
09 March 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Gorrieri, R. (2022). A study on team bisimulation and H-team bisimulation for BPP nets. THEORETICAL
COMPUTER SCIENCE, 897, 83-113 [10.1016/j.tcs.2021.09.037].

Published Version:

A study on team bisimulation and H-team bisimulation for BPP nets

Published:
DOI: http://doi.org/10.1016/j.tcs.2021.09.037

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/849478 since: 2023-12-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.tcs.2021.09.037
https://hdl.handle.net/11585/849478

A Study on Team Bisimulation and H-team Bisimulation
for BPP Nets

Roberto Gorrieri∗

Dipartimento di Informatica - Scienza e Ingegneria
Università di Bologna,

Mura A. Zamboni 7, 41027 Bologna, Italy

Abstract

A subclass of finite Petri nets, called BPP nets (acronym of Basic Parallel Processes),
was recently equipped with an efficiently decidable, truly concurrent, bisimulation-
based, behavioral equivalence, called team bisimilarity. This equivalence is a very in-
tuitive extension of classic bisimulation equivalence (over labeled transition systems)
to BPP nets and it is checked in a distributed manner. This paper has three goals. First
of all, we provide BPP nets with various causality-based observational semantics, no-
tably a novel semantics, called causal-net bisimilarity. Then, we define a variant se-
mantics, called h-team bisimilarity, coarser than team bisimilarity, for which we adapt
the modal logic characterization and the axiomatization of team bisimilarity. Then,
we complete the study about team bisimilarity and h-team bisimilarity, by comparing
them with the causality-based semantics we have introduced: the main results are that
team bisimilarity coincides with causal-net bisimilarity, while h-team bisimilarity with
fully-concurrent bisimilarity.

Keywords: Petri nets, BPP process algebra, fully-concurrent bisimulation, team
bisimulation, Hennessy-Milner modal logic, axiomatization.

1. Introduction

A BPP net is a simple type of finite Place/Transition Petri net [49, 15, 52, 28] whose
transitions have singleton pre-set. BPP is the acronym of Basic Parallel Processes [12],
a simple CCS [43, 27] fragment (without the restriction operator) whose processes can-
not communicate. In [28] a variant of BPP, which requires guarded summation (as in
Simple BPP [17], SBPP [20] or BPPg [12]) and also that the body of each process con-
stant is guarded (i.e., guarded recursion), is actually shown to represent all and only
the BPP nets, up to net isomorphism, and this explains the name of this class of nets.
Hence, we can uniformly compare results achieved on BPP nets or on the BPP subcal-
culus with guarded summation and guarded recursion. About expressiveness, BPP is

∗Corresponding author
Email address: roberto.gorrieri@unibo.it (Roberto Gorrieri)

Preprint submitted to Elsevier December 15, 2023

1 INTRODUCTION 2

the largest CCS fragment for which bisimilarity [43] is decidable [12]; moreover, used
as formal language recognizer, BPP is rather powerful as it can represent all the regu-
lar languages, many context-free, and some context-dependent ones [27]. However, as
models for distributed systems, BPP nets have limited applicability: even if they can
represent distributed systems composed of non-communicating sequential processes
(that, nonetheless, can spawn, so that the reachable markings can be infinitely many,
as for the semi-counter in Example 1), their lack of synchronization (as the transition
pre-set is always a singleton) prevents the modeling of many real-life applications.

In a recent paper [30], we proposed a novel behavioral equivalence for BPP nets,
based on a suitable generalization of the concept of bisimulation [48, 43], originally
defined over labeled transition systems (LTSs, for short) A team bisimulation R over
the places of an unmarked BPP net is a relation such that if two places s1 and s2 are
related by R, then if (one token in place) s1 performs a and produces the marking
m1, then (one token in place) s2 may perform a producing a marking m2 such that m1
and m2 are element-wise, bijectively related by R (and vice versa if s2 moves first).
Team bisimilarity is the largest team bisimulation over the places of the unmarked BPP
net, and then such a relation is lifted to markings by additive closure: if place s1 is
team bisimilar to s2 and the marking m1 is team bisimilar to m2 (the base case relates
the empty marking to itself), then also s1 ⊕m1 is team bisimilar to s2 ⊕m2, where
⊕ is the operator of multiset union. Note that to check whether two markings are

team bisimilar we need not to construct an LTS, such as the reachability graph [28],
describing the global behavior of the whole system, but only to find a suitable, bijective,
team bisimilarity-preserving match among the local, sequential states (i.e., the elements
of the two markings). In other words, two distributed systems, each composed of a
team of sequential, non-cooperating processes (i.e., the tokens in the BPP net), are
equivalent if it is possible to match each sequential component of the first system with
one team-bisimilar, sequential component of the other system, as in any sports where
two competing (distributed) teams have the same number of (sequential) players.

A bit surprisingly, the complexity of checking whether two markings are team
bisimilar is very low. First, by adapting the classic Kanellakis-Smolka algorithm [37,
38] for standard bisimulation equivalence over LTSs, team bisimulation equivalence
over places can be computed in O(m · p2 ·n) time, where m is the number of net transi-
tions, p is the size of the largest post-set (i.e., p is the least natural such that |t•| ≤ p for
all t) and n is the number of places. Then, checking whether two markings of size k are
team bisimilar can be done in O(k2) time. Note also that if we need to check whether
other two markings of the same net, say m′1 and m′2, are team equivalent, we can reuse
the already computed team bisimilarity over places, and so such a verification will take
only O(k2) time, if k is the size of m′1 and m′2. Of course, we proved that team bisim-
ilar markings respect the global behavior; in particular, the token game (actually, we
proved that team bisimilarity implies interleaving bisimilarity) and the causal behavior
(actually, we proved that team bisimilarity coincides with place bisimilarity [3, 4]).

In this paper we complete the comparison between team bisimilarity on markings
and the causal semantics of BPP nets. We propose a novel coinductive semantics, called
causal-net bisimilarity, inspired by [24], which is essentially a bisimulation semantics
over the causal nets (also called occurrence nets) [25, 6, 47] of the BPP net under
scrutiny. We prove that team bisimilarity coincides with causal-net bisimilarity, hence

2 BASIC DEFINITIONS 3

proving that our distributed semantics is coherent with the expected causal semantics
of BPP nets. Moreover, we define a slight strengthening of fully-concurrent bisimu-
lation [7] (fc-bisimulation, for short), called state-sensitive fc-bisimulation, which re-
quires additionally that, for each pair of related processes, the current markings have
the same size. We also prove that causal-net bisimilarity coincides with state-sensitive
fc-bisimilarity over BPP nets. These behavioral causal semantics have been provided
for BPP nets, but they can be easily adapted for general P/T nets [49, 15, 52, 28].

The other main goal of this paper is to show that fc-bisimilarity can be characterized
in a team-style, by means of h-team bisimulation equivalence (the prefix h- is to remind
history-preserving bisimilarity [22], an equivalence that inspired fc-bisimilarity). The
essential difference between a team bisimulation and an h-team bisimulation is that the
former is a relation on the set of places only, while the latter is a relation on the set com-
posed of the places and the empty marking θ . Besides proving that h-team bisimilarity
coincides with fc-bisimilarity, in the second part of the paper, we adapt the techni-
cal results obtained for team bisimulation equivalence in [30], to h-team bisimulation
equivalence. In particular, we show that h-team bisimilarity can be characterized by
a simple modal logic, called HTML, which extends conservatively Hennessy-Milner
logic (HML) [33, 2]; moreover, we prove that h-team bisimilarity can be axiomatized
finitely over the BPP process algebra (with guarded summation and guarded constants).

The paper is organized as follows. Section 2 introduces the basic definitions about
BPP nets. Section 3 discusses the causal semantics of BPP nets. First, causal-net bisim-
ulation is introduced, then (strong) fully-concurrent bisimilarity [7], and also the state-
sensitive version of this equivalence. Section 4 recalls the main definitions and results
about team bisimilarity from [30]; in this section we also prove a novel result: causal-
net bisimilarity coincides with team bisimilarity for BPP nets. Section 5 defines h-team
bisimulation equivalence and studies its properties; in particular, we first prove that h-
team bisimilarity coincides with fc-bisimilarity, then in Section 5.2 we discuss a modal
logic characterization of h-team bisimilarity. In Section 6 we describe also a finite,
sound and complete, axiomatization of h-team bisimilarity over the process algebra
BPP. Finally, Section 7 discusses related literature and some future research.

2. Basic Definitions

Definition 1. (Multiset) Let N be the set of natural numbers. Given a finite set S, a
multiset over S is a function m : S→N. The support set dom(m) of m is {s∈ S

∣∣ m(s) 6=
0}. The set of all multisets over S, denoted by M (S), is ranged over by m. We write
s ∈ m if m(s) > 0. The multiplicity of s in m is given by the number m(s). The size
of m, denoted by |m|, is the number ∑s∈S m(s), i.e., the total number of its elements.
A multiset m such that dom(m) = /0 is called empty and is denoted by θ . We write
m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S. Multiset union ⊕ is defined as follows: (m⊕
m′)(s) = m(s)+m′(s). Multiset difference 	 is defined as follows: (m1	m2)(s) =
max{m1(s)−m2(s),0}. The scalar product of a number j with m is the multiset j ·m
defined as (j ·m)(s) = j · (m(s)). By si we also denote the multiset with si as its only
element. Hence, a multiset m over S = {s1, . . . ,sn} can be represented as k1 · s1⊕ k2 ·
s2⊕ . . .⊕ kn · sn, where k j = m(s j)≥ 0 for j = 1, . . . ,n. 2

2 BASIC DEFINITIONS 4

Definition 2. (BPP net) A labeled BPP net is a tuple N = (S,A,T), where

• S is the finite set of places, ranged over by s (possibly indexed),

• A is the finite set of labels, ranged over by ` (possibly indexed), and

• T ⊆ S× A×M (S) is the finite set of transitions, ranged over by t (possibly
indexed).

Given a transition t = (s, `,m), we use the notation:

• •t to denote its pre-set s (which is a single place) of tokens to be consumed;

• l(t) for its label `, and

• t• to denote its post-set m (which is a multiset, possibly even empty) of tokens to
be produced.

Hence, transition t can be also represented as •t
l(t)−→ t•. We also define pre-sets and

post-sets for places as follows: •s = {t ∈ T
∣∣ s ∈ t•} and s• = {t ∈ T

∣∣ s ∈ •t}. Note
that while the pre-set (post-set) of a transition is, in general, a multiset, the pre-set
(post-set) of a place is a set. 2

Graphically, a place is represented by a little circle and a transition by a little box,
and these may be connected by directed arcs. These arcs may be labeled with the num-
ber representing how many tokens of that type are to be removed from (or produced
into) that place; no label on the arc is interpreted as the number one. This numerical
label of the arc is called its weight.

Definition 3. (Marking, BPP net system) A multiset over S is called a marking. Given
a marking m and a place s, we say that the place s contains m(s) tokens, graphically rep-
resented by m(s) bullets inside place s. A BPP net system N(m0) is a tuple (S,A,T,m0),
where (S,A,T) is a BPP net and m0 is a marking over S, called the initial marking. We
also say that N(m0) is a marked net. 2

Definition 4. (Enabling, firing sequence, reachable place, dynamically reduced)
A transition t is enabled at marking m, denoted by m[t〉, if •t ⊆ m. The execution (or
firing) of t enabled at m produces the marking m′= (m	•t)⊕t•. This is written m[t〉m′.

A firing sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty sequence of transitions);

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

The set of reachable markings from m is [m〉= {m′
∣∣ ∃σ .m[σ〉m′}. A BPP net system

N(m0) = (S,A,T,m0) is safe if each marking m reachable from the initial marking m0
is a set, i.e., ∀m ∈ [m0〉,m(s) ≤ 1 for all s ∈ S. The set of reachable places from s
is reach(s) =

⋃
m∈[s〉 dom(m). Note that reach(s) is always a finite set, even if [s〉 is

infinite. A BPP net system N(m0) = (S,A,T,m0) is dynamically reduced if ∀s∈ S there
exists m ∈ [m0〉. m(s)≥ 1 and ∀t ∈ T ∃m,m′ ∈ [m0〉 such that m[t〉m′. 2

2 BASIC DEFINITIONS 5

a)

s1

inc

s2

dec

s3

inc

s4 s5

inc
dec

s6

dec

b)

Figure 1: The net representing a semi-counter in (a), and a variant in (b)

Example 1. By using the drawing convention mentioned above, Figure 1 shows in (a)
the simplest BPP net representing a semi-counter, i.e., a counter which cannot test for
zero. Note that the number represented by this semi-counter is given by the number
of tokens which are present in place s2, i.e., in the place ready to perform dec; hence,
Figure 1(a) represents a semi-counter holding number 0; note also that the number
of tokens which can be accumulated in s2 is unbounded. Indeed, the set of reachable
markings for a BPP net can be countably infinite. In (b), a variant semi-counter is
outlined, which holds number 2 (i.e., two tokens are ready to perform dec). 2

Now we recall a popular behavioral equivalence relation: interleaving bisimilarity.

Definition 5. (Interleaving Bisimulation) Let N = (S,A,T) be a BPP net. An inter-
leaving bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with l(t1)= l(t2) and (m′1,m
′
2)∈R,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with l(t1)= l(t2) and (m′1,m
′
2)∈R.

Two markings m1 and m2 are interleaving bisimilar, denoted by m1 ∼int m2, if there
exists an interleaving bisimulation R such that (m1,m2) ∈ R. 2

Interleaving bisimilarity ∼int , which is defined as the union of all the interleaving
bisimulations, is the largest interleaving bisimulation and also an equivalence relation.

Example 2. Continuing Example 1 about Figure 1, it is easy to realize that relation
R = {(s1⊕k · s2,s3⊕k1 · s5⊕k2 · s6)

∣∣ k = k1 +k2 and k,k1,k2 ≥ 0}∪{(s1⊕k · s2,s4⊕
k1 · s5⊕ k2 · s6)

∣∣ k = k1 + k2 and k,k1,k2 ≥ 0} is an interleaving bisimulation. Since
(s1,s3) ∈ R, we have that s1 ∼int s3. 2

Remark 1. (Complexity of ∼int) The problem of checking whether two markings of
a BPP net are interleaving bisimilar is roughly exponential in time; more precisely, this
decision problem is PSPACE-complete [35] (w.r.t. the size of the net, where the size of
a BPP net is the sum of the number of its places and of its transitions). 2

3 CAUSALITY-BASED SEMANTICS 6

3. Causality-Based Semantics

We start with the most concrete equivalence definable over BPP nets: isomorphism.

Definition 6. (Isomorphism) Given two BPP nets N1 =(S1,A,T1) and N2 =(S2,A,T2),
we say that N1 and N2 are isomorphic via f if there exists a type-preserving bijection
f : S1∪T1→ S2∪T2 (i.e., a bijection such that f (S1) = S2 and f (T1) = T2), satisfying
the following condition:
∀t ∈ T1, if t = (•t, `, t•), then f (t) = (f (•t), `, f (t•)),

where f is homomorphically extended to markings: f (θ) = θ and f (m1 ⊕m2) =
f (m1)⊕ f (m2) (i.e., f is applied element-wise to each element of the marking).

Two BPP net systems N1(m1) and N2(m2) are rooted isomorphic if the isomorphism
f ensures, additionally, that f (m1) = m2. 2

In order to define our approach to causality-based semantics for BPP nets, we need
some auxiliary definitions, adapting those in, e.g., [46, 25, 6, 7, 47, 24].

Definition 7. (Acyclic net) A BPP net N = (S,A,T) is acyclic if there exists no se-
quence x1x2 . . .xn such that n ≥ 3, xi ∈ S ∪ T for i = 1, . . . ,n, x1 = xn, x1 ∈ S and
xi ∈ •xi+1 for i = 1, . . . ,n−1, i.e., the arcs of the net do not form any cycle. 2

The concurrent semantics of a marked P/T net is defined by a class of particular
acyclic safe nets, where places are not branched (hence they are essentially determin-
istic) and all arcs have weight 1. This kind of net is called causal net. We use the
name C (possibly indexed) to denote a causal net, the set B to denote its places (called
conditions), the set E to denote its transitions (called events), and L to denote its labels.

Definition 8. (Causal net) A causal net is a marked BPP net C(m0) = (B,L,E,m0)
satisfying the following conditions:

1. C is acyclic;
2. ∀b ∈ B |•b| ≤ 1 ∧ |b•| ≤ 1 (i.e., the places are not branched);

3. ∀b ∈ B m0(b) =

{
1 if •b = /0
0 otherwise;

4. ∀e ∈ E e•(b)≤ 1 for all b ∈ B (i.e., all the arcs have weight 1).

We denote by Min(C) the set m0, and by Max(C) the set {b ∈ B
∣∣ b• = /0}. 2

Note that a BPP causal net, being a BPP net, is finite; since it is acyclic, it represents
a finite computation. Note also that any reachable marking of a BPP causal net is a set,
i.e., this net is safe; in fact, the initial marking is a set and, assuming by induction that
a reachable marking m is a set and enables t, i.e., m[t〉m′, then also m′ = (m	 •t)⊕ t•

is a set, because the net is acyclic and because of the condition on the shape of the
post-set of t (weights can only be 1).

As the initial marking of a causal net is fixed by its shape (according to item 3 of
Definition 8), in the following, in order to make the notation lighter, we often omit the
indication of the initial marking, so that C(m0) is simply denoted by C.

3 CAUSALITY-BASED SEMANTICS 7

Definition 9. (Moves of a causal net) Given two BPP causal nets C = (B,L,E,m0)
and C′ = (B′,L,E ′,m0), we say that C moves in one step to C′ through e, denoted by
C[e〉C′, if •e⊆Max(C), E ′ = E ∪{e} and B′ = B∪ e•. 2

Definition 10. (Folding and Process) A folding from a BPP causal net C =(B,L,E,m0)
into a BPP net system N(m0) = (S,A,T,m0) is a function ρ : B∪E → S∪T , which is
type-preserving, i.e., such that ρ(B)⊆ S and ρ(E)⊆ T , satisfying the following:

• L = A and l(e) = l(ρ(e)) for all e ∈ E;

• ρ(m0) = m0, i.e., m0(s) = |ρ−1(s)∩m0|;

• ∀e ∈ E,ρ(•e) = •ρ(e), i.e., ρ(•e)(s) = |ρ−1(s)∩ •e| for all s ∈ S;

• ∀e ∈ E, ρ(e•) = ρ(e)•, i.e., ρ(e•)(s) = |ρ−1(s)∩ e•| for all s ∈ S.

A pair (C,ρ), where C is a BPP causal net and ρ a folding from C to a BPP net system
N(m0), is a process of N(m0), written also as π . 2

Definition 11. (Isomorphic processes) Given a BPP net system N(m0), two of its
processes (C1,ρ1) and (C2,ρ2) are isomorphic via f if C1 and C2 are rooted isomorphic
via bijection f (see Definition 6) and ρ1 = ρ2 ◦ f . 2

Definition 12. (Moves of a process) Let N(m0) = (S,A,T,m0) be a net system and let
(Ci,ρi), for i = 1,2, be two processes of N(m0). We say that (C1,ρ1) moves in one step
to (C2,ρ2) through e, denoted by (C1,ρ1)

e−→ (C2,ρ2), if C1[e〉C2 and ρ1 ⊆ ρ2.
If π1 = (C1,ρ1) and π2 = (C2,ρ2) and (C1,ρ1)

e7−→ (C2,ρ2), we also denote the move
as π1

t−→π2, where ρ2(e) = t. 2

Definition 13. (Partial orders of events from a process) From a causal net C =
(B,L,E), we can extract the partial order of its events EC = (E,�), where e1 � e2
iff there exists a sequence x1x2x3 . . .xn such that n ≥ 3, xi ∈ B∪ E for i = 1, . . . ,n,
e1 = x1,e2 = xn, and xi ∈ •xi+1 for i = 1, . . . ,n− 1; in other words, e1 � e2 if there is
a path from e1 to e2. Two partial orders (E1,�1) and (E2,�2) are isomorphic if there
is a label-preserving, order-preserving bijection g : E1→ E2, i.e., a bijection such that
l1(e) = l2(g(e)) and e�1 e′ if and only if g(e)�2 g(e′). We also say that g is an event
isomorphism between the causal nets C1 and C2 if it is an isomorphism between their
associated partial orders of events EC1 and EC2 . 2

We now define two well-known linear-time causality-based equivalences for BPP
nets. The first one, known in the literature as causal equivalence [47], is named causal-
trace equivalence and equates two markings of a net from which the same causal nets
originate. The latter is more abstract as it forgets about the places of the causal nets and
keeps only the partial order of events, yielding partial-order-trace equivalence.

