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Abstract: Antibiotic resistance is creating enormous attention on the development of new antibiotic-
free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most
promising candidates in current clinical trials and included in several cell-therapy protocols. Together
with the well-known immunomodulatory and regenerative potential of the MSC secretome, these
cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and
standardization of MSCs from different sources are the current limitations prior to the purification of
cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization,
novel label-free functional tests, evaluating the biophysical properties of the cells, will be advan-
tageous for their cell profiling, population sorting, and quality control. We discuss the potential
of emerging microfluidic technologies providing new insights into density, shape, and size of live
cells, starting from heterogeneous or 3D cultured samples. The prospective application of these
technologies to studying MSC populations may contribute to developing new biopharmaceutical
strategies with a view to naturally overcoming bacterial defense mechanisms.

Keywords: mesenchymal stem cells; stem cells; extracellular vesicles; exosomes; cell-therapy;
anti-inflammatory; anti-bacterial; host-defense peptides; antimicrobial peptides; microfluidics

1. Introduction

Today more than ever, the global population is aware of the impactful evolutionary
abilities of the microbes wandering around our planet. Unfortunately, as with the mi-
crobiome, the pathogens have demonstrated an efficient molecular machinery that has
allowed them to survive, evolve for centuries, and even turn into dangerous entities affect-
ing human health. A compensatory response to the environmental changes [1] has led to
mutations and greater skill in evading the human immune system [2], not to mention the
development of multi-drug resistance (MDR). Antibiotic resistance has an increasing clini-
cal and social impact, so both research on new drug candidates and antibiotic-free-based
therapeutic strategies are expected to grow swiftly.

Biomimicry offers an alternative approach taking advantage of the natural sources of
antimicrobial elements and learning from their chemical conformation and mechanisms of
action [3]. Eukaryotes produce a variety of conserved bioactive agents, are able to protect
themselves from pathogens, and some of this response can be emulated and translated
as biomedicine against specific human pathogens. For example, many phytochemicals
exert a broad range of antimicrobial activity and many natural compounds should be
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further characterized in new 3D physiological models [4,5] to show their anti-bacterial
and immune-active potential. Like plants, animals possess natural molecules as part of
their innate immune defense tools. The complement system plays a vital humoral role in
such innate immune defense [6], which leads to opsonization by antibodies, recruitment
of inflammatory cells, and direct attack on the pathogen [7]. Such an attack affects the
cell membrane and can result in bacterial cell lysis [8] through the assembly of membrane-
penetrating proteins called membrane attack complex (MAC). Besides complement and
its role in preventing the invasion of the host tissues by the pathogens, the antimicrobial
peptides (AMPs) are proven to have a certain bactericidal activity, while the endoge-
nous cell populations engaged in homeostasis such as stem cells have a particular role
during infection.

Stem cells are responsible for producing the mature cells of the organism. They partic-
ipate in tissue homeostasis and cell renewal after birth. Mesenchymal stromal stem cells
(MSCs) are somatic stem cells that repopulate the tissue of origin and display multipotency
differentiation [9]. Their in vivo paracrine effects are critical for the resolution of tissue
damage. Various stem cell populations can be isolated from perinatal tissues which are
abundant sources of MSCs [10]. MSCs have been widely studied in translational medicine
and frequently proposed as innovative drugs. MSC-based cell therapy involves the ad-
ministration of MSCs to the receptor body, where they can move towards the affected
tissues and contribute to healing. MSCs can transfer to the injured cells factors restraining
injury and leading to tissue regeneration. MSCs can interact with the immune system and
prevent infection via direct and indirect mechanisms [11]. In particular, the antimicrobial
features are linked to paracrine release of several antimicrobial peptides (AMPs), with
broad antibacterial properties, and specific extra cellular vesicles (EVs) secretion, including
immunomodulatory factors. Depending on the origin of the tissue, MSCs differ function-
ally in their paracrine mechanisms and their secretome-derived products [12]. MSCs are
considered medicines from a regulatory viewpoint [13], and hence their quality needs to
be controlled like other medicinal products [14]. After only minimal manipulation, MSC
administration to humans can be considered as a form of transplantation [14]. On the
other hand, the ex vivo preconditioning has been proposed as a way of priming MSCs’
immunological features [15]. Efforts focusing on characterizing selective MSC features can
now exploit the microfluidic technology, which proving to hold great advantages in the
biomedical field.

While MSCs secrete their own EVs and AMPs, EVs protect and convey AMPs, and
AMPs can also be directly MSC-secreted. MSC features include the detection of infec-
tion signals, the ability to migrate toward the infection site, and on-demand secretion
of combinations of antimicrobial peptides (AMPs) [16]. The EVs released from MSCs
retain antimicrobial characteristics [13] and are considered to be safer than parent cell
administration [17]. The EVs as cell-free agents and/or drug carriers may have therapeutic
functions in sepsis [18] and may evolve into superior drug delivery tools. The presence of
AMPs in the cargo of EVs may represent the next cell-free therapy option against resistant
bacterial infections.

