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Abstract In this work, we suggest concepts and solution methodologies for
a series of strategic network design problems that find application in highly
data-sensitive industries, such as, for instance, the high-tech, governmental,
or military sector. Our focus is on the installation of widely used cost-efficient
tree-structured communication infrastructure. As base model we use the well-
known Steiner tree problem, in which we are given terminal nodes, optional
Steiner nodes, and potential network links between nodes. Its objective is to
connect all terminals to a distributor node using a tree of minimum total edge
costs. The novel, practically relevant side constraints are related to privacy
concerns of customers, represented by terminals. In order to account for these,
we study four privacy models that restrict the eligible infrastructure for the
customer-distributor data exchange: (I) Selected pairs of terminals mutually
exclude themselves as intermediate data-transmission nodes; (II) some pairs
of terminals require disjoint paths to the distributor; (III) individual terminals
forbid routing their data through allegedly untrustworthy links; and (IV) cer-
tain terminals do not allow the usage of doubtful links on their entire network
branch. These topological data-privacy requirements significantly complicate
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the notoriously hard optimization problem. We clarify the model relationships
by establishing dominance results, point out potential extensions and derive
reduction tests. We present corresponding, strong non-compact integer pro-
gramming formulations and embed these in efficient cutting plane methods.
In addition, we develop constraint programming formulations that are used
complementally to derive primal solutions. In a computational study, we ana-
lyze the performance of our methods on a diverse set of literature-based test
instances.

Keywords Steiner tree problem · telecommunication · strategic network
design · integer programming · constraint programming

1 Introduction

In this work, we address the case of centralized networks with minimal connec-
tivity requirements. That is, we plan tree topologies in which exactly one path
exists between two customer nodes in the network. These structures are com-
monly modeled using rooted Steiner trees in which a set of given customers,
or terminals, is sought to be connected to a central distributor. Intermediate
network nodes, or Steiner nodes, can be used in order to minimize the over-
all network installation cost and represent an essential mean at the modeling
stage.

Very little work can be found in the literature in order to incorporate data
privacy concerns into the strategic network design phase. In this section, we
will describe and motivate our ideas, provide references to related work, and
summarize the contribution of this paper.

1.1 Motivation

In strategic design of telecommunication infrastructure, the protection of data
privacy is an important concern since the physical network structure is crucial
in order to prevent from unwanted information leaks. A common requirement
of information senders, or receivers, is that specific third-party network partic-
ipants must not be able to tap the network path used to route privacy-sensitive
information packages. We assume the case that data depersonalization, encryp-
tion technologies, and protocol changes are not sufficient in order to prevent
from attacks such as for instance eavesdropping, traffic analysis, and cam-
ouflage marketing. Applications can be found, for example, when connecting
high-tech industries, military facilities, or government agencies to a backbone
network using fiber-optic cable structures.

We consider four topological concepts that allow the integration of a priori
specification of privacy conflicts into the strategic network design model. In all
cases we assume that the distributor is considered neutral and serves either as
transmission source, transmission destination, or both. In a first path-critical
model, we embed the customer requirement that no conflicting customer is
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allowed to be physically situated on the unique path connecting it to the dis-
tributor. Furthermore, we suggest a branch-critical model in which the two
paths connecting two customers that are in a privacy conflict to the distribu-
tor node have to be edge disjoint. This paper extends these concepts from [9]
by introducing two novel models that generalize the proposed models. We
study the corresponding cases of terminal-edge conflicts which allow a more
detailed specification of privacy concerns. For a conflict between a customer
and an edge, we formulate an edge-path-critical model and an edge-branch-
critical model in which the conflicting edge must not be part of the customer’s
data routing path or branch, respectively. These extensions are especially rel-
evant because properties of a potential link such as proximity to competitors,
physical condition, or accessibility may constitute an unacceptable risk for a
customer’s data flow. Hence, alternative network topologies that avoid these
conflicting configurations are required in order to satisfy the customers.

To further motivate our concepts, we suggest their application in the con-
text of social networks. To illustrate this, consider a social network between
individuals or communities. Let us face the task of strengthening the (indi-
rect) relationship between certain target network nodes. Then two nodes in
the base network are connected by an edge if the relationship between the
corresponding individuals can be potentially strengthened. Edge weights are
given by a cost function that reflects the required effort. Obviously, a Steiner
tree connecting the target nodes can be used to derive a possible strategy
for interconnection. Conflicts can be useful to model incompatibility between
intermediate individuals and target individuals. In other words, two target in-
dividuals are better connected if through paths that contain common “friends”
(or, at least potential friends) only. Furthermore, we would like to point out
that social network data may be a useful source for deriving conflict graphs.
For instance, knowing a friendship between two network participants typically
indicates that there might not be a major conflict and, therewith, reduces the
number of potential conflict edges that need to be investigated.

1.2 Related Work

The Steiner tree problem (STP) without privacy concerns is known to be a
challenging problem in combinatorial optimization itself and belongs to the
class of NP-hard optimization problems in combinatorial optimization [14].
Many STP variants have been studied in the literature (see, e.g., [23,12,17,
6]). In [5], the authors define conflicts between nodes such that conflicting
nodes must not be both implemented in a solution network. So-called forbid-
den transitions are studied in [13]. They impose that selected pairs of incident
edges must not both be used in a solution network. It is proven that even the
minimum spanning tree problem is NP-hard under these side constraints. The
most efficient exact approaches for the STP are based on branch-and-cut [8]
and have already been studied in [3] and improved regarding their computa-
tional performance in [15]. Mathematical programming formulations for the
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STP are given in [4] and [18]. More recently, path-extended formulations that
yield stronger theoretical bounds are suggested [7]. Moreover, [19] suggest to
solve exponentially many (w.r.t. the number of terminals) linear programs,
based on laminar flows. Even though not being computationally competitive,
the latter has the (theoretical) advantage of being polynomial for a fixed num-
ber of Steiner nodes. An overview on existing heuristic approaches is given
in [22].

1.3 Contribution

In this work, we introduce new optimization problems that can be used to
optimally plan under the described privacy-sensitive circumstances. We devise
integer programming (IP) formulations and corresponding exact algorithms
for the new models. Our methods are build upon strong cut-set formulations.
Additionally, we present constraint programming (CP) formulations in order to
evaluate the performance of state-of-the-art constraint programming solvers.
Our detailed computational analysis shows the efficiency of our algorithmic
techniques. To this end, we conduct experiments on diverse classes of test
instances covering a broad range of privacy conflict densities for all models.
Our main contributions are as follows:

1. Motivation and definition of two novel privacy-oriented Steiner tree prob-
lems; model relationships, preprocessing techniques and extensions.

2. Development of exact cutting plane algorithms based on strong integer
programming formulations.

3. Elaboration of multi-commodity flow-based constraint programming for-
mulations; paired with heuristic warm-start techniques.

