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A B S T R A C T   

The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a 
face verification system for face re-identification purposes. In this scenario, the system must learn the target 
identity incrementally, using data from the video stream during the operational authentication phase. So, manual 
labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods 
trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific 
contexts is performed. This work proposes an adaptive face verification system, for the continuous re- 
identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic 
Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, 
even when its initial performance is modest. The proposal uses the self-training approach and is compared 
against other classification techniques within this same approach. Results show promising behaviour in terms of 
both knowledge acquisition and impostor robustness.   

1. Introduction 

1.1. Motivation 

Video-surveillance is one of the most demanding contexts of opera-
tion for face verification systems. As with any other biometric system, 
the standard approach is divided into two separated phases: enrolment 
and test/verification (Pisani et al., 2019). During the first phase, samples 
of the target identity (genuine) are registered into the system to create a 
model. During the second one, the system receives identity queries with 
the task of checking if identity is genuine or not (impostor). 

The conditions in which each of these phases are conducted can 
drastically change the challenge we are facing. For instance, in terms of 
enrolment stage, some cases allow executing this phase in a separated 
way (user collaboration is often required) where high-quality photo-
graphs or videos are acquired (Huang et al., 2015; Bashbaghi, Granger, 
Sabourin, & Bilodeau, 2017; Wang, Shan, Chen, & Gao, 2008; Dewan, 
Granger, Marcialis, Sabourin, & Roli, 2016; Chen, Wang, Xiao, & Cai, 
2014). In these conditions, state-of-the-art systems seem to perform 
astonishingly well (≈ 90–99% Rank-1 Identification Rates (Zhang et al., 

2019; Bashbaghi, Granger, Sabourin, & Parchami, 2019)), something 
that makes this specific problem almost solved. Other cases do not allow 
this kind of enrolment (e.g. criminal watch-list, lost children, disoriented 
older people, etc.). Thus, the only option is to use data from the video 
stream as enrolment source (Huang et al., 2015; la Torre, Granger, 
Radtke, Sabourin, & Gorodnichy, 2015; Franco, Maio, & Maltoni, 2010) 
which substantially lowers the system performance. 

1.2. The problem 

Working with only video-frame data presents two major challenges. 
First, this type of data presents a wide range of context-dependent and 
time-dependent variations (e.g. camera parameters, poses, illumination, 
target distance, etc.). And second, the gathering of extensive amounts of 
labelled context-specific data is not very realistic. 

Deep learning approaches have brought outstanding performance to 
general recognition applications, where plenty of annotated data are 
available. In contexts where target domain labelled data are scarce, 
knowledge transfer from source to target domains can alleviate the 
problem (Sohn et al., 2017; Crosswhite et al., 2018; Pernici, Bartoli, 
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Bruni, & Del Bimbo, 2018; Wang & Deng, 2018). In these contexts, even 
deep learning methods suffer from performance degradation when the 
differences between both domains are highly marked (Pisani et al., 
2019; López-López, Pardo, Regueiro, Iglesias, & Casado, 2019; Tom-
masi, Patricia, Caputo, & Tuytelaars, 2017; Li et al., 2018; Bianco, 
2017). In any case, the need of at least a partial labelling process persists, 
and a general solution to transfer learning still remains open (Masi, Wu, 
Hassner, Natarajan, & del Rey, 2018). 

One way of tackling both of the previous challenges at the same time 
is through adaptation (Pisani et al., 2019). Since target domain data 
becomes gradually abundant during the test/verification stage, it seems 
natural to conceive learning as an incremental process (Franco et al., 
2010; Ditzler, Roveri, Alippi, & Polikar, 2015; Lomonaco & Maltoni, 
2016) rather than other learning modes (Mian, 2011) (e.g. batch 
learning). Despite being possible to perform under different supervision 
levels, here, the real value of adaptation arises when it is considered as 
an unsupervised process (Pisani et al., 2019; Krawczyk, Minku, Gama, 
Stefanowski, & Woźniak, 2017). In this direction, the literature proposes 
semi-supervised incremental learning approaches (la Torre et al., 2015; 
Franco et al., 2010; Villamizar, Sanfeliu, & Moreno-Noguer, 2019). 
However, despite their reduced label requirements, they often require a 
human operator in the loop to assist with the most challenging samples 
(by given additional labels). 

In the context of adaptive biometrics (Pisani et al., 2019), the self- 
training approach (Yarowsky, 1995) is an interesting strategy to 
reduce labels requirements drastically. Using an incremental learning 
point of view, it relies on pseudo-labels given by the classifier at the 
moment to decide whether to update the template or not. In the specific 
context of video-based face verification, this strategy, in combination 
with two established incremental learning techniques, has proven its 
viability in Lopez-Lopez, Franco, and Lumini (2019) work. Besides, self- 
training has also been recently used for domain adaptation purposes 
(Zou, Yu, Liu, Kumar, & Wang, 2019; Kim, Choi, Kim, & Kim, 2019), 
person Re-ID (Zhang, Cao, Shen, & You, 2019) or object detection 
(Roychowdhury et al., 2019). 

1.3. The proposed approach and main contributions 

This work aims to tackle the problem of progressively computing an 
efficient classifier for a video-to-video face verification (V2V-FV) setting 
where labels’ availability is not enough to generate a robust model. For 
this purpose, we propose the Dynamic Ensemble of SVM, a method 
which creates and automatically improves/updates an ensemble of very- 
specific SVM classifiers. This kind of ensembles has proven to achieve 
remarkable results (Malisiewicz, Gupta, & Efros, 2011) on static su-
pervised conditions. Here, we provide a novel decision mechanism 
aimed to incrementally generate the ensemble in a semi-supervised way 
(i.e. starting from a few labelled data, and then autonomously updating) 
and using only online target domain data. In this regard, the main 
contributions of the work are: 

• The use of the self-updating approach in combination with the cur-
rent most powerful feature representations as face re-identification 
system in the context of V2V-FV.  

• The proposition of an ensemble-based adaptive biometric system 
called Dynamic Ensemble of SVM (De-SVM). 

The rest of the paper is organised as follows. First, in Section 2, we 
cite the main approaches that have been of inspiration for our work. In 
Section 3, the proposed adaptive system is explained. After some tech-
nical details in Section 4, we show the experiments performed in Section 
5. Finally, we expose the conclusions in Section 6. 

