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Abstract

Predicting the difference in thermodynamic stability between protein variants is crucial for protein design and understanding the
genotype-phenotype relationships. So far, several computational tools have been created to address this task. Nevertheless, most of
them have been trained or optimized on the same and ‘all’ available data, making a fair comparison unfeasible. Here, we introduce a
novel dataset, collected and manually cleaned from the latest version of the ThermoMutDB database, consisting of 669 variants not
included in the most widely used training datasets. The prediction performance and the ability to satisfy the antisymmetry property
by considering both direct and reverse variants were evaluated across 21 different tools. The Pearson correlations of the tested tools
were in the ranges of 0.21–0.5 and 0–0.45 for the direct and reverse variants, respectively. When both direct and reverse variants are
considered, the antisymmetric methods perform better achieving a Pearson correlation in the range of 0.51–0.62. The tested methods
seem relatively insensitive to the physiological conditions, performing well also on the variants measured with more extreme pH and
temperature values. A common issue with all the tested methods is the compression of the ��G predictions toward zero. Furthermore,
the thermodynamic stability of the most significantly stabilizing variants was found to be more challenging to predict. This study is
the most extensive comparisons of prediction methods using an entirely novel set of variants never tested before.
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Introduction

The problem of predicting protein stability changes upon
variation of a single residue is not a trivial task, and it is
still affected by several experimental limitations and
computational issues [1–5]. Understanding the impact of
non-synonymous (or missense) DNA variations leading
to the disruption or the enhancement of the protein
function was shown to be fundamental for describing
the molecular mechanisms of several human diseases
[6–9]. Specific protein stability perturbations have already

been associated with pathogenic missense variants [8,
10–12]. Variations were shown to contribute to the loss of
function in haploinsufficient genes [13] and to modulate
drug resistance in several diseases [14]. In this context,
tools that can robustly predict the effects of variants on
protein stability are crucial to infer their pathogenicity
correctly.

The effects of non-synonymous variants on the protein
stability are quantified in terms of the Gibbs free energy
of unfolding (�G). The stability change from a mutated
(M) protein to its wild-type (W) form is defined as the
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difference of the corresponding unfolding free energy
��G of two proteins:

��GMW = �GM − �GW,

it is commonly measured in kcal/mol and the sign indi-
cates whether the variation decreases (i.e. destabilizing
variant) or increases (i.e. stabilizing variant) the pro-
tein stability. Contributions based on statistical poten-
tials have been identified to highlight strong and weak
residues in proteins on the basis of three types of statis-
tical energy functions describing local interactions along
the protein chains [15]. An important property of the
��G is the antisymmetry, for which the change in Gibbs
free energy for the corresponding reverse variation (i.e.
the folding free energy from the wild-type to the mutated
form) is equal and has the opposite sign with respect to
the change for the direct variation: ��GMW = −��GWM.
However, most of the current prediction tools violate this
property and they are highly biased toward predictions of
destabilizing variants [2, 16–21]. Several computational
tools have been developed so far, showing different levels
of prediction performance [16, 18, 22]. However, a fair
comparison of these tools has been problematic because
they have been optimized on the same (or similar) man-
ually cleaned datasets extracted from ProTherm [23, 24],
the main repository collecting published experimental
��G data. Another more recent and useful resource
is ThermoMutDB, a new resource for thermodynamic
data from protein mutations [25]. From the latest ver-
sion (v1.3) of ThermoMutDB, we were able to identify
669 novel variants never seen by the state-of-the-art
prediction tools. These variants only belong to proteins
with less than 25% sequence identity with respect to
those found in the most widely used datasets, such as
S2648 [26] and VariBench [27]. The obtained results high-
lighted a group of methods performing equally well on
both direct and reverse variants, which outperformed the
other methods and they were able to achieve, on average,
Pearson correlations slightly lower than 0.5. In addition,
the performance of the sequence-based tools tended to
be slightly lower than the other methods. Overall, we
found that the stabilizing variants are harder to pre-
dict, indicating a potential issue affecting all the current
approaches, including those that are antisymmetric by
construction.

In this paper, we excluded the analysis of membrane
protein variations because they reside in a differ-
ent chemical environment. However, recent methods
have been specifically developed to predict the sta-
bility change upon mutation for these proteins (CSM-
membrane [28], MPTherm[29]) and they should be used
in these cases.