4. Computational formulation, method and result analysis on a diverse set of
instances derived from the literature.

All four optimization models are introduced in Section 2 and integer pro-
gramming formulations are given in Section 3. The constraint programming
approaches are presented in Section 4. Section 5 describes our extensive com-
putational analysis. Model extensions are proposed in Section 6 before we
conclude our work in Section 7.

2 Optimization Models

Before defining the privacy-oriented models, we recall the base Steiner tree
problem (STP). In the STP, we are given a set of terminal (or customer)
nodes T , a set of Steiner (or optional) nodes W , and a root (or distributor)
node r. We denote the set of all nodes as V and assume that V = T ∪̇W ∪̇ {r}
and V ′ = T ∪̇ W . Additionally, an edge set E ⊆ 2V describes the possible
links. Each edge e ∈ E has an edge cost ce ≥ 0. A solution for the STP is
a tree network B such that T ⊂ V [B], r ∈ V [B] and E[B] ⊆ E. The STP
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asks for a solution that minimizes the overall network cost
∑
e∈E[B] ce. Note

that we consider the rooted version of the STP, motivated by the application.
In the following, we describe the concepts and the corresponding optimization
models that generalize the STP. While two models have been introduced in [9],
we introduce two new edge-conflict models which turn out to generalize the
existing optimization problems. The following notation is used. For any S ⊆
V ′, let δ+(S) (respectively, δ−(S)) denote the set of arcs (i, j) with i ∈ S,
j ∈ V ′ \ S (respectively, with i ∈ V ′ \ S, j ∈ S). We use δ+(i) (resp. δ−(i))
instead of δ+({i}) (resp. δ−({i})), ∀i ∈ V ′. Moreover, we define δ(i) as the set
of edges in E incident with node i ∈ V .

2.1 Path-Privacy Conflicts

Two customers may want to obviate that neither of their information is routed
through the other customer’s node in a solution network B. Let CP ⊆ 2T be
the set of these path-privacy conflicts between two terminals. Then we define
the STP+CP as the corresponding STP with the additional side constraints
that for each {i, j} ∈ CP , both, a path exists between i and r in B \ j, and a
path exists between j and r in B \ i. In Figure 1 (left), an optimal solution for
an STP instance with 8 customers, 4 Steiner nodes and E = 2V is depicted,
along with an optimal solution for a corresponding STP+CP instance with
CP = {{1, 2}, {3, 4}, {6, 8}} (right).

Fig. 1 Optimal networks for the STP and the STP+CP with eight terminals, four Steiner
nodes and three privacy conflicts.

2.2 Path-Edge-Privacy Conflicts

A customer may not only fear the loss of sensitive information when using
a non-trustworthy intermediate node for data transmission. A significant risk
could already stem from the physical course of the link or the technology
used. Assume that we are given such path-edge-privacy conflicts in form of a
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set CPE ⊆ (T ×E). Then we define the STP with path-edge-privacy conflicts
(STP+CPE) as the corresponding STP with the additional requirement that
for each (i, e) ∈ CPE , the path P connecting i and r in a solution does not con-
tain the edge e; i.e., e /∈ E[P ]. Figure 2 (left) illustrates an optimal solution for
an STP+CPE instance with CPE = {(2, {2, 5}), (1, {2, 9}), (7, {11, r}), (6, {10, r})}.
Note that a terminal may be in conflict with an edge between non-terminals.

Fig. 2 Optimal networks for instances of the STP+CPE, the STP+CB and the STP+CBE
with eight terminals and four Steiner nodes.

Furthermore, in contrast to path-privacy conflicts, edge-privacy conflicts may
cause infeasibility for an STP+CPE instance. To see this, consider the case
that (i, {i, j}) ∈ CPE ∀j ∈ δ(i) for a terminal node i ∈ T . Since i must not be
connected to r using any incident edge, no solution can be found for the STP.
However, the feasibility problem can be solved efficiently by sequentially check-
ing potential r-connectivity for each terminal i in the graph (V,E \ CPE(i)).

2.3 Branch-Privacy Conflicts

An even higher level of security can be achieved if we require two customers
i, j ∈ T to be on separate branches of the solution networkB. Let CB ⊆ 2T be a
set of branch-privacy conflicts. Then the STP with branch-privacy constraints
(STP+CB) is defined as the corresponding STP with the side constraint that
i and j have to be in distinct connected components of B \ r for {i, j} ∈ CB .
Figure 2 (center) illustrates an optimal solution for an STP+CB instance with
CB = {{1, 2}, {3, 4}, {6, 8}}.

2.4 Branch-Edge-Privacy Conflicts

A customer i ∈ T may fear the infiltration of the sub-network induced by its
branch via an individual edge {j, k} ∈ E in the network B. In other words,
the connecting infrastructure used for this link is considered vulnerable with
respect to the privacy of i, independent of the types of nodes j and k. Let
CBE ⊆ (T×E) be the set of such branch-edge-privacy conflicts. Then we define
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the STP with branch-edge-privacy conflicts (STP+CBE) as the corresponding
STP with the additional requirement that for each (i, e) ∈ CBE , node i and
edge e have to be in distinct connected components of B \ r if e is selected in
the solution. Figure 2 (right) illustrates an optimal solution for an STP+CBE
instance with CBE = {(1, {2, 5}), (1, {2, 9}), (7, {11, r}), (6, {10, r})}.

2.5 Reductions

In order to decrease the problem instance size, we can apply the following
preprocessing techniques, also called reduction tests.

– For two conflicting terminals i and j, neither in the STP+CP nor in the
STP+CB the edge e = {i, j} may be used in a solution. Hence, e can be
removed from E.

– Note that in the case that i ∈ e for a terminal-edge conflict (i, e) (in CPE or
CBE), edge e can be deleted from E. Therefore, we assume that i /∈ e ∀(i, e)
throughout the paper.

– An edge e ∈ E which is in conflict with all terminals, i.e., (i, e) ∈ CPE ∀i ∈
T , can be removed.

2.6 Model Relationships

Note that STP+CP, STP+CPE, STP+CB and STP+CBE reduce to the STP
in the case that their corresponding conflict sets are empty. Hence, all optimiza-
tion problems are NP-hard since the STP is [14]. Furthermore, the STP+CPE
can be used to model the STP+CP which is expressed by the following lemma.

Lemma 1 The STP+CPE generalizes the STP+CP.

Proof Let P be an STP+CP instance and CP the path-privacy conflict set.
Then the set of solutions for the corresponding STP+CPE instance with
CPE =

⋃
i∈T {(i, e) : j ∈ CP (i), e ∈ δ(j)} equals the solution set for P ;

in particular, the optimal objective function values are identical. ut

Similarly, a corresponding relation exists for the STP+CB.

Lemma 2 The STP+CBE generalizes the STP+CB. ut

Let opt(P) denote the cost of an optimal solution for a problem instance. Then
we can relate the optimal objective function values for models STP+CP and
STP+CB as follows.

Lemma 3 Let P be an STP+CP instance and CP the path-privacy conflict
set; P’ an STP+CB instance and CB = CP . Then opt(P) ≤ opt(P’).