2. Related work 

Face verification in video-surveillance can be tackled from 
numerous points of view. Based on Huang et al. (2015), three main 
scenarios are distinguished. First, in the Still-to-Video face verification 
(S2V-FV) a system is queried using a still face image in order to find a 
video sequence where the same identity appears (Bashbaghi et al., 2017; 
Dewan et al., 2016; Chen et al., 2014; Bashbaghi et al., 2019). Second, in 
a Video-to-Still (V2S-FV) task, a system is queried using a video 
sequence to retrieve the same identity from a pool of still face images 
(Zhang et al., 2019; Bashbaghi et al., 2019; Wang et al., 2008). And 
finally, in Video-to-Video (V2V-FV) task, the task is to compare two 
video sequences to check if they contain the same identity or not (la 
Torre et al., 2015; Franco et al., 2010). As aforementioned, results 
achieved on recent databases like COX (Huang et al., 2015) when high- 
quality stills are used (either V2S or S2V conditions) convert the prob-
lem into an almost solved one (Bashbaghi et al., 2019; Zhang et al., 
2019). However, V2V in low-labelled conditions adds an extra handicap 
not solved yet. 

Template updating (a.k.a. incremental learning) is considered by 
this work as a strategy to take advantage of data acquired during the 
test/verification phase. Historically, this family of approaches has been 
focused on two slightly different tasks with different challenges (Gep-
perth & Hammer, 2016; Chefrour, 2019). On the one hand, modifying or 
adapting a complete model to deal with dynamic environments that can 
impair performance (Ditzler et al., 2015; la Torre et al., 2015); and, on 
the other hand, gradually improving the quality of a template created 
with a tiny amount of labelled data (Yarowsky, 1995). In any case, the 
fact of having changing models encloses new important challenges. The 
literature often refers to the stability-plasticity dilemma or the exploita-
tion-exploration dilemma (Hoens, Polikar, & Chawla, 2012; Grossberg, 
1988) as paradigmatic examples of these new challenges. Incremental 
learning systems should have plasticity for the integration of new rele-
vant knowledge, but also stability to prevent the catastrophic forgetting 
of previous, but relevant, knowledge because of the addition of the new 
inputs. The proper balance between these two ideas is a highly chal-
lenging problem which, despite recent advances (Kirkpatrick et al., 
2017), remains open (Kemker, McClure, Abitino, Hayes, & Kanan, 2018; 
Chefrour, 2019). In the unsupervised case, the template updating pro-
cess (either adaptation or improvement) must be done without labels. 
Thus, the correct definition of a label inference procedure (to substitute 
human annotation) represents an additional handicap to the existing 
incremental learning challenges (Chefrour, 2019). 

Self-training or self-updating is the approach used to update 
identity models in an unsupervised way. Firstly proposed in the scope of 
natural language processing (Yarowsky, 1995), these methods are 
rooted on the supposition that the classifier itself can do the genuine/ 
impostor labelling, avoiding any supervision (Franco et al., 2010; 
Didaci, Marcialis, & Roli, 2014; Orrú, Marcialis, & Roli, 2020). This way, 
learning is also considered as an unsupervised incremental process 
where the actual model at the moment is the one that decides whether to 
update or not. Outside the biometric scope, self-training ideas help to 
minimise human annotation effort in network traffic classification 
(Fahad et al., 2019) or to incorporate unlabelled data from auxiliary 
information sources, like the internet, to improve object detectors 
(Radosavovic, Dollár, Girshick, Gkioxari, & He, 2018). The central 
dilemma with this family of approaches is about selecting the confidence 
level to update the template. A high confidence threshold could avoid 
accepting impostor identities but at the expense of only accepting too 
redundant information that does not contribute to improve perfor-
mance. A low confidence threshold, on the contrary, would accept 
higher variance in samples, but at the cost of letting in more impostors in 
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the model. 
Temporal Coherence in videos leads to the assumption that 

consecutive frames will almost always contain very similar information 
(Becker, 1999). The exploitation of temporal coherence is often high-
lighted as one of the keys for unsupervised learning (Franco et al., 2010; 
Pernici & Bimbo, 2017; Wang & Gupta, 2015). Based on the assumption 
that two patches connected by a track should have a similar visual 
representation in deep feature space since they probably belong to the 
same object, Siamese network architectures have been proposed to train 
DNNs in an unsupervised way (Wang & Gupta, 2015; Misra, Zitnick, & 
Hebert, 2016; Redondo-Cabrera & Lopez-Sastre, 2019). As temporal 
coherence assumption is valid in the video-surveillance scenario, once 
an identity is verified in a video frame, its visual tracking is enough to 
keep the target identified. Thus, visual tracking provides the supervision 
for labelling the identity in every frame of the sequence, even if pose and 
illumination change or partial occlusions happen. However, this does 
not apply to the transition between different sequences, i.e. when a cut 
takes place. 

3. An adaptive biometric system for face verification in video- 
surveillance 

In this paper, a novel adaptive biometric system is proposed. Using a 
general (hand-crafted or learned) feature extractor, the system self- 
updates classifiers using new target-identity samples without forget-
ting previously acquired knowledge. Since ensemble methods are well- 
acknowledged as approaches that fulfil these characteristics, we pro-
pose (and compare against other alternatives) a method based on the 
ensemble of SVM classifiers. Most of the studies in supervised contexts 
enhance SVM versions compared to the decision trees (Chefrour, 2019). 

3.1. Self-updating general pipeline 

From a general perspective, the self-updating approach is based on 
the following hypothesis: the use of pseudo-labels given by the model 
(Mt− 1) at time t to drive the decision to update helps to improve per-
formance. The considered scenario assumes that initially (t = 0) a few 
video frames of the genuine identity (short sequence given by a visual 
tracker) are selected to create the template. The quality of this template 
can be an important constraint to the performance of the system, as 
Lopez-Lopez et al. (2019) and Section 5.2.2 show. The availability of a 
group of negative samples to build the initial model (M0) is also 
assumed. 

As it is outlined in Algorithm 1 and the following Fig. 1, over time 
(t = 1,2,…,T), the system is queried with new video sequences (St) to 
verify the identity of the individuals (both genuine and impostor) 
appearing in them (Cohort Model, CM (la Torre et al., 2015)). Following 
an query acceptance adaptation criterion (Pisani et al., 2019), if Mt− 1 
accepts the query sequence, following the previous hypothesis the 
sequence is used to create the model Mt. In the opposite case, Mt remains 
the same. 