Microfluidic tools are being employed in cell factory and bioprocess development and
can make new parameters accessible for evaluation [19]. The behaviors of cells are directly
related to their mechanical environment. Microfluidic technology can enable formation of
micron-scale gradients and single cell handling, as well as the analysis of cell behavior from
single- to multi-cellular level. In cell biology, microfluidics makes it possible to combine
mechanical or electrical stimuli with mechanical or electrical measurement factors [20]. In
comparison with traditional cell culture conditions, microfluidic tools allow cell analysis in
a more in vivo-like dynamic fluid situation. The idea of stem cells screening or selection by
new microfluidic devices would be advantageous in reducing the number of candidates
for future clinical application.
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2. Host Innate Tools as Alternative to Antibiotics
2.1. Renewing Antimicrobial Peptides Potential

The AMPs, also known as host defense peptides (HDPs) are commonly found in
multicellular eukaryotes, usually expressed constitutively [21] and, like the complement
system, are evolutionarily ancient components. In comparison to antibiotics, AMPs may
be considered “natural antibiotics” expressed across the phylogenetic kingdoms [22] and
causing pathogen cell disruption through non-specific interactions with their membrane
surface [23]. The majority of AMPs are cationic peptides that electrostatically interact with
bacterial membranes or translocate into cells affecting intracellular targets. The first step
of penetrating the polysaccharide surface consists in an electrostatic interaction between
target bacterial membrane and AMPs, followed by attachment to the lipopolysaccharide, in
Gram-negative, or to teichoic acid, in Gram-positive bacteria [2]. Afterwards, by creating
pores in the membrane or perturbing its integrity with consequent function impairment, the
AMP manages finally to kill the bacterial cell [24] followed by the leakage of intracellular
components. AMPs are active towards both Gram-positive and Gram-negative bacteria.
The positively charged component of AMPs is important for the selective interaction
with the anionic bacterium membrane, whereas the hydrophobic part interacts with the
hydrophobic bacterium inner-cell membrane [25]. The AMPs range from 5 to 50 cationic
and hydrophobic residues and present an amphipathic conformation upon folding usually
after interaction with membranes [26].

The existing repertoire of endogenous AMPs is an example of host-pathogen co-
evolution, displaying smart adaptation to bacterial mechanisms of AMP resistance [27].
Among the AMPs expressed by a large number of species, which are divided on the
secondary structure of AMPs, Cathelicidins and Defensins are the two main classes, and
this is the case in humans as well. The protective role of these peptides is clear because
down-regulation of them increases the susceptibility to bacterial diseases [28]. Cathelicidins,
share the presence of a common cathelin domain and were first identified in bone marrow
myeloid cells [29]; they are secreted as pro-peptides, mostly α-helical, by innate immune
cells and include LL-37 (human Cathelicidin, antimicrobial peptide), which is perhaps the
best known and uniquely human family member. Defensins comprise three subfamilies
(α-, β- and θ) [30] of small (2–5 kDa) cationic peptides with a rigid [23] β-sheet core
differently stabilized by cysteine linkage. Alternatively, depending on their final effect,
AMPs can be separated into membrane disruptive AMPs and non-membrane disruptive
AMPs [31]. In addition, during infection, hepcidin [32] reveals a defensive role through iron
concentrations depletion while histatin shows a cytotoxic action similar to the candidacidal
activity of human neutrophil defensin 1 (HNP-1) [23,33].

Thanks to their homology, the structure may result in an exogenous functional broad-
spectrum possessing an anti-pathogenic effect. Significant evidence [34] is now challenging
the simple and non-specific mode of action shared by AMPs [35], highlighting the in-
fluence of genetic variability of bacteria, and suggesting an additional role in regulation
of the microbial symbiotic communities. Nonetheless, AMPs synergize each other, in
presence of antibiotics and natural compounds [36]. In this context, AMPs can be used as
rediscovered [37] immunological effectors, to damage specific bacteria and target lysis of
the pathogenic surface. Recent reports include among advantages the lesser tendency [38]
to generate resistance [39], a low propensity to develop toxicity [25], better control of
infection by intracellular bacterial pathogens as opposed to antibiotic ineffectiveness [21],
anti-biofilm effects [25,35,40], and activation of immune cells [41]. Interestingly the patterns
of mobile genetic elements are entirely different between the antibiotic and antimicrobial
peptide resistance genes [42].

Clinical implementation of AMPs is still a challenging area [28,43]. They are relatively
safe due to their nature, but improved extraction and stability, low yield in recombinant
heterologous expression [44], negligible toxicity expectantly in organoids and other 3D
cellular models [45], and lowering the costs needs to be assessed, including the engineered
synthetic production as inspired by nature. Only a few AMPs are studied in ongoing clinical
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trials [46], but they are currently seen as promising candidates and future alternative to
conventional antibiotics [47]. In addition, AMPs are pleiotropic molecules [48] that display
immunomodulatory properties [23,45,49] and induce cytokine production, immune cell
homing, and differentiation [50].

Nanomaterial research [41,51] and seeking sources of AMPs as well as other im-
munomodulatory agents are a promising avenue for reducing antimicrobial resistance [52]
and combating infectious disease [25,37]. Due to low permeability due their molecular
size, non-specificity, and quick degradation by enzymes in body fluids, the risk of a sys-
temic toxicity is high so optimization of the delivery system [22] will be a critical step in
enhancing AMP in vivo bioavailability. The prospect of employing AMPs directly from
their natural sources is one of the emerging suggestions of this review.