Definition 14. (Causal-trace equivalence) Let N = (S,A,T) be a BPP net. For a
marking m, let Cn[m] = {C

∣∣ ∃ρ.(C,ρ) is a process of N(m)} be the set of causal
nets for the BPP net system N(m). Two markings m1 and m2 are causal-trace equiva-
lent, denoted by m1 =ct m2, if Cn[m1] =Cn[m2]. 2

3 CAUSALITY-BASED SEMANTICS 8

Definition 15. (Partial-order-trace equivalence) Let N = (S,A,T) be a BPP net. For
a marking m, let P[m] = {EC

∣∣ ∃ρ.(C,ρ) is a process of N(m)} be the set of partial
orders for the BPP net system N(m). Two markings m1 and m2 are partial-order-trace
equivalent, denoted by m1 =pt m2, if P[m1]≡ P[m2], i.e., if ∀EC1 ∈ P[m1]∃EC2 ∈ P[m2]
such that EC1 and EC2 are isomorphic, and vice versa, ∀EC2 ∈ P[m2]∃EC1 ∈ P[m1] such
that EC1 and EC2 are isomorphic. 2

Proposition 1. (Causal-trace equivalence is finer than partial-order-trace equiv-
alence) Given a BPP net N = (S,A,T), for each m1,m2 ∈M (S), if m1 =ct m2 then
m1 =pt m2.

PROOF. If m1 =ct m2, then Cn[m1] =Cn[m2]. So, P[m1] = P[m2], i.e., m1 =pt m2. 2

3.1. Causal-Net Bisimulation

We want to define a bisimulation-based equivalence which is coarser than the very
concrete, branching-time semantics of occurrence net equivalence [21] (where two
nets are occurrence net equivalent if and only if they have isomorphic unfoldings [45,
16]), and finer than the linear-time semantics of causal-trace equivalence. The proposed
novel behavioral equivalence is the following causal-net bisimulation, inspired by [24].

Definition 16. (Causal-net bisimulation) Let N = (S,A,T) be a BPP net. A causal-
net bisimulation is a relation R, composed of triples of the form (ρ1,C,ρ2), where, for
i = 1,2, (C,ρi) is a process of N(m0i) for some m0i , such that if (ρ1,C,ρ2) ∈ R then

i) ∀t1,C′,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1) with ρ ′1(e) = t1, there exist t2,ρ ′2 such

that (C,ρ2)
e−→ (C′,ρ ′2), with ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R;

ii) and symmetrically, ∀t2,C′,ρ ′2 such that (C,ρ2)
e−→ (C′,ρ ′2) with ρ ′2(e) = t2, there

exist t1,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1), with ρ ′1(e) = t1, and (ρ ′1,C

′,ρ ′2) ∈ R.

Two markings m1 and m2 of N are cn-bisimilar (or cn-bisimulation equivalent),
denoted by m1 ∼cn m2, if there exists a causal-net bisimulation R containing a triple
(ρ0

1 ,C
0,ρ0

2), where C0 contains no events and ρ0
i (Min(C0)) = ρ0

i (Max(C0)) = mi for
i = 1,2. 2

Let us denote by∼cn
R = {(m1,m2)

∣∣ m1 is cn-bisimilar to m2 thanks to R}. Of course,
cn-bisimilarity ∼cn can be seen as

⋃
{∼cn

R

∣∣ R is a causal-net bisimulation} = ∼cn
R ,

where R =
⋃
{R

∣∣ R is a causal-net bisimulation} is the largest causal-net bisimula-
tion by item 3 of the following obvious proposition.

Proposition 2. For each BPP net N = (S,A,T), the following hold:

1. the identity relation I = {(ρ,C,ρ)
∣∣ ∃m ∈M (S).(C,ρ) is a process of N(m)}

is a causal-net bisimulation;
2. the inverse relation R−1 = {(ρ2,C,ρ1)

∣∣ (ρ1,C,ρ2) ∈ R} of a causal-net bisim-
ulation R is a causal-net bisimulation;

3. the union
⋃

i∈I Ri of causal-net bisimulations Ri is a causal-net bisimulation. 2

3 CAUSALITY-BASED SEMANTICS 9

More problematic is to define the relational composition R1 ◦R2 of two causal-net
bisimulations R1 and R2. One trivial possibility is to state that

R1 ◦R2 = {(ρ1,C,ρ3)
∣∣ ∃ρ2. (ρ1,C,ρ2) ∈ R1∧ (ρ2,C,ρ3) ∈ R2}

but this definition would prevent the composition of cn-bisimulations that differ only
for the actual choice of the causal net C; in other words, R2 may be using a causal net C
which is simply isomorphic to C. Hence, the more generous definition of composition
we are proposing is the following. Given a BPP net N = (S,A,T), the composition, up
to net isomorphism, of two causal-net bisimulations R1 and R2 is the relation

R1 ◦R2 = {(ρ1,C,ρ3)
∣∣ ∃ρ2. (ρ1,C,ρ2) ∈ R1∧∃(ρ2,C,ρ3) ∈ R2 such that (C,ρ2)

and (C,ρ2) are isomorphic processes via f ∧ ρ3 = ρ3 ◦ f}.
Note that this definition is intuitively correct because we are requiring that (C,ρ2)

and (C,ρ2) are isomorphic processes via f (cf. Definition 11), so that they are related
to the same initial marking. The following proposition shows that R1◦R2 is a causal-net
bisimulation, indeed.

Proposition 3. For each BPP net N = (S,A,T), the relational composition, up to net
isomorphism, R1 ◦R2 = {(ρ1,C,ρ3)

∣∣ ∃ρ2. (ρ1,C,ρ2) ∈ R1 ∧∃(ρ2,C,ρ3) ∈ R2 such
that (C,ρ2) and (C,ρ2) are isomorphic processes via f ∧ ρ3 = ρ3◦ f} of two causal-net
bisimulations R1 and R2 is a causal-net bisimulation.

PROOF. Assume that (ρ1,C,ρ3)∈ R1 ◦R2 and that (C,ρ1)
e−→ (C′,ρ ′1) with ρ ′1(e) = t1.

Since R1 is a causal-net bisimulation and (ρ1,C,ρ2) ∈ R1, we have that there exist
t2,ρ ′2 such that (C,ρ2)

e−→ (C′,ρ ′2), with ρ ′2(e) = t2, and (ρ ′1,C
′,ρ ′2)∈ R1. Since (C,ρ2)

and (C,ρ2) are isomorphic via f , it follows that (C,ρ2)
e′−→ (C′,ρ ′2), with ρ

′
2(e
′) = t2,

where (C′,ρ ′2) and (C′,ρ ′2) are isomorphic via f ′, where f ′ extends f in the obvious
way (i.e., by mapping event e to e′).

As (ρ2,C,ρ3) ∈ R2 and R2 is a causal-net bisimulation, for (C,ρ2)
e′−→ (C′,ρ ′2),

with ρ
′
2(e
′) = t2, there exist t3,ρ ′3 such that (C,ρ3)

e′−→ (C′,ρ ′3), with ρ
′
3(e
′) = t3, and

(ρ ′2,C
′
,ρ ′3) ∈ R2.

As ρ3 = ρ3 ◦ f , it follows that (C,ρ3) and (C,ρ3) are isomorphic via f . Therefore,
(C,ρ3)

e−→ (C′,ρ ′3) is derivable, too, where ρ ′3(e) = t3 and ρ ′3 = ρ
′
3 ◦ f ′, so that (C′,ρ ′3)

and (C′,ρ ′3) are isomorphic via f ′.
Summing up, if (ρ1,C,ρ3) ∈ R1 ◦R2 and (C,ρ1)

e−→ (C′,ρ ′1), with ρ ′1(e) = t1, then
∃t3,ρ ′3 such that (C,ρ3)

e−→ (C′,ρ ′3), with ρ ′3(e) = t3, and (ρ ′1,C
′,ρ ′3) ∈ R1 ◦R2

The symmetric case when (C,ρ3) moves first is analogous, hence omitted. There-
fore, R1 ◦R2 is a causal-net bisimulation, indeed. 2

Proposition 4. For each BPP net N = (S,A,T), relation ∼cn ⊆M (S)×M (S) is an
equivalence relation.

PROOF. Reflexivity is easy: the identity relation I = {(ρ,C,ρ)
∣∣ ∃m ∈M (S).(C,ρ)

is a process of N(m)} is a causal-net bisimulation by Proposition 2(1). Hence, m∼cn m
for all m.

Symmetry derives from the following argument. For any (m1,m2) ∈ ∼cn, there ex-
ists a causal-net bisimulation R containing a triple (ρ0

1 ,C
0,ρ0

2), where C0 contains no

3 CAUSALITY-BASED SEMANTICS 10

a)

s1

a

b)

s2

a a

s3 s4

a a

Figure 2: Two cn-bisimilar BPP nets

transitions and ρ0
i (Min(C)) = mi for i = 1,2. By Proposition 2(2), relation R−1 is a

causal-net bisimulation containing the triple (ρ0
2 ,C

0,ρ0
1), and so (m2,m1) ∈ ∼cn.

Transitivity also holds for∼cn. Assume (m1,m2) ∈∼cn and (m2,m3) ∈∼cn; hence,
there exist two causal-net bisimulations R1 and R2 such that R1 has a triple (ρ0

1 ,C
0,

ρ0
2), where C0 has no transitions and ρ0

i (Min(C0)) = mi for i = 1,2, and R2 contains
a triple (ρ0

2,C
0
,ρ0

3), where C0 has no transition and ρ
0
i (Min(C0

)) = mi for i = 2,3.
Therefore, (C0,ρ0

2) and (C0
,ρ0

2) are isomorphic via some bijection f and ρ0
3 = ρ

0
3 ◦ f .

By Proposition 3, relation R1 ◦ R2 is a causal-net bisimulation containing the triple
(ρ0

1 ,C
0,ρ0

3); hence, (m1,m3) ∈ ∼cn. 2

Example 3. Consider the nets in Figure 1. Clearly the net in a) with initial marking
s1 and the net in b) with initial marking s3 are not isomorphic; however, it is possible
to prove that they have isomorphic unfoldings [45, 21, 16]; moreover, it is clear that
s1 ∼cn s3, even if a causal-net bisimulation proving this is not easy to define and would
contain infinitely many triples. 2

Example 4. Consider the nets in Figure 2. Of course, the initial markings s1 and s2 do
not generate isomorphic unfoldings; however, s1 ∼cn s2, even if a causal-net bisimula-
tion proving this would contain infinitely many triples. 2

Proposition 5. (Causal-net bisimilarity is finer than causal-trace equivalence) Given
a BPP net N = (S,A,T), for each m1,m2 ∈M (S), if m1 ∼cn m2 then m1 =ct m2.

PROOF. If m1 ∼cn m2, then for each C ∈Cn[m1], there must be a triple (ρ1,C,ρ2)∈∼cn
such that ρ1(Min(C)) = m1 and ρ2(Min(C)) = m2. This means that C ∈Cn[m2] and so
Cn[m1] ⊆ Cn[m2]. By a symmetric argument, we can prove Cn[m2] ⊆ Cn[m1], so that
we conclude that Cn[m1] =Cn[m2], i.e., m1 =ct m2. 2

The implication above is strict, as illustrated in the following example.

Example 5. Let us consider the nets in Figure 3. Of course, s1 6∼cn s3, even if they gen-
erate the same causal nets, i.e. s1 =ct s3. In fact, transition s1

a−→ s2 might be matched
by s3 either with s3

a−→ s4 or with s3
a−→ s5, so that it is necessary that s2 ∼cn s4 or

s2 ∼cn s5; but this is impossible, because only s2 can perform both b and c. Moreover,
s6 6∼cn s8 because they do not generate the same causal nets, i.e., s6 6=ct s8. 2

3 CAUSALITY-BASED SEMANTICS 11

a)

s1

a

s2

b c

b)

s3

a a

s4

b

s5

c

c)

s6

a

s7

s8

a

Figure 3: Some non-cn-bisimilar BPP nets

3.2. (State-Sensitive) Fully-Concurrent Bisimulation
In the theory of equivalences for distributed systems, only the events performed are

usually considered as the relevant part of the behavior of a system. Hence, causal-net
bisimulation, which also observes the structure of the distributed state, may be con-
sidered too concrete as an equivalence. We disagree with this view, as the structure of
the distributed state is not less observable than the events this distributed state can per-
form. However, some equivalences have been proposed with this weaker assumption,
the most prominent being fully-concurrent bisimulation (fc-bisimulation, for short) [7],
whose definition was inspired by previous equivalences on other models of concur-
rency: history-preserving bisimulation, originally defined in [51] under the name of
behavior-structure bisimulation, and then elaborated on in [22] (who called it by this
name) and [14] (who called it by mixed ordering bisimulation). Besides fc-bisimulation
equivalence, we define also a novel, slightly stronger version, called state-sensitive fc-
bisimulation equivalence, that we prove to coincide with causal-net bisimilarity.

Definition 17. (Fully-concurrent bisimulation) Let N = (S,A,T) be a BPP net. A
(strong) fc-bisimulation is a relation R, composed of triples of the form (π1,g,π2),
where, for i = 1,2, πi = (Ci,ρi) is a process of N(m0i) for some m0i and g is an event
isomorphism between EC1 and EC2 , such that if (π1,g,π2) ∈ R then

i) ∀t1,π ′1 such that π1
e1−→π ′1 with ρ ′1(e1) = t1, ∃t2,π ′2,g′ such that

1. π2
e2−→π ′2 with ρ ′2(e2) = t2;

2. g′ = g∪{(e1,e2)}, and finally,
3. (π ′1,g

′,π ′2) ∈ R;

ii) and symmetrically, if π2 moves first.

Two markings m1 and m2 are fc-bisimilar, denoted by m1 ∼ f c m2, if there exists
an fc-bisimulation R containing a triple ((C0

1 ,ρ
0
1),g0,(C0

2 ,ρ
0
2)), where C0

i contains no
transitions, g0 is empty and ρ0

i (Min(C0
i)) = ρ0

i (Max(C0
i)) = mi for i = 1,2. 2

Let us denote by∼ f c
R = {(m1,m2)

∣∣ m1 is fc-bisimilar to m2 thanks to R}. Of course,
∼ f c=

⋃
{∼ f c

R

∣∣ R is a fully-concurrent bisimulation}=∼ f c
R , where relation

R =
⋃
{R
∣∣ R is a fully-concurrent bisimulation}

is the largest fully-concurrent bisimulation by item 4 of the following proposition.

3 CAUSALITY-BASED SEMANTICS 12

Proposition 6. For each BPP net N = (S,A,T), the following hold:

1. the identity relation I = {((C,ρ), id,(C,ρ))
∣∣ ∃m.(C,ρ) is a process of N(m)

and id is the identity event isomorphism on C} is an fc-bisimulation;
2. the inverse relation R−1 = {((C2,ρ2),g−1,(C1,ρ1))

∣∣ ((C1,ρ1),g,(C2,ρ2))∈ R}
of an fc-bisimulation R is an fc-bisimulation;

3. the relational composition, up to isomorphism, R1 ◦R2 = {((C1,ρ1),g,(C3,ρ3))∣∣ ((C1,ρ1),g1, (C2,ρ2)) ∈ R1 ∧ ((C2,ρ2),g2,(C3,ρ3)) ∈ R2 ∧ (C2,ρ2) and
(C2,ρ2) are isomorphic processes via f2 ∧ g = g2 ◦ (f2 ◦g1)} of two fc-bisimu-
lations R1 and R2 is an fc-bisimulation;

4. the union
⋃

i∈I Ri of a family of fc-bisimulations Ri is an fc-bisimulation.

PROOF. The proof of cases 1, 2, and 4 is trivial. The proof for case 3 is similar to the
proof of Proposition 3, and so omitted. 2

Proposition 7. For each BPP net N = (S,A,T), relation ∼ f c ⊆M (S)×M (S) is an
equivalence relation.

PROOF. Similar to the proof of Proposition 4 and so omitted.

Proposition 8. (Fc-bisimilarity implies partial-order-trace equivalence) Given a
BPP net N = (S,A,T), for each m1,m2 ∈M (S), if m1 ∼ f c m2 then m1 =pt m2.

PROOF. If m1 ∼ f c m2, then for each EC1 ∈ P[m1], there must be a triple ((C1,ρ1),g,
(C2,ρ2)) ∈∼ f c such that, for i = 1,2, ρi(Min(Ci)) = mi, ECi is the partial order of Ci
and g is an isomorphism between EC1 and EC2 . So EC2 ∈ P[m2]. Hence, ∀EC1 ∈ P[m1],
∃EC2 ∈P[m2] such that the two partial orders are isomorphic. By a symmetric argument,
we can prove that ∀EC2 ∈ P[m2], ∃EC1 ∈ P[m1] such that the two partial orders are
isomorphic. Hence, we conclude that P[m1]≡ P[m2], i.e., m1 =pt m2. 2

Proposition 9. (Cn-bisimilarity is finer than fc-bisimilarity) For each BPP net N =
(S,A,T), for each m1,m2 ∈M (S), if m1 ∼cn m2, then m1 ∼ f c m2.

PROOF. If m1 ∼cn m2, then a cn-bisimulation R exists, containing a triple (ρ0
1 ,C

0,ρ0
2),

where C0 contains no events and ρ0
i (Min(C0))=mi for i= 1,2. Relation R′= {((C,ρ1),

id,(C,ρ2))
∣∣ (ρ1,C,ρ2) ∈ R}, where id is the identity event isomorphism on C, is an

fc-bisimulation. As R′ contains ((C0,ρ0
1), id,(C

0,ρ0
2)), it follows that m1 ∼ f c m2. 2

The above implications are strict, as illustrated by the following example.

Example 6. Consider the net in Figure 3. In Example 5 we argued that s6 �cn s8;
however, s6 ∼ f c s8, because, even if they do not generate the same causal net, still they
generate isomorphic partial orders of events. On the contrary, s1 � f c s3 because, even
if they generate isomorphic partial orders (and so s1 =pt s3), the two markings have a
different branching structure, as discussed in Example 5. Note that the deadlock place
s7 and the empty marking θ are fc-bisimilar, so also partial-order trace equivalent;
however, s7 and θ are not causal-net bisimilar, and not even causal-trace equivalent. 2

3 CAUSALITY-BASED SEMANTICS 13

Definition 18. (State-sensitive fully-concurrent bisimulation) An fc-bisimulation R
is state-sensitive if for each triple ((C1,ρ1),g,(C2,ρ2))∈R, the maximal markings have
equal size, i.e., |ρ1(Max(C1))| = |ρ2(Max(C2))|. Two markings m1 and m2 of N are
sfc-bisimilar, denoted by m1 ∼s f c m2, if there exists a state-sensitive fc-bisimulation
R containing a triple ((C0

1 ,ρ
0
1),g0,(C0

2 ,ρ
0
2)), where C0

i contains no transitions, g0 is
empty and ρ0

i (Min(C0
i)) = ρ0

i (Max(C0
i)) = mi for i = 1,2. 2

Of course, also the above definition is defined coinductively; as we can prove an
analogous of Proposition 6, it follows that ∼s f c is an equivalence relation, too.

Now we prove that for BPP nets ∼s f c coincides with causal-net bisimilarity ∼cn.

Theorem 1. (Cn-bisimilarity and sfc-bisimilarity coincide) For each BPP net N =
(S,A,T), m1 ∼cn m2 if and only if m1 ∼s f c m2.