3.2. Decision rules 

Given the previous pipeline and joined to the fact of working with 
videos as data source, several decision rules need to be defined. These 
rules control when an identity is verified or not, and if so how updates 
are performed.  

• Frame Decision Rule (FDR). This rule assigns a score to each frame of 
the query video sequence. It can be the outcome provided by a single 
classifier (e.g. SVM score, distance in a nearest-neighbour algorithm, 
or a softmax in a DNN), or the fused output in the case of an ensemble 
of classifiers.  

• Sequence Decision Rule (SDR). This rule assigns a unique score to the 
query video sequence based on the FDR individual scores in each 
frame. Identities will be verified by fixing a certain confidence level 
to this score. The greediness or cautiousness in this fixation impacts 
the stability-plasticity dilemma.  

• Update Rule (UR). This rule defines how new information is used to 
enhance the current model incrementally. 

Algorithm 1 and Fig. 1 illustrates the role of each decision rule in the 
self-update pipeline. The actual implementation choices for each of the 
explored models (in the following Section 3.4) are shown in Table 1. 
Note that median is used as a central tendency measure for its analogy 
with a majority vote. However, mean was also tested with almost 
identical results (more detailed information on Appendix C). 

3.3. The proposed dynamic ensemble of SVM (De-SVM) 

The classification power of ensembles of very-specific classifiers was 
first proven by Malisiewicz et al. (2011). There, an ensemble of exem-
plar Support Vector Machines (SVM) classifiers, each of them (exemplar- 
SVM) trained with just one positive sample and a great number of 
negative samples, is used in the frame of object detection. The idea 

Algorithm 1: The implementation of the self-updating strategy. 
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behind this strategy is to have an ensemble of very-specific classifiers 
whose combined decision will be able to overcome the over-fitting. In 
the specific case of face verification in video-surveillance, a similar 
approach is used in Bashbaghi et al. (2017) where an identity-specific 
ensemble of exemplar SVMs has been proposed to recognise a target 
identity among distractors in the case of S2V face recognition. Each 
exemplar is built during enrolment from a single target sample and 
multiple distractors’ samples, to represent the diversity of the same 
identity appearance due to various perturbation factors. Ensembles of 
(exemplar) SVMs leverage the intuition according to which a pool of 
simple classifiers, one for each training sample, can outperform a single 
and complex one (Becattini, Seidenari, & Del Bimbo, 2017). Besides, 
another advantage of ensemble-based methods is the addition of an 
extra-point of flexibility in the algorithms. One could potentially control 
how each member of the ensemble performs, allowing classifiers sub-
stitutions or removals whenever needed to keep the ensemble size 
bounded. 

Our contribution uses these previous ideas as a basis. From them, the 
aim is to create the identity-specific ensemble incrementally using the 
self-updating strategy. Instead of using exemplar-SVM, each ensemble 
member will be trained using n positive samples instead of just one. In 
any case, the number of positive samples will remain low (n = 5 in our 
experiments) following the Exemplar-SVM philosophy. The need to use 
more positive samples than just one is shown in a previous work (Lopez- 
Lopez et al., 2019) where the quality of the initial template is crucial 
when designing a method based on the self-updating strategy. The 
transformation to an incremental classifier consists of adding new 
classifiers to the ensemble whenever the ensemble needs to be updated. 

In our case, the number of possible updates keeps relatively bounded. 
This keeps out of the scope a procedure to limit the number of ensemble 
classifiers. Nevertheless, for a real application, one should limit it 
following either substitution or removing strategies (Krawczyk et al., 
2017). 

Fig. 1 depicts the pipeline of De-SVM. Following the self-updating 
paradigm, the update decision is made by the ensemble at the 
moment. The median is used as FDR to give a score to each frame (which 
in practice corresponds to a majority voting). Afterwards, the median of 
the sequence’s frames FDR scores is computed again as SDR. If the 
identity is verified (based on the operational threshold), the ensemble 
adds a new classifier following the UR. 

The n = 5 samples used to create the new member of the ensemble 
will be pooled from the query sequence’s frames. In order to enhance 
diversity within the ensemble, the hardest frames (the ones with the 
worst score obtained using the current model, using the FDR) are 
selected as positive samples to train (against a large number of negative 
samples) the next classifier of the ensemble. 

3.4. Other explored classification methods 

The self-update approach has a ‘wrapper algorithm’ (Zhu, 2005) 
nature that in practice converts a supervised classification method in an 
unsupervised one (by using the previous decision rules). Therefore, one 
could use different classification methods within this same approach. In 
this work, we explore different supervised classification methods (both 
incremental and batch-based): 

3.4.1. Linear soft-margin support vector machine (SVM) 
The Linear Soft-Margin Support Vector Machine (SVM) is a batch- 

based binary classification method (Cortes & Vapnik, 1995) widely 
used in many applications. Given a set of N labelled training feature 
vectors xi, the classifier finds the optimal hyperplane which separates 
both classes of the binary problem. This classification technique has lost 
a bit of its prominence in favour of CNN’s. Nevertheless, it continues to 
be used on top of CNN-based features. In the specific context of face 
recognition, there are numerous examples of SVM-based methods in the 
recent literature (Crosswhite et al., 2018; Wu, Zuo, Lin, Jia, & Zhang, 
2018; Dhamecha, Noore, Singh, & Vatsa, 2019). 

3.4.2. Incremental SVM (I-SVM) 
This is an incremental implementation of the previous method. Here, 

training data is provided sequentially instead of the batch mode in 
which all examples are available at once. New training data is incor-
porated when it is available, without re-training from scratch. In Kivi-
nen, Smola, and Williamson (2004), a simple and computationally 
efficient algorithm, based on the classical Stochastic Gradient Descent, 
was developed to update the hyper-plane incrementally parameters of 
the solution for online learning applications. 

3.4.3. Online sequential extreme learning machine (OS-ELM) 
It is an incremental implementation of the regular Extreme Learning 

Machine (ELM) problem. The ELM builds a Single Layer Feed-forward 
Network (SLFN) with Ñ hidden nodes to approximate a set of N 
labelled training feature vectors such that: 

f
Ñ

(

xj

)

=
∑̃N

i=1
βiG

(

ai, bi, xj

)

= yj, j = 1,…,N (1)  

where ai and bi are the parameters of the hidden nodes activation 
function G (additive or RBF); and βi the weight that connects the i-th 
hidden node with the output. It is showed that (1) is satisfied for any 
randomly assigned values of the node parameters (ai and bi) by 
analytically computing the weight βi, as long as N⩾Ñ. 