2.2. MSCs as Source of Antibiotic-Free Nanomaterials

In regenerative medicine applications mesenchymal/stromal stem cells (MSCs) have
acquired a leading position [53]. Indeed, tissue engineering is becoming the most important
biotechnological clinical application requiring biomaterials and transplantable cells such as
MSCs. Such somatic stem cells can be isolated from many organs and have shown a well-
documented multipotent differentiation potential toward tissue that needs to be replaced
after damage or degeneration. Bone marrow was the first source of MSCs but adipose tissue
is currently one of the most used. In addition, perinatal derivatives [10] like the placental
membranes [54,55] and the umbilical cord are considered clinical waste material, and
together with the amniotic fluid are great resources [56] for the isolation of immunotolerant
and immunomodulating [57] stem cells, including MSCs [58]. MSC isolation does not
raise ethical issues; they are non-tumorigenic in vivo and are a well-tolerated medicinal
tool suitable [59] for cell therapy purposes. MSCs have demonstrated success in clinical
areas such as hematology, orthopedics, and reconstructive surgery and are now identified
as a future key player in various therapeutic areas such as diabetes, cardiovascular and
degenerative diseases. Recently, clinical evidence of the MSCs’ usefulness against infectious
diseases was borne out by the number of active clinical trials involving MSCs from different
origins as a treatment for COVID-19 related pulmonary disease [60–63]. This has led to
current pre-clinical investigation of the optimal source yielding the best anti-inflammatory
profile [64], such as MSCs from placenta [65] and their paracrine activity [66] through
exosomes [67]. In such a context, we have seen the importance of MSC manufacturing and
controlling their quality, which may reflect the cell behavior and biological effect of the
secretome [68].

Although cell reconstitution is an essential component of MSC-based tissue engi-
neering application, the therapeutic [68] and protective effect of MSCs is now mainly
thought to derive from their secreted factors enhancing cell survival [69] and from intrin-
sic immunomodulatory functions [70]. MSCs possess immunomodulatory [71,72] and
immunosuppressive [73] properties, and thanks to the low expression of the major his-
tocompatibility complex (MHC) class I and almost absent MHC II, they are considered
immune privileged cells upon isolation, a state that could be progressively lost during
in vitro cell maintenance. MSCs interact with the innate immune system in the antimicro-
bial responses; they influence macrophage polarization by inducing M2 phenotype, as well
as attracting and activating neutrophils [74].

Accumulated evidence suggests that the therapeutic benefit of MSCs belongs mainly
to their paracrine action [75,76], rather than to MSC differentiation after transplanta-
tion. Indeed, the current literature supports the notion that MSCs effectively act via their
secretome [77] in several clinical conditions [78]. Notably, the expression of indoleamine
2,3-dioxygenase-1 (IDO-1) [79], Human Leukocyte Antigen-G (HLA-G) soluble molecules,
interleukin-10 (IL-10), and prostaglandin E2 (PGE2), which are characteristic and efficient
immunomodulatory molecules secreted in large amounts by MSCs [13]. It is important
to preserve MSCs from excessive stress and alteration deriving from in vitro expansion,
in order to maintain the curative and adjuvant properties connected to their secretome.



Antibiotics 2021, 10, 750 5 of 21

Together with culture optimization, preconditioning of MSCs with exogenous stimuli, such
as chemical (small molecules, natural antioxidants, synthetic drugs), physical (hypoxia,
biomaterial contacting), or biological factors (chemokines, trophic factors, toxins, AMPs)
has been proposed as a strategy to improve MSCs activities in vitro and in vivo [80] and
enhance their therapeutic effect [81].

MSC–based therapy is under consideration for sepsis disease [82]. The challenge
is to identify the organ of origin with the highest availability, abundance and with the
best-expected effects in terms of anti-infection strategy [83]. Significantly, MSCs have
been indirectly associated with the attenuation of virulence or clearance of invading
pathogens [84]; for instance, MSCs enhanced host survival and bacterial clearance in a
murine model of pneumonia [85]. A series of studies led to the current hypothesis that
MSC treatment may in future be an effective strategy for severe pneumonia [86]. Thus
far, antibacterial effects from MSCs have been reported [11–13,84,87–91], for instance
their role in bacterial clearance of MSCs-derived AMPs that directly boosts the innate
immune response [16]. AMPs and MSCs share the ability to fight infections through
direct microbicidal properties and/or by modulating the immune responses. Currently
MSCs have been shown to constitutively express the following AMPs [16]: cathelicidin
LL-37, human β-defensin-2 (hBD-2), hepcidin, and lipocalin-2 (Lcn2) [85]. Among the first
AMPs studied [92] and the ones that this review considers, antimicrobial effects have been
attributed to the LL-37 function. It remains to be explored whether MSC-released vesicles
conserve antimicrobial activity by their AMPs content or not. In the case of epithelial cells
of the urinary tract expressing the AMP dermcidin [93] or from the biliary and intestinal
epithelium carrying LL-37 and hBD-2 [94], the secretion of AMPs may be conducted
by MSCs through extracellular vesicles (EVs). Another example is the administration
of vesicles secreted by bone marrow MSCs (BM-MSCs), which reduced the influx of
bacteria and inflammatory cells and improved survival in a bacterial pneumonia mouse
model. This finding also demonstrates that the MSC-vesicles have the same protective
and immunoregulatory effects as their parent cells [95]. Moreover, conditioned medium
(CM) from adipose derived MSCs (ASCs) has shown exciting results in this connection.
ASCs expressed LL-37 at the mRNA level [96], and their CM inhibited the growth of S.
aureus, while in another study CM, in synergy with the antibiotic geneticin, decreased the
P. aeruginosa growth rate [16].