PROOF. ⇒) If m1 ∼cn m2, then there exists a causal-net bisimulation R such that it
contains a triple (ρ0

1 ,C
0,ρ0

2), where C0 contains no transitions and ρ0
i (Min(C0)) =

ρ0
i (Max(C0)) = mi for i = 1,2. Relation R = {((C,ρ1), id,(C,ρ2))

∣∣ (ρ1,C,ρ2)∈ R},
where id is the identity event isomorphism on C, is a state-sensitive fc-bisimulation.
Since R contains the triple ((C0,ρ0

1), id,(C
0,ρ0

2)), it follows that m1 ∼s f c m2.
⇐) (Sketch) If m1 ∼s f c m2, then there exists a state-sensitive fc-bisimulation R

containing a triple ((C0
1 ,ρ

0
1),g0,(C0

2 ,ρ
0
2)), where C0

i contains no transitions, g0 is empty
and ρ0

i (Min(C0
i)) = ρ0

i (Max(C0
i)) = mi for i = 1,2, with |m1| = |m2|. Hence, C0

1 and
C0

2 are isomorphic, where the isomorphism function f0 is a suitably chosen bijection
from Min(C0

1) to Min(C0
2).

1

We build the candidate causal-net bisimulation R inductively, by first including the
triple (ρ0

1 ,C
0
1 ,ρ

0
2 ◦ f0); hence, if R is a causal-net bisimulation, then m1 ∼cn m2.

Since ((C0
1 ,ρ

0
1),g0,(C0

2 ,ρ
0
2)) ∈ R and R is a state-sensitive fc-bisimulation, if

(C0
1 ,ρ

0
1)

e1−→ (C1,ρ1) with ρ1(e1) = t1, then (C0
2 ,ρ

0
2)

e2−→ (C2,ρ2), with ρ2(e2) = t2, and
((C1,ρ1),g,(C2,ρ2)) ∈R, where g = g0 ∪{(e1,e2)}, and also with |ρ1(Max(C1))| =
|ρ2(Max(C2))|.

It is necessary that the isomorphism bijection f0 has been chosen in such a way
that f0(

•e1) =
•e2. Since |ρ0

1 (Max(C0
1))| = |ρ0

2 (Max(C0
2))| and also |ρ1(Max(C1))| =

|ρ2(Max(C2))|, it is necessary that transitions t1 and t2 have the same post-set size;
hence, C1 and C2 are isomorphic and the bijection f0 can be extended to bijection f
with the pair {(e1,e2)} and also with a suitably chosen bijection between the post-
sets of these two transitions. Hence, we include into R also the triple (ρ1,C1,ρ2 ◦ f).
Symmetrically, if ρ0

2 (C
0
2) moves first.

By iterating this procedure, we add (possibly unboundedly many) triples to R. It is
an easy observation to realize that R is a causal-net bisimulation. 2

Remark 2. In general, for P/T nets ∼cn is finer than ∼s f c. E.g., consider the nets N =
({s1,s2,s3,s4},{a},{(s1⊕ s2,a,s3⊕ s4)}) and N′ = ({s′1,s′2,s′3},{a},{(s′1,a,s′3)}). Of
course, s1⊕ s2 ∼s f c s′1⊕ s′2, but s1⊕ s2 �cn s′1⊕ s′2. 2

1The actual choice of f0 (among the k! different bijections, where k = |m1|= |m2|) will be driven by the
bisimulation game that follows; in the light of Corollary 2, it would map team bisimilar places.

3 CAUSALITY-BASED SEMANTICS 14

3.3. Deadlock-free BPP nets and Fully-Concurrent Bisimilarity
In this section, we first define a cleaning-up operation on a BPP net N, yielding a net

d(N) where all the deadlock places of N are removed. Then, we show that two markings
m1 and m2 of N are fully-concurrent bisimilar if and only if the markings d(m1) and
d(m2), obtained by removing all the deadlock places in m1 and m2 respectively, are
state-sensitive fc-bisimilar in d(N).

Definition 19. (Deadlock-free BPP net) For each BPP net N = (S,A,T), we define
its associated deadlock-free net d(N) as the tuple (d(S),A,d(T)) where

• d(S) = {s ∈ S
∣∣ s• 6= /0};

• d(T) = {d(t)
∣∣ t ∈ T}, where d(t) = (•t, l(t),d(t•)) and d(m)∈M (d(S)) is the

marking obtained from m ∈M (S) by removing all its deadlock places.

A BPP net N = (S,A,T) is deadlock-free if all of its places are not a deadlock, i.e.,
d(S) = S and so d(T) = T . 2

Formally, given a marking m ∈M (S), we define d(m) as the marking

d(m)(s) =

{
m(s) if s ∈ d(S)
0 otherwise.

For instance, let us consider the net in Figure 3(c). Then, d(2 · s6⊕ 3 · s7) = 2 · s6,
or d(s7) = θ . Of course, d(m) is a multiset on d(S).

The nets in Figure 1 and 2 are deadlock-free. However, note that a deadlock-free
net can terminate its computations, but only by reaching the successful termination θ .
E.g., the net in Figure 3(a) is deadlock-free. On the contrary, the net in Figure 3(c) is
not deadlock-free because of the presence of the deadlock place s7, and its associated
deadlock-free net is ({s6,s8},{a},{(s6,a,θ),(s8,a,θ)}.

Proposition 10. (Fc-bisimilarity and sfc-bisimilarity coincide on deadlock-free nets)
For each deadlock-free BPP net N = (S,A,T), m1 ∼ f c m2 if and only if m1 ∼s f c m2.

PROOF. ⇐) Of course, a state-sensitive fc- bisimulation is also a fc-bisimulation.
⇒) If there are no deadlock places, an fc-bisimulation must be state sensitive. In

fact, if two related markings have a different size, then, since no place is a deadlock
and the BPP net transitions have singleton pre-set, they would originate different partial
orders of events. 2

Proposition 11. Given a BPP net N = (S,A,T) and its associated deadlock-free net
d(N) = (d(S),A,d(T)), two markings m1 and m2 of N are fc-bisimilar if and only if
d(m1) and d(m2) in d(N) are sfc-bisimilar.

PROOF. ⇒) If m1 ∼ f c m2, then there exists an fc-bisimulation R on N containing a
triple ((C0

1 ,ρ
0
1),g0,(C0

2 ,ρ
0
2)), where C0

i contains no transitions, g0 is empty and, more-
over, ρ0

i (Min(C0
i)) = ρ0

i (Max(C0
i)) = mi for i = 1,2.

Relation R= {((d(C1),d(ρ1)), ĝ,(d(C2),d(ρ2)))
∣∣ ((C1,ρ1),g,(C2,ρ2))∈R, such

that d(ρi) is the restriction of ρi on the places of d(Ci), for i = 1,2, and ĝ is such that
g(e1) = e2 implies ĝ(d(e1)) = d(e2)} is an fc-bisimulation on d(N). By Proposition

4 TEAM BISIMULATION EQUIVALENCE 15

10, R is actually a state-sensitive fully-concurrent bisimulation on d(N). Note that R
contains the triple ((d(C0

1),d(ρ
0
1)),g0,(d(C0

2),d(ρ
0
2))) such that d(ρ0

i)(Min(d(C0
i))) =

d(ρ0
i)(Max(d(C0

i))) = d(mi) for i = 1,2, and so d(m1)∼s f c d(m2).
⇐) If d(m1) ∼s f c d(m2), then there exists an sfc-bisimulation R on d(N) contain-

ing a triple ((C0
1,ρ

0
1),g0,(C

0
2,ρ

0
2)), where C0

i contains no transitions, g0 is empty and
ρ

0
i (Min(C0

i)) = ρ
0
i (Max(C0

i)) = d(mi) for i = 1,2.
Relation R = {((C1,ρ1),g,(C2,ρ2))

∣∣ (Ci,ρi) is a process of N(m0i) for some m0i ,
for i = 1,2, g is an event isomorphism between C1 and C2, ((d(C1),d(ρ1)), ĝ,(d(C2),
d(ρ2))) ∈ R, such that d(ρi) is the restriction of ρi on the places of d(Ci), for i = 1,2,
and g(e1) = e2 implies ĝ(d(e1)) = d(e2)} is an fc-bisimulation on N. Note that relation
R contains the triple ((C0

1 ,ρ
0
1),g0,(C0

2 ,ρ
0
2)) such that, for i= 1,2, d(C0

i)=C0
i , d(ρ0

i)=

ρ
0
i , ρ0

i (Min(C0
i)) = ρ0

i (Max(C0
i)) = mi , and therefore m1 ∼ f c m2. 2

4. Team Bisimulation Equivalence

In this section, we recall the main definitions and results about team bisimulation
equivalence, outlined in [30]. We also include one novel, main result: causal-net bisim-
ilarity coincides with team bisimilarity.

4.1. Additive Closure and its Properties
Definition 20. (Additive closure) Given a BPP net N = (S,A,T) and a place relation
R⊆ S×S, we define a marking relation R⊕ ⊆ M (S)×M (S), called the additive clo-
sure of R, as the least relation induced by the following axiom and rule.

(θ ,θ) ∈ R⊕
(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
2

Two markings are related by R⊕ only if they have the same size; in fact, the axiom
states that the empty marking is related to itself, while the rule, assuming by induction
that m1 and m2 have the same size, ensures that s1⊕m1 and s2⊕m2 have the same size.

Proposition 12. For any BPP net N = (S,A,T) and any place relation R ⊆ S× S, if
(m1,m2) ∈ R⊕, then |m1|= |m2|. 2

An alternative way to define that two markings m1 and m2 are related by R⊕ is to
state that m1 can be represented as s1⊕ s2⊕ . . .⊕ sk, m2 can be represented as s′1⊕ s′2⊕
. . .⊕ s′k and (si,s′i) ∈ R for i = 1, . . . ,k.

Proposition 13. For any BPP net N = (S,A,T) and any place relation R ⊆ S× S, the
following hold:

1. If R is an equivalence relation, then R⊕ is an equivalence.
2. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone.
3. If (m1,m2) ∈ R⊕ and (m′1,m

′
2) ∈ R⊕, then (m1 ⊕m′1,m2 ⊕m′2) ∈ R⊕, i.e., the

additive closure is additive.

4 TEAM BISIMULATION EQUIVALENCE 16

4. If R is an equivalence relation, (m1⊕m′1,m2⊕m′2)∈ R⊕ and (m1,m2)∈ R⊕, then
(m′1,m

′
2) ∈ R⊕, i.e., the additive closure is subtractive. 2

Example 7. The requirement that R is an equivalence relation is strictly necessary for
Propositon 13(4). As a counterexample, consider R = {(s1,s3), (s1,s4),(s2,s4)}. We
have that (s1⊕ s2,s3⊕ s4) ∈ R⊕ and (s1,s4) ∈ R⊕, but (s2,s3) 6∈ R⊕. 2

Remark 3. (Complexity of additive closure) Given an equivalence place relation R,
the algorithm in [30] checks whether two markings m1 and m2 are related by the ad-
ditive closure of R in O(k2) time, where k is the size of the markings. In fact, if R is
implemented as an adjacency matrix, then the complexity of checking if two markings
m1 and m2 (represented as an array of places with multiplicities) are related by R⊕ is
O(k2), because the problem is essentially that of finding for each element s1 of m1 a
matching, R-related element s2 of m2. Note that the algorithm in [30] (as well as the
similar Algorithm 1 outlined in Section 5) is correct only if R is an equivalence rela-
tion, so that R⊕ is subtractive. In fact, assuming that (m1,m2) ∈ R⊕, when we match
one place, say s1, in m1 with one place, say s2, in m2 such that (s1,s2) ∈ R, then we
need that also (m1	 s1,m2	 s2) ∈ R⊕ (cf. Example 7).

In general, i.e., for a place relation R that is not an equivalence, the problem of
checking whether (m1,m2) ∈ R⊕ has polynomial time complexity because it can be
considered as an instance of the problem of finding a perfect matching in a bipartite
graph, where the nodes of the two partitions are the tokens in the two markings, and
the edges are defined by the relation R. In fact, the definition of the bipartite graph takes
O(k2) time (where k = |m1|= |m2|) and, then, the Hopcroft-Karp-Karzanov algorithm
[34] for computing the maximum matching has worst-case time complexity O(h

√
k),

where h is the number of the edges in the bipartire graph (h≤ k2) and to check whether
the maximum matching is perfect can be done simply by checking that the size of the
matching equals the number of nodes in each partition, i.e., k. 2

Now we list some useful, and less obvious, properties of additively closed place
relations (proof in [30]).

Proposition 14. For any BPP net N = (S,A,T) and any family of place relations Ri ⊆
S×S, the following hold:

1. /0⊕ = {(θ ,θ)}, i.e., the additive closure of the empty place relation is a singleton
marking relation, relating the empty marking to itself.

2. (IS)
⊕ = IM , i.e., the additive closure of the identity relation on places IS =

{(s,s)
∣∣ s∈ S} is the identity relation on markings IM = {(m,m)

∣∣ m∈M (S)}.
3. (R⊕)−1 = (R−1)⊕, i.e., the inverse of an additively closed relation R is the addi-

tive closure of its inverse R−1.
4. (R1 ◦R2)

⊕ = (R⊕1) ◦ (R
⊕
2), i.e., the additive closure of the composition of two

place relations is the compositions of their additive closures.
5.
⋃

i∈I(R
⊕
i) ⊆ (

⋃
i∈I Ri)

⊕, i.e., the union of additively closed relations is included
into the additive closure of their union. 2

4 TEAM BISIMULATION EQUIVALENCE 17

4.2. Team Bisimulation on Places
Definition 21. (Team bisimulation) Let N = (S,A,T) be a BPP net. A team bisimu-
lation is a place relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and (m1,m2) ∈ R⊕.

Two places s and s′ are team bisimilar (or team bisimulation equivalent), denoted s∼ s′,
if there exists a team bisimulation R such that (s,s′) ∈ R. 2

Example 8. Continuing Example 1 about the semi-counters in Figure 1, it is easy to
see that relation R = {(s1,s3),(s1,s4),(s2,s5),(s2,s6)} is a team bisimulation. In fact,
the pair (s1,s3) is a team bisimulation pair because, to transition s1

inc−→ s1⊕ s2, s3 can
respond with s3

inc−→ s4⊕s5, and (s1⊕s2,s4⊕s5)∈ R⊕; symmetrically, if s3 moves first.
Also the pair (s1,s4) is a team bisimulation pair because, to transition s1

inc−→ s1⊕ s2, s4

can respond with s4
inc−→ s3⊕ s6, and (s1⊕ s2,s3⊕ s6) ∈ R⊕; symmetrically, if s4 moves

first. Also the pair (s2,s5) is a team bisimulation pair: to transition s2
dec−→θ , s5 responds

with s5
dec−→θ , and (θ ,θ) ∈ R⊕. Similarly for the pair (s2,s6). Therefore, relation R is

a team bisimulation, indeed. This example shows that ∼ is compatible with the notion
of net unfolding, as the net (b) can be seen as a sort of partial unfolding of the net (a).

The team bisimulation R above is a very simple, finite relation, proving that s1 and
s3 are team bisimulation equivalent. In Example 2, in order to show that s1 and s3 are
interleaving bisimilar, we had to introduce a complex relation, with infinitely many
pairs. In Example 3 we argued that s1 ∼cn s3, even if we did not provide any causal-net
bisimulation relation (which would be composed of infinitely many triples). 2

Example 9. Let us consider the nets in Figure 2. Of course, s1 ∼ s2 because
R = {(s1,s2),(s1,s3),(s1,s4)}

is a team bisimulation. Actually, all the places are pairwise team bisimilar. In Example
4 we argued that s1 ∼cn s2, but the justifying causal-net bisimulation would contain
infinitely many triples. 2

Example 10. Consider the nets in Figure 4. It is easy to see that R = {(s1,s4), (s2,s5),
(s2,s6),(s2,s7),(s3,s8),(s3,s9)} is a team bisimulation. This example shows that team
bisimulation is compatible with duplication of behavior and fusion of places. 2

We now list some useful properties of team bisimulation relations.

Proposition 15. For any BPP net N = (S,A,T), the following hold:

1. The identity relation IS = {(s,s)
∣∣ s ∈ S} is a team bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a team bisimulation R is a

team bisimulation;
3. the relational composition R1 ◦R2 = {(s,s′′)

∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of
two team bisimulations R1 and R2 is a team bisimulation;

4 TEAM BISIMULATION EQUIVALENCE 18

a)

s1

a

s2

b

s3

c
2

b)

s4

a a

s5 s6 s7c c

b b b

s8 s9

2

Figure 4: Two team bisimilar BPP nets

4. the union
⋃

i∈I Ri of team bisimulations Ri is a team bisimulation.

PROOF. Standard, by exploiting Proposition 14; details in [30]. 2

Remember that s∼ s′ if there exists a team bisimulation containing the pair (s,s′).
This means that ∼ is the union of all team bisimulations, i.e.,

∼=
⋃
{R⊆ S×S

∣∣ R is a team bisimulation}.

By Proposition 15(4), ∼ is also a team bisimulation, hence the largest such relation.

Proposition 16. For any BPP net N = (S,A,T), relation ∼⊆ S×S is the largest team
bisimulation relation. 2

Proposition 17. For any BPP net N = (S,A,T), relation ∼ ⊆ S× S is an equivalence
relation.

PROOF. By Proposition 15; details in [30]. 2

Remark 4. (Complexity of∼) The well-known Kanellakis-Smolka algorithm for com-
puting bisimulation equivalence over a finite-state LTS with n states and m transitions
has O(m · n) time complexity [37, 38]. This very same partition refinement algorithm
can be easily adapted also for team bisimilarity over BPP nets: it is enough to consider
the empty marking θ as an additional, special place which is team bisimilar to itself
only (i.e., the initial partition is composed of two blocks: S and {θ}), and to consider
the little additional cost due to the fact that the reached markings are to be related by
the additive closure of the current partition over places; this extra cost is related to the
size of the post-set of the net transitions; if p is the size of the largest post-set of the
net transitions (i.e., p is the least number such that |t•| ≤ p, for all t ∈ T), then the time
complexity is O(m · p2 · n), where m is the number of the net transitions and n is the
number of the net places. 2

4 TEAM BISIMULATION EQUIVALENCE 19

4.3. Team Bisimilarity over Markings
Starting from team bisimulation equivalence ∼, which has been computed over the

places of an unmarked BPP net N, we can lift it over the markings of N in a distributed
way: m1 is team bisimulation equivalent to m2 if these two markings are related by the
additive closure of ∼, i.e., if (m1,m2) ∈∼⊕, usually denoted by m1 ∼⊕ m2.

Proposition 18. For any BPP net N = (S,A,T), if m1 ∼⊕ m2, then |m1|= |m2|.

PROOF. By Proposition 12. 2

Proposition 19. For any BPP net N = (S,A,T), relation ∼⊕⊆ M (S)×M (S) is an
equivalence relation.

PROOF. By Proposition 13: since ∼ is an equivalence relation (Proposition 17), its
additive closure ∼⊕ is also an equivalence relation (Proposition 13(1)). 2

Remark 5. (Complexity of ∼⊕) Once the place relation ∼ has been computed for the
given net (in O(m · p2 ·n) time), by using the algorithm in [30] we can check whether
two markings m1 and m2 are team bisimulation equivalent in O(k2) time, where k
is the size of the markings, as discussed in Remark 3. Moreover, if we want to check
whether other two markings of the same net are team bisimilar, we can reuse the already
computed ∼ relation, so that the time complexity is again quadratic on the size of the
two markings. However, note that the time spent in creating the adjacency matrix for
∼ has not been considered: since n is the number of places, O(n2) time is needed to
implement this matrix, so that the time spent for the first check is O(n2), while for
subsequent checks it is only O(k2), where k is the size of the markings.