In the specific case of OS-ELM, the approach is specifically adapted to 

Fig. 1. The pipeline of De-SVM within the self-updating general strategy. The 
model (Mt− 1) is updated based on its decision over the query sequences (St) to 
generate a new model (Mt). Three different rules are involved in the decision of 
updating (FDR and SDR) and the way of updating (UR). 

Table 1 
Summary of the decision rules with each method.  

Method Decision rules Method used 

De-SVM Frame Decision Rule Ensemble fusion rule (Median) 
Sequence Decision Rule Median 
Update Rule Add a new classifier with the hardest samples 

SVM Frame Decision Rule Raw score 
Sequence Decision Rule Median 
Update Rule Retrain the classifier with Dt+1  

I-SVM Frame Decision Rule Raw score 
Sequence Decision Rule Median 
Update Rule Partial fit using the query sequence 

OS-ELM Frame Decision Rule SoftMax 
Sequence Decision Rule Median 
Update Rule Partial fit using the query sequence  

E. Lopez-Lopez et al.                                                                                                                                                                                                                           



Expert Systems With Applications 174 (2021) 114734

5

compute and update the weight values sequentially as more data is 
becoming available (‘chunk-by-chunk’ or one-by-one) (Liang, Huang, 
Saratchandran, & Sundararajan, 2006). In our case, a sigmoid function is 
used as an activation function, and the number of hidden nodes is 
empirically fixed at Ñ = 80. 

4. Methodology 

4.1. Datasets 

Two video datasets, with sequences of different users, have been 
used in the experiments (Fig. 2): 

COX Face database (Huang et al., 2015) (COX). This dataset gathers 
video frames of 1000 identities. There are 3 video sequences captured by 
3 different cameras (cam1, cam2 and cam3). The subjects were asked to 
walk over an S-path, and their images were captured under variable 
lighting, pose, scale conditions, and a considerable amount of blur. Each 
camera recorded a part of the path, without temporal overlapping be-
tween them. In this dataset, the number of sequences of each identity is 
quite limited (3 sequences per subject). In order to mitigate this limi-
tation, each video sequence was split in several of sub-sequences 
without alteration of the temporal order (Fig. 3). 

YouTube Faces (Wolf, Hassner, & Maoz, 2011) (YTF). This dataset 
contains a total of 3425 videos downloaded from the YouTube platform 
of 1595 different identities. Each identity appears in between 1 and 6 
different videos captured under completely different conditions. Table 2 
contains the distribution of video frames per identity after face detec-
tion. As with the previous dataset, to augment the number of video se-
quences to query the system, each video sequence has been split into 
several sub-sequences while keeping the temporal coherence. 

4.2. Face detection and feature extractor 

A face detection technique is applied over every frame to discard the 

background part of images and for alignment purposes. The tool pro-
vided in the Dlib library (King, 2009) was selected for this task. After 
that, we will extract a feature vector of each face using a pre-trained 
ResNet-34 network (He, Zhang, Ren, & Sun, 2016) with just 29 convo-
lution layers (RN29). The classifier layers have been removed from the 
network, as provided by Dlib (King, 2009), giving a feature vector of 128 
dimensions. The network has been trained using a combination of the 
SCRUB dataset (Ng & Winkler, 2014) and the VGG-Face dataset (Parkhi, 
Vedaldi, & Zisserman, 2015). This implementation achieves an accuracy 
of 99.38% in the LFW dataset (which is comparable to the face verifi-
cation state-of-the-art) and has shown quite desirable properties in terms 
of robustness to non-identity related variations (López-López et al., 
2019). 

4.3. Testing protocol 

Using the protocol proposed by the COX database as an inspiration, 
each dataset was divided into three different subsets (See Table 3–5): 

(a)The train subset is composed of the face images used as a nega-
tive set and as a validation set in the learning process. In the actual 
implementation, this negative set will be a random subset of 1000 
samples from the whole train set.  
• In the case of COX Face database, this subset is composed of the 

face images of 300 identities taken from each available camera. 

Fig. 2. Samples of both datasets, COX (left) and YTF (right).  

Fig. 3. Example of division of cam1 and cam2 in the COX Face database to generate the query sub-sequences (SS stands for sub-sequence).  

Table 2 
YouTube Faces distribution of the amount of videos per person after the face 
detection phase.  

#videos 1 2 3 4 5 6 

#people 588 472 305 167 51 8  
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• In the case of YouTube Faces database, this subset contains data 
from the identities that have less than 4 video-sequence per 
identity, giving a total of 1365 identities. 

(b)The gallery subset is composed by the video-frame sequences 
used to create the initial template as well as the ones used to query 
the system (from both genuine and impostor identities). 
• In the case of COX Face database, this set contains the 700 iden-

tities taken from cam1 and cam2. Each video was divided into 5 
sub-sequences to augment the number of possible queries, giving a 
total of 10 sub-sequences.  

• In the case of YouTube Faces, this subset contains data from the 
identities that have equal or more than 4 video-sequences per 
identity, giving a total of 226 identities. It includes all but one 
video of each identity, which will create the following probe 
subset. The videos will be divided into a total of 10 sub-sequences 
without mixing different videos. 

(c)The probe subset contains the video-frames sequences we draw 
to test the system in each step of the learning phase. The testing is 
performed after each query of the learning phase. This way, we can 
measure the evolution of the updating system.  
• In the case of COX Face database, this set contains video sequences 

captured by cam3 belonging to the 700 identities in the gallery 
subset. In this case, each video sequence was divided into 10 sub- 
sequences to have more sequences to test.  

• In the case of YouTube Faces, this subset contains data from the 
identities that have equal or more than 4 video-sequences per 
identity, giving a total of 226 identities. It includes the remaining 
video after the creation of the previous gallery subset. As the other 
dataset, each sequence will be divided into 10 sub-sequences too. 

It is important to remark that there are no common identities be-
tween the train subset and the other two subsets. Identities belonging to 
the train subset conform the Universal Model (UM) (la Torre et al., 2015; 
Li et al., 2005). On the other hand, gallery and probe subsets contain 
different sequences of shared identities. In the experiments, each of 
these identities will have associated its own Cohort Model (CM) (la Torre 
et al., 2015; Li et al., 2005). In practical terms, each identity CM will be 
conformed by itself and its 10 ‘most similar’ (using SVM as metric 
(López-López et al., 2019)) impostors or hard-negatives. Consequently, 
this kind of testing is quite more demanding than regular random 
impostor testing. 