Materials and methods
Datasets
From ThermoMutDB, we extracted 900 variants belong-
ing to proteins having less than 25% sequence identity

with those of S2648 [26] and VariBench [27], whose union
includes variants from almost all the thermodynamic
studies available in the literature. We therefore revised
all the papers related to these 900 variants, and we
decided to exclude about ∼24% of them due to different
annotation inconsistencies in the dataset (e.g. free ener-
gies measured in terms of transition state kinetics, affin-
ity binding, multiple variants, etc.). Of the remaining 669
variants, we changed the ��Gs for ∼20% of the reported
values, either because the sign of the ��Gs was not
coherent or because the values were imprecise. The final
manually cleaned set S669 is released (Supplementary
material).

In addition, in order to evaluate the antisymmetry
of the different methods, we used an extended version
of Ssym [18], which includes 10 more variants that we
collected from ThemoMutDB [25], adding 10 new protein
structures of the mutants. The new version of Ssym,
here refereed as Ssym+ is also available (Supplementary
material).

Finally, we generated the reverse variants for S669 to
assess the antisymmetry in a context where no variants
were seen by the methods. When required, the reverse
structures were generated using the Robetta server [30]
with default parameters by using the comparative mod-
eling technique. This procedure led to an entirely bal-
anced dataset of 1338 protein variants.

Evaluated methods
We predicted the ��Gs on the S669 dataset with 21
different tools. Either web server (when available) or
stand-alone versions were used with default parameters,
as indicated in the following:

• ACDC-NN [31] and its sequence-based version ACDC-
NN-Seq [32] (stand-alone tool): neural network-based
methods whose architectures satisfy the antisym-
metry properties by construction. They both take as
input the local information from the amino acids in
the neighbourhood of the mutation and they both use
multiple sequence alignments considering the two
amino acids involved in the mutation.

• DDGun3D and DDGun [33] (stand-alone tool):
untrained methods that combine evolutionary
information and statistical potentials to predict the
��G. Compared with the sequence-based DDGun,
DDGun3D includes the structural information scored
by the Bastolla–Vendruscolo statistical potential [34]
and weights the linear combination through the
accessibility of the mutated amino acid. They both
include antisymmetric features and provide an easy
extension to the prediction of multiple variations.

• mCSM [35] (web server): considers graph-based
structural signatures, encoding for the distance
patterns between atoms and used to represent the
protein residue environment, to study and predict
the impact of single-point mutations on the protein
stability.
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• SDM [36] (web server): statistical potential energy
function that uses environment-specific amino acid
substitution frequencies within homologous protein
families to calculate a stability score as proxy of
the free energy difference between the wild-type and
mutant protein.

• DUET [37] (web server): web server implementing
a meta-classifier based on the combined results
from mCSM and SDM using support vector machines
(SVM).

• Dynamut and Dynamut2 [38, 39] (web server):
machine learning methods implementing a consen-
sus prediction. They combine the effects of mutations
on protein stability and dynamics calculated by
DUET, Bio3D and ENCoM to generate an optimized
and more robust predictor.

• FoldX [40] (stand-alone tool): empirical force field-
based method predicting the effect of a single-point
variation through a linear combination of empirical
free energy terms, including entropy contribution,
Van der Walls forces, hydrogen bonds and electro-
static interactions.

• SAAFEC-SEQ [41] (web server): gradient boosting
decision-tree machine learning method that uses
physico-chemical properties, sequence features and
evolutionary information to predict the ��G values.

• MUpro [42] (web server): sequence-based SVM-based
approach which considers the local mutation envi-
ronment encoding the residues in a window centered
on the target residue. The input corresponding to the
deleted residue is set to −1 and the newly introduced
residue to 1; all other inputs are set to 0.

• Rosetta [43] (stand-alone tool): a method based on
structural modeling that computes the difference
in Rosetta energy between the simulated wild-type
versus the mutated structures.

• ThermoNet [44] (stand-alone tool): deep 3D-convol-
utional neural network designed for structure-based
prediction of the ��G values. Input protein struc-
tures are treated as if they were multi-channel 3D
images, therefore by using multi-channel voxel grids
based on biophysical properties derived from raw
atom coordinates.

• PremPS [45] (web server): random forest regression-
based method that uses evolutionary and structure-
based features to make ��G predictions. It has been
trained on a balanced dataset with an equal number
of stabilizing and destabilizing mutations to obtain
unbiased predictions.