The algorithm in [30] is not optimal. As a matter of fact, since the partition refine-
ment algorithm does compute the equivalence classes of ∼, we can take advantage of
this fact for checking whether m1 ∼⊕ m2. The algorithm in [41] simply scans these
equivalence classes and, for each class, it checks whether the number of tokens in the
places of m1 belonging to this class equals the number of tokens in the places of m2 in
the same class; if this holds for all the equivalence classes, then m1 ∼⊕ m2. Of course,
the complexity of this algorithm is O(n), even for the first check; hence, this algorithm
is usually more performant, even if, from the second check onwards, it may be slower
when applied to small markings; in fact, in case the number n of places is greater than
k2, then the original algorithm is better. This more performant algorithm can be used in
computing ∼ when it is necessary to check that the reached markings are to be related
by the additive closure of the equivalence relation induced by the current partition over
places. In such a case, the complexity of ∼ is O(m ·n2). 2

Example 11. Continuing Example 8 about the semi-counters, the marking s1⊕ 2 · s2
is team bisimilar to the following markings of the net in (b): s3⊕2 · s5, or s3⊕ s5⊕ s6,
or s3⊕2 · s6, or s4⊕2 · s5, or s4⊕ s5⊕ s6, or s4⊕2 · s6. 2

Of course, two markings m1 and m2 are not team bisimilar if there is no bijective,
team-bisimilar-preserving mapping between them; this is the case when m1 and m2
have different size, or if the algorithm in [30] ends with b holding false, i.e., by singling

4 TEAM BISIMULATION EQUIVALENCE 20

out a place s′i in (the residual of) m1 which has no matching team bisimilar place in (the
residual of) m2.

The following theorem provides a characterization of team bisimulation equiva-
lence ∼⊕ as a suitable bisimulation-like relation over markings. It is interesting to
observe that this characterization gives a dynamic interpretation of team bisimula-
tion equivalence, while Definition 20 gives a structural definition of team bisimulation
equivalence ∼⊕ as the additive closure of ∼. The proof is outlined in [30].

Theorem 2. Let N = (S,A,T) be a BPP net. Two markings m1 and m2 are team bisim-
ulation equivalent, m1 ∼⊕ m2, if and only if |m1|= |m2| and

• ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m2[t2〉m′2
and m′1 ∼⊕ m′2, and symmetrically,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1 ∼ •t2, l(t1) = l(t2), t•1 ∼⊕ t•2 , m1[t1〉m′1
and m′1 ∼⊕ m′2. 2

By the theorem above, it is clear that ∼⊕ is an interleaving bisimulation.

Corollary 1. (Team bisimilarity is finer than interleaving bisimilarity) Let N =
(S,A,T) be a BPP net. If m1 ∼⊕ m2, then m1 ∼int m2. 2

4.4. Team Bisimilarity and Causal-net Bisimilarity Coincide

Now we want to prove an original result: team bisimilarity coincides with cn-
bisimilarity (see Definition 16), hence proving that team bisimilarity does respect also
the causal semantics of BPP nets.

Theorem 3. (Team bisimilarity implies cn-bisimilarity) Let N = (S,A,T) be a BPP
net. If m1 ∼⊕ m2, then m1 ∼cn m2.

PROOF. Let R = {(ρ1,C,ρ2)
∣∣ (C,ρ1) is a process of N(m1) and (C,ρ2) is a process

of N(m2) such that ρ1(s) ∼ ρ2(s), for all s ∈ Max(C)}. We want to prove that R is a
causal-net bisimulation.

First, consider a triple of the form (ρ0
1 ,C

0,ρ0
2), where C0 is a BPP causal net with no

transitions, ρ0
i (Max(C0)) = mi (for i = 1,2) and ρ0

1 (s) ∼ ρ0
2 (s), for all s ∈ Max(C0).

Then (ρ0
1 ,C

0,ρ0
2) must belong to R, because (C0,ρ0

i) is a process of N(mi), for i =
1,2 and, by hypothesis, (m1,m2) ∈ R⊕1 . Note also that if the relation R is a causal-net
bisimulation, then this triple ensures that m1 ∼cn m2.

Now assume (ρ1,C,ρ2) ∈ R. In order to be a causal-net bisimulation triple, it is
necessary that

i) ∀t1,C′,ρ ′1 such that (C,ρ1)
e−→ (C′,ρ ′1), with ρ ′1(e) = t1, there exist t2,ρ ′2 such

that (C,ρ2)
e−→ (C′,ρ ′2), with ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R;

ii) symmetrically, if (C,ρ2) moves first.

4 TEAM BISIMULATION EQUIVALENCE 21

Let t1 be a transition such that (C,ρ1)
e−→ (C′,ρ ′1), with ρ ′1(e) = t1, and let s1 =

•t1.
As by hypothesis we have that ρ1(s) ∼ ρ2(s), for all s ∈Max(C), if s1 = ρ1(s′), then
there exists s2 = ρ2(s′) such that s1 ∼ s2. Hence, t2 exists such that s1 =

•t1 ∼ •t2 = s2,
l(t1) = l(t2), t•1 ∼⊕ t•2 , so that, by Theorem 2, ρ2(Max(C))[t2〉m′2 and m′1∼⊕ m′2. Hence,
it is really possible to extend the causal net C to the causal net C′ through a suitable
transition e such that •e = s′, as required above, and to extend ρ1 and ρ2 to ρ ′1 and ρ ′2,
respectively, in such a way that ρ ′1(e) = t1, ρ ′2(e) = t2, and ρ ′1(s)∼ ρ ′2(s), for all s ∈ t•

because t•1 ∼⊕ t•2 . Finally, we have that (ρ ′1,C
′,ρ ′2) ∈ R because ρ ′1(s) ∼ ρ ′2(s), for all

s ∈Max(C′), as required. Symmetrically, if (C,ρ2) moves first. 2

Theorem 4. (Cn-bisimilarity implies team bisimilarity) Let N = (S,A,T) be a BPP
net. If m1 ∼cn m2 then m1 ∼⊕ m2.

PROOF. If m1 ∼cn m2, then there exists a causal-net bisimulation R containing a triple
(ρ0

1 ,C
0,ρ0

2), where C0 is a BPP causal net which has no transitions and ρ0
i (Max(C0))

=mi for i= 1,2. Let us consider R = {(ρ1(s),ρ2(s))
∣∣ (ρ1,C,ρ2)∈R ∧ s∈Max(C)}.

If we prove that R is a team bisimulation, then, since (ρ0
1 (s),ρ

0
2 (s)) ∈ R for each

s ∈ Max(C0), it follows that (m1,m2) ∈ R⊕. As R ⊆∼, we also get m1 ∼⊕ m2. Let
us consider a pair (s1,s2) ∈R. Hence, there exist a triple (ρ1,C,ρ2) ∈ R and a place

s ∈Max(C) such that s1 = ρ1(s) and s2 = ρ2(s). If s1 moves, e.g., t1 = s1
`−→m′1, then

ρ1(Max(C))[t1〉m1, where m1 = ρ1(Max(C))	s1⊕m′1. Hence, also (C,ρ1)
e−→ (C′,ρ ′1),

with ρ ′1(e) = t1, for some (C′,ρ ′1).
Since R is a causal-net bisimulation, there exist t2,ρ ′2 such that (C,ρ2)

e−→ (C′,ρ ′2),
with ρ ′2(e) = t2, and (ρ ′1,C

′,ρ ′2) ∈ R.
Note that event e is such that •e = s, and so •t2 = s2. This means that m2 =

ρ2(Max(C))	 s2⊕m′2, where m′2 = t•2 ; in other words, t2 = s2
`−→m′2. Note also that

ρ ′1 extends ρ1 by mapping e to t1 and, similarly, ρ ′2 extends ρ2 by mapping e to t2;
in this way, ρ ′1(e

•) = t•1 and ρ ′2(e
•) = t•2 . Since (ρ ′1,C

′,ρ ′2) ∈ R, it follows that the set
{(ρ ′1(s′),ρ ′2(s′))

∣∣ s′ ∈ e•)} is a subset of R, so that (m′1,m
′
2) ∈R⊕.

Summing up, for each pair (s1,s2) ∈ R, if s1
`−→m′1, then s2

`−→m′2 such that
(m′1,m

′
2) ∈R⊕; symmetrically, if s2 moves first. So, R is a team bisimulation. 2

Corollary 2. (Team bisimilarity and cn-bisimilarity coincide) Let N = (S,A,T) be
a BPP net. Then, m1 ∼cn m2 if and only if m1 ∼⊕ m2.

PROOF. By Theorems 3 and 4, we get the thesis. 2

Corollary 3. (Team bisimilarity and sfc-bisimilarity coincide) Let N = (S,A,T) be
a BPP net. Then, m1 ∼s f c m2 if and only if m1 ∼⊕ m2.

PROOF. By Corollary 2 and Theorem 1, we get the thesis. 2

Therefore, our characterization of cn-bisimilarity and sfc-bisimilarity, which are, in
our opinion, the intuitively correct (strong) causal semantics for BPP nets, is quite ap-
pealing because it is based on the very simple technical definition of team bisimulation
on the places of the unmarked net, and, moreover, offers a very efficient algorithm to
check if two markings are cn-bisimilar (see Remark 5).

5 H-TEAM BISIMULATION 22

5. H-Team Bisimulation

In order to provide the definition of h-team bisimulation on places for unmarked
BPP nets, adapting the definition of team bisimulation on places (cf. Definition 21), we
need first to extend the domain of a place relation: the empty marking θ is considered
as an additional place, so that a place relation is defined not on S, rather on S∪{θ}.
Therefore, the symbols r1 and r2 that occur in the following definitions, can only denote
either the empty marking θ or a single place s.

First of all, we extend the idea of additive closure to these more general place
relations, yielding h-additive closure.

Definition 22. (H-additive closure) Given a BPP net N = (S,A,T) and a place rela-
tion R ⊆ (S∪{θ})× (S∪{θ}), we define a marking relation R⊕ ⊆ M (S)×M (S),
called the h-additive closure of R, as the least relation induced by the following axiom
and rule.

(θ ,θ) ∈ R⊕
(r1,r2) ∈ R (m1,m2) ∈ R⊕

(r1⊕m1,r2⊕m2) ∈ R⊕
2

Note that if two markings are related by R⊕ (i.e., by the h-additive closure of R),
then they may have different size; in fact, even if the axiom relates the empty marking to
itself (so two markings with the same size), as R⊆ (S∪{θ})×(S∪{θ}), it may be the
case that (θ ,s) ∈ R, so that, assuming (m′1,m

′
2) ∈ R⊕ with |m′1|= |m′2|, we get (m′1,s⊕

m′2) ∈ R⊕, as θ is the identity for the operator of multiset union. Hence, Proposition
12, which is valid for place relations defined over S, is not valid for place relations
defined over S∪{θ}. However, the properties in Propositions 13 and 14 hold also for
these more general place relations. In particular, if R ⊆ (S∪ {θ})× (S∪ {θ}) is an
equivalence relation, then R⊕ is also an equivalence relation.

Proposition 20. (H-additivity/H-subtractivity) Given a BPP net N = (S,A,T) and a
place relation R⊆ (S∪{θ})× (S∪{θ}), the following hold:

1. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕.

2. If R is an equivalence relation, (m1⊕m′1,m2⊕m′2)∈ R⊕ and (m1,m2)∈ R⊕, then
(m′1,m

′
2) ∈ R⊕.

PROOF. By induction on the size of m1. This easy inductive proof is very similar to the
analogous one in [30] for Proposition 13 and so omitted. 2

Remark 6. (Complexity of h-additive closure) Given an equivalence place relation
R⊆ (S∪{θ})× (S∪{θ}), the complexity of checking if two markings m1 and m2 are
related by R⊕ is O(k2), where k is the size of the largest marking, since the problem is
essentially that of finding for each element s1 (not R-related to θ) of m1 a matching, R-
related element s2 of m2 (and then checking that all the remaining elements of m1 and
m2 are R-related to θ), as described by Algorithm 1. Note that this algorithm returns
false in case m1 and m2 are not related by R⊕, otherwise it returns the set P of matched
pairs (of places, or composed of a place and the empty marking θ) which are necessary
to prove that m1 and m2 are related by R⊕. Moreover, note that this algorithm is correct
only if R is an equivalence relation, so that R⊕ is h-subtractive (cf. Remark 3). 2

5 H-TEAM BISIMULATION 23

Algorithm 1 Checking the H-additive Closure of an Equivalence Place Relation
Let N = (S,A,T) be BPP net.
Let R⊆ (S∪{θ})× (S∪{θ}) be a place relation, which is an equivalence.
Let A be the adjacency matrix generated as follows: A[r,r′] = 1 if (r,r′) ∈ R; other-
wise A[r,r′] = 0, where r,r′ range over S∪{θ}.
Let m1 = k1 · s11⊕ k2 · s12⊕ . . .⊕ k j1 · s1 j1 such that ki > 0 for i = 1, . . . , j1. Let M1
be an array of length j1 such that M1[j] = k j, for j = 1, . . . , j1.
Let m2 = h1 · s21⊕h2 · s22⊕ . . .⊕h j2 · s2 j2 such that hi > 0 for i = 1, . . . , j2. Let M2
be an array of length j2 such that M2[j] = h j, for j = 1, . . . , j2.

1: Let P be the set of currently matched R-related places, initialized to /0
2: for i = 1 to j1 do
3: if A[s1i,θ] == 1 then
4: add (s1i,θ) to P
5: else
6: for j = 1 to M1[i] do
7: h = 1
8: b = true
9: while (h≤ j2 and b) do

10: if M2[h] 6= 0 and A[s1i,s2h] == 1 then
11: add (s1i,s2h) to P
12: M2[h] = M2[h]−1
13: b = f alse
14: else
15: h = h+1
16: end if
17: end while
18: if h > j2 then
19: return false
20: end if
21: end for
22: end if
23: end for
24: for i = 1 to j2 do
25: if M2[i]> 0 then
26: if A[θ ,s2i] == 0 then
27: return false
28: else
29: add (θ ,s2i) to P
30: end if
31: end if
32: end for
33: return P

5 H-TEAM BISIMULATION 24

Now we are ready to define h-team bisimulation, where the symbols r1 and r2 can
only denote either the empty marking θ or a single place, because of the shape of BPP
net transitions.

Definition 23. (H-team bisimulation) Let N = (S,A,T) be a BPP net. An h-team
bisimulation is a place relation R ⊆ (S∪ {θ})× (S∪ {θ}) such that if (r1,r2) ∈ R
then for all ` ∈ A

• ∀m1 such that r1
`−→m1, ∃m2 such that r2

`−→m2 and (m1,m2) ∈ R⊕,

• ∀m2 such that r2
`−→m2, ∃m1 such that r1

`−→m1 and (m1,m2) ∈ R⊕.

r1 and r2 are h-team bisimilar (or h-team bisimulation equivalent), denoted r1 ∼h r2, if
there exists an h-team bisimulation R such that (r1,r2) ∈ R. 2

Since a team bisimulation is also an h-team bisimulation, we have that ∼ implies
∼h. This implication is strict as illustrated in the following examples.

Example 12. Consider the nets in Figure 3. It is not difficult to realize that s6 and s8
are h-team bisimilar because R = {(s6,s8),(s7,θ)} is a h-team bisimulation. In fact, s6
can reach s7 by performing a, and s8 can reply by reaching the empty marking θ , and
(s7,θ)∈ R. In Example 6 we argued that s6 ∼ f c s8 and in fact we will prove that h-team
bisimilarity coincide with fc-bisimilarity. This example shows that h-team bisimulation
equivalence is not sensitive to the kind of termination of a process: even if s7 is stuck
place, denoting a deadlock situation, it is equivalent to the empty marking θ , i.e., the
marking denoting a properly terminated process. This is in contrast with the definition
of team bisimulation on place, which is sensitive to the kind of termination. In fact,
s6 � s8, because s6 �cn s8, as discussed in Example 5. 2

Remark 7. (Only deadlock places can be related to θ) It is interesting to observe
that an h-team bisimulation can relate θ only to deadlock places, i.e., places with empty
post-set. This is indeed the case because a place s of a BPP net such that s• 6= /0 can
perform some transition (as net transitions of a BPP net have singleton pre-set), while
θ can do nothing; hence, (s,θ) cannot be an h-team bisimulation pair. 2

We now list some useful properties which can be proved similarly to Proposition
15 (whose proof is in [30]).

Proposition 21. For any BPP net N = (S,A,T), the following hold:

1. The identity relation IS = {(r,r)
∣∣ r ∈ S∪{θ}} is an h-team bisimulation;

2. the inverse relation R−1 = {(r′,r)
∣∣ (r,r′) ∈ R} of an h-team bisimulation R is

an h-team bisimulation;
3. the relational composition R1 ◦R2 = {(r,r′′)

∣∣ ∃r′.(r,r′) ∈ R1∧ (r′,r′′) ∈ R2} of
two h-team bisimulations R1 and R2 is an h-team bisimulation;

4. the union
⋃

i∈I Ri of h-team bisimulations Ri is an h-team bisimulation. 2

5 H-TEAM BISIMULATION 25

Relation ∼h is the union of all h-team bisimulations, i.e.,

∼h =
⋃
{R⊆ (S∪{θ})× (S∪{θ})

∣∣ R is an h-team bisimulation}.

By Proposition 21(4),∼h is also an h-team bisimulation, hence the largest such relation.

Proposition 22. For any BPP net N = (S,A,T), relation ∼h ⊆ (S∪{θ})× (S∪{θ})
is an equivalence relation.

PROOF. Standard, by Proposition 21. 2

Moreover, h-team bisimulation on places enjoys the same properties of bisimula-
tion on LTSs, i.e., it is coinductive and equipped with a fixed-point characterization.
H-team bisimulation equivalence can be used in order to minimize the net in the style
of [30]. In particular, the minimized net N∼h w.r.t. ∼h of a BPP net N is the deadlock-
free net d(N∼), where N∼ is the minimized net w.r.t. ∼, as described in [30].

Starting from h-team bisimulation equivalence ∼h, which has been computed over
the places (and the empty marking) of an unmarked BPP net N, we can lift it over the
markings of N in a distributed way: m1 is h-team bisimulation equivalent to m2 if these
two markings are related by the h-additive closure of∼h, i.e., if (m1,m2) ∈∼⊕h , usually
denoted by m1 ∼⊕h m2.

Proposition 23. For any BPP net N = (S,A,T), relation ∼⊕h ⊆ M (S)×M (S) is an
equivalence relation.

PROOF. By (the analogous of) Proposition 13 (for h-additive closure): since ∼h is an
equivalence relation (Proposition 22), its h-additive closure ∼⊕h is also an equivalence
relation. 2

Remark 8. (Complexity of ∼⊕h) Computing ∼h is not more difficult than computing
∼ (cf. Remark 5). The partition refinement algorithm in [37, 38] can be adapted also to
this case. It is enough to consider the empty marking θ as an additional, special place
which is h-team bisimilar to each deadlock place. Hence, the initial partition considers
two sets: one composed of all the deadlock places and θ , the other one with all the
non-deadlock places. Therefore, the time complexity is also in this case O(m · p2 · n),
where m is the number of the net transitions, n is the number of the net places and p
the size of the largest post-set of the net transitions.

Once the equivalence place relation ∼h has been computed once and for all for
the given net, by using the Algorithm 1 we can check whether two markings m1 and
m2 are h-team bisimulation equivalent in O(k2) time, where k is the size of the largest
marking, as discussed in Remark 6.

Since the partition refinement algorithm does compute the equivalence classes of
∼h, an alternative algorithm [41] for checking whether m1 ∼⊕h m2 simply scans these
equivalence classes and, for each class (except for the class of θ), it checks whether
the number of tokens in the places of m1 belonging to this class equals the number of
tokens in the places of m2 in the same class; if this holds for all the equivalence classes,
then m1 ∼⊕h m2. Of course, the complexity of this algorithm is O(n). Again, this more
performant algorithm can be used in computing∼h so that the complexity of∼h in this
case becomes O(m ·n2) time. 2

5 H-TEAM BISIMULATION 26

5.1. H-team Bisimilarity and Fully-concurrent Bisimilarity Coincide

In this section, we first show that h-team bisimilarity over a BPP net N coincides
with team-bisimilarity over its associated deadlock-free net d(N). A consequence of
this result is that h-team bisimilarity coincides with fc-bisimilarity on BPP nets.

Proposition 24. Given a BPP net N = (S,A,T) and its associated deadlock-free net
d(N) = (d(S),A,d(T)), two markings m1 and m2 of N are h-team bisimilar if and only
if d(m1) and d(m2) in d(N) are team bisimilar.