Mastitis is characterized by infection with the pathogen S. aureus, usually treated
with intramammary antibiotics. Encouraging reports have been recorded in the veterinary
field, mainly in the treatment of mastitis models using CM from bovine bone marrow and
adipose tissue MSCs [97]. In another study, CM treatment led to a lower rate of relapses
than with antibiotic treatment [98].

Again, canine BM-MSC-CM has shown in vitro activity against S. aureus biofilm
and quorum sensing in Gram-negative bacteria [99]. A solid recent in vitro and in vivo
study [87] reported that administration of MSCs as coadjuvant to a conventional class of
antibiotics, exerted a direct and indirect antimicrobial effect in a S. aureus mouse infection. It
was found that the combination of colistin antibiotic with MSCs improved the treatment of
K. Pneumoniae infection in a neutropenic mouse model [100]. Yoshitani et al. recently found
that the local administration of ASCs combined with ciprofloxacin antibiotic decreased
abscess formation and the bacterial burden in implant-associated osteomyelitis infection
by S. aureus [89]. Human umbilical cord blood MSCs were tolerated in septic mice, fewer
neutrophils were recruited to the liver and the MSCs mitigated the severity of LPS-induced
sepsis [89]. Similarly to BM-MSCs expressing CD362 (i.e., syndecan-2) [101] that were
effective attenuating E. coli–induced injury, the cells isolated from umbilical cord tissue and
expressing the same marker had additional effects comparable to antibiotic therapy and
rescued the mice from E. coli injury following bacteria instillation [102].

The antibacterial properties of MSCs are probably influenced by their origin. It is
suggested that Wharton Jelly Umbilical matrix (WJ-MSCs) [103] may be preferable in sepsis
modeling [104]. In vitro phenomena such as phagocytosis, secretion of oxygen free radicals,
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and antibacterial molecules were reported for ASCs when placed in contact with a large
panel of both Gram-negative and Gram-positive bacteria, whereas in vivo they reduced
the bacterial load of murine periopathogens [105]. The amniotic membrane homogenate
has antibacterial properties, and the amniotic membrane has the potential to be used
against multidrug-resistant bacteria [106]. Treatment with IL-1β of amniotic membrane, a
well-known source of perinatal stem cells [107,108], resulted in an augmented secretion
of AMPs including hBDs and LL-37 [109], which is important when it comes to using the
amniotic membrane as an antimicrobial scaffold in regenerative medicine.

The indirect antimicrobial effects of MSCs, partly mediated via Toll-like receptor (TLR)
signaling [110], proved to (I) modulate proinflammatory cytokine and chemokine induction;
(II) to release immunosuppressive factors that inhibit excessive proliferation and infiltration
of inflammatory T cells and Natural Killer (NK) cells; and (III) to increase phagocytic
activity of monocytes and neutrophils [111]. In addition to the inhibition of the NLRP3
inflammasome [112] by BM-MSCs [113], the ASCs [113] also reduced the activation of
NLRC4 inflammasome [114,115], thereby increasing the phagocytic ability of macrophages
induced by P. aeruginosa infection [116]. Treatment with MSCs diminished the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kb) in lung injury induced by
sepsis [117]. This pathway is linked to IL-1β and Toll-like receptor (TLR) signaling. In recent
years, IL-1β and a Toll-like receptor (TLR) agonist [118] were investigated as biological
factors by which to prime MSCs [118,119]. Augmented T-regulatory cell induction is a
consequence of MSC-induced TLR-activation [120], while the preconditioning approach in
an inflammatory milieu could facilitate the appearance of MSCs with anti-inflammatory
properties [121]. LPS preconditioning of MSCs modulated the immune response and
reduced inflammation after transplantation into septic mice [122]. The stimulation of
MSCs with TNF-α and IFN-γ led to the release of EVs with enhanced anti-inflammatory
properties [123]. On the other hand, MSC-EVs can induce macrophagic phagocytosis [124].

To sum up, there is growing evidence that, as part of the secretome, the extracellular
vesicles (EVs) will be the next effective therapeutic agents deriving from MSCs. Current
research concerning MSC-EVs [125,126] as anti-inflammatory [127] and pro-regenerative
agents for treating inflammation-related conditions has shown therapeutic potential in pre-
clinical studies as recently reviewed [128]. In most of the cases persistent infections led to
increased tissue damage associated with excessive duration of inflammation. Therefore, a
therapeutic approach combined with the antimicrobial, anti-inflammatory and regenerative
effect of stem cells would seem to be ideal in chronic infections.