• PoPMuSiC [26] (web server): energy function-based
method providing a linear combination of 13 sta-
tistical potentials, two volume-dependent terms of
the wild-type and mutant amino acids, and an inde-
pendent term. The coefficients depend on the sol-
vent accessibility of the mutated residue, based on
a sigmoid function whose parameters are optimized
through a neural network.

• MAESTRO [46] (stand-alone tool): multi-agent predic-
tion method based on statistical scoring functions

(SSFs) and exploiting an ensemble of neural net-
works, support vector and multiple linear regressors,
combined into a consensus model.

• INPS3D [47] and its sequence-based version INPS
[21] (stand-alone tool): SVM-based methods using
radial basis function kernel. Specifically, INPS uses
the substitution score derived from the BLOSUM62
matrix, the difference in the alignment score between
the native and variant sequences, hydrophobicity,
evolutionary information and others; INPS3D also
considers the relative solvent accessibility of the
native residue and the difference between wild-
type and mutated structures, scored by the Bastolla–
Vendruscolo statistical potential [34].

• I-Mutant and its sequence-based version I-Mutant-
Seq [48] (web server): SVM-based methods using
radial basis function kernel with 42 features as input,
including temperature, Ph, 20 features encoding for
the mutations and 20 features encoding for the spa-
tial residue environment when the protein structure
is available or the nearest sequence neighbors when
only the protein sequence is available.

The usage and availability of the different tools can be
found in the Supplementary Materials.

Performance evaluation
Pearson correlation (indicated by r), root mean square
error (RMSE) and mean absolute error (MAE) were esti-
mated between predicted and observed ��G values.

To assess the antisymmetric property of ��G predic-
tors, we adopted three previously defined index: rd−r. rd−r

is the Pearson correlation coefficient between the direct
and the corresponding reverse variations:

rd−r = Cov(��Gdir, ��Grev)

σdirσrev
, (1)

where Cov is the covariance and σ is the standard devia-
tion.

Most of the predictors were trained using strongly
unbalanced data toward the destabilizing group of vari-
ants. To measure the average bias toward a specific class,
we adopted the bias score 〈δ〉:

〈δ〉 =

N∑

i=1

(��Gdir
i + ��Grev

i )

2N
. (2)

A perfectly antisymmetric and unbiased method
should have rd−r equal to −1, whereas 〈δ〉 equals to 0.

Results
Method performance on model versus
experimental structures
The current data repositories and the derived datasets
are skewed toward the destabilizing variants. Using
the thermodynamic property of antisymmetry, we can
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Figure 1. Comparison of method performance on real and modeled structure on the Ssym+ dataset Pearson correlation coefficients (r) and MAE are
displayed in the left and in the right figure, respectively. The prediction performance obtained from the experimental structures (x-axis) is plotted against
those from the Rosetta-simulated structures (y-axis). Performance calculated with real or modeled structures is very consistent, with correlations of
0.995 (P value < 10−13) and 0.993 (P value < 10−12) for the Pearson and MAE, respectively.

double the data and perfectly balance the distribution
by adding the reverse variants. This procedure works
smoothly for sequence-based methods, but structure-
based methods require the atomic coordinates, and
unfortunately, very few pairs of wild-type and mutated
protein structures with experimental ��Gs are available.

The most significant effort in this direction has pro-
duced the Ssym dataset, including 684 variants (342
direct and 342 reverse) with 19 experimental structures
for the direct variants and 342 experimental structures
for each of the reverse variants [18]. From ThermoMutDB
[25], we extracted 10 more reverse structures, which
slightly increased the Ssym dataset (Ssym+ consists of
704 variants).

Another way to generate the reverse structure when
the experimental one is not available is through com-
parative modeling. However, it is not clear if using a pre-
dicted model can hamper the predictive performance of
the methods. To test the possibility of using single-point
mutation models as reverse structures, we generated 704
protein models for each Ssym+ structure. Thus, a model
of the direct protein is obtained from the corresponding
reverse PDB structure (and vice versa). To compute the
model structures, we used Rosetta/Robetta server.

To assess the generated models regarding the PDB
structures, we performed 1408 predictions (704 for the
experimental structures and 704 for the modeled ones)
for each structure-based method. The comparison of
the performance obtained for each method in the two
scenarios (experimental versus modeled structures) is
reported in Fig. 1 and in the Supplementary Materi-
als. The results indicate that there is no performance

degradation using the models as a proxy for the exper-
imental structure. This finding supports the idea of bal-
ancing datasets by adding the reverse of all variants and
modeling the missing mutated structures with Rosetta/
Robetta.