Proof STP+CP is a relaxation of STP+CB when CB = CP [9]. ut
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3 Integer Programming Approaches

In this section, we provide strong integer formulations for all four models de-
scribed in Section 2. While formulations for the STP+CP and the STP+CB
were developed in [9], we introduce first formulations for the STP+CPE and
the STP+CBE. All formulations are non-compact and we present correspond-
ing cutting-plane techniques.

Based on the formulations, we designed branch-and-cut methods for the
four models. The corresponding algorithms have been built within the IBM
ILOG CPLEX 12.90 framework by using the CPLEX callback functions. Through
these functions, the programmer can almost completely customize the general
approach embedded into CPLEX. For example, one can choose the next node
to explore in the enumeration tree, choose the branching variable, or define
a problem dependent branching scheme, separate and add his own cutting
planes, apply his own heuristic methods, etc. For additional details about the
use of the different callback functions, the reader is referred to the documen-
tation of the CPLEX callable library [11].

3.1 Formulations

For an edge set D, we denote the set of all arcs {(i, j), (j, i) : {i, j} ∈ D} as
A[D].

3.1.1 STP

Our formulations use a binary edge variable ye for each edge e ∈ E in order
to encode the Steiner tree that corresponds to an integer-feasible solution. We
write yi,j to denote ye for e = {i, j} whenever convenient. Let A be the set
of arcs obtained from all possible orientations of edges in E, i.e., A = {(i, j) :
{i, j} ∈ E}. For each arc a ∈ A, we define a binary arc variable xa. An edge
(arc) is installed in a solution if and only if ye = 1 (xa = 1). We build the
formulations based on the following non-compact cut-set-based formulation
for the STP that is suggested in [24].

(F ) min
∑
e∈E

ceye (1a)

s.t. xi,j + xj,i = yi,j ({i, j} ∈ E) (1b)∑
a∈δ−(i)

xa = 1 (i ∈ T ) (1c)

∑
a∈δ−(S)

xa ≥ 1 (S ∩ T 6= ∅, S ⊆ V ′) (1d)

xa ∈ {0, 1} (a ∈ A) (1e)

ye ∈ {0, 1} (e ∈ E) (1f)
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In formulation (F ), inequalities (1d) are connectivity inequalities, and also
ensure that the tree is rooted at the root node r. The following flow-balance
inequalities are known to be valid for the formulations above [18,9].∑

a∈δ−(i)

xa ≤
∑

a∈δ+(i)

xa (i ∈W ) (2)

Inequalities (2) ensure that the number of arcs leaving Steiner node i ∈ W is
at least the number of arcs entering i. The flow can be further balanced by

xi,j ≤
∑

(k,i)∈δ−(i):k 6=j

xk,i ((i, j) ∈ A, i ∈W ).

(3)
We will denote the extensions of the formulations introduced below, say for-
mulation (F ), obtained after adding inequalities (2) and (3) by (F+).

3.1.2 STP+CP

In order to extend formulation (F ) to the STP+CP, we define the set of all
conflicting nodes for i ∈ T as CP (i) = {j ∈ T : {i, j} ∈ CP }. The following
strong formulation for the STP+CP is suggested in [9].

(FCP ) min
∑
e∈E

ceye

s.t. (1b)− (1f)∑
a∈δ−(S\CP (i))

xa ≥ 1 (S ⊆ V ′ : i ∈ S, i ∈ T ) (4a)

Path-privacy connectivity inequalities (4a) ensure that connectivity with re-
spect to r is established using nodes that are not in conflict with terminal
i ∈ T . A more detailed polyhedral discussion on formulation (FCP ) can be
found in [9].

3.1.3 STP+CPE

A formulation for the more general STP+CPE can be derived using a connec-
tivity argument. Let CPE(i) denote the set of edges that are in path-conflict
with node i ∈ T in an STP+CPE instance; i.e., CPE(i) = {e ∈ E : (i, e) ∈
CPE}. Then the STP+CPE can be formulated as follows.

(FCPE) min
∑
e∈E

ceye

s.t. (1b)− (1f)∑
a∈δ−(S)\A[CPE(i)]

xa ≥ 1 (S ⊆ V ′ : i ∈ S, i ∈ T ) (5a)
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Path-edge-privacy connectivity inequalities (5a) ensure that connectivity with
respect to r is established without the usage of edges that are in conflict
with terminal i ∈ T . Similarly, as shown for inequalities (4a) in [9], a weaker
formulation for the STP+CPE can be obtained by using the following dis-
aggregated version of inequalities (5a) that considers one conflict at a time.

∑
a∈δ−(S)\{(j,k),(k,j)}

xa ≥ 1 (S ⊆ V ′ : i ∈ S, (i, {j, k}) ∈ CPE)

Note that formulation (FCPE) is equivalent to formulation (FCP ) if CE =
{(i, {i, j}) : j ∈ CP (i), i ∈ T}. Hence, it reduces to the strongest known
STP+CP formulation ([9]) for STP+CP instances.

3.1.4 STP+CB

A strong formulation for the STP+CB can be obtained by considering multiple
mutually conflicting terminals. Let QB be the set of all cliques in the graph
(T,CB). Then the STP+CB can be formulated as follows [9].

(FCB) min
∑
e∈E

ceye

s.t. (1b)− (1f)∑
a∈δ−(Q)

xa ≥ |Q| (Q ∈ QB , S ⊆ V ′ : Q ⊆ S) (7a)

∑
a∈δ−(i)

xa ≤ 1 (i ∈W ) (7b)

Inequalities (7a) imply the installation of at least |Q| tree branches to connect
the terminals in a clique Q ∈ QB . Note that every elementary branch-conflict
in CB is contained in QB as a clique of cardinality two; i.e., CB ⊆ QB .
Steiner in-degree inequalities (7b) are necessary in order to ensure a proper
tree structure [9].

3.1.5 STP+CBE

In order to formulate the STP+CBE, the most general privacy-conflict model,
we use a slightly more elaborate connectivity argument. Let CBE(i) = {e :
(i, e) ∈ CBE} for i ∈ T . We define the total branch-edge conflict graph GCBE
to have a node for each node in V and each edge in E; i.e., V [GCBE ] = {vi, ve :
i ∈ V, e ∈ E}. Its edge set contains two types of edges: Between two nodes that
represent nodes in V and the corresponding edge is a conflict edge; between a
node that represents a terminal and a node that represents an edge which are
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in a privacy conflict; i.e., E[GCBE ] = {vi, ve : ∃(i, e) ∈ CBE} ∪ {e : ∃i ∈ Te ∈
CBE(i)}. Then the STP+CBE can be formulated as follows.