3. Antibacterial Exosomes as Future Biomedicines

The definition of extracellular vesicles (EVs) involves multiple biological meanings.
Basically, they are subcellular components secreted by a paracellular mechanism, a hetero-
geneous group of spherical lipid double-layered nanostructures. The majority of the studies
in the literature define the diameter of exosomes as ranging from 40 nm up to 150–200 nm,
whereas the size of microvesicles (MVs) typically ranges from 100 nm up to 1 µm [129].
The EVs are recognized as significant mediators of intercellular communication that enable
inter-kingdom crosstalk, considering environmental Darwinian competition. Thanks to
the multiplicity of transferred molecular cargoes, EVs offer a simultaneous delivery of
various messengers to local or remote sites [130]. Note that they have been implicated
in many physiological cell activities such as stress response, gene transfer (via RNA or
DNA), delivery of virulence factors, pathogenicity, detoxification, and modulation of the
host immune response [131].

The shedding of microbial extracellular vesicles constitutes a universal conserved
mechanism for inter-kingdom and intra-kingdom (trans-kingdom exchange of biomate-
rials) communication [132] and can manipulate host immune response [133]. Successful
application in the biomedical field of outer membrane vesicles (OMVs), naturally secreted
by Gram-negative bacteria, has led to them being proposed as the basis for a promising
antigen delivery system and being found in ongoing vaccine development [134]. The
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advantage for a vaccine platform stems from OMV’s built-in adjuvanticity [135] and size-
dependent ability to induce both humoral and cell-mediated immune responses as well
as from the delivery of heterologous antigens by engineered OMVs [136] in a natural
conformation [137].

There has been speculation about the role of EVs in mediating cell protection [138]
and the host response to infection [128]. Recently, it was also reported that human EVs and
exosomes act as cellular decoys and are produced by cells for protection against bacterial
pathogens [139,140].

Recently, the study of exosomes moved from their pathophysiological role to a thera-
peutic use based on stem cells. The EVs can be innate biotherapeutics, while cellular pre-
conditioning is a promising method of advancing the production of therapeutic EVs [141].
The exosomes have been reported to be stable and to resist degradation in biological flu-
ids, protecting their content attaining the target [142]. Generally, since EVs display low
immunogenicity, are non-mutagenic [141], and have great physiochemical stability, they
will be promising protagonists of future nanomedicine [141]. Considering the therapeutic
effects exerted by MSCs, the development of an EV-based approach aspired to translate
their anti-inflammatory agents into a future nanosized treatment for inflammation-related
conditions [128].

EV purification from stem/progenitor cells most likely reflects the parental cell phe-
notype, thus inhibiting or enhancing the immune response [143] as well as influencing
infection and inflammation levels. Exosomes and microvesicles belonging to MSCs, collec-
tively known as MSC- extracellular vesicles (MSC-EV), have overlapping size ranges [76],
so the various methods employed to sort them have led to different results and non-
rigorous classification of the vesicles collected. In the last decade, the specific properties
and function of MSCs exosomes [144] has gained great appeal [145]. Especially EVs ob-
tained from MSCs seem to possess the advantage of having an intrinsic regenerative and
immunomodulatory potential [76,146]. Exosomes secreted by MSCs contain consistent
immunomodulatory mediators, including growth factors such as transforming growth
factor-β (TGF-β) and hepatic growth factor (HGF), anti-inflammatory chemokines such
as IL-10 and IL-1 receptor antagonist (IL-1Ra), as well as the typical aforementioned MSC
factors, i.e., IDO-1 and PGE2 [76]. The MSC-EVs have been shown to influence the bal-
ance in macrophage polarization, in particular by promoting the switch from M1 to M2
phenotype [147,148]. Stimulation of cells with interferon gamma (IFN-γ) and tumor necro-
sis factor alpha (TNF-α), caused MSC-EVs to be released [149]. Placenta MSCs-derived
exosomes show protective effect against senescence [150] while BM-derived exosomes have
been identified as senotherapeutics [151,152]. Among further advantages of MSC-EVs, first
there is their crossing of biological barriers, from the easiest plasmatic membrane to the
hardest blood–brain barrier [153], secondly their ease of preservation and storage. MSC
exosomes represent a sub-group of EVs that is present in the conditioned medium (CM) of
MSCs. As mentioned, sizes overlap between MVs and exosomes is overlapping, making
distinction and separation still unsolved issues. However, the components of CM can be
separated by centrifugation, filtration, polymer precipitation-based methodologies, ion
exchange chromatography, and size-exclusion chromatography. Rapid advancements of
microfluidic and lab-on-a-chip technologies will enable EV isolation [154], purification
and integration of physical and biochemical analyses [155] for the identification of rel-
evant MSC-EVs subpopulations. The starting material for purification of EVs may be
biological fluids such as plasma, urine and saliva, or cell culture medium for in vitro ex-
panded stem cells. Hence, to pave the way for an EV-based clinical approach, there is a
current need to improve the quantitative and qualitative methods for EV production and
standardization [77,156].