4.4. SDR self-labelling: operational threshold 

In each verification query, a short sequence of video frames is pro-
cessed according to the SDR (see Section 3.2). The SDR gives a score to 
the video-sequence and decides based on a threshold, the so-called 
operational threshold. Its determination is crucial and especially tricky 
in an incremental learning context. 

The strictness/gentleness on the operational threshold modulates the 
self-labelling process’s confidence degree. Potentially, aspects as data 
quality, face characteristics, or the acquisition environment may affect 
its optimal determination (identity and time dependence). Nevertheless, 
we have opted to ignore these dependencies (both identity and time) 
when defining the determination procedure. It seems reasonable as a 
first step considering the enormous limitations in labelled data of the 
target context. Similar assumptions are commonly made in other works 
(Rattani, Marcialis, & Roli, 2013). A performs a further study of the 
implications of this assumption. 

Thus, the train subset (which contains the identities of the UM) will be 

Table 3 
How the datasets’ identities are divided in order to generate each subset defined in Section 4.3.    

Genuine Impostor 

COX  still cam1 cam2 cam3 still cam1 cam2 cam3 

Train 0 0 0 0 300 300 300 300 
Gallery 0 700 700 0 0 0 0 0 
Probe 0 0 0 700 0 0 0 700 

YTF  ⩾4 videos  < 4 videos  ⩾4 videos  < 4 videos  
Train 0 0 0 1365 
Gallery 226 0 0 0 
Probe 226 0 226 0  

Table 4 
COX: Study on FAR point of operational threshold De-SVM (template size = 5 frames).  

Operational Threshold TAR@FAR1 TAR FAR  

Initial Final Initial Final Initial Final 

1%  37.17±0.58   74.08±0.67   30.92±0.32   57.1±1.1   0.568±0.061   0.118±0.031  
3%  37.17±0.58   82.61±0.68   48.41±0.21   79.08±0.52   2.407± 0.048   0.650±0.024  
5%  37.17±0.58   85.45±0.25   59.01±0.37   88.14±0.24   5.01±0.13   1.714±0.052  
7%  37.17±0.58   86.03±0.48   62.39±0.31   89.80±0.25   6.23±0.16   2.53±0.11  
10%  37.17±0.58   86.69±0.40   68.90±0.22   93.01±0.43   9.34±0.10   4.90±0.10   

Table 5 
COX: Study on template size De-SVM at operational threshold 5%.  

Template size TAR@FAR1 TAR FAR  

Initial Final Initial Final Initial Final 

1 20.30±0.64  52.42±0.41  32.00±0.28  53.68±0.38  3.36±0.10  1.178±0.053  
3 30.19±0.76  77.91±0.52  45.47±0.50  78.09±0.30  3.213±0.080  1.036±0.076  
5 37.17±0.58  85.45±0.25  59.01±0.37  88.14±0.24  5.01±0.13  1.714±0.052  
7 40.74±0.49  86.69±0.65  60.90±0.41  87.32±0.49  3.938±0.096  1.138±0.073  
10 45.21±0.77  88.87±0.24  65.60±0.23  89.02±0.21  4.098±0.095  1.024±0.043   
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used as a validation set. Within this set, we will replicate the previous 
divisions (train, gallery and probe) to build and characterise (compute 
the ROC curve) sample models using what would be the initial template. 
As a convention, we have selected the threshold associated with 5% FAR 
point of the initial model as operational threshold. However, we test 
different operational thresholds (along with other templates sizes) on 
Section 5.2.2. 

4.5. Metrics 

The metrics used to evaluate are the measurement of TAR at a given 
1% FAR (TAR@FAR1). We also provide the Transaction Level perfor-
mance (TAR and FAR at the operational threshold). 

Performance is assessed on the probe subset. After each query, the 
system es presented with 10 genuine sub-sequences and 1 impostor sub- 
sequence per impostor identity (10 in total). As it has been stated in 
Section 4.3, both querying and testing is performed using the CM of 
genuine identity. Finally, results are averaged over the total number of 
identities used as genuine in each verification process. 

Finally, as mentioned in Section 4.3, the negative set used for 
training consists of a random subset of 1000 samples drawn from the 
train subset. This randomness adds uncertainty to the results and needs to 
be addressed. In order to deal whit it, experiments will be repeated 8 
times and averaged. 

5. Experiments and results 

This section presents the experimental part of the paper. First, we 
establish some baselines (Section 5.1) to put into perspective the value 
of the results. From this point, we explore the ability to build a robust 
model with a minimum amount of labelling in an environment with both 
genuine and impostor queries (Section 5.2). Then, we test the robustness 
of the created model to repeated impostor attacks (Section 5.3). The 
complete results achieved in the experiments are recalled in Table 6, and 
the final discussion will be done in Section 5.4. 

5.1. Baselines 

As aforementioned (Section 1 and Section 2), the limited amount of 
previous literature framed in the specific of the conditions of our 
problem makes difficult to establish a direct comparison. In this regard, 
Malisiewicz et al. (2011) uses ensembles of very-specific SVM classifiers 

like De-SVM. Nevertheless, the fact that we are focusing on face related 
problems (in which their proposed calibration phase is problematic) 
prevent us from using their work as a fair and acceptable baseline. Thus, 
we opted for alternative ways of establishing comparison baselines, and 
they will be used to put our results into perspective for a proper analysis 
in Section 5.4. 

5.1.1. State-of-the-art using available data 
First of all, we need to consider that the newest deep feature repre-

sentations are trained so as faces of the same identities are close to each 
other in the feature space (López-López et al., 2019). Thus, one can 
consider state-of-the-art performance the one obtained by training a 
classifier using just the available labelled data (n = 5 frames). This 
approach of using traditional classifiers (e.g. SVM) on top of deep 
learning feature representations is quite common in the literature and 
has proven to achieve remarkable performance (Crosswhite et al., 
2018). The baseline is established using the ResNet-29 (RN29 + SVM) 
feature representation described in Section 4.2 and ResNet50-AF (RN50- 
AF + SVM) feature representation (Deng, Guo, Xue, & Zafeiriou, 2019) 
(which tops the state-of-the-art on LFW benchmark). 