Method performance on the new S669 dataset
To assess the generalization capability of different pre-
diction methods of protein stability changes, we per-
formed the analysis on S669, a dataset of never seen
proteins and variants from proteins with less than 25%
of sequence identity to previously studied proteins in
manually curated datasets (S2648 and Varibench).

Figure 2 and Table 1 report the obtained performance
(Pearson correlation, RMSE and MAE), the bias and the
antisymmetry metric of each method. The highest corre-
lations observed across all the methods are in the range
0.4–0.6 depending on the group of considered variants.

When direct variants are considered, the Pearson cor-
relation of all the methods ranges from 0.2 to 0.5 (Fig. 2,
circles in the central plot). These values are lower than
those reported in the original papers but close to the
expected performance for methods developed avoiding
proteins with high sequence similarity in the training
and testing sets to avoid overfitting. It is worth noticing
that S669 can be considered an external validation set
for the tested methods; thus, a performance drop can be
expected.

When the reverse variants are considered (Fig. 2,
crosses in the central plot), there is a first group of
methods built to be antisymmetric (INPS-Seq, ACDC-NN-
Seq, ACDC-NN, DDGun3D, DDGun, ThermoNet, PremPS),
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Table 1. Assessment of the protein stability prediction tools on s669. Performance reported in terms of Pearson correlation coefficient
(r), RMSE and MAE. The antisymmetry property was assessed in terms of Pearson correlation coefficient(rd−r) and bias (〈δ〉), as
described in Section 2.3. RMSE, MAE, 〈δ〉, and 〈γ 〉 are expressed in kcal/mol. The methods are ordered by rd−r

Total Direct Reverse Antisimmetry/Bias

Method r RMSE MAE r RMSE MAE r RMSE MAE rd−r 〈δ〉
Structure-based
ACDC-NN 0.61 1.5 1.05 0.46 1.49 1.05 0.45 1.5 1.06 –0.98 –0.02
DDGun3D 0.57 1.61 1.13 0.43 1.6 1.11 0.41 1.62 1.14 –0.97 –0.05
PremPS 0.62 1.49 1.07 0.41 1.5 1.08 0.42 1.49 1.05 –0.85 0.09
ThermoNet 0.51 1.64 1.2 0.39 1.62 1.17 0.38 1.66 1.23 –0.85 –0.05
Rosetta 0.47 2.69 2.05 0.39 2.7 2.08 0.4 2.68 2.02 –0.72 –0.61
Dynamut 0.5 1.65 1.21 0.41 1.6 1.19 0.34 1.69 1.24 –0.58 –0.06
INPS3D 0.55 1.64 1.19 0.43 1.5 1.07 0.33 1.77 1.31 –0.5 –0.38
SDM 0.32 1.93 1.45 0.41 1.67 1.26 0.13 2.16 1.64 –0.4 –0.4
PoPMuSiC 0.46 1.82 1.37 0.41 1.51 1.09 0.24 2.09 1.64 –0.32 –0.69
MAESTRO 0.44 1.8 1.3 0.5 1.44 1.06 0.2 2.1 1.655 –0.22 –0.57
FoldX 0.31 2.39 1.53 0.22 2.3 1.56 0.22 2.48 1.5 –0.2 –0.34
DUET 0.41 1.86 1.39 0.41 1.52 1.1 0.23 2.14 1.68 –0.12 –0.67
I-Mutant3.0 0.32 1.96 1.49 0.36 1.52 1.12 0.15 2.32 1.87 –0.06 –0.81
mCSM 0.37 1.96 1.49 0.36 1.54 1.13 0.22 2.3 1.86 –0.05 –0.85
Dynamut2 0.36 1.9 1.42 0.34 1.58 1.15 0.17 2.16 1.69 0.03 –0.64
Sequence-based
INPS-Seq 0.61 1.52 1.1 0.43 1.52 1.09 0.43 1.53 1.1 –1 0
ACDC-NN-Seq 0.59 1.53 1.08 0.42 1.53 1.08 0.42 1.53 1.08 –1 0
DDGun 0.57 1.74 1.25 0.41 1.72 1.25 0.38 1.75 1.25 –0.96 –0.05
I-Mutant3.0-Seq 0.37 1.91 1.47 0.34 1.54 1.15 0.22 2.22 1.79 –0.48 –0.76
MUpro 0.32 2.03 1.58 0.25 1.61 1.21 0.2 2.38 1.96 –0.32 –0.95
SAAFEC-SEQ 0.26 2.02 1.54 0.36 1.54 1.13 –0.01 2.4 1.94 –0.03 –0.83

