions for the assessments of the fluores-
cence images:

1. In an image of a spheroid, our volume of interest is the spheroid
itself only, the background contains no relevant information, so
we do not want to use it.

2. Intensity values highly depend on the quality of the staining
and image acquisition. Metrics can behave differently for higher
and lower intensity ranges, therefore, normalization is
necessary.

3. Certain clearing agents are not appropriate to penetrate into the
spheroids, as a result the edges become very sharp, while the
internal part remains blurred. For most of the metrics, this
can result in an overall high contrast value due to the very sharp
edges on the side, which may lead to misinterpretation. There-
fore, we assess both the whole spheroid and the internal part of
the spheroid, and compare the results.

To satisfy the 1st criterium, we applied a threshold to the spher-
oids, which can easily be achieved by the Otsu threshold algo-
rithm: the spheroid area is very well distinguishable from the
background based on the image histogram.

For intensity normalization (2nd criterium), we took the maxi-
mum intensity value of the 3D image stack and divided every pixel
value with that.

To assess the internal part of the spheroid separately (3rd cri-
terium), we calculated the center of the spheroid mass, slice by
slice, using image moments:

ðcenterx; centeryÞ ¼ M1;0

M0;0
;
M0;1

M0;0

� �
;

where

Mi;j ¼
X

x

X
y
xiyjI x; yð Þ: ð17Þ

We then calculated a desired pixel-based metric inside a circle
with a radius of r and with the center calculated above:

mask2 :¼ f i; jð Þj j� centerxð Þ2 þ i� centery
� �2

< r2g:
Our internal circle results were obtained with a 200 pixel radius

circle. The usage of this is optional, and the radius can be changed.
The choice of 200 pixel radius (~55 mm diameter) was to measure a
large enough area (~10 nuclei at minimum) to have stable analysis
but small enough to have reasonable coverage at the top and bot-
tom of the spheroids.

4.6. Score calculation

We have introduced a metric which can be calculated after plot-
ting the slice-by-slice metric plots. These steps were necessary to
make the metrics comparable with the results of the expert evalu-
ations. Let there be k different spheroid assessments, and let gi be
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the calculated metric plot for the i-th spheroid in the domain
f1; � � � ;ng, where n denotes the number of slices in the image stack,
and let a be the maximum, and b be the minimum value from all
the assessed gi plots:

a ¼ maxgi xð Þ;

b ¼ mingi xð Þ; i ¼ 1; � � � ; k:
We define our single-value score for every assessment with:

scorei ¼ 1
ða� bÞn

Xn

j¼1
ðgiðjÞ � bÞ ð18Þ

With this number, ranging between 0 and 1, the quality of
spheroid images relative to one another can be characterized in a
given assessment set. The theoretical maximum (1) is a perfect
rectangle with a height of a� b, which would mean that an image
with such a metric plot maintains the highest metric assessment
across all of its slices. The theoretical minimum (0) is the constant
zero function, which would mean that an image with such a metric
plot gets a score of 0 for all of its slices. If an image maintains high
metric values for most of the slices, its score will be closer to 1,
whereas those images that consistently give low metric values,
or the ones that have high values at the beginning, but then dras-
tically decrease, will be closer to 0. In order to scale these scores to
the human scoring system, we normalized all resulting values
between 1 and 5. For all the metrics, the plots were divided into
three equal regions, and the score calculation method described
above was used. These steps do not change the results of the met-
rics, just scale them to match with the scoring system of the
experts. For all five clearing protocol groups, as well as for the con-
trol group, the top, the middle, and the bottom regions of the
spheroids were evaluated. Ten experts evaluated five spheroids
from each clearing protocol group, but only one image from each
region. The average of their scores was compared with the metrics.
The results of the metrics were calculated almost the same way,
except that the metrics evaluated all the images from each region,
and the average scores were used for comparison. The whole
spheroid and the internal circle were evaluated the same way,
and the results were also calculated the same way. Next, the
experts’ evaluation and the metrics’ scores were matched, and a
linear regression analysis was carried out. For comparison, Pear-
son’s correlation was used.

All the metrics were implemented in a user-friendly open-
source ImageJ/Fiji [17,18] plugin named SQM. The results for score
calculation are available as a csv file, saved by the plugin at the end
of each image analysis process. SQM is implemented in Java and it
works under Macintosh, Linux, and Windows 64-bit systems.
There are no special hardware requirements. SQM can be down-
loaded from the Fiji plugin store, but it is also available at:
https://bitbucket.org/biomag/qualitymetricplugin/downloads/

4.7. Statistical analyses

Statistical analyses were performed using the R software. The
Kolmogorov-Smirnov test was utilized to check for normal distri-
bution. For the statistical analysis of the optical clearing results,
non-parametric Kruskal-Wallis test with Dunn’s multiple compar-
isons was performed. Significance level was set to a = 0.05 with a
95% confidence interval, and p-values were adjusted to account for
multiple comparisons.
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