(FCBE) min
∑
e∈E

ceye

s.t. (1b)− (1f), (7b)∑
a∈δ−(S)

xa ≥ xj,k + xk,j + 1 (S ⊆ V ′ : {i, j, k} ⊆ S, (i, {j, k}) ∈ CBE)

(8a)∑
a∈δ−(S)\{(r,k)})

xa ≥ 1 (S ⊆ V ′ : i ∈ S, (i, {r, k}) ∈ CBE)

(8b)

Inequalities (8a) ensure that there exist two disjoint paths that connect ter-
minal i ∈ T and its conflicting edge {j, k} ∈ CBE(i) to r if the edge is im-
plemented. They can be separated efficiently on the edge set E[x∗]∩E[CBE ],
where E[x∗] represents the edges of the support graph. In the case that a con-
flicting edge e is incident with r, we cannot require this double-connectivity,
but single-connectivity for i in the network that does not contain e (Inequal-
ities (8b)). Furthermore, they correspond to Inequalities (5a) on a restricted
set of branch-edge-privacy conflicts. Inequalities (8b) can be strengthened by
incorporating all conflicting edges for i as follows.∑

a∈δ−(S)\A[CBE(i)]

xa ≥ 1 (S ⊆ V ′ : i ∈ S, (i, {r, k}) ∈ CBE) (9a)

3.2 Cut Separation Algorithms

Cutting-plane algorithms for formulation (F ) suffer from an extensive number
of model cuts (1d). To overcome this computational challenge, [15] suggest sev-
eral techniques that aim at generating multiple diverse and at the same time
effective connectivity cuts. Our approach incorporates the ideas of these au-
thors. Note that these techniques do not improve the dual bounds obtained by
formulation F and solely speed up convergence of the cut generation process.

– We use the following slightly different, but equivalent, version of inequal-
ities (1d) which enforces connectivity for each terminal node separately.
This may result in the separation of multiple cuts.∑

a∈δ−(S)

xa ≥ 1 (i ∈ S, S ⊆ V ′, i ∈ T ) (10)

– Forward and backward cuts: When separating inequalities (10), we com-
pute two minimal cuts: The r − i cut and the i− r cut which are of equal
weight but may differ in terms of cut sets.
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– Steiner node connectivity: Similar to cut inequalities (10), we derive the
following connectivity cuts for each Steiner node which ensure connectivity
dependent on whether the node is used in the tree or not.∑

a∈δ−(S)

xa ≥
∑

a∈δ−({i})

xa (i ∈ S, S ⊆ V ′, i ∈W ) (11)

– Cut ranking: We limit ourselves to adding the 15 most violated cuts for
each connectivity-type inequality. We measure the violation of an inequality
g(y, x) ≤ b by solution (y∗, x∗) as g(y∗, x∗)− b.

– Connected component connectivity. Whenever the support graph w.r.t. y
is disconnected, then we add dynamically connectivity inequalities (1d) in
which S contains the component nodes (especially during the first rounds).

– Flow-balance inequalities (2) are added to the initial formulation, but in-
equalities (3) are separated dynamically.

The separation problem for connectivity inequalities (10) and (11) corresponds
to finding an r − i cut of minimal weight in the support graph. Conflict-
connectivity inequalities (4a), (5a), (7a), (8a), (8b), (8b), and (9a) can be
separated similarly on an auxiliary network. For a more detailed description
we refer to [10] and [9]. For inequalities (7a), we explicitly compute the set of
all maximal cliques Q a-priori using the Bron-Kerbosch algorithm [2]; we limit
ourselves to 10000 cliques.

4 Constraint Programming Approaches

In this section we propose alternative solution approaches based on constraint
programming. To this end, we develop constraint programming formulations
for the STP+CP, the STP+CPE, the STP+CB and the STP+CBE. In con-
trast to the IP methods in Section 3, the compact formulations below can
be directly fed into any constraint programming solver, without needing to
develop cutting plane techniques.

4.1 CP Formulations

As opposed to [20], we derive our formulation from the multi-commodity for-
mulation for the STP introduced in [24] (formulation (F ) in [18]). This com-
pact IP formulation is known to produce dual bounds for the STP, but is com-
putationally inefficient since having a large number of variables (O(|T ||A|)).
Nevertheless, extensions of its CP counterpart can be used to obtain primal
solutions for our models without the need for a cutting plane algorithm, as
our computational results will show.

For each node i ∈ V , we introduce a binary node variable wi which takes
value 1 if node i is in the network, and 0 otherwise. We define an integer arc
commodity-flow variable f ia for each arc a ∈ A and terminal i ∈ T , which
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describes the units of flow of commodity i on arc a. To encode the usage of an
arc, we also define a binary arc variable za for each arc a ∈ A. Then the STP
can be formulated as the following constraint program.

(G) min sum
a∈A

(ca ∗ za) (12a)

s.t. sum
a∈δ+(i)

(f ia) = sum
a∈δ−(i)

(f ia)− 1 (i ∈ T ) (12b)

sum
a∈δ+(i)

(fka ) = sum
a∈δ−(i)

(fka ) (k 6= i ∈ T, i ∈ T ) (12c)

sum
a∈δ+(r)

(fka ) = sum
a∈δ−(r)

(fka ) + 1 (k ∈ T ) (12d)

zi,j + zj,i ≤ 1 ({i, j} ∈ E) (12e)

zi,j ≤ sum
k∈T

(fki,j) ((i, j) ∈ A) (12f)

zi,j ≥ fki,j (k ∈ T, (i, j) ∈ A) (12g)

alternative
(
wi, zj,i|{j, i} ∈ δ(i)

)
(i ∈ V ′) (12h)

wi = 1 (i ∈ V \W ) (12i)

sum
i∈V

(wi) = sum
a∈A

(za) + 1 (12j)

wi integer variable in {0, 1} (i ∈ V ) (12k)

za integer variable in {0, 1} (a ∈ A) (12l)

f ia integer variable in {0, 1} (i ∈ T, a ∈ A) (12m)

In formulation (G), the objective (12a) is to minimize the network edge
costs. The flow conservation for the commodity is ensured via constraints (12b)-
(12d). We forbid reverse arcs in inequality (12e). In IP formulations, we can
rely on the fact that every solution of a linear program (LP) at a branch-
ing minimizes the objective; in particular, this is true for integer solutions.
In CP though, we have to explicitly assure that every feasible assignment of
values to variables corresponds to a feasible solution to the problem. There-
fore, constraints (12f) are used to ensure that flow is traversing an arc that is
installed. Conversely, an arc has to be used if it carries flow (12g). We formu-
late the in-degree requirement for used network nodes using the alternative
constraint (12h). The latter ensures that exactly one incident in-arc is chosen
if the corresponding node’s node variable wi is set to 1. Variable wi is forced
to one if i is a terminal node. (12j) forces the number of edges to be equal to
the number of nodes minus one in each solution and was shown to be compu-
tationally advantageous [20]. In our model, the alternative constraint directly
implies the latter, making it redundant. The correctness of formulation (G)
follows from the fact that it equals to the corresponding LP formulation in [24]
(using an equivalent clique inequality for constraint (12h)).

STP formulation (G) allows us to derive formulations for the privacy con-
flict models by limiting corresponding commodity flows. The STP+CP can be
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formulated as follows.