PROOF. ⇒) If m1 ∼⊕h m2, then there exists an h-team bisimulation R1 on N such that
(m1,m2) ∈ R⊕1 . If we take relation R2 = {(s1,s2)

∣∣ s1,s2 ∈ d(S) ∧ (s1,s2) ∈ R1}, then
it is easy to see that R2 is a team bisimulation on d(N), so that (d(m1),d(m2)) ∈ R⊕2 ,
hence d(m1)∼⊕ d(m2).
⇐) If d(m1)∼⊕ d(m2), then there exists a team bisimulation R2 on d(N) such that

(d(m1),d(m2)) ∈ R⊕2 . Now, take relation R1 = R2∪ (S′∪{θ})× (S′∪{θ}), where the
set S′ is {s ∈ S

∣∣ s• = /0}. It is easy to observe that R1 is an h-team bisimulation on N,
so that (m1,m2) ∈ R⊕1 , hence m1 ∼⊕h m2. 2

Theorem 5. (Fully concurrent bisimilarity and h-team bisimilarity coincide) Given
a BPP net N = (S,A,T), m1 ∼ f c m2 if and only if m1 ∼⊕h m2.

PROOF. By Proposition 11, m1 ∼ f c m2 in N if and only if d(m1) ∼s f c d(m2) in the
associated deadlock-free net d(N). By Corollary 3, d(m1) ∼s f c d(m2) if and only if
d(m1) ∼⊕ d(m2) in d(N). By Proposition 24, d(m1) ∼⊕ d(m2) in d(N) if and only if
m1 ∼⊕h m2 in N. The thesis then follows by transitivity. 2

5.2. Modal Logic Characterization

In this section we extend Hennessy-Milner Logic (HML) [33, 2] with an operator⊗
of parallel composition of formulae. The resulting modal logic, called HTML (H-Team
Modal Logic), is a simplification of the modal logic TML (Team Modal Logic), pro-
posed in [30] in order to characterize team bisimulation equivalence for BPP nets. We
will prove that HTML model checking is coherent with h-team equivalence checking:
two markings are h-team bisimilar if and only if they satisfy the same HTML formulae.

The HTML formulae are generated from the finite set A of actions by the following
abstract syntax:

F ::= tt | ff | F ∧F | F ∨F | ¬F | 〈a〉F | [a]F | F⊗F

where a is any action in A, tt and ff are two atomic proposition (for true and false,
respectively), ∧ is the operator of logical conjunction, ∨ is disjunction, 〈a〉F denotes
possibility (it is possible to do a and then reach a marking where F holds), [a]F de-
notes necessity (by doing a, only markings where F holds can be reached), ¬ is logical
negation and, finally, ⊗ is the operator of parallel composition of formulae.

We denote by FA the set of all HTML formulae, built from the actions in A. We
sometimes use some useful abbreviations: if B = {a1,a2, . . . ,ak} ⊆ A, k≥ 1, then 〈B〉F
stands for 〈a1〉F ∨〈a2〉F ∨ . . .∨〈ak〉F , and [B]F stands for [a1]F ∧ [a2]F ∧ . . .∧ [ak]F .

5 H-TEAM BISIMULATION 27

JttK = M (S) JffK = /0

JF1∧F2K = JF1K∩ JF2K JF1∨F2K = JF1K∪ JF2K J¬FK = M (S)\ JFK

J〈a〉FK = {s ∈ S
∣∣ ∃m.s a−→m and d(m) ∈ JFK}

J[a]FK = {s ∈ S∪{θ}
∣∣ ∀m(s a−→m implies d(m) ∈ JFK)}

JF1⊗F2K = JF1K⊗ JF2K

where M1⊗M2 = {m1⊕m2
∣∣ m1 ∈M1,m2 ∈M2}

Table 1: Denotational semantics

Given a BPP net N = (S,A,T), the semantics of F is a set of markings on S. For-
mally, let J−K : FA →℘(M (S)) be the denotational semantics function, defined in
Table 1.

The semantics of tt is M (S): every marking belongs to JttK. The semantics of ff
is /0: no marking belongs to JffK. The logical operator of conjunction ∧ is interpreted
as intersection ∩ , while, symmetrically, disjunction ∨ is interpreted as set union
∪ . The semantics of ¬F is the set of all the markings that do not belong to JFK, i.e.,

the complement of JFK w.r.t. the universe M (S).
The semantics of 〈a〉F is the set of all the places that can perform a and, in doing so,

reach a marking m such that d(m)∈ JFK, where d(m) is the marking obtained from m by
removing all the deadlock places. For instance, the semantics of the formula 〈a〉tt is the
set of places able to perform a. The semantics of [a]F is the set of all the places (always
including also the empty marking θ) that, by performing a, can only reach markings
satisfying F . Note that a place s, which is unable to perform a altogether, is in the
semantics of [a]F , for any F , because the universal quantification in the definition of its
semantic is vacuously satisfied; for this reason, the empty marking is in the semantics
of [a]F for any F . For instance, the semantics of the formula [a]ff is the set (including θ)
of all the places that cannot perform a. The semantics of F1⊗F2 is the set of markings
of the form m1⊕m2 such that m1 ∈ JF1K and m2 ∈ JF2K.

Definition 24. (HTML satisfaction relation) Given a BPP net N = (S,A,T), we say
that a marking m ∈M (S) satisfies formula F , written m � F , if d(m) ∈ JFK. 2

Of course, this means that m and d(m) satisfy the same HTML formulae, because
d(d(m)) = d(m). In particular, note that a deadlock place s satisfies the same formulae
as θ because d(s) = θ .

Example 13. Let us consider the BPP net in Figure 4 and the formula F1⊗F2, where
F1 = 〈a〉[b]〈c〉tt and F2 = [{a,c}]ff. The marking s1⊕ s2 is in the semantics of F1⊗F2
because s1 ∈ JF1K and s2 ∈ JF2K. Indeed, the semantics of F1⊗F2 is given by {s1,s4}⊗
{θ ,s2,s5,s6,s7}= {s1,s1⊕s2,s1⊕s5,s1⊕s6,s1⊕s7,s4,s4⊕s2,s4⊕s5,s4⊕s6,s4⊕s7}:
these are all the markings satisfying F1⊗F2, because there are no deadlock places. 2

5 H-TEAM BISIMULATION 28

Example 14. Let us consider the BPP net in Figure 3(c) and the formula F = 〈a〉tt.
The semantics of F⊗F is given by {s6,s8}⊗{s6,s8}= {2 ·s6,s6⊕ s8,2 · s8}. However
the set of markings satisfying F ⊗F is infinite: for instance, any marking of the form
s6⊕ s8⊕ k · s7 satisfies that formula, for each k ∈ N. 2

We are now ready to prove the coherence theorem: two markings are h-team bisim-
ilar if and only if they satisfy the same HTML formulae.

Proposition 25. Let N = (S,A,T) be a BPP net. If m1 ∼⊕h m2, then m1 and m2 satisfy
the same HTML formulae, i.e., {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}.

PROOF. Let us assume that m1 ∼⊕h m2. We will prove that, for any F ∈FA, if m1 � F
then also m2 � F . This is enough because, as ∼⊕h is symmetric, this justifies that if
m2 � F then also m1 � F , and so m1 and m2 satisfy the same HTML formulae.

The proof is by induction on the structure of F , where the first two cases are the
base cases of the induction.

• F = tt: if m1 � tt, then d(m1) ∈ JttK. Since also d(m2) ∈ JttK, we get m2 � tt, too.

• F = ff: since no marking satisfies false, m1 2 ff and also m2 2 ff.

• F = F1 ∧F2: since m1 � F1 ∧F2, it follows that m1 � F1 and m1 � F2; by induc-
tion, we can assume that also m2 � F1 and m2 � F2; hence, also m2 � F1∧F2, as
required.

• F = F1∨F2: similar to the above.

• F = 〈a〉G: if m1 � 〈a〉G, then d(m1) = s1 such that s1 ∈ J〈a〉GK; hence, there
exists a marking m′1 such that s1

a−→m′1 and m′1 � G. As m1 ∼⊕h m2, it follows
that d(m2) = s2 such that s1 ∼h s2. Therefore, by definition of ∼h, there exists a
marking m′2 such that s2

a−→m′2 and m′1 ∼
⊕
h m′2. Since m′1 ∼

⊕
h m′2 and m′1 � G, we

can apply induction (because G is a subformula) and conclude that also m′2 � G;
hence, s2 ∈ J〈a〉GK, and so m2 � 〈a〉G, as required.

• F = [a]G: if m1 � [a]G, then d(m1) = s1 such that s1 ∈ J[a]GK; hence, for all
m′1 such that s1

a−→m′1, it follows that m′1 � G. As m1 ∼⊕h m2, it follows that
d(m2) = s2 such that s1 ∼h s2. Since s1 ∼h s2, for each m′2 such that s2

a−→m′2,
there exists m′1 such that s1

a−→m′1 such that m′1 ∼
⊕
h m′2. Now, since m′1 ∼

⊕
h m′2

and m′1 � G, by induction, it follows also that m′2 � G. Hence, for all m′2 such
that s2

a−→m′2, we have that m′2 � G; therefore, s2 ∈ J[a]GK, and so m2 � [a]G, as
required.

• F =¬F ′: since m1 �¬F ′, it follows that m1 2 F ′. By induction, as F ′ is a subfor-
mula, if m1 does not satisfy F ′, then also m2 does not satisfy F ′, and so m2 �¬F ′,
as required.

• F = F1⊗F2: m1 � F1⊗F2 only if there exists m′1 and m′′1 such that m1 = m′1⊕m′′1 ,
m′1 � F1 and m′′1 � F2. As m1 ∼⊕h m2, there exists m′2 and m′′2 such that m2 =
m′2⊕m′′2 and m′1 ∼

⊕
h m′2 and m′′1 ∼

⊕
h m′′2 . By induction, m′2 � F1 and m′′2 � F2;

therefore, also m2 � F1⊗F2, as required.

5 H-TEAM BISIMULATION 29

2

Lemma 1. Let N = (S,A,T) be a BPP net. Let r1,r2 ∈ S∪{θ}. If r1 and r2 satisfy the
same HTML formulae, i.e., {F1 ∈FA

∣∣ r1 � F1}= {F2 ∈FA
∣∣ r2 � F2}, then r1 ∼h r2.

PROOF. We want to prove that R = {(r,r′)
∣∣ r,r′ ∈ S∪{θ},r and r′ satisfy the same

HTML formulae} is an h-team bisimulation, hence proving that two places (or one
place and the empty marking) that satisfy the same formulae are h-team bisimilar.

Assume (r1,r2) ∈ R and r1
a−→m1. We will prove that there exists some m2 such

that r2
a−→m2 and (m1,m2)∈ R⊕. Since R is symmetric, this is enough for proving that

R is an h-team bisimulation.
Assume, towards a contradiction, that there exists no m2 such that r2

a−→m2 and
(m1,m2) ∈ R⊕. Since the net is finite, the set {m ∈M (S)

∣∣ r2
a−→m} is finite; let us

denote such a set with {m′1,m′2, . . . ,m′k}, with k ≥ 0. By assumption, for j = 1, . . . ,k,
none of the m′j is such that (m1,m′j)∈ R⊕. Therefore, by looking at Algorithm 1 (which
is applicable as R is an equivalence relation), one of the following two cases is possible:

(a) there is a place p j in the residual of d(m1) that has no R-match in the residual of
d(m′j); or, vice versa,

(b) there is a p j in the residual of d(m′j) that has no R-match in the residual of d(m1).

In case (a), assume that dom(m′j) has h j ≥ 1 non-deadlock places which are not

R-related to p j, namely {s j
1, . . . ,s

j
h j
} ⊆ dom(m′j). Hence, for each s j

i ∈ m′j, for i =

1, . . . ,h j, there is an HTML formula F j
i such that p j � F j

i and s j
i 2 F j

i . Let m′ be the
marking composed of all the elements s in m1 such that (s, p j) ∈ R; to be precise, any
s ∈ m′ is such that (s, p j) ∈ R, and any s ∈ m1	m′ is such that (s, p j) 6∈ R. Then,

m′ � G
l j
j = G j⊗ . . .⊗G j︸ ︷︷ ︸

l j times

,

where G j = F j
1 ∧ . . .∧F j

h j
and l j = |m′|. By Definition 24, also m1 �G

l j
j ⊗nnn−l j , where

n= |d(m1)| and nnn−l j is the shorthand for a formula of the form 〈b1〉tt⊗ . . .⊗〈bn−l j〉tt,
for suitably chosen b1, . . . ,bn−l j .

2 On the contrary, m′j 2 G
l j
j ⊗ nnn−l j because in m′j

there are less than l j elements which are R-related to p j and any other s j
i is such that

s j
i 2 F j

i and so s j
i 2 G j.

In case (b), assume that dom(m1) has h ≥ 1 non-deadlock places which are not
R-related to p j ∈ m′j, namely {s1

1, . . . ,s
1
h} ⊆ dom(m1). Hence, for each s1

i ∈ m1, for

i = 1, . . . ,h, there is an HTML formula F j
i such that p j � F j

i and s1
i 2 F j

i . Let m′ be the
marking composed of all the elements s in m′j such that (s, p j) ∈ R; to be precise, any
s ∈ m′ is such that (s, p j) ∈ R, and any s ∈ m′j	m′ is such that (s, p j) 6∈ R. Then,

2Since each of the n− l j places in d(m1)	m′ is not a deadlock, each one of them satisfies some formula
of the form 〈b〉tt for some suitably chosen action b.

5 H-TEAM BISIMULATION 30

m′ � H
l j
j = H j⊗ . . .⊗H j︸ ︷︷ ︸

l j times

,

where H j =F j
1 ∧ . . .∧F j

h and l j = |m′|. By Definition 24, also m′j �H
l j
j ⊗nnn j−l j , where

n j = |d(m′j)|. On the contrary, m1 2 H
l j
j ⊗ nnn j−l j because in m1 there are less than l j

elements which are R-related to p j and any other s1
i is such that s1

i 2 F j
i and so s1

i 2H j.
Finally, take the formula G = 〈a〉(K1∧K2∧ . . .∧Kk), where, for j = 1, . . . ,k,

• the formula K j is G
l j
j ⊗nnn−l j , if case (a) applies; or

• the formula K j is ¬(H l j
j ⊗nnn j−l j), if case (b) applies.

It is easy to see that r1 � G, because m1 � K j for j = 1, . . . ,k; on the contrary, r2 2 G,
because, for j = 1, . . . ,k, m′j 2 K j, hence contradicting the previous assumption that r1
and r2 satisfy the same formulae. (In case k = 0, G = 〈a〉tt.) 2

Proposition 26. Let N = (S,A,T) be a BPP net. If m1 and m2 satisfy the same HTML
formulae, i.e., {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}, then m1 ∼⊕h m2.

PROOF. We actually prove the contranominal: if two markings are not related by ∼⊕h ,
then they do not satisfy the same HTML formulae. Two markings m1 and m2 are not
h-team bisimilar if, after removing all the deadlock places occurring in m1 and m2,
the resulting markings d(m1) and d(m2) are such that there is no h-team bisimulation-
preserving bijection among the elements of these two markings. This may happen be-
cause either d(m1) and d(m2) have not the same size or, w.l.o.g., there is an element s′i
in (the residual of) d(m1) that has not h-bisimilar match in (the residual of) d(m2).

In the former case, assume that |d(m1)| = n 6= h = |d(m2)| for some n ≥ 1. Let us
assume that d(m1) = s′1⊕ . . .s′n; since s′i is not a deadlock, s′i � 〈ai〉tt for some action
ai ∈ A. Then, the HTML formula
〈a1〉tt⊗ . . .⊗〈an〉tt

is such that m1 � 〈a1〉tt⊗ . . .⊗〈an〉tt, while m2 2 〈a1〉tt⊗ . . .⊗〈an〉tt because m2 has
h 6= n non-deadlock places, and so m1 and m2 do not satisfy the same HTML formulae.

In the latter case, let s be the element of the residual of d(m1) that has no h-team
bisimilar match in the residual of d(m2). Assume that dom(d(m2)) has k ≥ 1 places
which are not h-team bisimilar to s, namely {s′1, . . . ,s′k} ⊆ dom(d(m2)). Hence, by (the
contranominal of) Lemma 1, for each s′j ∈ d(m2), there is an HTML formula Fj such
that s � Fj and s′j 2 Fj, for j = 1, . . . ,k. Let m′1 be the marking composed of all the
elements s′ in d(m1) such that s′ ∼h s; to be precise, any s′ ∈ m′1 is such that s′ ∼h s,
and any s′ ∈ d(m1)	m′1 is such that s′ �h s. Then,

m′1 � Gh = G⊗ . . .⊗G︸ ︷︷ ︸
h times

,

where G = F1∧ . . .∧Fk and h = |m′1|. By Definition 24, also d(m1) � Gh⊗nnl , where
l = |d(m1)|−|m′1| and nnl is the shorthand for a formula of the form 〈b1〉tt⊗ . . .⊗〈bl〉tt,
for suitably chosen b1, . . . ,bl . On the contrary, d(m2)2Gh⊗nnl because in d(m2) there
are less than h elements which are h-team bisimilar to s and any other s′j is such that
s′j 2 Fj and so s′j 2G. In conclusion, since m1 satisfies the same formulae as d(m1) and

6 AXIOMATIZING H-TEAM BISIMILARITY 31

dec(0) = θ dec(µ.p) = {µ.p}
dec(p+ p′) = {p+ p′} dec(C) = {C}

dec(p | p′) = dec(p)⊕dec(p′)

Table 2: Decomposition function

m2 satisfies the same formulae as d(m2), we get that m1 and m2 do not satisfy the same
HTML formulae. 2

Theorem 6. (Coherence) Let N = (S,A,T) be a BPP net. It holds that m1 ∼⊕h m2 if
and only if {F1 ∈FA

∣∣ m1 � F1}= {F2 ∈FA
∣∣ m2 � F2}.

PROOF. Direct consequence of Propositions 25 and 26. 2

6. Axiomatizing H-Team Bisimilarity

Now we want to show that h-team bisimilarity can be axiomatized. This can be
done because BPP nets can be “alphabetized” by means of the process algebra BPP
(where BPP is the acronym of Basic Parallel Processes) and was originally studied
in [12]. BPP is a simple CCS [43, 27] subcalculus (without the restriction operator)
whose processes cannot communicate. We actually study the variant BPP in [28] which
requires guarded summation (as in SBPP [17, 20] or BPPg [12]) and also guarded
recursion.

6.1. The BPP Process Algebra

Its syntax is defined as follows. Let Act be a finite set of actions, ranged over by
µ , and let C be a finite set of constants, disjoint from Act, ranged over by A,B,C,
The size of the sets Act and C is not important: we assume that they can be chosen
are as large as needed. The BPP terms are generated from actions and constants by the
following abstract syntax (using three syntactic categories):

s ::= 0 | µ.p | s+ s guarded processes
q ::= s | C sequential processes
p ::= q | p | p parallel processes

where 0 is the empty process, µ.p is a process where action µ ∈ Act prefixes the resid-
ual p (µ.− is the action prefixing operator), s1+ s2 denotes the alternative composition
of s1 and s2 (−+− is the choice operator), p1 | p2 denotes the asynchronous parallel
composition of p1 and p2 and C is a constant. A constant C may be equipped with a
definition, but this must be a guarded process, i.e., in the syntactic category s: C .