5.1.2. Supervised adaptation 
Additionally, it would also be possible to perform the adaptation 

process done under supervised conditions. The performance obtained in 
this experiment represents an upper-bounds since they use entirely su-
pervised labels (ideal and unrealistic case of perfect self-labelling). 
Then, the n = 5 available labelled frames are used as the initial tem-
plate. This template was used to create the model M0 and, after that, the 
system is queried (and the model consequently updated) with 10 
different short video sequences (verification queries) from the genuine 
identity. Appendix B presents a comprehensive analysis of this scenario. 

5.2. Unsupervised adaptation 

The procedure in this experiment follows the philosophy of the su-
pervised case (see Section 5.1.2). However, instead of having access to 
labels, the SDR must distinguish between genuine and impostor queries. 
Consequently, the first step was to generate M0 from the initial template 
(5 frames). After that, the model was queried with 10 genuine se-
quences, Gs, and 10 different impostor sequences, Is

k (where s stands for 
the sub-sequence number and k for the identity of the impostor). All of 
them belonging to the gallery subset (identities of the CM). After each 

Table 6 
Summary of TAR@FAR1% performances values obtained (values in %). Uncertainty is not represented in previous graphs for the sake of clarity. SU stands for self- 
updating.  

COX     

Model  Initial  Superv. Adapt.  Unsuperv. Adapt.  Robustness 

RN29 + SVM  37.19 ± 0.63   –  –  – 

RN50-AF + SVM  51.6 ± 1.0   –  –  – 
RN29 + SVM + SU  37.19 ± 0.63   88.89 ± 0.74   24.5 ± 1.0   10.04 ± 0.48  
RN29 + I-SVM + SU  17.7 ± 3.6   79.8 ± 1.2   61.3 ± 1.5   5.51 ± 0.49  
RN29 + OS-ELM + SU  10.27 ± 0.51   92.35 ± 0.45   75.0 ± 1.1   19.3 ± 2.7  
RN29 + De-SVM (Ours)  37.17 ± 0.58   89.47 ± 0.24   85.45 ± 0.25   64.4 ± 1.6   

YouTube Faces 

Model Initial Superv. Adapt. Unsuperv. Adapt. Robustness 

RN29 + SVM  55.9 ± 1.3   –  –  – 
RN50-AF + SVM  81.33 ± 0.58   –  –  – 

RN29 + SVM + SU  55.9 ± 1.3   88.68 ± 0.42   34.7 ± 1.5   9.0 ± 1.1  
RN29 + I-SVM + SU  42.0 ± 2.2   73.9 ± 2.2   65.5 ± 2.5   2.26 ± 0.67  
RN29 + OS-ELM + SU  13.8 ± 1.8   76.8 ± 2.0   66.4 ± 1.9   32.2 ± 5.2  
RN29 + De-SVM (Ours)  56.91 ± 0.59   76.26 ± 0.75   75.5 ± 1.2   64.8 ± 1.1   
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genuine query (odd query, t = 1, 3, …, 19), an impostor query (even 
query, t = 2,4,20) was presented. The query order follows this pattern: 

G1→I1
1→G2→I1

2→ … →Gs→I1
k→ … →G10→I1

10  

Performance measurements are done on the probe set, using samples of 
each identity’s CM. As aforementioned, the CM consists of both the 
genuine identity and its 10 most similar impostors (see Section 4.3). 
Performance metrics (see Section 4.5) measurements are done after each 
query to the system. 

Results (Figs. 4 and 5) for both COX and YTF, respectively, show the 
ability to improve the performance of the self-updating approach for 
every classification method apart from SVM. De-SVM is the one to 
achieve the best performance scoring at TAR@FAR1 of 86.03 ± 0.48% 
on COX and 75.5 ± 1.2% on YTF (Section 4.5 contains a detailed 
explanation about the uncertainty origin). 

A comprehensive analysis of Figs. 4b and 5b allows to identify two 
different behaviours. On the one hand, De-SVM and OS-ELM can 
improve TAR while decreasing/maintaining FAR. Conversely, both SVM 
and I-SVM are unable to improve TAR without an unacceptable increase 
of FAR. To explain this behaviour, we need to recall a specific detail. 

In Figs. 4b and 5b, initial and subsequent TAR measurements of I- 
SVM and SVM are quite high. This means that the model can incorporate 
much more genuine information (see Fig. 6). At the end of the 

experiment, we have a model that has acquired almost the same genuine 
information as the supervised case. Moreover, as counter-intuitive as it 
may seem, FAR seems to increase whenever a genuine sequence is 
presented, while FAR seems to decrease after an impostor query. This is 
especially noticeable when testing on COX. However, this behaviour is 
coherent with the one explored in the Appendix A. In that experiment, 
we show the importance of balance stability when using a constant 
threshold. Therefore, adding this amount of genuine information (high 
TAR) leans the classification problem to a more balanced one, making 
the initial threshold obsolete (FAR increases after genuine queries). 

Finally, an essential detail to remark is the decreasing FAR observed 
for De-SVM and OS-ELM. This behaviour continues in the supervised 
scenario (Appendix B). While De-SVM presents a soft, monotonous 
decrease; OS-ELM presents a sharp decline at the beginning with a slight 
tendency change at the end. 

5.2.1. Relation of genuine/impostor trains 
Paying attention to the relation of genuine and impostor update rate 

(over the total possible updates) we can extract important conclusions 
(Fig. 6). Firstly, I-SVM and SVM are quite more sensible to model cor-
ruption due to false acceptance updates. This is coherent with the 
behaviour observed using transaction-level performance. This corrup-
tion negatively affects in particular SVM. The behaviour is even more 
relevant if we remember that SVM is one of the best-performing methods 

Fig. 4. YouTube Faces: Self-supervised experiment using an operational threshold of 5% initial FAR.  

Fig. 5. YouTube Faces: Self-supervised experiment using an operational threshold of 5% initial FAR.  
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in the supervised experiments. A possible explanation for this behaviour 
is further studied on Appendix A. 

Secondly, we can infer from the genuine/impostor updates that the 
most benefits are obtained from acquiring enough genuine information, 
even if it is at the cost of including some impostors. This justifies the 
assumption of setting the operational threshold to a 5% FAR. 

5.2.2. Effects on performance of different operational thresholds and 
template sizes 

In this section, we explore the effects of having different operational 
thresholds and templates sizes on De-SVM. To do that, we repeat the 
previous experiment on COX database varying these parameters. Results 
can be seen on Tables 4 and 5. 

