Supporting Information for

Atomically Precise Ni-Pd Alloy Carbonyl Nanoclusters: Synthesis, Total Structure, Electrochemistry, Spectroelectrochemistry and Electrochemical Impedance Spectroscopy

Cristiana Cesari,^a Tiziana Funaioli,^b* Beatrice Berti,^a Cristina Femoni,^a Maria Carmela Iapalucci,^a Federico Maria Vivaldi ^b and Stefano Zacchini^a* ^a Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna. Italy. E-mail: stefano.zacchini@unibo.it ^b Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy. E-mail: tiziana.funaioli@unipi.it

	Page/s
Molecular structure of $[HNi_{37-x}Pd_{7+x}(CO)_{48}]^{5-}$ (x = 0.53)	S2-S3
Experimental IR spectra and CV responses	S4-S13
X-Ray crystallographic data and details	S14-S16
References	S17

(a) The molecular structure of the first independent molecule of $[HNi_{37-x}Pd_{7+x}(CO)_{48}]^{5-}$ (x = 0.53) and (b) its M₄₄ metal core. Two views are reported (green, Ni; purple, Pt, yellow, Ni/Pd \approx 42:58; blue, Ni/Pd \approx 88-92:12-8; grey, C; red, O).

(a) The molecular structure of the second independent molecule of $[HNi_{37-x}Pd_{7+x}(CO)_{48}]^{5-}$ (x = 0.53) and (b) its M₄₄ metal core. Two views are reported (green, Ni; purple, Pt, yellow, Ni/Pd \approx 51:49; blue, Ni/Pd \approx 83:17; grey, C; red, O).

IR spectral changes of a CH₃CN solution 1^{6-} recorded in an OTTLE cell during the progressive decrease of the potential from -0.54 to -0.84 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Figure S4

IR spectral changes of a CH₃CN solution 1^{6-} recorded in an OTTLE cell during the progressive decrease of the potential from -0.84 to -1.26 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

IR spectral changes of a CH₃CN solution 1^{6-} recorded in an OTTLE cell during the progressive increase of the potential from -1.26 to -1.5 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Figure S6

IR spectral changes of a CH₃CN solution 1^{6-} recorded in an OTTLE cell during the progressive increase of the potential from -0.54 to 0.00 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Differential pulse voltammogram recorded at CG electrode in CH_3CN solution of 3^{5-} . [NⁿBu₄][PF₆]

(0.1 mol dm⁻³) supporting electrolyte. Starred peaks are attributable to unknown impurities.

Figure S8

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive decrease of the potential from -0.21 to -0.76 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive decrease of the potential from -0.76 to -1.20 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted

Figure S10

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive decrease of the potential from -1.20 to -1.60 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive decrease of the potential from -1.60 to -2.00 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Figure S12

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive decrease of the potential from -2.00 to -2.20 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

IR spectral changes of a CH₃CN solution 3^{5-} recorded in an OTTLE cell during the progressive increase of the potential from -0.21 to 0.10 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

Figure S14

IR spectra of a CH₃CN solution **3**^{5–} recorded in an OTTLE cell before (black line) and after (red line) the cyclic swept of the potential from -0.21 to 0.10 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted

CV response of 3^{5-} (red line) and 2^{6-} (blue line) at a GC electrode in CH₃CN solution of $[N^n Bu_4][PF_6]$ (0.1 mol dm⁻³) supporting electrolyte. Scan rate: 0.2 V s⁻¹.

Figure S16

IR spectral changes of a CH₃CN solution 2⁶⁻ recorded in an OTTLE cell during the progressive increase of the potential from -0.6 to -0.3 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted. A reference spectrum, collected before the application of an oxidant potential, is used to calculate the differential absorbance spectra reported

in the top of the figure.

IR spectral changes of a CH₃CN solution 2^{6-} recorded in an OTTLE cell during the progressive decrease of the potential from -0.6 to -1.2 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and

the supporting electrolyte have been subtracted. A reference spectrum, collected before the application of an reducing potential, is used to calculate the differential absorbance spectra reported in the top of the figure.

Figure S18

IR spectral changes of a CH₃CN solution 2^{6-} recorded in an OTTLE cell during the progressive decrease of the potential from -1.2 to -1.5 V vs. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and

the supporting electrolyte have been subtracted. To calculate the differential absorbance spectra reported in the top of the figure, as reference spectrum, was used the first one of the series, collected

at the potential of -1.2 V.

S11

IR spectral changes of a CH₃CN solution 2^{6-} recorded in an OTTLE cell during the progressive decrease of the potential from -1.5 to -1.8 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted. To calculate the differential absorbance spectra reported in the top of the figure, as reference spectrum, was used the first one of the series, collected at the potential of -1.5 V.