= s. A
term p is a BPP process if each constant in Const(p) (the set of constants used by p;
see [28] for details) is equipped with a defining equation (in syntactic category s). The
set of BPP processes is denoted by PBPP, the set of its sequential processes, i.e., of the
processes in syntactic category q, by Pseq

BPP, while the set of its guarded processes, i.e.,
of the processes in syntactic category s, by Pgrd

BPP,

6 AXIOMATIZING H-TEAM BISIMILARITY 32

J0KI = (/0, /0, /0,θ)
Jµ.pKI = (S,A,T,{µ.p}) given JpKI = (S′,A′,T ′,dec(p)) and

S = {µ.p}∪S′, A = {µ}∪A′,
T = {({µ.p},µ,dec(p))}∪T ′

Jp1 + p2KI = (S,A,T,{p1 + p2}) given JpiKI = (Si,Ai,Ti,dec(pi)) for i = 1,2, and
S = {p1 + p2}∪S′1∪S′2, with, for i = 1,2,

S′i =

{
Si ∃t ∈ Ti such that t•(pi)> 0
Si \{pi} otherwise

A = A1∪A2, T = T ′∪T ′1 ∪T ′2, with, for i = 1,2,

T ′i =

{
Ti ∃t ∈ Ti . t•(pi)> 0
Ti \{t ∈ Ti

∣∣ •t(pi)> 0} otherwise
T ′ = {({p1 + p2},µ,m)

∣∣ ({pi},µ,m) ∈ Ti, i = 1,2}
JCKI = ({C}, /0, /0,{C}) if C ∈ I
JCKI = (S,A,T,{C}) if C 6∈ I, given C .

= p and JpKI∪{C} = (S′,A′,T ′,dec(p))
A = A′,S = {C}∪S′′, where

S′′ =


S′ ∃t ∈ T ′ . t•(p)> 0

S′ \{p} otherwise
T = {({C},µ,m)

∣∣ ({p},µ,m) ∈ T ′}∪T ′′ where

T ′′ =

{
T ′ ∃t ∈ T ′ . t•(p)> 0
T ′ \{t ∈ T ′

∣∣ •t(p)> 0} otherwise
Jp1 | p2KI = (S,A,T,m0) given JpiKI = (Si,Ai,Ti,mi) for i = 1,2, and where

S = S1∪S2, A = A1∪A2, T = T1∪T2, m0 = m1⊕m2

Table 3: Denotational net semantics

The net semantics for the process algebra BPP, originally outlined in [28], is such
that the set of places SBPP is the set of the sequential BPP processes, without 0, i.e.,
SBPP = Pseq

BPP \ {0}. The decomposition function dec : PBPP →M (SBPP), mapping
process terms to markings, is defined in Table 2. An easy induction proves that for any
p ∈PBPP, dec(p) is a finite multiset of sequential processes. Note that, if C .

= 0, then
θ = dec(0) 6= dec(C) = {C}; moreover, note that θ = dec(0) 6= dec(0+0) = {0+0},
which is a deadlock place.

Now we provide a construction of the net system JpK /0 associated with process
p, which is compositional and denotational in style. The details of the construction
are outlined in Table 3. The mapping is parametrized by a set of constants that have
already been found while scanning p; such a set is initially empty and it is used to avoid
looping on recursive constants. The definition is syntax driven and also the places of the
constructed net are syntactic objects, i.e., BPP sequential process terms. For instance,
the net system Ja.0K /0 is a net composed of one single marked place, namely process
a.0, and one single transition ({a.0},a,θ). A bit of care is needed in the rule for choice:
in order to include only strictly necessary places and transitions, the initial place p1 (or

6 AXIOMATIZING H-TEAM BISIMILARITY 33

p2) of the subnet Jp1KI (or Jp2KI) is to be kept in the net for p1 + p2 only if there exists
a transition reaching place p1 (or p2) in Jp1KI (or Jp2KI), otherwise p1 (or p2) can be
safely removed in the new net. Similarly, for the rule for constants.

Example 15. Consider the BPP process SC for a semi-counter, whose definition is
SC .

= inc.(SC |dec.0).
We have that

JSCK{SC} = ({SC}, /0, /0,{SC}), and
Jdec.0K{SC} = ({dec.0},{dec},{({dec.0},dec,θ)},{dec.0}).

Therefore, the net JSC |dec.0K{SC} is
({SC,dec.0},{dec},{({dec.0},dec,θ)},{SC,dec.0}).

The net Jinc.(SC |dec.0)K{SC} is
({inc.(SC |dec.0),SC,dec.0},{inc,dec},{({inc.(SC |dec.0)}, inc,{SC,dec.0}),
({dec.0},dec,θ)},{inc.(SC |dec.0)}).

Finally, the net JSCK /0 is
({SC,dec.0},{inc,dec},{({SC}, inc,{SC,dec.0}),({dec.0},dec,θ)},{SC}),

which is (isomorphic to) the net in Figure 1(a), where s1 is SC and s2 is dec.0. 2

The net semantics for BPP is such that:

• the semantics of a BPP process term p is a BPP net system JpK /0, whose initial
marking is dec(p); moreover,

• for any BPP net system N(m0) (which is dynamically reduced), there exists a
BPP process term pN(m0) such that its semantics JpN(m0)K /0 is a net isomorphic to
N(m0) (Representability Theorem).

Therefore, thanks to these results (proved in [28]), we can conclude that the BPP pro-
cess algebra truly represents the class of BPP nets. Hence, we can transpose the defini-
tion of h-team bisimilarity from BPP nets to BPP process terms in a simple way.

Definition 25. Two BPP processes p and q are h-team bisimilar, denoted p ∼⊕h q, if,
by taking the (union of the) nets JpK /0 and JqK /0, we have that dec(p)∼⊕h dec(q). 2

Of course, for sequential BPP processes, h-team bisimulation equivalence ∼⊕h co-
incides with h-team bisimilarity on places ∼h.

Thanks to Definition 25, we can now perform the usual process algebraic study
of a behavioral equivalence: to prove that it is a congruence for the operators of the
BPP process algebra, to study its algebraic properties and, finally, to define a (possibly
finite) sound and complete, axiomatization for it. These will be the subject of the next
subsections.

6.2. Congruence
Now we show that team equivalence is a congruence for all the BPP operators.

Proposition 27. (Congruence)
1) For each p,q,r ∈Pgrd

BPP, if p∼h q, then p+ r ∼h q+ r .
2) For each p,q ∈PBPP, if p∼⊕h q, then µ.p∼h µ.q for all µ ∈ Act.
3) For every p,q,r ∈PBPP, if p∼⊕h q, then p |r ∼⊕h q |r .

6 AXIOMATIZING H-TEAM BISIMILARITY 34

PROOF. 1) Assume R is an h-team bisimulation such that (p,q) ∈ R.3 It is very easy to
check that, for each r ∈Pgrd

BPP, the relation Rr = {(p+ r,q+ r)}∪R∪Ir is an h-team
bisimulation, where Ir = {(r′,r′)

∣∣ r′ ∈ reach(dec(r))}.
2) Assume R is an h-team bisimulation such that (dec(p),dec(q)) ∈ R⊕. Consider,

for each µ ∈ Act, relation Rµ = {(µ.p,µ.q)}∪R. It is very easy to check that Rµ is an
h-team bisimulation on places.

3) By induction on the size of dec(p). If |dec(p)|= 0, then dec(p) = θ ; as p∼⊕h q,
it follows that θ ∼⊕h dec(q). Hence, the thesis follows trivially:

dec(p |r) = θ ⊕dec(r)∼⊕h dec(q)⊕dec(r) = dec(q |r).
If |dec(p)| = k+ 1 for some k ≥ 0, then there exist p1 and p2 such that dec(p) =

p1⊕dec(p2). If p1 ∼h θ , then dec(p)∼⊕h dec(p2); as |dec(p2)|= k and p2 ∼⊕h p∼⊕h q,
by induction, we have that p2 |r ∼⊕ q |r. Then, the thesis follows trivially:

dec(p |r)= p1⊕dec(p2)⊕dec(r)∼⊕h dec(p2)⊕dec(r)= dec(p2 |r)∼⊕h dec(q |r).
Otherwise, if p1 �h θ , by Definition 22, there exist q1,q2 such that dec(q) = q1 ⊕
dec(q2), p1 ∼h q1 and dec(p2) ∼⊕h dec(q2). Since |dec(p2)| = k and p2 ∼⊕h q2, by
induction, we have that p2 |r ∼⊕ q2 |r. As p1 ∼h q1, by Definition 22, we have

dec(p |r) = p1⊕dec(p2 |r)∼⊕h q1⊕dec(q2 |r) = dec(q |r). So, p |r ∼⊕h q |r. 2

Still there is one construct missing: recursion, defined over guarded terms only.
Consider an extension of BPP where terms can be constructed using variables, such as
x,y, . . .: this defines an “open” BPP. We use the notation p(x1, . . . ,xn) to state that term
p is open on the tuple of variables (x1, . . . ,xn). For instance, p1(x) = a.(b.0+c.x)+d.x
and p2(x) = d.x+a.(c.x+b.0) are open guarded BPP terms.

Definition 26. (Open BPP) Let Var = {x,y,z, . . .} be a finite set of variables. The
BPP open terms are generated from actions, constants and variables by the following
abstract syntax (using three syntactic categories):

s ::= 0 | µ.p | s+ s guarded open processes
q ::= s | C | x sequential open processes
p ::= q | p | p parallel open processes

where x is any variable taken from Var. The open net semantics for open BPP extends
the net semantics in Table 3 with JxKI = ({x}, /0, /0,{x}), so that, e.g., the semantics of
a.x is the net ({a.x,x},{a}, {(a.x,a,x)},a.x). 2

H-team bisimulation equivalence can be extended to open terms as follows. An
open term p(x1, . . . ,xn) can be closed by means of a substitution:

p(x1, . . . ,xn){r1/x1, . . . ,rn/xn}

with the effect that each occurrence of the variable xi (within p and the body of each
constant in Const(p)) is replaced by the closed BPP sequential process ri, for i =
1, . . . ,n. For instance, p1(x){d.0/x}= a.(b.0+ c.d.0)+d.d.0.

3The case when p or q is 0 is trivial; in such as case, R is either {(θ ,θ)} (if both p and q are 0) or
{(θ ,q)} or {(p,θ)}.

6 AXIOMATIZING H-TEAM BISIMILARITY 35

A natural extension of h-team bisimilarity ∼h over open guarded terms is as fol-
lows: p(x1, . . . ,xn) ∼h q(x1, . . . ,xn) if for all tuples of (closed) BPP sequential terms
(r1, . . . ,rn), p(x1, . . . ,xn){r1/x1, . . . ,rn/xn} ∼h q(x1, . . . ,xn){r1/x1, . . . ,rn/xn}. E.g., it
is easy to see that p1(x)∼h p2(x). As a matter of fact, for all r,

p1(x){r/x}= a.(b.0+ c.r)+d.r ∼h d.r+a.(c.r+b.0) = p2(x){r/x},
which can be easily proved by means of the algebraic properties (discussed in the next
subsection) and the congruence ones of ∼h.

For simplicity’s sake, let us now restrict our attention to open guarded terms using
a single undefined variable. We can recursively close an open term p(x) by means
of a recursively defined constant. For instance, A .

= p(x){A/x}. The resulting process
constant A is a closed BPP sequential process. By saying that h-team bisimilarity is a
congruence for recursion we mean what is stated in the following theorem.

Theorem 7. Let p and q be two open guarded BPP terms, with one variable x at most.
Let A .

= p{A/x}, B .
= q{B/x} and p∼h q. Then A∼h B.

PROOF. Consider R= {(r{A/x},r{B/x})
∣∣ r∈ reach(dec(p))∪reach(dec(q))}. Note

that when r is x, we get (A,B) ∈ R. The proof that R is an h-team bisimulation up to
∼h [30] is not difficult. By symmetry, it is enough to prove that if r{A/x} µ−→m1, then
r{B/x} µ−→m2 such that m1(∼h R ∼h)

⊕m2. The proof proceeds by induction on the
definition of the net for r{A/x}.

• r = µ.r′. In this case, r{A/x}= µ.r′{A/x} µ−→dec(r′){A/x}. Similarly, r{B/x}=
µ.r′{B/x} µ−→dec(r′){B/x}, and (dec(r′){A/x},dec(r′){B/x}) ∈ R⊕.

• r =D, with D .
= s. So, r{A/x} .

= s{A/x} and r{B/x} .
= s{B/x}. If r{A/x} µ−→m1,

then this is possible only if s{A/x} µ−→m1. Since s is guarded, s{A/x} µ−→m1 is
possible only if s

µ−→m with m1 = m{A/x}. Therefore, also s{B/x} µ−→m{B/x}
is derivable, and also r{B/x} µ−→m{B/x}, with (m{A/x},m{B/x}) ∈ R⊕.

• r = r1+r2. In this case, r{A/x}= r1{A/x}+r2{A/x}. A transition from r{A/x},
e.g., r1{A/x}+r2{A/x} µ−→m1, is derivable only if ri{A/x} µ−→m1 for some i=
1,2. Without loss of generality, assume the transition is due to r1{A/x} µ−→m1.
Since r1 is guarded, transition r1{A/x} µ−→m1 is derivable because r1

µ−→m,
with m1 = m{A/x}. Therefore, also r1{B/x} µ−→m{B/x} is derivable, as well
r{B/x}= r1{B/x}+ r2{B/x} µ−→m{B/x}, with (m{A/x},m{B/x}) ∈ R⊕.

• r = x. We have r{A/x} = A and r{B/x} = B. We prove that for each A
µ−→m1,

there exists m2 such that B
µ−→m2 with m1(∼h R ∼h)

⊕m2. By hypothesis, A .
=

p{A/x}, hence also p{A/x} µ−→m1 is a transition in the net for p{A/x}; since p
is guarded, p{A/x} µ−→m1 is possible only if p

µ−→m with m1 =m{A/x}. There-
fore, also p{B/x} µ−→m{B/x} is derivable. But we also have that p ∼h q, so
p

µ−→m can be matched by q
µ−→m′ with m∼⊕h m′. Hence, q{B/x} µ−→m′{B/x}

6 AXIOMATIZING H-TEAM BISIMILARITY 36

is derivable with m{B/x} ∼⊕h m′{B/x}. Since B .
= q{B/x}, also B

µ−→m′{B/x}
is a transition with m1 ∼⊕h m{A/x}R⊕m{B/x} ∼⊕h m′{B/x}, as required. 2

The extension to the case of open terms with multiple undefined constants, e.g.,
p(x1, . . . ,xn) can be obtained in a standard way [43, 27].

6.3. Algebraic Laws
Now we list the algebraic properties of h-team bisimulation equivalence. On se-

quential processes we have the following algebraic laws.

Proposition 28. (Laws of the choice op.) For each p,q,r∈Pgrd
BPP , the following hold:

p+(q+ r) ∼h (p+q)+ r (associativity)
p+q ∼h q+ p (commutativity)
p+0 ∼h p (identity)
p+ p ∼h p (idempotency)

PROOF. For each law, it is enough to exhibit a suitable h-team bisimulation relation
on places, where each place is actually a process term, according to the net semantics.
For instance, for idempotency, for each p (p 6= 0) in syntactic category s, take the
relation Rp = {(p+ p, p)}∪Ip where Ip = {(q,q)

∣∣ q ∈ reach(p)} is the identity
relation. It is an easy exercise to check that Rp is an h-team bisimulation on the places

of Jp+ pK /0 and JpK /0. In fact, if p
µ−→m, then (according to the semantics for p+ p) also

p+ p
µ−→m and (m,m)∈I ⊕p , and so (m,m)∈ R⊕p . Symmetrically, if p+ p

µ−→m, then

(according to the semantics for p+ p) this is possible only if p
µ−→m is derivable and

the condition (m,m) ∈ R⊕p is trivially satisfied. (Instead, if p = 0, then R = {(0+0,θ)}
is an h-team bisimulation proving 0+0∼h 0.) 2

Proposition 29. (Laws of the constant) For each p ∈Pgrd
BPP, and each C ∈ C , the

following hold:
if C .

= p, then C ∼h p (unfolding)
if C .

= p{C/x} and q∼h p{q/x} then C ∼h q (folding)
where, in the second law, p is actually open on x (while q is closed).

PROOF. The required h-team bisimulation on places proving the unfolding property
(in case p 6= 0) is RC,p = {(C, p)}∪IC, where IC = {(q,q)

∣∣ q ∈ reach(C)} is the
identity relation. (If p= 0, then the required h-team bisimulation is {(C,θ)}.) In fact, if
C

µ−→m, then (according to the net semantics for C .
= p) this means that also p

µ−→m,
with (m,m) ∈I ⊕C , and so (m,m) ∈ R⊕C,p as required. Symmetrically if p moves first.

For the folding property, note that this is implied by the following: if q1∼h p{q1/x}
and q2∼h p{q2/x} then q1∼h q2. In fact, if we choose q1 =C, then C = q1∼h p{q1/x}
= p{C/x} (which holds by hypothesis, due to the unfolding property) and, moreover,
C = q1 ∼h q2, which is the thesis. This statement can be easily proven by showing that
the relation R = {(r{q1/x},r{q2/x})

∣∣ r ∈ reach(dec(p))} is an h-team bisimulation
up to ∼h [30]. Clearly, when r = x, we have that (q1,q2) ∈ R. So, it remains to prove
the h-team bisimulation (up to) conditions. If r{q1/x} µ−→ t, this can be due to one of
the following:

6 AXIOMATIZING H-TEAM BISIMILARITY 37

• r
µ−→m and so t = m{q1/x}, where the substitution is applied element-wise to

each place in m. In this case, also r{q2/x} µ−→m{q2/x} is derivable such that
(m{q1/x},m{q2/x}) ∈ R⊕.

• r = x and q1
µ−→m1, and so t =m1. As q1 ∼h p{q1/x} and p is guarded, there ex-

ists m such that p
µ−→m and p{q1/x} µ−→m{q1/x}with m1∼⊕h m{q1/x}. There-

fore, p{q2/x} µ−→m{q2/x} is derivable, too. Since q2 ∼ p{q2/x}, it follows that
there exists a marking m2 such that q2

µ−→m2 with m2 ∼⊕h m{q2/x}. Summing

up, if x{q1/x}= q1
µ−→m1, then x{q2/x}= q2

µ−→m2 such that m1∼⊕h m{q1/x},
(m{q1/x},m{q2/x}) ∈ R⊕ and, moreover, m{q2/x} ∼⊕h m2, as required by the
h-team bisimulation up to condition.

Simmetrically, if r{q2/x} moves first. Hence, R is an h-team bisimulation up to ∼h. 2

Proposition 30. (Laws of the parallel operator) For each p,q,r ∈PBPP, the follow-
ing hold:

p |(q |r) ∼⊕h (p |q) |r (associativity)
p |q ∼⊕h q | p (commutativity)
p |0 ∼⊕h p (identity)

PROOF. To prove that each law is sound, it is enough to observe that the net for
the process in the left-hand-side is exactly the same as the net for the process in the
right-hand-side. For instance, Jp |qK /0 = Jq | pK /0. In fact, dec(p |q) = dec(p)⊕dec(q) =
dec(q)⊕dec(p) = dec(q | p) and the resulting net is obtained by simply joining the net
for p with the net for q. Therefore, the identity relation on places, which is an h-team
bisimulation, is enough to prove that dec(p |q)∼⊕h dec(q | p). 2

6.4. Axiomatization
In this section we provide a sound and complete, finite axiomatization of h-team

bisimulation equivalence over BPP. For simplicity’s sake, the syntactic definition of
open BPP (cf. Definition 26) is assumed here flattened, with only one syntactic cate-
gory, but we require that each ground instantiation of an axiom must respect the syn-
tactic definition of (closed) BPP given in Section 6.1. This means that we can write the
axiom x+(y+z) = (x+y)+z (these terms cannot be written in open BPP according to
Definition 26), but it is invalid to instantiate it to C+(a.0+b.0 |0)= (C+a.0)+(b.0 |0)
because these are not legal BPP processes (the constant C and the parallel process b.0 |0
cannot be used as summands).

The set of axioms are outlined in Table 4. We call E the set of axioms {A1, A2,
A3, A4, R1, R2, P1, P2, P3}. By the notation E ` p = q we mean that there exists an
equational deduction proof of the equality p = q, by using the axioms in E. Besides the
usual equational deduction rules of reflexivity, symmetry, transitivity, substitutivity and
instantiation (see, e.g., [27]), in order to deal with constants we need also the following
recursion congruence rule:

p = q ∧ A .
= p{A/x} ∧ B .