Analysing the operational threshold dependence (Table 4), we 
observe TAR@FAR1 increases as the operational threshold becomes less 
strict. However, the selected 5% FAR is an inflexion point from which 
the gain is more subtle. Looking at TAR and FAR performance, we 
observe that the increase of final TAR is done at FAR expenses. In this 
regard, we can assume then the 5% operational threshold as an 
acceptable compromise. 

Turning now to the template size effect (Table 5), we observe that 
most of the performance improvement appears initially. Again, on the 
final performance, there is an inflexion point at the selected size of 5 
frames. Since we want to address the problem of data scarceness, we 
want to extract the maximum power from the minimum amount of 

labelled information. Therefore, based on this behaviour and the one 
observed in Lopez-Lopez et al. (2019), the election of a 5 frames tem-
plate seems quite reasonable. 

5.3. Post-robustness impostor testing 

In static classification scenarios, regular FAR measures robustness 
against impostors. However, the systems studied here are non-static 
making FAR non-static as well. Even more considering that the sys-
tem’s predictions are used as pseudo-labels during the updates, making 
false acceptances susceptible to feedback. This experiment intends to 
test each classification technique in the extreme scenario where the 
system is repeatedly queried with only impostor queries. 

The idea is to part of the previous experiment. The initial template of 
5 frames is maintained as well as the CM with the genuine identity and 
the 10 most similar impostors. So, after the 20th query we will present a 
total of 90 impostor queries (every identity from the CM of the genuine 
target) with additional sub-sequences of the gallery subset. The fact that 
the CM is maintained (with the 10 most similar impostors) particularly 
augment the difficulty of the robustness testing. The pattern followed 
was: 

Section3.3

{
Section5.2

{
G1→I1

1→ … →G10→I1
10→

{
I2

1→ … →I2
10→ … →I10

1 → … →I10
10  

Fig. 7. FACE COX: Self-supervised performance comparison fixing the operational threshold at 5% initial FAR, testing robustness.  

Fig. 6. Genuine and impostor updates performed by each classification technique in each database.  
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The procedure to measure performance is the same as the previous 
experiment (using the probe set with identities of the CM), using the 
metrics described on Section 4.5. Measurements are performed after 
each of the queries. Results obtained can be seen in Figs. 7 and 8. 
Overall, the first thing we observe is that every method suffers a per-
formance loss in this testing. Nevertheless, looking at Fig. 7a, we realise 
De-SVM’s outstanding resistance compared to the other methods. 
TAR@FAR1 moves from 86.03 ± 0.48% and 75.5 ± 1.2% (COX and YTF, 
respectively) in query 20 to just below 64.4 ± 1.6% and 64.8 ± 1.1% in 
query 110. The following best performing technique is OS-ELM that goes 
from 75.0 ± 1.1% and 66.4 ± 1.9% to a final performance of 
19.3 ± 2.7% and 32.2 ± 5.2% TAR@FAR1. 

Looking again to transaction level performance (using the operational 
threshold) we find interesting behaviours again. Intuitively, one could 
think that a repeated impostor querying would make FAR out of control. 
Indeed, this behaviour is observed in 3 of the 4 classification techniques 
that have been tested (SVM and I-SVM). A softer behaviour is observed 
for OS-ELM. FAR values are maintained low, but the increasing trend 
(especially for COX database) is still observable. This is something which 
makes sense, given the fact that the only possible mistake is to accept an 
impostor query as genuine. 

However, De-SVM presents just the opposite behaviour. Most dam-
age comes from a decreasing TAR, instead of an increasing FAR. To 
understand this effect, we need to go deeper into ensembles’ nature. 
Ensembles decisions are based on majorities. The majority of accepting 
genuine identity is built during the initial stages (query 0 to 20). Based 
on Fig. 6, this decision is supported by 9 out of 10 classifiers. It would be 
necessary to overcome this majority of 9 classifiers to confuse an 
impostor with a genuine persistently. This is something quite difficult 
given the fact that FAR is always below 5%. 

In other words, impostor classifiers may agree on rejecting genuine 
identities (TAR decrease), but they cannot agree on the decision to 
accept another identity as genuine (FAR stability). This behaviour is 
quite interesting in fields like biometric identification, in which the main 
concern is to avoid impostors entering the system. 

5.4. Summary and discussion 

Finally, Table 6 represents a summary of the experiments. In this 
table, we present state-of-the-art with the available data and supervised 
adaptation baselines along with the rest of the experiments. The first set 
of baselines (Section 5.1.1), in the first two rows of the results for each 
dataset, shows the performance of two powerful learned feature repre-
sentations used as feature extractors to train an SVM classifier using the 
available labelled data. The second set of baselines (Section 5.1.2), 

Superv. Adapt. column, shows the potential performance of each 
method in the unrealistic case of having perfect self-labelling. Both sets 
serve to put into perspective the results achieved in the rest of the 
experiments. 

At first glance, it is noticeable that the self-updating method is an 
interesting approach to perform an unsupervised adaptation. It can 
improve initial performance in 3 of the 4 tested methods (including 
ours). This improvement is enough to overcome the state-of-the-art 
performance with the available data (Section 5.1.1) when using COX 
database. This is something quite remarkable given the short number of 
gallery samples (5 low-quality video frames). Nevertheless, in the case of 
YTF, AF + RN50 (Deng et al., 2019) stills beats the methods that include 
self-updating. A possible explanation for this is two-folded. First, unlike 
RN29, this feature representation is designed with YTF test in mind 
(Deng et al., 2019) acquiring state-of-the-art performance in this dataset 
too. Secondly, YTF is not database designed for the specific problem of 
video-surveillance. Consequently, most of the specific built-in charac-
teristics (e.g. variable scale and light conditions, blurriness, etc.) are less 
present in video-frames (Fig. 2). This fact makes easier the transition 
between stills and videos. 

Comparing to supervised adaptation (Section 5.1.2), every model 
experiences a predictable drop in performance when updating phase is 
done under unsupervised conditions. In this regard, De-SVM is the 
method that experiences the smallest of all. Thus, De-SVM is able to 
achieve comparable performance using less than a tenth of labels. On the 
other hand, SVM is the method that experiences the highest drop in this 
comparison. 

Finally, in terms of robustness, De-SVM presents impressive char-
acteristics in comparison to other classification methods. Its behaviour is 
even more remarkable, given that the only labelling used is the one to 
create the initial template. Besides, the fact that the performance dam-
age is caused by lowering TAR and not increasing FAR represents a 
desirable and promising quality for any biometric application. 