As a result, the combination of antibiotics, that usually interfere with key events in
pathogen replication, with bactericidal agents (e.g., AMPs), that directly attack bacterial
structures such as the membrane, and finally with immunomodulatory agents, comprised
in distinctive patterns of MSC-derived EVs, emerges as the leading strategy to coun-
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teract chronic and severe bacterial infections. Owing to the immunomodulatory and
anti-inflammatory capacity of MSCs [127], the exosomes secreted by these cells given
certain physiological conditions or specific priming (preconditioning) could be enlisted as
complementary anti-bacterial agents, in substitution for or combination with antibiotics.
EVs deriving from MSCs, conditioned with Toll-like receptor TLR3 agonist, showed en-
hanced antimicrobial effect compared with those from unconditioned MSCs [141]. Similar
results were obtained by Park et al. who observed increased antimicrobial activity by
MSC-MVs in an ex vivo perfused human lung suffering from bacterial pneumonia [157].
LPS stimulation of MSC-EVs inhibited the LPS-dependent NF-κB pathway, thereafter,
regulating macrophage plasticity [158]. IL-1β-conditioned MSCs had EVs capable of at-
tenuating murine sepsis by evoking an anti-inflammatory M2 response [159]. The latest
insights suggest that CD14 is associated with the molecular signature of antimicrobial MSC
type and the overexpression of CD14 can create a condition responding better to future
bacterial challenge [160]. After conditioning of BM MSCs with staphylococcal enterotoxin
B, the antibacterial peptides Hepcidin and LL-37 and anti-inflammatory cytokines proved
up-regulated, E. coli growth in vitro has been reduced more than naive CM, while in vivo
there was an improved bacterial clearance was found in septic mice [161].

We would like to highlight the prospective potential of MSC-derived exosomes [75]
as a drug carrier [162] with their endogenous capacity for immune system modulation, as
they contact different cell types, by minimizing the proteolytic degradation and avoiding
the limitation of pure preparations of AMPs [37]. Thus, MSC-exosomes may counteract
microbial pathogenesis in a more physiological way. Despite the advantages of liposomes
in therapeutic delivery, there are many hurdles, for example their rapid clearance. Impor-
tantly, EVs are natural nano-sized carriers [138], though holding greater potential than
liposomes in the drug delivery research areas [163]. In comparison to the liposomes, which
usually elicit complement system activation, EVs also present an endogenous loading
according to the specific source of their biogenesis. MSC-exosomes could hold the homing
ability of native MSCs toward an inflammation site [164]. Their natural origin will confer a
biocompatible profile while the specific protein pattern on the surface of MSC-exosomes
will favor innate organotropic homing [165]. Being nanomaterials, the exosomes from
MSCs can be delivered by biomaterials, promoting broader therapeutic effects in regener-
ation approaches or in vivo controlled delivery. Ongoing clinical trials are assessing the
administration of MSC-exosomes in COVID-19 patients [166].

To sum up, the EVs, especially exosomes, can serve as carriers of nature-inspired
synthetic antimicrobial peptides, hopefully enhancing the therapeutic effects and limiting
undesirable side effects. EVs obtained from cultured MSCs will add an immunomodulatory
and regenerative therapeutic potential.

4. Microfluidic Tools for Biophysical Selection of MSCs

To develop proper and safe new MSC-based therapeutic strategies against infectious
disease and sepsis, the choice of source together with a well-characterized MSC population
need to be addressed. In addition, the use of cellular products such as extracellular vesicles
(EVs) as a therapeutic alternative still requires extensive study. Technological approaches
to improve the physiological testing conditions facilitate innovative characterization of
MSCs, thus contributing the requested refinement of the quality control of the starting
material used to produce the cell-free therapeutic material [167]. Microfluidics analysis
can investigate cell phenotypes whilst maintaining their physiological conditions. It is an
expanding field that has already led to successful development of point-of-care diagnostic
portable systems and platforms, lab-on-a-chip for drug discovery and screening, basic
life science research tools, and sophisticated analytical devices. In the future, microfluidic
technology seems likely to make significantly advances in the production and quality
control of size-controlled EVs as promising drug delivery systems [168]; it will be used in a
greater number of microbial studies and in combating infectious diseases [169].
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The use of fluidics in MSC research is not new: cells and in particular MSCs are
screened by flow cytometers or selected by a fluorescence-activated cell sorter (FACS)
following their predictive surface antigen expression pattern [170]. To define an MSC,
cells need to positively express putative mesenchymal markers and be negative for the
hematopoietic ones. However, no specific panel of markers exists by which to identify the
ideal MSCs because many are co-expressed by different types of cells. In addition, antibod-
ies add significant costs to cell production and set back process of the translating sorting
techniques to clinical settings [171]. MSC exosomes express their parental cell markers [172]
and could be enriched by immunomodulatory components, such as TGF-β [173]. Like
MSCs, the exosomes have a characteristic pattern of tetraspannin proteins expressed on
their lipid layer, such as CD9, CD63, and CD81 [174]; antibody detection enables a sensitive
identification of exosomes suitable for enrichment and excluding phenotypically different
contaminants. Immuno-tags are also working in parallel with size-exclusion of apoptotic
bodies (vesicles) or unwanted types of Evs. In the hope of increasing high throughput and
sensitivity, microfluidics-based technologies have been gradually employed in strategies
for the isolation and analysis of Evs [154]. However, some label-free / tag-less methods
are needed for separating and isolating cells possessing distinctive and desired properties
which are essential for the clinical translation. Many biochemical techniques exploit the
physical properties of the cells, such as sedimentation, precipitation, and flocculation,
which are the best known. Today, interest has revived in the physical properties thanks
to new methods focusing on the biomechanical aspect of tissue engineering, the stem cell
niche remodeling and the extracellular matrix signaling. The cellular microenvironment
delineates the interacting player in the physical forces that govern cells state and behavior.
It is fundamental to remember that the sum of the physical characteristics correlates to a
distinct phenotype, providing a signature for the different therapeutic activities. The differ-
ences may depend on the unique features of the stem cell sources and the variation in their
biochemical content; for this reason, the current aim is to find a combination of biophysical
and morphological properties such as to reveal an advantageous phenotype. This would
be enticing not only for primary single-cell suspension, immediately after tissue isolation,
but also for cells growing in physiological-like 3D-culture [175], such as spheroids, which
have proved indisputably these last few years to mirroring of the in vivo conditions.