(GCP ) min sum
e∈E

(ce ∗ ue) (13a)

s.t. (12b)− (12m)

sum
{i,k}∈δ(i)

(f ji,k + f jk,i) + sum
{j,k}∈δ(j)

(f ij,k + f ik,j) = 0 ({i, j} ∈ CP )

(13b)

For a path-privacy conflict {i, j} ∈ CP , constraints (13b) force in-flows and
out-flows of conflicting commodity i to zero for terminal j. The STP+CPE
can be formulated as follows.

(GCPE) min sum
e∈E

(ce ∗ ue) (14a)

s.t. (12b)− (12m)

f ik,j + f ij,k = 0 ({j, k} ∈ CPE(i), i ∈ T ) (14b)

For an edge-privacy conflict (i, {j, k}) ∈ CE , constraints (14b) force forward-
flows and backward-flows of commodity i to zero on edge {j, k}.

The STP+CB can be formulated as follows.

(GCB) min sum
e∈E

(ce ∗ ue) (15a)

s.t. (12b)− (12m)

f ik,l + f il,k + f jk,l + f jl,k ≤ 1 ({k, l} ∈ E, {i, j} ∈ CB) (15b)

Constraint (15b) allows at most one unit of conflicting commodities i and j on
forward and backward arcs of each potential edge in order to force terminals
i and j on distinct tree branches.

The STP+CBE can be formulated as follows.

(GCBE) min sum
e∈E

(ce ∗ ue) (16a)

s.t. (12b)− (12m), (14b)

f ij′,k′ + f ik′,j′ + f i
′

j′,k′ + f i
′

k′,j′ + f i
′

j,k + f i
′

k,j ≤ 2

({j′, k′} ∈ E, i′ ∈ T \ i, {j, k} ∈ CBE(i), i ∈ T ) (16b)

Note that we include constraint (14b) for conflicts in CBE . In this way we only
need to cover the case that a conflicting edge is not on the terminal’s path
to r. To understand constraint (16b), we first observe that if edge e = {j, k}
and terminal i are on the same branch, there must be a terminal i′ that is
connected to r via e. Furthermore, there has to be an edge e′ = {j′, k′} which
is used by commodities i and i′. In order to forbid this, constraint (16b) only
allows flow combinations with at most two of the variables (f ie, f

i′

e′ , and f i
′

e )
set to 1.
In formulation (GCBE), we deal with a large number of constraints (16b)
which cannot be handled by a CP solver. To overcome this, we observe that
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it is sufficient to apply these constraints to edges {j′, k′} ∈ δ(r). In this case,
we obtain:

f ia + f i
′

a + f i
′

j,k + f i
′

k,j ≤ 2 (a ∈ δ+(d), i′ ∈ T \ i, {j, k} ∈ CBE(i), i ∈ T )

(17a)

The CP formulations above can be used to derive corresponding IP for-
mulations. It is well-known that multi-commodity flow formulations, such as
formulation (G), are computationally inefficient for the STP. In preliminary
experiments, we could confirm this for formulations (GCP ) and (GCB).

4.2 Heuristic Starting Point Construction

Our CP-based approaches benefit from starting points representing a feasible
solution. This effect has been observed for applications of CP to hard com-
binatorial problems [9]. This is especially important when the CP solver is
struggling to find a feasible (or decent) initial solution itself; possibly due to
the large number of variables or constraints.

To overcome this limitation, we define a simple generic constructive heuris-
tic (HEU) that can be used to derive an initial solution for instances of all
the presented models. We are especially interested in finding solutions for
dense underlying networks G having a large number of variables in the multi-
commodity flow formulations from Section 4.1. Note that known shortest-path-
based heuristics for the STP (see, e.g., [22]) cannot be applied to our extended
models due to the conflicts.

For an instance of STP+X (X∈ {CP,CB,CPE,CBE}), we repeatedly run
the constructive heuristic that is described in Algorithm 1 in a multi-start
fashion. The procedure selectTerminal(T ′, σ) returns a terminal in T ′ ⊆ T
using the strategy σ. A shortest path w.r.t. the edge costs between node t1 ∈ V
and node t2 ∈ V \ t1 in the network H is returned by shortestPath(t1, t2, H),
if it exists. An empty path is returned, otherwise. CX(t) denotes the set of
nodes/edges that are in conflict with terminal t. Note that Algorithm 1 fails
to return a solution if for a terminal t no path can be found that connects it
to the root r. For σ we use the following priorities.

a) Descending terminal node index.
b) Ascending terminal node index.
c) No direct connection to r first, then descending terminal node index.
d) Descending number of conflicting nodes/edges, then descending terminal

node index.

In a second run, all the strategies are repeated while forcing a direct edge-
connection to r to be chosen if it exists. In total, this leads to eight runs of
Algorithm 1.
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Algorithm 1: Constructive STP+X Heuristic (HEU)

Input: P (STP+X instance)

S (STP+X solution)

σ (Construction strategy)

Output: [N (Solution network for P )]

1 N ← (∅, ∅);
2 while

(
T 6⊆ V [N ]

)
do

3 t← selectTerminal(T \ V [N ], σ);

4 P ← shortestPath(r, t, (V \ T [N ], E) \ CX(t));

5 if
(
P = 0

)
then

6 return;

7 else

8 N ← N ∪ P ;

9 return N ;

5 Computational Analysis

In this section, we deduct an empirical evaluation of the developed optimiza-
tion methods. After explaining the used test instance set, we present and com-
pare the results of our exact approaches. Moreover, we study the conflict/cost
trade-offs and analyze the topological conflict impacts.

5.1 Experimental Setup

In this section, we report and analyze the results obtained by our algorithms.
They are implemented in C++ and CPLEX 12.90 and run on an Intel Core
i7-7600 2.80 GHz machine with 16 GB RAM.

We evaluate the performance of our approaches using a diverse set of in-
stances1. We derive 1560 instances in total with up to 100 nodes from 30
base STP instances from [1]2 (Steinbk, k ∈ {3, 4, 5, 16, 17, 18}) and the Stein-
Lib3 [16] (from test sets PUC, ES20FST, P4Z, and P4E); 390 instances for
each model where conflicts for STP+CP and STP+CB are identical [9]. We
randomly draw pairs of conflict nodes from T using a uniform distribution with
two different seeds. For γ ∈ {0, 0.25, 0.5, 0.75, 1.0}, we incrementally generate
dγ|T |e conflicts for sparse instances (|E[G]| < 0.5

(
n
2

)
) and dγ|T |(|T | − 1)/2e

conflicts for dense instances. That is, for a base instance and a seed, the con-

1 The test instances can be obtained from the authors upon request.
2 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
3 http://steinlib.zib.de

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
http://steinlib.zib.de
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flicts obtained from γ2 contain all conflicts for γ1 if γ1 ≤ γ2. The node of
highest degree in G, with lowest index (in case of ties), is assigned to be the
root node r. Similarly, edge conflicts are randomly generated by sampling a
terminal first, followed by an edge. For sparse instances, we generate dγ|E|e
conflicts and for dense instances, we generate dγ|T ||E|/5e conflicts. To avoid
infeasible instances, we initially experimented with 20 random seeds and only
selected the first seeds for which formulation GCE found a solution for all
values of γ.