6. Conclusions 

In this work, the problem of V2V-FV for face re-identification pur-
poses, without a previous collaborative manual enrolment, is tackled. 
Based on state-of-the-art CNN features, self-updating can incorporate 
pseudo-labelled samples to perform incremental learning during the 
operational phase. Based on the obtained results, the self-updating 
approach arises as a promising strategy to take advantage of domain- 
specific samples incrementally retrieved. 

Our De-SVM can incorporate new relevant information while main-
taining a low false-positive rate in a completely unsupervised way. And 

Fig. 8. YouTube Faces: Self-supervised performance comparison fixing the operational threshold at 5% initial FAR, testing robustness.  
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not only this, the behaviour becomes even more promising given that we 
are not using the full power of an ensemble-based approach yet. As the 
process of updating consist of adding a new classifier (learn), one could 
potentially be able to correct wrong updates in the future by removing 
this classifier (forget). The ability to forget is only possible with this kind 
of classification techniques. 

As future work, we are considering to endow the method with the 
ability to forget, especially for life-long learning purposes. In these 
setups, incorporating a method to set an adaptive (variable) decision 
threshold could significantly impact the results. Besides, we need to 
consider that face verification only plays the role of a validation appli-
cation. De-SVM could be translated to other video-related contexts as 
object detection from mobile robots, person Re-ID or other detection 
applications. Overall, the proposed method’s benefits extend to any 
detection application in which good enough models cannot be generated 
offline. Thus, unsupervised adaptation could be a desirable capability. 
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Appendix A. Time independence of the operational threshold 

The operational threshold is assumed to be neither time nor identity dependent (Section 4.4). Despite not being totally accurate, this assumption is 
forced by the label’s scarceness of the operation’s context. In fact, Fig. A.9 shows how, using a constant operational threshold, FAR increases after each 
update for a supervised batch SVM (described in Section 3.4.1) showing the assumption’s inaccuracy. In this section, the aim is to explore the actual 
implications of the independence assumption (specifically regarding time). 

The experiment conducted shows the temporal evolution of this threshold for five different points of the ROC curve (Fig. A.10) under supervised 
conditions (same experiment as in Section 5.1.2). According to the previous assumption, the ideal behaviour would correspond to steady (or, at least, 
decreasing) curves. Such behaviour would mean that the system can improve (to increase TAR) without increasing the probability of accepting 
impostors, potentially corrupting the model. 

Results show different behaviours depending on the classification method used. Overall it is observed the explicit break of the threshold’s time 
independence assumption. De-SVM is the method that presents the most steady behaviour among all the classification techniques during this 
experiment. For instance, for SVM, thresholds corresponding to 1% FAR (at the beginning) and 25% FAR (at the end) are the same. OS-ELM shows the 
opposite behaviour. The initial threshold associated with a FAR 5% decreases over time. 

Fig. A.9. Evolution of the ROC curve and the ROC point associated to the operational threshold after each query for the 
supervised case using the SVM classification model. 
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This behaviour can be explained in terms of the sample balance (positive/negative) during the classifiers’ creation. At the early stages, this balance 
is compromised. The limited number of positive samples contrasts with a large number of negative ones. The balance is recovered when the model 
adds more genuine queries. Subsequently, the operational threshold selected (at 5% FAR) using the initial model (unbalanced problem) leads to a 
decision boundary shifted towards the positive sample(s). This boundary does not correspond to the same ROC point of the final model (balanced 
problem). 

In contrast, De-SVM uses an ensemble of ‘unbalanced’ SVM. However, each classifier is ‘unbalanced’ to the same degree, making the decision 
boundary much more stable during the queries. Besides, De-SVM presents a subtle decrease over time, indicating that the decision is becoming more 
strict. OS-ELM even show a more substantial decrease in the initial phases. 

These experiments showed that, despite being inaccurate, the assumption is acceptable. Again, one can start to foreshadow a better performance of 
both De-SVM and OS-ELM in following experiments. 

Appendix B. Detailed supervised results 

This section showcases detailed performance behaviour under supervised conditions. Performance is measured on the probe set, using the samples 
of the CM of each identity. Measurements were done after the creation of the initial model (t = 0) and after each query (t = 1,2,…,10). Results 
showcased in this experiment are directly comparable with the ones on Section 5.2, when the updates are done in the absence of labels. 

Results (Figs. B.11 and B.12) show that every method can achieve a remarkable performance, especially when testing on COX Face database. In this 
sense, I-SVM is the method that experiences the hardest time during the experiment. Above all, results show the capability of building an acceptable 
model in conditions where there is plenty of available data. Differences in performance are more obvious at the operational threshold, as illustrated in 
Figs. B.11b and B.12b. De-SVM achieves the most modest performance in terms of TAR respect to the other methods. Nevertheless, it is important to 
remark that higher performances are obtained at the cost of higher (and increasing) values of FAR. Both OS-ELM and De-SVM present a decreasing 
FAR, which ends up below 5%. These curves suggest a more desirable behaviour when updates will be performed in an unsupervised manner. A high 
FAR value means that the probability of accepting impostors during the training could also be high, and so the high risk of corrupting the model. 

Finally, these last figures give an important clue about the relevance of the operational threshold and its crucial influence on the self-updating 
mechanism. This influence was comprehensively studied in the previous appendix (Appendix A). 

Fig. A.10. COX: Threshold evolution of a same FAR point of the ROC curve (Data for 1%, 5%, 10%, 25% and 50%).  
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Appendix C. Using other central tendency measures in the FDR and SDR 

In this section, we repeat the experiment performed on Section 5.2 using the mean as an alternative central tendency measure in the FDR and SDR. 
Results on Table 7 show that the differences in performance are insignificant. Thus, we have selected the median due to a mere theoretical convention. 
Conceptually, the median corresponds to performing a majority vote after obtaining a binary classifier response (using the operational threshold). 

Fig. B.12. YouTube Faces: Supervised updating performance comparison.  

Table 7 
COX: Comparison on the function used in the FDR and SDR.   

TAR@FAR1 TAR FAR 

Function Initial Final Initial Final Initial Final 

Median 37.17±0.58  85.45±0.25  59.01±0.37  88.14±0.24  5.01±0.13  1.714±0.052  
Mean 36.56±0.56  84.27±0.48  59.00±0.26  87.39±0.32  5.01±0.12  1.681±0.040   

Fig. B.11. COX: Supervised updating performance comparison.  
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