which perform significantly better, followed by Rosetta,
Dynamut and INPS3D. On the other hand, the not-
antisymmetric predictors (I-Mutant3.0-Seq, SDM, MUpro,
PoPMuSiC, MAESTRO, FoldX, DUET, I-Mutant3.0, mCSM,
Dynamut2, SAAFEC-SEQ) performed remarkably worse
for the reverse variants, showing a strong bias toward
the destabilizing class (negative values), as highlighted
by the values reported in the last columns of Table 1 and
in right-most bar plot of Fig. 2.

The majority of the methods improve when we con-
sider the complete and balanced dataset (Fig. 2, squares
in the central plot). This improvement is partially due
to the increase of the ��G distribution variance [49, 50].
However, the learnt thermodynamic property allows the
antisymmetric methods to increase the performance.

Effect of the experimental technique
on the method performance
One interesting point that has been recently studied is
the possible dependence of the method performance in
the choice of the protein structure [4]. Caldararu et al.
[4] showed that some methods, such as FoldX, are more
sensitive to the change of the three-dimensional protein
structures. To test whether different experimental
strategies have an impact on the performance of the
structure-based ��G predictors, we divided the S669
into variants from structures that were obtained by
nuclear magnetic resonance (NMR) spectroscopy and
structures obtained by X-ray diffraction. The protein

structure solved using the NMR technique usually
presents several models in the corresponding PDB
file that are all compatible with the experimental
constraints. As usually done, we selected the first
model as representative. Figure 3 displays the method
performance on the two subsets of variants. Largely
overlapping error bars show that most methods are
quite insensitive to experimental strategy, even though
a general trend of slightly increased performance for
NMR-derived structures can be observed. Only FoldX and
PremPS showed a clear preference for X-ray- and NMR-
derived structures, respectively. However, the observed
differences are probably due to the variations in the NMR
and X-ray sets rather than to the specific experimental
technique.

Furthermore, the overall performance of the methods
seems mostly unaffected by the X-ray resolution, at least
in the range from 1.2 to 3.2 Angstrom seen in S669.
Figure 4 displays the results obtained by splitting the X-
ray structures in those that have been crystallized at a
resolution above or below Ångstrom. The only methods
that seem sensitive to the resolution are PremPS and
Dynamut2 for the Pearson correlation and Rosetta for the
MAE.

Surface accessibility, pH and Temperature
As already observed in previous studies [1, 26, 51], the
residue accessibility impacts the method performance.
Figure 5 shows the results for the variants classified by
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Figure 2. Antisymmetry, Pearson correlation and Bias for all predictors. From the left: antisymmetry expressed as the Pearson correlation between direct
and reverse ��G predictions, where perfect antisymmetry corresponds to −1; Pearson correlation of predicted with experimental ��G values for the
sets of direct, reverse and total (both direct and reverse) variants; bias expressed as the average of the predicted ��G on the total (direct and reverse)
dataset: since the average experimental ��G on the total dataset is zero, unbiased predictors have also a bias of 0, whereas predictors biased toward
destabilization have negative values. Color show which predictors need structural (3D) data and which use only sequence data. Predictors are sorted
from the most antisymmetric (top) to the least (bottom).

their relative accessibility (RA) median value (buried =
0–24%), superficial = 24–100%). Most predictors (even
sequence-based) show much lower Pearson correlations
on surface residues, with the exception of FoldX, and to
a lower extent PremPS and INPS3D. However, the MAE,
which measures the distance between the predicted and
observed ��G values, are lower (better) on the surface
residues. This means that the methods are able to rec-
ognize that the surface residues have a lower impact
on stability and coherently predict ��G values closer to
zero. However, when values are close to 0, the noise is
higher, reducing the Pearson correlation performance.