5.2 Results

We first introduce the notation used for the presentation of our computational
results. We run our methods on the instances after applying preprocessing
techniques from Section 2.5. The number of instances of a Type (Sparse or
Dense) and a conflict density γ (γ∈ {0, 0.25, 0.5, 0.75, 1}) is given in column
#. Note that the reduced number of instances for γ=0 (no conflicts) are due to
no random seeds being applied. Column sols lists the relative number (in %)
of instances for which a feasible solution can be found within 600 seconds (no
time limit for solving the LP). We use * to describe the relative number (in %)
of instances that are solved to optimality. Let lb′ and ub′ denote the best lower
and upper bounds that we found for an instance. Then we provide the average
relative optimality gap that a lower bounding method yields by ∆LB. For an
instance and a lower bound lb, this gap is computed as 100 ∗ (ub′ − lb)/ub′.
Similarly, the best average relative gap for an upper bounding method can
be found in column ∆UB. The relative gap with respect to both best bounds
(100 ∗ (ub′ − ub′)/ub′) is denoted by ∆. The average run time in seconds is
contained in column t.

5.2.1 Linear Programming

In Table 1, we summarize the results obtained by solving the linear programs
(LP) derived from our IP formulations for the STP+CP and the STP+CB.
Corresponding results for the STP+CPE and the STP+CBE can be found in
Table 2. No start solution is provided to the solver. As observed in [9], it can be
seen that solving the LP is more time consuming for branch-constrained models
than it is for path-constrained problems. On average, the time spent on solving
the LP for the STP+CB (STP+CBE) is about 4.7 (2.6) times higher than for
the STP+CP (STP+CPE). At the same time, the relative number of instances
for which the LP solution is integer-feasible (and, therewith, optimal) is lower
when considering branch-privacy models. For the STP+CP (STP+CPE), it is
81.8% (57.2%), whereas only 52.1% (16.9%) integer-feasible LP solutions could
be found for the STP+CB (STP+CBE). Accordingly, the observed average
optimality gaps are 0.9% (9.4%) and 9.5% (23.9%), respectively. Note that the
highest LP solve times are 2550 seconds and 1770 seconds. We observe that
94.1% of the dense STP+CP instances can be solved to optimality by solving
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the LP, but only 11.2% of the sparse STP+CBE instances has integral LP
solutions. All dense instances without privacy constraints are having integral
LP solutions but yield optimality gaps up to 96.3%.

Table 1 LP results for STP+CP and STP+CB instances.

Instances STP+CP STP+CB

Type γ # * ∆LB t * ∆LB t

Sparse 0 13 69.2 1.7 8.8 69.2 1.7 15.6
0.25 39 64.1 1.7 12.1 41.0 1.0 3.2
0.5 39 61.5 1.7 12.2 38.5 0.7 5.5
0.75 39 69.2 1.7 13.9 38.5 1.1 4.8

1 39 66.7 1.7 14.4 35.9 1.1 6.7

All 169 65.7 1.7 12.8 40.8 1.0 5.9

Dense 0 17 100.0 0.0 17.4 100 0.0 16.3
0.25 51 90.2 0.0 35.1 41.2 28.4 149.4
0.5 51 90.2 0.0 35.3 39.2 28.0 329.5
0.75 51 100.0 0.0 32.3 49.0 21.7 410

1 51 94.1 0.0 31.5 100.0 0.0 5.9

All 221 94.1 0.0 32.3 60.6 18.0 207.7

All All 390 81.8 0.9 22.6 52.1 9.5 106.8

Table 2 LP results for STP+CPE and STP+CBE instances.

Instances STP+CPE STP+CBE

Type γ # * ∆LB t * ∆LB t

Sparse 0 13 69.2 1.7 12.3 69.2 1.7 6.2
0.25 39 64.1 1.6 15.2 17.9 2.7 7.7
0.5 39 56.4 1.5 10.3 5.1 4.4 8.5
0.75 39 56.4 1.5 6.3 2.6 7.1 10.2

1 39 51.3 1.2 3.9 0.0 8.7 9.4

All 169 58 1.5 9.2 11.2 5.4 8.7

Dense 0 17 100.0 0.0 18.9 100.0 0.0 12.4
0.25 51 60.8 9.6 44.1 27.5 29.8 73.8
0.5 51 58.8 22 53.9 9.8 47.9 144.5
0.75 51 41.2 20.7 76.0 11.8 51.2 219.6

1 51 51.0 22.8 86.8 9.8 54.7 310.5

All 221 56.6 17.3 61.6 21.3 42.4 173.7

All All 390 57.2 9.4 35.4 16.9 23.9 91.2

5.2.2 Integer Programming

Table 3 and Table 4 show the results obtained after running our branch-and-
cut algorithm with a time limit of 600 seconds for instances of the STP+CP
and the STP+CB, and the STP+CPE and the STP+CBE, respectively. For
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98.2%/82.3%/88.7% of the STP+CP/STP+CB/STP+CPE instances we are
able to find integer-feasible solutions. However, we find solutions for only 67.2%
of the STP+CBE instances. Similarly, the lowest number of optimally solved
instances is for STP+CBE instances (57.7%). Note that the average relative
optimality gap derived from the solutions found is relatively low for all models
(0.0%-1.1%) with a maximum of 22.4%. For STP+CP instances, the lower
bounds yield relatively high average optimality gaps (21.1%) compared to the
other models (0.5%-9.6%).

Table 3 IP results for STP+CP and STP+CB instances.

Instances STP+CP STP+CB

Type γ # sols * ∆LB ∆UB sols * ∆LB ∆UB

Sparse 0 13 100.0 84.6 0.6 0.6 100.0 84.6 0.6 0.6
0.25 39 100.0 84.6 0.8 0.8 100.0 100.0 0.0 0.0
0.5 39 94.9 84.6 1.0 0.6 100.0 97.4 0.0 0.0
0.75 39 94.9 84.6 1.2 0.8 100.0 100.0 0.0 0.0

1 39 92.3 84.6 1.0 0.4 100.0 100.0 0.0 0.0

All 169 95.9 84.6 1.0 0.6 100.0 98.2 0.0 0.0

Dense 0 17 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0
0.25 51 100.0 100.0 0.0 0.0 54.9 54.9 28.1 0.0
0.5 51 100.0 100.0 0.0 0.0 49.0 47.1 27.8 0.0
0.75 51 100.0 100.0 0.0 0.0 60.8 56.9 21.7 0.1

1 51 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0

All 221 100.0 100.0 0.0 0.0 68.8 67.4 17.9 0.0

All All 390 98.2 93.3 0.5 0.3 82.3 80.8 9.0 0.0

Table 4 IP results for STP+CPE and STP+CBE instances.