Some emerging microfluidics-based technologies show the potential for a biophysical
characterization of stem cells and their further selection thereof. Devices incorporating
different fluidic technologies all tend to measure the biophysical cell parameters. The
conventional methods of studying cell heterogeneity, such as flow cytometry or immunoflu-
orescence microscopy require cell manipulation or even cell fixation. In the most evident
example of physical parameter analysis, forward versus side scatter, using the flow cytome-
ter does not yield information about the cell state and physical details. On the other hand,
technologies based on fluidics [176] have allowed the measurement of morphologically
distinctive patterns and physical characteristics but these have not yet been defined yet as
a signal of cellular processes. Cell density, which is usually not analyzed, may be included
among such underrated characteristics. Sedimentation is not useful for rare populations
like stem cells and is difficult to control. The purity of density gradient centrifugation is
low and the knowledge of the density of target cell type is a requirement [177]. Cell density
correlates with cellular content, especially the cell protein fraction, while in multicellular
objects it reflects the complexity of the intercellular junctions and the extracellular matrix.
Density and other biometric factors, such as the surface curvature and rigidity, bear a
strict relation to the force of gravity. By exploiting this universal force, heterogeneous
cellular samples, including stem cell populations, can be distinguished and selected, with
the support of a couple of innovative microfluidic devices.

Celector© technology is based on the field flow fractionation (FFF) assisted by the
earth’s gravity which works as a separating external field [178]. This device, designed
specifically for cell separation, can be defined as a cellular chromatograph. The cells
from raw ex vivo samples can be analyzed and separated in an isotonic fluid, meanwhile
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performing non-invasive and single-cell multi-biometric quantification. Label-free cell
characterization avoids signaling cascade activation, thus preserving the stemness in native
cells. Cells possessing different physical characteristics may express a different secretoma
that could be encapsulated in the EV formation. The instrument has proven to be able
to identify and sort sub-populations of amniotic fluid stem cells, while the cells collected
from each fraction show a different transcriptome expression profile [179]. It will be
interesting to assign a specific fingerprint for each tissue source and investigate the MSCs
biophysical parameters of the fraction better expressing antimicrobial features. Through
such technology, it would be possible to compare a known MSC anti-microbial fingerprint
with new cell samples, deriving from the same donor but from later passages. Hence, the
added value of the instrument is the possibility firstly to have a quality control check on
the state of the cells, identifying the right subpopulation from complex or even expanded
cells, and subsequently to isolate their secretoma. Then, after demonstrating the best
antimicrobial effect in downstream analysis, there comes the enrichment and subsequent
expansion of such anti-microbial cell phenotypes. Microfluidic separation may have the
potential to check the success rate of priming strategies on MSCs, for anti-microbial and
anti-inflammatory purposes. In addition, monitoring after conditioning with microbial
substances or cytokines may unravel differential binding toward different tissue sources.
The MSCs can be exposed to bacterial virulence factors and processed by Celector® in order
to detect resistant cell fractions endowed with the potential to counteract the infection.
Dead cells and debris have shorter retention times than the other cells, eluting in the first
minute of the analysis, so that the likely healthy fractions can be detected and collection of
them guaranteed. In summary, there will be many opportunities to use label-free field flow
fractionation of MSCs in regenerative medicine, cell therapy and infection disease research.

From another angle, there is growing consent demands for the integration of microflu-
idic tools in 3D cell cultures. Both organoids and spheroids can be formed by primary
cells and stem cells. The combination of these 3D cell cultures with microfluidic systems,
such as a sophisticated organ-on-a-chip [180] will develop more and more relevant in vitro
pre-clinical models [181] to study human pathology, accelerate discovery and screening of
new drugs, or biologics such as new host defense peptides [45], and evaluate treatments.
The limitation of flow cytometric analysis is the inevitable disruption of spatial spheroid
organization by cell dissociation and loss of their whole properties as unique multicellular
elements. It seems that scientists still lack methods for physical cytometry and standard-
ization of 3D cellular heterogeneous models. The presence of automated sample tracking
would be an advantage as well as a requisite for high-throughput technology. Secretion
of trophic factors is favored in 3D cell culture. By establishing spheroid culture, more
cells can be obtained than by monolayer cultures [182], therefore secreted factors amount
increases together with an enhancement in anti-inflammatory factors production [183]. In
stem cell spheroids the relative hypoxia located at the center of the sphere has a critical
role [184] in the maintenance of stemness and for clinical application of MSCs [185]. Protein
synthesis and cell volume increase can be uncoupled [186]. Minimal changes in single
cell density suggest variations in cellular processes and contents that are hard to detect by
mass or volume measurements. For example, cell senescence is accompanied by changes
in cell density [186]. It can be conjectured that other cellular processes important for stem
cell functions will likewise affect the cell density value. Indeed, red blood cells infected
by P. falciparum and non-infected healthy cells prove distinguishable by comparing the
distribution of their density instead of their mass [187].