Another very relevant point is to which extent the
methods are affected by ��G measures obtained outside
physiological conditions. A recent paper [5] showed that
there are some predictors in some extreme ranges of
pH and temperature that decreases the performance.
S669 dataset was divided into two parts: the former
group containing variants whose temperature and pH are
in physiological ranges [293.15, 313.15] K (20–40◦C) and
[6.0, 8.0], respectively. This physiological group consists
of 443 variants, whereas the non-physiological one of 226
variants. The results reported in Fig. 6 show that there is
not a clear indication of the fact that non-physiological

conditions induce more errors in the predictions. The
Pearson correlation is slightly better for variants in the
group of physiological conditions; however, the MAE has
an opposite trend (Fig. 6). In the future, when a far larger
set of clean data will hopefully be available, a more
thorough study should be carried out.

Classification performance
In many applications, the identification of destabiliz-
ing and stabilizing variations is more relevant than the
prediction of the exact ��G value. In Fig. 7, we evalu-
ated the classification accuracy of the different methods.
The figure shows three broad groups with similar accu-
racy in the various stability classes and variant subsets.
The first group is represented by the most antisymmet-
ric and unbiased predictors: PremPS, ACDC-NN, ACDC-
NN-Seq, DDGun3D, DDGun, Dynamut, ThermoNet, INPS-
Seq, INPS3D and FoldX. They showed good performance
in both stabilizing and destabilizing classes, especially
PremPS, ACDC-NN, DDgun and INPS-Seq. However, all
these predictors showed a lower accuracy in the under-
represented direct-stabilizing variants and their reverse
class, i.e. the reverse-destabilizing variants. This is espe-
cially true for the best performing PremPS, ACDC-NN and

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab555/6502552 by guest on 31 January 2022



Predicting protein stability changes upon single-point mutation | 7

Figure 3. Effect on the method performance of the experimental technique: NMR versus X-ray. After splitting the S669 dataset into NMR and X-ray
derived structures (with 196 and 473 variants in 23 and 71 proteins, respectively), Pearson correlation coefficients (r direct, on the left) and MAE (MAE
direct, on the right) for the direct variants are shown for all structure-based methods. The black error bars represent the bootstrap estimated standard
error.

Figure 4. Effect on the method performance of the different X-ray resolution. Evaluation is made on the direct variants in S669 whose structures were
obtained by X-ray diffraction. The dataset is split in two classes using 2.0 Årmstrong as a threshold for the resolution, with 177 variants in 34 proteins
with resolution < 2.0 and 296 variants in 37 proteins with a resolution ≥ 2.0. Pearson correlation coefficients (r direct, on the left) and MAE (MAE direct,
on the right) are shown for all the structure-based methods. The black error bars represent the bootstrap estimated standard error.
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Figure 5. Assessment of the effects of the RA of an amino acid on the prediction of the protein stability. The effects of the RA are estimated by splitting the
direct variants in the s669 dataset with respect to the RA median value (24%). Pearson correlation coefficients (r) and mean absolute errors (MAE direct)
are displayed in the left and in the right plot, respectively. RA ranges from 0 to 1, with 0 representing a completely buried residue and 1 representing a
residue on the surface. The black error bars represent the bootstrap estimated standard error.

Figure 6. Assessment of the protein stability predictions tools on S669 at different temperature and pH conditions. We compared all the prediction tools
at physiological (T ∈ [293.15, 313.15] K,pH ∈ [6.0, 8.0], 443 variations) and not-physiological temperature and pH conditions (226 variations). After dividing
the S669 dataset accordingly, the effects of different temperature and pH conditions were estimated by calculating the Pearson correlation coefficients
(r) and MAE between predicted and real values on the two classes. These two measures are displayed in the left and in the right figure respectively. The
black error bars represent the bootstrap estimated standard error.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab555/6502552 by guest on 31 January 2022



Predicting protein stability changes upon single-point mutation | 9

Figure 7. ��G classification accuracy. Here we explore the classification accuracy when predicting the stability change direction. Predicted and
experimental ��G values were split in two classes: stabilizing (��G ≥ 0) and destabilizing (��G < 0). For each subset (direct, reverse and both direct
and reverse together) and for each experimental ��G class (columns), the heatmap shows the ratio of variants predicted to be in the correct ��G class
for each predictor (rows).

INPS-Seq, suggesting a trade-off where they ‘sacrifice’
accuracy in the smaller classes for greater scores in
the whole dataset. A second group includes I-Mutant3.0,
I-Mutant3.0-Seq, mCSM, MUpro and the newer SAAFEC-
SEQ. They are heavily biased toward destabilizing predic-
tions, therefore their accuracies on stabilizing variants
are extremely low in all the datasets. The remaining
group includes Rosetta, SDM, Maestro, DUET, Dynamut2
and PoPMuSiC, which still showed a bias toward desta-
bilization but to a lower extent, with Rosetta and SDM
being quite balanced across different classes. Among the
tested sequence-based methods, INPS-Seq, ACDC-NN-
Seq and DDGun are the more balanced and the best
performing.