Instances STP+CPE STP+CBE

Type γ # sols * ∆LB ∆UB sols * ∆LB ∆UB

Sparse 0 13 100.0 84.6 0.7 0.7 100.0 84.6 0.8 0.8
0.25 39 100.0 84.6 0.7 0.7 97.4 84.6 0.8 0.6
0.5 39 100.0 87.2 0.3 0.3 100.0 87.2 0.2 0.3
0.75 39 100.0 94.9 0.1 0.1 94.9 76.9 2.5 1.6

1 39 100.0 100.0 0.0 0.0 94.9 74.4 2.9 2.0

All 169 100.0 91.1 0.3 0.3 97.0 81.1 1.5 1.1

Dense 0 17 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0
0.25 51 90.2 88.2 9.3 0.1 68.6 62.7 27.7 0.7
0.5 51 74.5 74.5 21.7 0.0 37.3 31.4 45.9 1.9
0.75 51 76.5 70.6 20.1 0.2 31.4 27.5 48.8 2.6

1 51 72.5 70.6 22.3 0.1 21.6 17.6 54.2 1.4

All 221 80.1 77.8 16.9 0.1 44.3 39.8 40.7 1.2

All All 390 88.7 83.6 8.6 0.2 67.2 57.7 21.1 1.1
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5.2.3 Constructive Heuristic

Results for our simple construction heuristic that serves to find a CP starting
point can be found in Table 5. The run time never exceeds one second. We
recall that the motivation for these starting points is to provide a solution
when the CP solver cannot find a feasible solution or only finds a very cost-
intense solution. In our experiments, this seems to be mostly the case when
considering dense instances which lead to larger a number of variables. HEU
is able to construct solutions for all dense instances, but finds solutions for
at most 33.5% of sparse instances for each model. With respect to the best
found lower bounds, the achieved average optimality gaps range from 35.0%
to 56.7% for the different models.

Table 5 Heuristic construction (HEU) results for STP+CP, STP+CB, STP+CPE and
STP+CBE instances.

Instances STP+CP STP+CB STP+CPE STP+CBE

Type γ # sols ∆UB sols ∆UB sols ∆UB sols ∆UB

Sparse 0 13 15.4 31.3 15.4 31.1 15.4 31.3 0.0
0.25 39 15.4 31.8 15.4 28.1 17.9 35.9 0.0
0.5 39 15.4 32.7 15.4 28.0 17.9 33.9 0.0
0.75 39 15.4 33.7 15.4 25.0 20.5 35.6 0.0

1 39 15.4 33.1 15.4 24.9 17.9 33.5 0.0

All 169 15.4 32.7 15.4 26.9 18.3 34.5 0.0

Dense 0 17 100.0 70.0 100.0 70.0 100.0 70.0 100.0 70.0
0.25 51 100.0 67.9 100.0 61.0 100.0 68.7 100.0 66.8
0.5 51 100.0 66.8 100.0 53.6 100.0 67.7 100.0 64.9
0.75 51 100.0 65.9 100.0 42.6 100.0 66.0 100.0 63.9

1 51 100.0 65.0 100.0 6.8 100.0 64.2 100.0 62.6

All 221 100.0 66.7 100.0 43.2 100.0 66.9 100.0 65.0

All All 390 63.3 49.7 63.3 35.0 64.6 50.7 56.7 65.0

5.2.4 Constraint Programming

The results for our CP approaches (using HEU starting points) are summa-
rized in Table 6 and Table 7. Except for sparse STP+CB instances, solutions
could be found for every instance. CP finds more solutions than IP. It is able to
improve the start solutions provided by HEU. The obtained relative optimal-
ity gaps for sparse instances are higher than the ones from IP but still below
11% (STP+CP: 5.9%, STP+CB: 5.5%, STP+CPE: 5.4%, STP+CBE: 10.6%).
However, they are between 30.6% and 45.5% for dense instances. Even with-
out providing starting points, CP can find feasible solutions for 100.0%, 92.8%,
97.4%, and 55.9% of the STP+CP, STP+CB, STP+CPE, and STP+CBE in-
stances. Note that for some dense STP+CBE instances the model could not
be loaded due to insufficient memory.
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Table 6 Constraint programming (using starting point) results for STP+CP and STP+CB
instances.

Instances STP+CP STP+CB

Type γ # sols * ∆LB ∆UB sols * ∆LB ∆UB

Sparse 0 13 100 7.7 30.5 4.4 38.5 0 40.8 3
0.25 39 100 0 33.2 6 38.5 0 42.2 4.2
0.5 39 100 7.7 31 5.9 38.5 0 43.6 7.2
0.75 39 100 10.3 30.2 6.1 38.5 0 46.5 6.3

1 39 100 12.8 29.7 6.1 38.5 0 47.6 5.1

All 169 100 7.7 31 5.9 38.5 0 44.7 5.5

Dense 0 17 100 5.9 48.9 47.2 100 5.9 48.9 47.2
0.25 51 100 5.9 51.7 45.5 100 3.9 73.7 41.4
0.5 51 100 5.9 53 45.3 100 2 78.7 38
0.75 51 100 5.9 53.3 46 100 0 82.3 30.7

1 51 100 5.9 52.9 42.4 100 0 85.7 6.7

All 221 100 5.9 52.4 45 100 1.8 77.6 30.6

All All 390 100 6.7 41.7 25.4 73.3 1 61.1 18

Table 7 Constraint programming (using starting point) results for STP+CPE and
STP+CBE instances.

Instances STP+CPE STP+CBE

Type γ # sols * ∆LB ∆UB sols * ∆LB ∆UB

Sparse 0 13 100 7.7 30.5 4.4 100 15.4 28.4 4.9
0.25 39 100 10.3 29.9 5.9 100 2.6 35.5 8
0.5 39 100 2.6 33.2 5.3 97.4 7.7 36.7 8.4
0.75 39 100 10.3 30.4 5 94.9 5.1 41.2 12.9

1 39 100 7.7 31.5 5.8 89.7 10.3 42.4 15.7

All 169 100 7.7 31.2 5.4 95.9 7.1 38 10.6

Dense 0 17 100 5.9 48.9 47.2 100 5.9 48.9 47.2
0.25 51 100 3.9 56 44.8 68.6 2 58.7 40.8
0.5 51 100 3.9 63.7 45 70.6 0 72.5 43.6
0.75 51 100 2 65.7 47.9 66.7 0 72.1 46

1 51 96.1 2 65.2 44 60.8 0 72.1 51.8

All 221 99.1 3.2 61.6 45.5 69.2 0.9 65.5 45.5

All All 390 99.5 5.1 46.4 25.5 80.8 3.6 51.8 28.1

5.2.5 Overall Best

Finally, we report our best overall results in Table 8. These contain best lower
(upper) bounds found by LP, IP and CP. For the STP+CP, the STP+CB and
the STP+CPE, we can prove optimality for over 80% of the instances. For the
STP+CBE, 40.3% of the instances remain unsolved.

Figure 3 illustrates optimal Steiner trees and the corresponding conflict
graphs for a dense STP+CB instance (SteinLib base instance p402) with |T | =
5, |W | = 94, and different values of γ. It can be seen that the original STP
instance (γ = 0) is optimally solved by a path network. The optimal cost
increases by 37% (γ = 0.25), 103% (γ = 0.5), 124% (γ = 0.75), and 936%
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Table 8 Best results for STP+CP, STP+CB, STP+CPE, and STP+CBE instances.