In the past, one method to measure single-cell density has involved a dual suspended
microchannel resonator device [188]. Yet, the density of a cell aggregate is a quantitative
indicator of cells compacting themselves. The degree of compactness of cell aggregates like
spheroids will reveal the collective variations in the single cells comprised in them, which
are connected to growth and cell cycle changes, modification of the inner cellular composi-
tion, but will also redirect to the number of cells and their intercellular connection network.
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Within the panorama of microfluidic devices for studying 3D models, we should
mention the fluidic network of the W8© instrument, where single spheroids fall freely
in a specifically conceived analysis flow-channel dedicated to analyzing their terminal
velocity [189]. Thanks to this analysis the values of weight, size, and, importantly, mass
density of the 3D biological sample are measured. Mass density can be a valuable indicator
of spheroid state and could be useful in following up samples with specific properties or
distinguishing between spheroid populations that have very similar mass or volume. Thus,
the monitoring of MSC spheroids would benefit by such density analysis so as to maintain
the quality of the antimicrobial or immunomodulatory populations, which would be
instantly characterized upon isolation and even expanded in vitro in 3D culture conditions.
In addition, such technology could be useful in checking the phenotype of pre-conditioned
MSC cultures forming significant anti-microbial and immunomodulatory spheroids [190],
thus encouraging standardization of 3D cell cultures [191] for future clinical application.
The loss of density in a spheroid phenotype derives from damage at the intercellular level
and cell-matrix level as well as alteration of junctional complexes. Since different biological
factors, such as toxins and inflammatory chemokines, could have long-term unexpected
consequences for the spheroid state, the density would be a valuable parameter to ascertain
for early control of the optimal conditions needed for efficient MSC-priming without
affecting cell health. Considering the organoid-based insights and promise of organoids
as a tool advancing SARS-CoV-2 research [192] recent findings of MSC-based clinical
trials designed for COVID-19 treatment [60], we have a great opportunity to understand
the potential of this technology in characterizing MSC spheroids and profiling them for
anti-microbial quality ranking.

As both a technical limitation and an operative advantage, the above-described
microfluidic-based technologies need their own imaging-aided software. Importantly,
they both enable the sorting of biological samples and in this manner can provide some
new label-free approaches [193] for the characterization of stem cells at a higher physi-
ological grade. As Figure 1 schematically shows, Celector© and W8© technologies are
cooperative fluidic platforms that can be applied to both 2D and 3D cell culture condi-
tions. They may represent tools to improve the profiling and quality control of stem cells
(Figure 1), before to proceed with any subsequent antibiotic-free products manufacturing.
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5. Concluding Remarks

By 2050 the global antimicrobial resistance threat will lead to more deaths from bac-
terial infections than cancer [194]. New approaches for the prevention of implant-related
resistant infection will involve elective transplantable cells having “medicinal effect”, such
as MSCs [195]. The current expansion of multidrug-resistant pathogens has highlighted the
demand for host-protecting molecules, and one of the candidates for novel anti-infective
therapeutics is the AMP [46]. As these molecules possess a wide range of bacterial suscepti-
bility and complementary immunomodulatory functions beyond microbicidal activity [33],
AMPs and their native container vesicles will rapidly gain attention thanks to their emerg-
ing clinical potential. Moreover, MSCs and their microvesicles/exosomes have proven their
immunomodulatory and anti-bactericidal ability in many preclinical studies. The innate
ability of MSC derived exosomes to deliver their cargo to the damaged tissue forms the ba-
sis of their innovative application as a drug delivery system in infection therapy. Pathogenic
bacterium damage could indeed be targeted by natural delivering nanomaterials [51], for
instance by the combination of mammalian microvesicles and exosomes coupled with
selected natural AMPs or synthetically optimized peptidomimetics [54,196,197], in substi-
tution for or synergy with classical antibiotics.

Nevertheless, optimization of a homogeneous cell preparation from which to derive
therapeutic cell-free components, without altering the cell phenotype and characteristics,
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is still a challenging issue. By way of support for better characterization of MSCs—cells
capable of intriguing antibacterial effects [84]—novel cytometric technologies can signally
contribute to meeting our urgent need for antibiotic-free therapies (Figure 1).

In conclusion, MSCs and their secretome hold strong potential in the quest for alterna-
tive/adjunctive therapies to MDR bacteria in combination with antibiotic solution [198,199]
and biofilm [111], which are the reference therapeutic approaches. In this perspective, new
methods of biologic quality assessment [200] will be an essential step prior to the clinical
use and for exploring the role of EVs as anti-microbial agents.
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