An analysis of the prediction distributions of the
various methods is reported in Fig. 8, where we split the
variants by their experimental ��G into destabilizing
(��G ≤ −0.5), neutral (|��G| < 0.5) and stabilizing
variants (��G ≥ 0.5). Compared with the experimental
distributions, all the methods tended to compress their
predictions toward zero (neutral), generating a signif-
icant overlap among the three distributions (Rosetta
is the only exception here). However, many of them

maintained the relation of order among the three classes
except for SAAFEC-SEQ (Fig. 8). The sequence-based
DDGun appeared to be the only one that consistently
keeps a minimum of difference among the three
types of prediction distributions separating the means
and the box quantile borders (stabilizing, neutral and
destabilizing) for all direct and reverse sets.

Discussion and Conclusions
This paper introduces a new manually curated dataset
(S669) containing variants from protein sequences with
no homology with the two most widely used training
data resources (S2648 and Varibench). We showed that
using models based on Rosetta is almost equivalent to
using experimental structures for ��G prediction. At the
same time, this leads to balance the variant distribution,
typically skewed toward destabilizing variations, by
adding reverse variants and their corresponding sim-
ulated models. The Pearson correlation of the methods
tested on S669 is lower than those reported in the original
papers. However, this is expected since S669 can be con-
sidered as external validation. Nonetheless, the Pearson
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Figure 8. ��G prediction distribution by stability class. These boxplots show the distribution of the predicted ��G values. Variants were split into three
classes by their experimental ��G: destabilizing (��G ≤ 0.5), neutral (−0.5 < ��G ≤ 0.5), stabilizing (0.5 < ��G). The experimental ��G values were
plotted (to the left) and their boxes extended as transparent horizontal bands as a reference. The plot was repeated for all (top), direct (center) and
reverse variants only (bottom).

correlations are not too far from those reported for
the methods evaluated by limiting sequence identity
between training and test sets. The more antisymmetric
methods tend to perform better, and those built to be
antisymmetric perform better in the regression task
(prediction of ��G value), in particular PremPS, ACDC-
NN and INPS-Seq. It is also worth noticing that the
methods perform equally well on NMR or X-ray structure
and are relatively insensitive to pH and temperature
outside the physiological conditions, making them useful
also when these types of information are not available.

Overall, our assessment highlighted that the predic-
tors satisfying the antisymmetry property can perform
better than the other tools in regression or when the
test set is balanced. For some of them, as in the case
of ACDC-NN and DDGun, their sequence-based version

showed similar results compared with their structure-
based counterpart. This indicates that both evolutionary
information and antisymmetry are important features
for narrowing down the gap in the performance between
sequence- and structure-based methods. Most methods,
especially the non-antisymmetric, show a bias toward
the destabilizing class. This makes them unsuitable for
variant classification because they tend to predict every
variant as destabilizing, misclassifying most stabilizing
variants.

When only stabilization/destabilization information
is considered, the antisymmetric methods tend to
predict better on the whole datasets. However, it appears
that the direct stabilizing variants in the datasets are
more challenging to assign correctly. In particular,
SDM, Rosetta, ThermoNet and Dynamut are the most
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balanced. All the tested methods tend to compress the
predictions toward neutrality, generating a significant
overlap between stabilizing, neutral and destabilizing
variations. The compression of the predictions indicates
that a possible improvement for future methods is to
work on the calibration of the prediction distributions.
The destabilizing variants show a stronger signal in
terms of ��G, which are easier to detect on average.
Indeed, the antisymmetric predictors showed to capture
very well the reverse variations, as stabilizing. These
contrasting results may open a future direction of study,
improving our understanding of these types of variants
and possibly increasing the method performance.

Key Points

• We performed a thorough benchmark of cur-
rent predictors of protein stability changes upon
single-point mutations, using never-seen-before
protein variants.

• We provide a dataset consisting of 669 variants
never-seen-before by the current methods.

• We showed the relevance of incorporating the
thermodynamic antisymmetric principle to
improve prediction robustness.

Supplementary data
Supplementary data are available online at https://acade
mic.oup.com/bib.
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