Instances STP+CP STP+CB STP+CPE STP+CBE

Type γ # opt ∆ opt ∆ opt ∆ opt ∆

Sparse 0 13 84.6 0.6 84.6 0.6 84.6 0.7 84.6 0.8
0.25 39 84.6 0.8 100 0 84.6 0.7 84.6 0.8
0.5 39 84.6 1 97.4 0 87.2 0.3 87.2 0.2
0.75 39 84.6 1.2 100 0 94.9 0.1 76.9 2.5

1 39 84.6 1 100 0 100 0 74.4 2.9

All 169 84.6 1 98.2 0 91.1 0.3 81.1 1.5

Dense 0 17 100 0 100 0 100 0 100 0
0.25 51 100 0 54.9 28.1 88.2 9.3 62.7 27.9
0.5 51 100 0 47.1 27.7 74.5 21.7 31.4 49.3
0.75 51 100 0 56.9 21.5 70.6 20.1 27.5 51.3

1 51 100 0 100 0 70.6 22.3 17.6 56

All 221 100 0 67.4 17.8 77.8 16.9 39.8 42.6

All All 390 93.3 0.5 80.8 8.9 83.6 8.6 57.7 22.1

(γ = 1). Also, the number of network branches and number of Steiner nodes
increase from 2 to 5, and 5 to 13, respectively. Note that in the case of γ = 1,
the branch conflicts CB = 2T force every terminal to be a leaf on a separate
branch.

Fig. 3 Optimal networks for the STP+CB instance derived from SteinLib instance p402
for increasing values of γ.

6 Model Extensions

In the following, we describe several practically relevant model extensions and
relationships to other known network design models.
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Asymmetric Distrust. In the above models, we define path-privacy (branch-
privacy) conflicts to be mutual for two terminals i and j with {i, j} ∈ CP
({i, j} ∈ CB). Certainly, asymmetric versions may be defined in which we
allow distrust coming from one customer only. In this case one could define
a directed privacy-conflict relation ⊂ (T × T ). We do not further explore
this direction in this work, since the presented models and techniques for the
symmetric case can be adapted accordingly.

Steiner Node Conflicts. Furthermore, we do not consider privacy conflicts in-
volving Steiner nodes. A possible model extension could be the generalization
which allows CP ⊂ (V ′×V ′), CE ∈ (V ′×E), and CB ⊂ (V ′×V ′), respectively.

Hop-Based Restrictions. Hop constraints are known to be of practical impor-
tance in telecommunication applications [23]. For two network nodes i, j ∈ V
and a hop limit h, they ensure that the (in tree models unique) path con-
necting i and j does not contain more than h edges. A hop-privacy-oriented
model could be defined requiring that the number of hops between i and j is at
least h. Assuming that the distance between two nodes on different branches
is∞, the resulting model falls between the STP+CP and the STP+CB. More
detailed, setting h = 1 models the STP+CP, and h = ∞ corresponds to the
STP + CB.

Graph Coloring. The NP-hard [14] graph coloring problem asks for an assign-
ment of labels, or colors, to nodes of a graph such that adjacent nodes are
labeled differently, and the number of used labels is minimized. Similarly, ter-
minals need to be assigned to tree branches while avoiding conflicts in the
STP+CB. The more restrictive total graph coloring problem [21] additionally
asks for edge labels, while respecting edge-node and edge-edge incidence con-
flicts. The conflicts between customers and edges in the studied edge-conflict
models are closely related. This plays an important role when formulating
strong polyhedral descriptions for the STP+CBE in Section 3.

7 Conclusion

In this paper, we studied extensions of the Steiner tree problem in graphs
for strategic network design. We considered model variants of practical rele-
vance that take into account privacy concerns between pairs of terminals, and
introduced more detailed conflicts between terminals and edges. We showed
the relationships between four models and presented cut-set based integer
programming (IP) formulations. Additionally, we formulated all models using
constraint programming (CP) based on commodity-flows. In order to warm-
start the latter approach, we devised a construction heuristic.

In a computational study on more than 1500 instances, we identified that
the dense occurrence of terminal-edge conflicts yields the most difficult in-
stances for our approaches. Also, it seemed significantly easier to optimally
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solve instances with very low or very high conflict density. In our experiments,
IP outperformed CP. Strong formulations paired with efficient separation algo-
rithms seemed to lead to well-performing branch-and-cut methods. However,
the compact CP formulations were able to produce more feasible solutions. We
suggest that CP approaches could benefit from both, further improved starting
points and more aggressive reduction techniques. Moreover, the hybridization
of IP and CP could be worth investigating for these hard combinatorial prob-
lems.

References

1. Beasley, J.E.: An SST-based algorithm for the Steiner problem in graphs. Networks
19(1), 1–16 (1989)

2. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

3. Chopra, S., Gorres, E.R., Rao, M.: Solving the Steiner tree problem on a graph using
branch and cut. ORSA Journal on Computing 4(3), 320–335 (1992)

4. Chopra, S., Rao, M.R.: The Steiner tree problem i: Formulations, compositions and
extension of facets. Mathematical Programming 64(1-3), 209–229 (1994)

5. Cornet, A., Laforest, C.: Total domination, connected vertex cover and Steiner tree with
conflicts. Discrete Mathematics & Theoretical Computer Science 19(3) (2017). URL
http://dmtcs.episciences.org/4154

6. Di Puglia Pugliese, L., Gaudioso, M., Guerriero, F., Miglionico, G.: An algorithm to
find the link constrained Steiner tree in undirected graphs. In: G.M. Greuel, T. Koch,
P. Paule, A. Sommese (eds.) Mathematical Software – ICMS 2016, pp. 492–497. Springer
International Publishing, Cham (2016)

7. Filipecki, B., Van Vyve, M.: Stronger path-based extended formulation for the Steiner
tree problem. Networks 75, 3–17 (2020)

8. Gamrath, G., Koch, T., Maher, S.J., Rehfeldt, D., Shinano, Y.: SCIP-Jack — a solver
for STP and variants with parallelization extensions. Mathematical Programming Com-
putation 9(2), 231–296 (2017)

9. Hill, A., Baldacci, R., Voß, S.: Branch-and-cut algorithms for Steiner tree problems
with privacy conflicts. In: Computing and Combinatorics, Lecture Notes in Computer
Science Vol. 11653, pp. 266–278. Springer International Publishing (2019)

10. Hill, A., Schwarze, S.: Exact algorithms for bi-objective ring tree problems with relia-
bility measures. Computers & Operations Research 94, 38–51 (2018)

11. IBM CPLEX: IBM ILOG CPLEX 12.90 callable library (2018)
12. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem: theory

and practice. In: Proceedings of the eleventh annual ACM-SIAM symposium on discrete
algorithms, pp. 760–769. Society for Industrial and Applied Mathematics (2000)
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