Figure S20

IR spectra of a CH₃CN solution 2⁶⁻ recorded in an OTTLE cell before (black line) and after (red line) the cyclic swept of the potential from -0.3 to -1.9 V *vs*. Ag pseudo-reference electrode (scan rate 1 mV s⁻¹). [NⁿBu₄][PF₆] (0.1 mol dm⁻³) as the supporting electrolyte. The absorptions of the solvent and the supporting electrolyte have been subtracted.

CV response of $[Pt_{19}(CO)_{22}]^{4-}$ at a GC (blue line) and at a Pt (red line) electrodes in CH₃CN solution of $[N^nBu_4][PF_6]$ (0.1 mol dm⁻³) supporting electrolyte. Scan rate: 0.1 V s⁻¹.

X-ray Crystallographic Study.

Crystal data and collection details for $[NBu_4]_5[HNi_{37-x}Pd_{7+x}(CO)_{48}] \cdot 2CH_3COCH_3 \cdot solv (x = 0.53),$ $[NBu_4]_6[Ni_{37-x}Pd_{7+x}(CO)_{48}] \cdot 6CH_3CN$ (x = 0.69), $[NMe_4]_2[NMe_3CH_2Ph]_4[Ni_{36-x}Pd_{5+x}(CO)_{46}] \cdot 3CH_3CN \cdot solv (x = 0.41)$, are reported in Table S1. The diffraction experiments were carried out on a Bruker APEX II diffractometer equipped with a PHOTON100 detector using Mo–K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).¹ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using $F^{2,2}$ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters, unless otherwise stated.

 $[NBu_4]_5[HNi_{37-x}Pd_{7+x}(CO)_{48}] \cdot 2CH_3COCH_3 \cdot solv$ (x = 0.53): The asymmetric unit of the unit cell contains two halves of two cluster anions (located on inversion centres), five $[NBu_4]^+$ cations and two CH₃COCH₃ molecules located on general positions. One CH₃COCH₃ molecule is disordered and, thus, it has been split into two positions and refined with one occupancy parameter per disordered group. The unit cell contains an additional total potential solvent accessible void of 478 $Å^3$ (ca. 5% of the Cell Volume), which is likely to be occupied by further highly disordered CH₃COCH₃ molecules. These voids have been treated using the SQUEEZE routine of PLATON.³ The positions occupied by M(2), M(8), M(11), M(18), M(31) and M(34) are disordered Ni/Pd. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(2) = 0.91(2) Ni and 0.09(2) Pd; M(8) =0.42(2) Ni and 0.58(2) Pd; M(11) = 0.88(2) Ni and 0.12(2) Pd; M(18) = 0.92(2) Ni and 0.08(2) Pd; M(31) = 0.83(2) Ni and 0.17(2) Pd; M(34) = 0.51(2) Ni and 0.49(2) Pd. All C, O and N atoms have been restrained to isotropic like behaviour (ISOR line in SHELXL, s.u. 0.01). Similar U parameter restraints have been applied to the $[NBu_4]^+$ cations and CH₃COCH₃ molecules (SIMU line in SHELXL, s.u. 0.02). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C-N and 1.53 Å for C–C in $[NBu_4]^+$; 1.24 Å for C–O and 1.51 Å for C–C in CH₃COCH₃.

[NBu₄]₆[Ni_{37-x}Pd_{7+x}(CO)₄₈]·6CH₃CN (x = 0.69): The asymmetric unit of the unit cell contains one sixth of a cluster anion (located on $\overline{3}$), one [NBu₄]⁺ cation and one CH₃CN molecule located on general positions. The CH₃CN molecule is disordered and, thus, it has been split into two positions and refined with one occupancy parameter per disordered group. The positions occupied by M(2) and M(3) are disordered Ni/Pd. These have been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factors: M(2) = 0.328(17) Ni and 0.672(17) Pd; M(3) = 0.906(11) Ni and 0.094(11) Pd. The atoms of the [NBu₄]⁺ cation have been restrained to have similar *U* parameters (SIMU line in SHELXL, s.u. 0.01) and

isotropic like behavior (ISOR line in SHELXL, s.u. 0.01). Restraints to bond distances were applied as follow (s.u. 0.01): 1.47 Å for C–N and 1.53 Å for C–C in [NBu₄]⁺.