= q{B/x}
A = B

6 AXIOMATIZING H-TEAM BISIMILARITY 38

A1 Associativity x+(y+ z) = (x+ y)+ z

A2 Commutativity x+ y = y+ x

A3 Identity x+0 = x

A4 Idempotence x+ x = x

R1 Unfolding if C .
= p, then C = p

R2 Folding if C .
= p{C/x} ∧ q = p{q/x}, then C = q

P1 Associativity x |(y |z) = (x |y) |z
P2 Commutativity x |y = y |x
P3 Identity x |0 = x

Table 4: Axioms for h-team bisimulation equivalence

The axioms A1-A4 are the usual axioms for choice [42]. The conditional axioms
R1-R2 are about process constants. Note that these conditional axioms are actually a
finite collection of axioms, one for each constant definition: since the set C of process
constants is finite, the instances of R1-R2 are finitely many. Finally, we have axioms
P1-P3 for parallel composition.

Theorem 8. (Soundness) For every p,q ∈PBPP, if E ` p = q, then p∼⊕h q.

PROOF. By induction on the proof of E ` p = q. The thesis follows by the fact that all
the axioms in E are sound by Propositions 28, 29 and 30 and ∼⊕h is a congruence. 2

Proposition 31. (Unique solution) Let X̃ = (x1,x2, . . . ,xn) be a tuple of variables and
let p̃ = (p1, p2, . . . , pn) be a tuple of open guarded BPP terms (in syntactic category
s), using the variables in X̃ . Then, there exists a tuple q̃ = (q1,q2, . . . ,qn) of closed
sequential BPP terms such that E ` qi = pi{q̃/X̃} for i = 1, . . . ,n. Moreover, if the
same property holds for q̃′ = (q′1,q

′
2, . . . ,q

′
n), then

E ` q′i = qi for i = 1, . . . ,n.

PROOF. By induction on n. We assume that there exists a tuple of constants C̃ =
(C1,C2, . . . ,Cn) that do not occur in p̃ = (p1, p2, . . . , pn).

For n = 1, we choose q1 =C1, and we close this constant with the definition C1
.
=

p1{C1/x1}, and so the result follows immediately using axiom R1. This solution is
unique: if E ` r1 = p1{r1/x1}, since C1

.
= p1{C1/x1}, by axiom R2 we get E `C1 = r1.

Now assume a tuple p̃= (p1, p2, . . . , pn) and the term pn+1, so that they are all open
on X̃ = (x1,x2, . . . ,xn) and the additional xn+1. Assume, w.l.o.g., that xn+1 occurs in
pn+1. First, define Cn+1

.
= pn+1{Cn+1/xn+1}, so that the new constant Cn+1 is now open

on X̃ . Therefore, also for i = 1, . . . ,n, each pi{Cn+1/xn+1} is now open on X̃ . Thus,
we are now able to use induction on X̃ and (p1{Cn+1/xn+1}, . . . , pn{Cn+1/xn+1}), to
conclude that there exists a tuple q̃ = (q1,q2, . . . ,qn) of closed sequential BPP terms
such that

6 AXIOMATIZING H-TEAM BISIMILARITY 39

E ` qi = (pi{Cn+1/xn+1}){q̃/X̃}= pi{q̃/X̃ ,Cn+1{q̃/X̃}/xn+1} for i = 1, . . . ,n.
Note that above by Cn+1{q̃/X̃} we have implicitly closed the definition of Cn+1 as

Cn+1
.
= pn+1{Cn+1/xn+1}{q̃/X̃}= pn+1{q̃/X̃}{Cn+1/xn+1},

so that Cn+1 can be chosen as qn+1. By axiom R1, E `Cn+1 = pn+1{q̃/X̃}{Cn+1/xn+1}.
Unicity of the tuple (q̃,qn+1) can be proved by using axiom R2. Assume to have

another solution tuple (q̃′,q′n+1). This means that
E ` q′i = pi{q̃′/X̃ ,q′n+1/xn+1} for i = 1, . . . ,n+1.

By induction, we can assume that E ` qi = q′i, for i = 1, . . . ,n.
Since E `Cn+1 = pn+1{q̃/X̃}{Cn+1/xn+1} by axiom R1, by substitutivity we get

E ` Cn+1 = pn+1{q̃′/X̃}{Cn+1/xn+1}. Let F be a constant defined as follows: F .
=

pn+1{q̃′/X̃}{F/xn+1}. Then, by axiom R2, E `Cn+1 = F . Hence, since
E ` q′n+1 = pn+1{q̃′/X̃}{q′n+1/xn+1}

by axiom R2, we get E ` F = q′n+1; so the thesis E `Cn+1 = q′n+1 by transitivity. 2

Lemma 2. For each p ∈PBPP, if p∼⊕h θ , then E ` p = 0.

PROOF. By induction on the structure of p. The base case is p = 0 and the thesis
follows trivially. If p = p1 + p2, then p1 ∼h θ ∼h p2, so that by induction E ` pi = 0
for i = 1,2. Hence, E ` p = 0 by substitutivity and axiom A3. If p =C with C .

= r, then
also r ∼h θ , so that, by induction, E ` r = 0. Since by axiom R1 we have E `C = r,
the thesis follows by transitivity. Finally, if p = p1 | p2, then p1 ∼⊕h θ and p2 ∼⊕h θ , so
that, by induction, we can derive that E ` p1 = 0 and E ` p2 = 0; the thesis E ` p = 0
follows by substitutivity and axiom P3. 2

Proposition 32. (Equational characterization) If p∈Pseq
BPP is such that p�h θ , then

there exists a set {p1, p2, . . . , pk} ⊆Pseq
BPP such that k ≥ 1, E ` p = p1 and, for i =

1, . . . ,k, E ` pi = p′i, where p′i is of the form ∑
n(i)
j=1 ai j.qi j (with n(i) ≥ 1) such that

dom(d(dec(qi j)))⊆ {p1, p2, . . . , pk}.

PROOF. The proof is by induction on the structure of p, with the proviso to use a
set I of already scanned constants, in order to avoid looping on recursively defined
constants, where I is initially empty. For inducing on the structure of the pair (p, I), we
need to introduce an auxiliary definition: with (E, I) ` p = q we mean that this equality
is derivable by the axioms in E when each C ∈ I is defined as C .

= 0.
We prove that for (p, I) there exists a set {p1, p2, . . . , pk} ⊆Pseq

BPP such that k ≥ 1,
(E, I) ` p = p1 and, for i = 1, . . . ,k, (E, I) ` pi = p′i, where p′i can be 0 (when I 6= /0) or
a sumform ∑

n(i)
j=1 ai j.qi j (with n(i)≥ 1) such that dom(d(dec(qi j)))⊆ {p1, p2, . . . , pk}.

The thesis then follows by considering (p, /0). In all the cases, except for the case of
process constants, the parameter I is omitted for the sake of simplicity.

If p = µ.q, then let d(dec(q)) = k1 · r1⊕ k2 · r2⊕ . . .⊕ kh · rh. If h = 0 (i.e., there
is not even one non-deadlock place in dec(q)), then E ` q = 0 by Lemma 2, and the
thesis follows trivially by choosing p1 = µ.0 = p′1. Otherwise, by induction, for each
j = 1, . . . ,h there exist {r j

1, . . .r
j
l j
} ⊆Pseq

BPP such that E ` r j = r j
1, E ` r j

i = s j
i for i =

1, . . . , l j, where s j
i is either 0 or a sumform ∑

n(j)
h=1 aih.t

j
ih such that dom(d(dec(t j

ih))) ⊆

6 AXIOMATIZING H-TEAM BISIMILARITY 40

{r j
1, . . .r

j
l j
}. We choose p1 = µ.t, where t is a term such that dec(t) = k1 · r1

1 ⊕ k2 ·
r2

1⊕ . . .⊕ kh · rh
1; indeed, E ` p = p1 via axioms P1-P3 (for reordering the sequential

subterms and absorbing 0’s), and axioms R1 and A1-A3 (for transforming deadlock
places into 0’s) and by substitutivity. Moreover, the set of sequential processes is {p1}∪
{r1

1, . . .r
1
l1
}∪ . . .∪{rh

1, . . .r
h
lh
}. Since for each r j

i there is already a suitable s j
i , it remains

to define p′1, which is p′1 = µ.t.
If p = r1 + r2, then the case r1 ∼h 0∼h r2 is impossible, as in such a case p∼h θ .

In case r1 ∼h 0�h r2, then, by induction, there exist {r2
1, . . .r

2
k2
} such that E ` r2 = r2

1,

and, for i = 1, . . . ,k2, E ` r2
i = s2

i , where s2
i is either 0 or a sumform ∑

n2(i)
h=1 aih.t2

ih such
that dom(d(dec(t2

ih)))⊆{r2
1, . . .r

2
k2
}. We can take pi = r2

i , p′i = s2
i for i = 1, . . . ,k2, with

E ` p = p1 by substitutivity and axioms A2-A3 (in fact, E ` r1 = 0, by Lemma 2), and
E ` pi = p′i by inductive assumption. Symmetrically in case r1 �h 0∼h r2. Otherwise
(i.e., when r1 �h 0 �h r2), by induction there exist {r1

1, . . .r
1
k1
} and {r2

1, . . .r
2
k2
}, such

that E ` r1 = r1
1, E ` r2 = r2

1, and (for j = 1,2) E ` r j
i = s j

i , where s j
i is either 0 or

a sumform ∑
n j(i)
h=1 aih.t

j
ih such that dom(d(dec(t j

ih))) ⊆ {r
j
1, . . .r

j
k j
}. We can take p1 =

r1
1 + r2

1 so that the set is {p1} ∪ {r1
1, . . .r

1
k1
} ∪ {r2

1, . . .r
2
k2
}. Since for each r j

i there is

already a suitable s j
i , it remains to define p′1 = s1

1 + s2
1 = ∑

n1(1)
j=1 a1 j.t1

1 j +∑
n2(1)
j=1 a′1 j.t

2
1 j.

In case p = C, we have to consider the second parameter I: if (C, I) is such that
C ∈ I, then p1 = C and p′1 = 0. In fact, (E, I) `C = 0 follows by axiom R1. If C 6∈ I
and C .

= r, then we have to distinguish two subcases:
(i) If r∼h θ , then this case is not possible because C∼h θ (excluded by hypothesis).
(ii) If r �h θ , then, by induction on (r, I ∪ {C}), we know that for r there exist

k≥ 1 and {r1, . . . ,rk} such that (E, I∪{C}) ` r = r1 and for i = 1, . . . ,k, (E, I∪{C}) `
ri = r′i where r′i is either 0 or a sumform ∑

n(i)
j=1 ai j.ti j such that dom(d(dec(ti j))) ⊆

{r1,r2, . . . ,rk}. Note that, by construction it follows that not only (E, I∪{C}) ` r = r1
but also (E, I) ` r = r1. Moreover, for each i such that ri 6= C, we have that not only
(E, I∪{C}) ` ri = r′i, but also (E, I) ` ri = r′i. Therefore, since, by axiom R1, (E, I) `
C = r, we have (E, I) `C = r′1 by transitivity, where r′1 = ∑

n(1)
j=1 a1 j.t1 j. Hence, we can

choose p1 = C and, for i = 1, . . . ,k, pi+1 = ri and, moreover, p′1 = r′1 and p′i+1 = r′i if
ri 6= C, while p′i+1 = r′1 otherwise. Note that (E, I) ` p = p1 (as both are C) and also
that (E, I) ` pi = p′i for i = 1, . . . ,k + 1. Finally, note that for each ri = C, we have
turned r′i from 0 to r′1, so that p′i+1 is 0 only when ri ∈ I; therefore, we can conclude
that, when I = /0, all the p′i’s are non-empty sumforms. 2

Example 16. To illustrate how induction works in the proof of the proposition above,
take the constant C .

= a.((C |(0+ 0)) |(b.0+ 0)). We have to start with (C, /0), whose
solution requires to consider (a.((C |(0+0)) |(b.0+0)),{C}), in turn requiring to con-
sider (C,{C}) and (b.0+0,{C}). As C ∈ {C}, we have that for (C,{C}) the required
terms are p1 =C and p′1 = 0, while for (b.0+0,{C}) we get p1 = b.0 = p′1. Now we
can compute the terms associated with (a.((C |(0+ 0)) |(b.0+ 0)),{C}), which are:
p1 = a.(C |b.0) = p′1, p2 = C, p′2 = 0, p3 = b.0 = p′3. So, now we can compute the
terms for (C, /0) which are: p1 = C, p′1 = a.(C |b.0), p2 = a.(C |b.0) = p′2 p3 = C,
p′3 = p′1, p4 = b.0 = p′4. Summing up, after removing the duplicates, the required

6 AXIOMATIZING H-TEAM BISIMILARITY 41

terms for C are p1 =C, p2 = a.(C |b.0), p3 = b.0, with associated terms p′1 = a.(C |b.0),
p′2 = a.(C |b.0) and p′3 = b.0.

As a further tiny example, consider the term a.C+b.D with C .
= 0 and D .

= c.d.D.
We have to start with (a.C+ b.D, /0), whose solution requires to consider (a.C, /0) and
(b.D, /0). Since d(dec(C)) = θ , we have that p1 = a.0 = p′1. Since d(dec(D)) = {D},
we have to induce on (D, /0), and so on (c.d.D,{D}). This latter originates the terms
p1 = c.d.D = p′1, p2 = d.D = p′2, p3 = D and p′3 = 0, so that, for (D, /0), we get p1 = D,
p′1 = c.d.D, p2 = c.d.D = p′2, p3 = d.D = p′3, p4 = D and p′4 = c.d.D (of course, p4 is
redundant and so omitted in the following). So, for (b.D, /0) we get the terms p1 = b.D=
p′1, p2 = D, p′2 = c.d.D, p3 = c.d.D = p′3, p4 = d.D = p′4. Finally, for (a.C+b.D, /0),
we get p1 = a.C + b.D = p′1, p2 = a.0 = p′2, p3 = D, p′3 = c.d.D, p4 = c.d.D = p′4,
p5 = d.D = p′5. 2

Proposition 33. (Completeness for sequential terms)
For each p, p′ ∈Pseq

BPP, if p∼h p′, then E ` p = p′.

PROOF. If p∼h θ ∼h p′, then the thesis follows by Lemma 2.
Otherwise, by Proposition 32, we have that there exists a set {p1, p2, . . . , pk} of se-

quential processes such that E ` p = p1, and there exist r1,r2, . . . ,rk such that, for
i = 1, . . . ,k, E ` pi = ri and ri is a sumform ∑

n(i)
j=1 ai j.ti j (with n(i) ≥ 1) such that

dom(d(dec(ti j)))⊆ {p1, p2, . . . , pk}. This means that each pi is a non-deadlock place.
Similarly, there exists a set {p′1, p′2, . . . , p′h} of sequential processes such that E `

p′ = p′1, and there exist r′1,r
′
2, . . . ,r

′
h such that, for i = 1, . . . ,h, E ` p′i = r′i and r′i is

a sumform ∑
n′(i)
j=1 a′i j.t

′
i j (with n′(i) ≥ 1) such that dom(d(dec(t ′i j))) ⊆ {p′1, p′2, . . . , p′h}.

So, each p′i is a non-deadlock place.
By Theorem 8, we have that p ∼h p1 ∼h r1 and p′ ∼h p′1 ∼h r′1; as by hypothesis

p ∼h p′, by transitivity we have that p1 ∼h p′1 and r1 ∼h r′1. Let r1 = ∑
n(1)
j=1 a1 j.t1 j and

r′1 = ∑
n′(1)
j=1 a′1 j.t

′
1 j. We want to prove that E � r1 = r′1 so that the thesis E ` p = p′

follows by transitivity.
Now, let I = {(i, i′)

∣∣ pi ∼h p′i′}. Clearly, (1,1)∈ I. As pi and p′i′ are h-team bisim-
ilar when (i, i′) ∈ I, the following hold: for each (i, i′) ∈ I, there exists a total surjective
relation Jii′ between {1,2, . . .n(i)} and {1,2, . . .n′(i′)} given by Jii′ = {(j, j′)

∣∣ ai j =
a′i′ j′ ∧ (d(dec(ti j)),d(dec(t ′i′ j′))) ∈ I⊕}, where (d(dec(ti j)),d(dec(t ′i′ j′))) ∈ I⊕ if

• d(dec(ti j)) = pd(i, j,1) ⊕ pd(i, j,2) ⊕ . . .⊕ pd(i, j,n) such that 1 ≤ d(i, j,l) ≤ k for l =
1, . . . ,n;

• d(dec(t ′i′ j′)) = p′d′
(i′, j′,1)

⊕ p′d′
(i′, j′,2)

⊕ . . .⊕ p′d′
(i′, j′,n)

, such that 1 ≤ d′(i′, j′,l) ≤ h for

l = 1, . . . ,n; and

• (d(i, j,l),d′(i′, j′,l)) ∈ I for l = 1, . . . ,n. (If n = 0, then (θ ,θ) ∈ I⊕).

Now, for each (i, i′) ∈ I, let us consider the variables xii′ and the open term

vii′ = ∑
(j, j′)∈Jii′

ai j.(xd(i, j,1)d
′
(i′, j′,1)

|xd(i, j,2)d
′
(i′, j′,2)

| . . . |xd(i, j,n)d
′
(i′, j′,n)

)

6 AXIOMATIZING H-TEAM BISIMILARITY 42

where, if Jii′ = /0 then vii′ = 0, while in case n = 0, the open parallel process
xd(i, j,1)d

′
(i′, j′,1)

|xd(i, j,2)d
′
(i′, j′,2)

| . . . |xd(i, j,n)d
′
(i′, j′,n)

is actually 0. By Proposition 31, for each (i, i′) ∈ I, there exists sii′ such that E ` sii′ =
vii′{s̃/X̃}, where s̃ denotes the tuple of terms of the form sii′ for each (i, i′) ∈ I, and X̃
denotes the tuple of variables xii′ for each (i, i′) ∈ I.

If we close each vii′ by replacing each xd(i, j,l)d
′
(i′, j′,l)

with pd(i, j,l) , we get

∑
(j, j′)∈Jii′

ai j.(pd(i, j,1) | pd(i, j,2) | . . . | pd(i, j,n))

which is equal, up to axioms P1-P3 (for reordering the sequential subterms and ab-
sorbing 0’s) and axioms R1 and A1-A3 (for transforming deadlock places into 0’s), to
∑(j, j′)∈Jii′

ai j.ti j, in turn equal, via axioms A1-A4, to ri: in fact, Jii′ is surjective so that
the two summations differ only for possible repeated summands. Since E ` pi = ri for
i = 1, . . . ,k, we get

E ` ri = ∑(j, j′)∈Jii′
ai j.(rd(i, j,1) |rd(i, j,2) | . . . |rd(i, j,n)).

Therefore, we note that ri is such that E ` ri = vii′{r̃/X̃} and so, by Proposition 31, we
have that E ` sii′ = ri. Since (1,1) ∈ I, we have that E ` s11 = r1.

Similarly, if we close each vii′ by replacing each xd(i, j,l)d
′
(i′, j′,l)

with p′d′
(i′, j′,l)

, we get

∑
(j, j′)∈Jii′

ai j.(p′d′
(i′, j′,1)

| p′d′
(i′, j′,2)

| . . . | p′d′
(i′, j′,n)

)

which is equal, up to axioms P1-P3 (for reordering the sequential subterms and ab-
sorbing 0’s) and axioms R1 and A1-A3 (for transforming deadlock places into 0’s), to
∑(j, j′)∈Jii′

ai j.t ′i′ j′ , in turn equal, via axioms A1-A4, to r′i′ : in fact, Jii′ is surjective so that
the two summations differ only for possible repeated summands. Since E ` p′i = r′i for
i = 1, . . . ,h, we get

E ` r′i′ = ∑(j, j′)∈Jii′
ai j.(r′d′

(i′, j′,1)
|r′d′

(i′, j′,2)
| . . . |r′d′

(i′, j′,n)
).

Thus, we note that r′i′ is such that E ` r′i′ = vii′{r̃′/X̃} and so, by Proposition 31, we
have that E ` sii′ = r′i′ . Since (1,1) ∈ I, we have that E ` s11 = r′1; by transitivity, it
follows that E ` r1 = r′1, and so that E ` p = p′. 2

Theorem 9. (Completeness) For every p,q ∈PBPP, if p∼⊕h q, then E ` p = q.

PROOF. The proof is by induction on the sum of the sizes of dec(p) and dec(q). If
|dec(p)|+ |dec(q)|= 0, then dec(p) = θ = dec(q). By observing the definition of the
decomposition function in Table 2, this is possible only if p and q are either 0 or a
parallel composition of 0’s, e.g., 0 |0; hence, E ` p = 0 and E ` q = 0, possibly using
axioms P1-P3; hence, by transitivity we get E ` p = q.

If |dec(p)|+ |dec(q)| = k + 1, then we can assume, w.l.o.g., that |dec(p)| ≥ 1,
so that there exist p1 and p2 such that dec(p) = p1⊕ dec(p2) = dec(p1 | p2), so that
E ` p = p1 | p2 by axioms P1-P3.

If p1 ∼h θ , then dec(p)∼⊕h dec(p2) and, by Lemma 2, we get E ` p1 = 0. Hence,
E ` p = p2 by substitutivity and axiom P3. Since dec(p) ∼⊕h dec(q), by transitivity

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 43

we get dec(p2) ∼⊕h dec(q), so that, by induction, we get E ` p2 = q. Thus, the thesis
E ` p = q follows by transitivity.

Otherwise, if p1 �h θ , then q1,q2 exist such that p1 ∼h q1, dec(p2)∼⊕h dec(q2) and
dec(q) = q1⊕dec(q2). By the definition of the decomposition function and by axioms
P1-P3, this means that E ` p = p1 | p2 and E ` q = q1 |q2. By Proposition 33 we have
that E ` p1 = q1. By induction, we have that E ` p2 = q2. By substitutivity we get
E ` p1 | p2 = q1 |q2 and so the thesis follows by transitivity. 2

7. Conclusion, Related Literature and Future Research

Team bisimulation equivalence is a truly concurrent equivalence which is the most
natural, intuitive and simple extension of LTS bisimulation equivalence to BPP nets. It
also has a rather low complexity: indeed, by adapting the Kanellakis-Smolka algorithm
[37, 38], ∼ can be computed in O(m · p2 · n) time, where m is the number of net tran-
sitions, p is the size of the largest post-set (i.e., p is the least natural such that |t•| ≤ p
for all t) and n is the number of places (or in O(m · n2), cf. Remark 5). After having
computed ∼, checking whether two markings of size k are team bisimilar can be done
in O(k2) (or in O(n), cf. Remark 5). On the contrary, interleaving bisimilarity over
BPP nets is PSPACE-complete [35]. As, in order to perform team bisimulation equiv-
alence checking, there is no need to compute the LTSs of the global behavior of the
systems under scrutiny, our proposal seems a natural solution to solving the state-space
explosion problem for BPP nets.

Future work may be devoted to see whether the Paige-Tarjan algorithm [50] (which
is more performant than the Kanellakis-Smolka one, as it computes bisimilarity on an
LTS with n states and m transitions in O(m · logn)) can be adapted to compute (h-)team
bisimilarity on BPP nets in a more efficient manner.

Team bisimulation equivalence coincides with causal-net bisimilarity and state-
sensitive fully-concurrent bisimilarity (Corollaries 2 and 3), hence it corresponds to the
intuitively correct bisimulation-based causal semantics for BPP nets. Moreover, it also
coincides (as proved in [30]) with strong place bisimilarity [3, 4] and with structure-
preserving bisimilarity, because our causal-net bisimilarity is similar to the process-
oriented characterization of that equivalence in [24]. From a technical point of view,
team bisimulation seems a sort of egg of Columbus: a simple (actually, a bit surprising
in its simplicity) solution for a presumedly hard problem.

This paper is not only an addition to [30], where team bisimilarity was originally
introduced, but also an extension to a team-style characterization of fully-concurrent
bisimilarity, namely h-team bisimilarity. For this variant team bisimulation equiva-
lence, we have described a modal logic characterization and a finite, sound and com-
plete, axiomatization; therefore, we have characterized fully-concurrent bisimilarity for
BPP nets logically and axiomatically.

The complexity results we have obtained for fully-concurrent bisimilarity (cf. Re-
mark 8), by means of its characterization in terms of h-team bisimilarity, seem roughly
comparable with those in [20], where, by using an event structure [53] semantics,
Fröschle et al. show that history-preserving bisimilarity is decidable for the BPP pro-
cess algebra with guarded summation in O(n3 · log n) time, where n is the size of the

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 44

involved BPP terms; however, this value n – defined as “the total number of occur-
rences of symbols (including parentheses)” [20] – is much larger than the size of the
corresponding BPP net, and so our complexity result seems better.

We think that causal-net bisimilarity and state-sensitive fc-bisimilarity (hence, also
team bisimilarity) are more accurate than fc-bisimilarity (hence, h-team bisimilarity)
because they are resource-aware. In the implementation of a system, a token is an in-
stance of a sequential process, so that a processor is needed to execute it. If two mark-
ings have different size, then a different number of processors is necessary. Hence,
a semantics such as causal-net bisimilarity, which relates only markings of the same
size, is more accurate as it equates distributed systems only if they require the same
amount of execution resources. Paper [32] offers, in the area of information flow secu-
rity, further arguments in favor of these concrete equivalences. Moreover, [24] argues
that the resource-aware structure-preserving bisimilarity (which coincides with team
bisimilarity on BPP nets) is the coarsest semantics respecting inevitability [44], i.e., if
two systems are equivalent, and in one the occurrence of a certain action is inevitable,
then so is it in the other one.

The modal logic HTML extends HML [33, 2] with an operator ⊗ of parallel com-
position of formulae, in the style of Caires’ and Cardelli’s spatial logic [9]. In order
to characterize team bisimilarity, we proposed in [30] a slightly more discriminating
modal logic, called TML, which is sensitive to the kind of termination. To this aim,
TML exploits two atomic propositions nn and vv, such that nn is satisfied by all the
places, while vv is satisfied by θ only. Therefore, the empty marking and a deadlock
place are distinguished by this logic. On the contrary, the semantic definition of HTML
(as well as of HML) is insensitive to the kind of termination: a deadlock place and the
empty marking satisfy the same HTML formulae. This difference between the seman-
tics of TML and that of HTML is the essence of the difference between team bisimula-
tion equivalence and h-team bisimulation equivalence. Hence, the modal logic HTML
proposed here provides an extremely simple modal logic characterization of h-team
equivalence (and so also of fully-concurrent bisimilarity) over BPP nets. More com-
plex modal logics characterizing some non-interleaving equivalences on larger classes
of distributed systems have been proposed in, e.g., [8, 5]. A possible future work is to
extend HTML to become a temporal logic, with least and greatest fixpoint operators,
as in Kozen’s modal mu-calculus [39].

Since BPP (with guarded sum) is the process algebra representing, up to net iso-
morphism, all the possible BPP nets [28], it is interesting to compare team (and h-team)
bisimulation equivalence with other non-interleaving equivalences proposed on process
algebras, such as causal bisimilarity [13], distributed bisimilarity [10], location bisimi-
larity [11] or performance bisimilarity [26]. On BPP (with guarded sum) all these non-
interleaving equivalences do coincide [1, 18, 40] with history-preserving bisimilarity
[51, 22, 14]. As discussed above, team bisimulation equivalence coincides with causal-
net bisimilarity, and so it is slightly finer than history-preserving bisimilarity, which
coincides with fully-concurrent bisimilarity (hence with h-team bisimilarity). For in-
stance, let C be a process constant with empty body, C .

= 0; then the two BPP process
terms a.0 and a.0 |C are history-preserving bisimilar, but they generate two markings
of different size, and so they are not related by team bisimulation equivalence.

The axiomatization we have provided here for h-team bisimulation equivalence is

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 45

an adaptation of the axiomatization for team bisimulation equivalence outlined in [30].
The main difference is that in [30] axioms A3-A4 have the side condition x 6= 0 and
that axiom R1 has the side condition p 6= 0 (and so there is one extra axiom handling
the case when C .

= 0: in such a case C = 0+0). These side-conditions are necessary as
the net semantics for 0 is the empty marking θ , while the net semantics for 0+ 0 (as
well as of C .

= 0) is a deadlock place, which is not team bisimilar to θ .
Our axiomatization, and the proof techniques we adopted to prove its completeness,

are based on [42], where Milner provided a finite axiomatization of interleaving bisim-
ilarity for finite-state CCS. Nonetheless, our technical treatment, based on constants
defined over guarded processes (e.g., C .

= a.C) rather than on the recursive operator
(with possible unguarded variables; e.g. f ixX .(a.X +X)), is a bit simpler than that.
In fact, the axiomatization in [42] uses one further axiom for handling unguardedness:
f ixX .(p+X) = f ixX .p.

In the literature there is a sort of dichotomy between the use of process constants
or of the fixpoint operator for expressing recursive behavior. Indeed, recursion by con-
stants is considered more useful for applications (see, e.g., [43], page 56), but for the-
oretical studies the fixpoint operator is considered more convenient. To confirm this
view, Milner wrote ([43] on page 165):

“For formal studies such as proof of completeness it is preferable not to
admit Constants with defining equations, but to stick to the pure f ixX ex-
pressions introduced in Section 2.9 - even though they are not very pleas-
ant to use in applications.”

Actually, we disproved his statement by showing that recursion by process constants
can be treated technically in a very satisfactory manner also for axiomatizations. More-
over, the use of process constant allowed us to define, in a very simple way, a denota-
tional net semantics for BPP (cf. Table 3); on the contrary, a denotational net semantics
for the BPP variant with the fixpoint operator is not immediate.

To the best of our knowledge, in the literature there are only other two examples
of finite axiomatizations for truly-concurrent equivalences on BPP. In [12] distributed
bisimilarity [10] is axiomatized for BPP with guarded summation, and in [19] hered-
itary history-preserving bisimilarity [36] is axiomatized for full BPP with a sequent-
based approach. These two finite axiomatizations are actually sound and complete also
for history-preserving bisimilarity (hpb, for short), as on BPP with guarded summation
these two behavioral equivalences coincide with hpb [1, 18]. Our axiomatization is an
alternative finite axiomatization of hpb for BPP (with guarded summation and guarded
recursion).

Interestingly, the modal characterization (i.e., HTML) and the axiomatization of h-
team bisimilarity (cf. Table 4) for BPP are conservative extensions of the corresponding
modal (i.e. HML) and axiomatic (i.e., axioms A1-A4 and R1-R2) characterizations of
interleaving bisimulation on finite-state CCS [42, 33, 43]. Indeed, we think that our
contribution sheds light on the fact that BPP h-team bisimilarity seems the most natural
conservative extension of finite-state CCS interleaving bisimulation to the distributed
setting where systems are composed of a collection of sequential (but that can fork, so
that this collection can grow unboundedly), non-cooperating processes.

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 46

The linear-time variants of history-preserving bisimilarity and causal-net bisimi-
larity are partial-order-trace equivalence (Definition 15) and causal-trace equivalence
(Definition 14), respectively. On the BPP process algebra, we have that, e.g., p =
a.(b.0+ c.0) |a.d.0 generates the same causal nets as q = a.d.0 |(a.b.0+ a.c.0), i.e.,
p =ct q, and also that p′ = a.(b.(0+0)+c.0) |a.d.(0+0) generates isomorphic partial
orders to those of q, i.e., p′ =pt q. We conjecture that these linear-time equivalences
can be axiomatized for BPP, by simply adding the distributivity axiom

µ.(x+ y) = µ.x+µ.y
to the axiomatization of h-team bisimilarity in Table 4 and the corresponding axiom
table for team bisimilarity in [30].

As future research, we plan to investigate weak team/h-team bisimilarity and branch-
ing team/h-team bisimilarity for BPP nets, following the intuition of weak bisimilarity
[43] and branching bisimilarity [23] on LTSs. A first step in this direction is [31].

Acknowledgements: The anonymous reviewers are thanked for their useful com-
ments and suggestions.

References

[1] L. Aceto, Relating distributed, temporal and causal observations of simple pro-
cesses, Funda. Info. 17(4):319-331, 1992.

[2] L. Aceto, A. Ingólfsdóttir, K. Larsen, J. Srba, Reactive Systems: Modelling, Spec-
ification and Verification, Cambridge University Press, 2007.

[3] C. Autant, Z. Belmesk, Ph. Schnoebelen, Strong bisimilarity on nets revisited,
in Procs. PARLE’91, vol. II: Parallel Languages, LNCS 506, 295-312, Springer,
1991.

[4] C. Autant, Ph. Schnoebelen, Place bisimulations in Petri nets, in Procs. Applica-
tion and Theory of Petri Nets 1992, LNCS 616, 45-61, Springer, 1992.

[5] P. Baldan, S. Crafa, A logic for true concurrency, J. ACM 61(4): 24:1-24:36,
2014.

[6] E. Best, R. Devillers, Sequential and concurrent behavior in Petri net theory,
Theoretical Computer Science 55(1):87-136, 1987.

[7] E. Best, R. Devillers, A. Kiehn, L. Pomello, Concurrent bisimulations in Petri
nets, Acta Inf. 28(3): 231-264, 1991.

[8] J.C. Bradfield, S.B. Fröschle, Independence-friendly modal logic and true con-
currency, Nord. J. Comput. 9(1): 102-117, 2002.

[9] L. Caires, L. Cardelli, A spatial logic for concurrency (part I), Inf. Comput.
186(2): 194-235, 2003.

[10] I. Castellani, M. Hennessy, Distributed bisimulations, J. of the ACM 36(4):887-
911, 1989.

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 47

[11] I. Castellani, Process Algebras with Localities, Handbook of Process Algebra
(J.A. Bergstra, A. Ponse, S.A. Smolka (eds.)), 945-1046, Elsevier, 2001.

[12] S. Christensen, Decidability and Decomposition in Process Algebra, Ph.D. The-
sis, University of Edinburgh, 1993.

[13] Ph. Darondeau, P. Degano, Causal trees, in Procs. ICALP’89, LNCS 372, 234-
248, Springer, 1989.

[14] P. Degano, R. De Nicola, U. Montanari, Partial ordering descriptions and obser-
vations of nondeterministic concurrent systems, in (J. W. de Bakker, W. P. de
Roever, G. Rozenberg, Eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, LNCS 354, 438-466, Springer, 1989.

[15] J. Desel, W. Reisig, Place/Transition Petri nets, in Lectures on Petri Nets I: Basic
Models Advances in Petri Nets, LNCS 1491, 122-173, Springer, 1998.

[16] J. Engelfriet, Branching processes of Petri nets, Acta Informatica 28(6):575-591,
1991.

[17] J. Esparza, A. Kiehn, On the model checking problem for branching-time logics
and Basic Parallel Processes, in Procs. CAV’95, LNCS 939, Springer, 353-366,
1995.

[18] S. Fröschle, Decidability of plain and hereditary history-preserving bisimulation
for BPP, in Procs. EXPRESS’99, ENTCS 27, 1999.

[19] S. Fröschle, S. Lasota, Decomposition and complexity of hereditary history pre-
serving bisimulation on BPP, in Procs. CONCUR’05, LNCS 3656, 263-277,
Springer, 2005.

[20] S. Fröschle, P. Janc̆ar, S. Lasota, Z. Sawa, Non-interleaving bisimulation equiva-
lences on Basic Parallel Processes, Information and Computation 208(1):42-62,
2010.

[21] R.J. van Glabbeek, F.W. Vaandrager, Petri net models for algebraic theories of
concurrency, In Proc. PARLE’87, LNCS 259, 224-242, Springer, 1987.

[22] R.J. van Glabbeek, U. Goltz, Equivalence notions for concurrent systems and
refinement of actions, in Procs. MFCS’89, LNCS 379, 237-248, Springer, 1989.

[23] R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation
semantics, Journal of the ACM 43(3):555-600, 1996.

[24] R.J. van Glabbeek, Structure preserving bisimilarity - Supporting an operational
Petri net semantics of CCSP, in (R. Meyer, A. Platzer, H. Wehrheim, Eds.) Cor-
rect System Design — Symposium in Honor of Ernst-Rüdiger Olderog on the
Occasion of His 60th Birthday, LNCS 9360, 99-130, Springer, 2015.

[25] U. Goltz, W. Reisig, The non-sequential behaviour of Petri nets, Information and
Control 57(2-3):125-147, 1983.

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 48

[26] R. Gorrieri, M. Roccetti, E. Stancampiano, A theory of processes with durational
actions, Theoretical Computer Science 140(1):73-94, 1995.

[27] R. Gorrieri, C. Versari, Introduction to Concurrency Theory: Transition Systems
and CCS, EATCS Texts in Theoretical Computer Science, Springer, 2015.

[28] R. Gorrieri, Process Algebras for Petri Nets: The Alphabetization of Distributed
Systems, EATCS Monographs in Theoretical Computer Science, Springer, 2017.

[29] R. Gorrieri, Verification of finite-state machines: A distributed approach, Journal
of Logic and Algebraic Methods in Programming 96:65-80, 2018.

[30] R. Gorrieri, Team bisimilarity, and its associated modal logic, for BPP nets, Acta
Informatica, 2020, DOI: 10.1007/s00236-020-00377-4

[31] R. Gorrieri, Team equivalences for finite-state machines with silent moves, In-
formation and Computation, 275:104603, 2020. DOI:10.1016/j.ic.2020.104603

[32] R. Gorrieri, Interleaving vs true concurrency: some instructive security examples,
in Procs. Petri Nets 2020, LNCS 12152, 131-152, Springer, 2020.

[33] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency,
Journal of the ACM 32(1):137-161, 1985.

[34] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM Journal on Computing, 2 (4): 225-231,1973.

[35] P. Janc̆ar, Strong bisimilarity on Basic Parallel Processes is PSPACE-complete,
in Procs. of the 18th Annual IEEE Symposium on Logic in Computer Science
(LICS’03), 218-227, IEEE Computer Society Press (2003)

[36] A. Joyal, M. Nielsen, G. Winskel, Bisimulation from open maps, Information
and Computation 127:164-185, 1996.

[37] P. Kanellakis, S. Smolka, CCS expressions, finite state processes, and three prob-
lems of equivalence, in Procs. 2nd Annual ACM Symposium on Principles of
Distributed Computing, 228-240, ACM Press, 1983.

[38] P. Kanellakis, S. Smolka, CCS expressions, finite-state processes and three prob-
lems of equivalence, Information and Computation 86:43-68, 1990.

[39] D. Kozen, Results on the propositional mu-calculus, Theor. Computer Science
27:333-354, 1983.

[40] S. Lasota, Decidability of performance equivalence for Basic Parallel Processes,
Theoretical Computer Science 360(1-3):172-192, 2006.

[41] A. Liberato, A Study on Bisimulation Equivalence and Team Equivalence Master
Thesis of the University of Bologna (supervisor R. Gorrieri), October 2019.

[42] R. Milner, A complete inference systems for a class of regular behaviors, J.
Comput. System Sci. 28: 439-466, 1984.

7 CONCLUSION, RELATED LITERATURE AND FUTURE RESEARCH 49

[43] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[44] A.W. Mazurkiewicz, E. Ochmanski, W. Penczek, Concurrent systems and in-
evitability, Theoretical Computer Science 64(3):281-304, 1989.

[45] M. Nielsen, G.D. Plotkin, G. Winskel, Petri nets, event structures and domains
(part I), Theor. Comp. Scie. 13(1):85-108, 1981.

[46] C.A. Petri , Non-sequential processes, Internal Report GMD-ISF-77.05, GMD,
St. Augustin, 1977.

[47] E.R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Com-
puter Science 23, Cambridge University Press, 1991.

[48] D.M.R. Park, Concurrency and automata on infinite sequences, In Proc. 5th
GI-Conference on Theoretical Computer Science, LNCS 104, 167-183, Springer,
1981.

[49] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

[50] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM Journal of
Computing 16(6):973-989, 1987.

[51] A. Rabinovich, B.A. Trakhtenbrot, Behavior structures and nets, Fundamenta
Informaticae 11(4):357-404, 1988.

[52] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies, Springer, 2013.

[53] G. Winskel, Event structures, Advances in Petri Nets, Part II, Proceedings of an
Advanced Course, Bad Honnef, 1986, LNCS 255, 325-392, Springer, 1987.