 $[NMe_4]_2[NMe_3CH_2Ph]_4[Ni_{36-x}Pd_{5+x}(CO)_{46}]\cdot 3CH_3CN\cdot solv$ (x = 0.41): The asymmetric unit of the unit cell contains one third of a cluster anion (located on 3), one [NMe₃CH₂Ph]⁺ cation (located on a general position in proximity of 3) disordered over two positions with occupancy factors 0.66667 and 0.33333, one third of a disordered [NMe₃CH₂Ph]⁺/[NMe₄]⁺ cation located on 3, two thirds of a $[NMe_4]^+$ cation disordered over three equally populated symmetry related positions (by 6₃), and one CH₃CN molecule located on a general position. The unit cell contains an additional total potential solvent accessible void of 337 Å³ (*ca.* 5% of the Cell Volume), which is likely to be occupied by further highly disordered CH₃CN molecules. These voids have been treated using the SQUEEZE routine of PLATON.³ The position occupied by M(3) is disordered Ni/Pd. This has been refined applying dummy atoms constraints (EADP and EXYZ lines in SHLEXL) resulting in the following refined occupancy factor: M(3) = 0.526(18) Ni and 0.474(18) Pd. The crystals appear to be racemically twinned with refined batch factor 0.08(4). Similar U parameter restraints have been applied to the $[NMe_3CH_2Ph]^+$ and $[NMe_4]^+$ cations and CH₃CN molecules (SIMU line in SHELXL, s.u. 0.02). The atoms of the Ph-rings of [NMe₃CH₂Ph]⁺ have been constrained to fit regular hexagons (AFIX 66 line in SHELXL). Restraints to bond distances were applied as follow (s.u. 0.02): 1.47 Å for C–N and 1.51 Å for C–C in [NMe₃CH₂Ph]⁺; 1.47 Å for C–N in [NMe₄]⁺; 1.14 Å for C–N and 1.47 Å for C–C in CH₃CN.

Table S1

 $Crystal \ data \ and \ experimental \ details \ for \ [NBu_4]_5 [HNi_{37-x}Pd_{7+x}(CO)_{48}] \cdot 2CH_3 COCH_3 \cdot solv \ (x=1,2,2,3,3) \cdot 2CH_3 COCH_3 \cdot solv \ (x=1,2,3,3) \cdot 2CH_3 COCH_3 \cdot solv \ (x=1,2,3,3) \cdot 2CH_3 \cdot sol$ 0.53), $[NBu_4]_6[Ni_{37-x}Pd_{7+x}(CO)_{48}] \cdot 6CH_3CN$ (x = 0.69), $[NMe_4]_2[NMe_3CH_2Ph]_4[Ni_{36-x}Pd_{7+x}(CO)_{48}] \cdot 6CH_3CN$ (x = 0.69), $[NMe_4]_2[NMe_4]_3CN$ (x = 0.69), $[NMe_4]_3[NE_4]_3CN$ (x = 0.69), $[NMe_4]_3[NE_4]_3CN$ (x = 0.69), $[NMe_4]_3[NE_4]_3CN$ (x = 0.69), $[NMe_4]_3CN$ (x = 0.69), $[NMe_4]$

	[NBu ₄] ₅ [HNi ₃₇ . _x Pd _{7+x} (CO) ₄₈]·	[NBu ₄] ₆ [Ni ₃₇ . _x Pd _{7+x} (CO) ₄₈]·6CH ₃ CN (x	[NMe ₄] ₂ [NMe ₃ CH ₂ Ph] ₄ [Ni ₃₆₋ xPd _{5+x} (CO) ₄₆]·3CH ₃ CN·solv
	$2CH_3COCH_3 \cdot solv (x = 0.53)$	= 0.69)	(x = 0.41)
Formula	$C_{134}H_{192}N_5Ni_{36.47}O_{50}Pd_{7.53}$	$C_{156}H_{234}N_{12}Ni_{36,31}O_{48}Pd_{7,69}$	$C_{100}H_{97}N_9Ni_{35.58}O_{46}Pd_{5.41}$
Fw	5615.50	5995.51	4826.21
Т, К	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073
Crystal system	Triclinic	Trigonal	Hexagonal
Space Group	PĪ	R3	<i>P</i> 6 ₃
a, Å	19.007(3)	29.0227(14)	17.7999(19)
b, Å	20.225(3)	29.0227(14)	17.7999(19)
c, Å	23.265(3)	20.1792(11)	26.648(3)
α, °	90.000(3)	90	90
β, °	88.197(4)	90	90
γ, °	88.739(4)	120	120
Cell Volume, Å ³	8937(2)	14720.1(16)	7311.9(17)
Z	2	3	2
D_c , g cm ⁻³	2.087	2.029	2.192
μ , mm ⁻¹	4.540	4.141	5.173
F(000)	5597	9025	4747
Crystal size, mm	0.21×0.18×0.12	0.16×0.13×0.11	0.18×0.16×0.12
θ limits, °	0.876–25.000	1.909–25.097	1.526-25.990
	$-22 \le h \le 22$	$-34 \le h \le 34$	$-21 \le h \le 21$
Index ranges	$-24 \le k \le 24$	$-34 \le k \le 34$	$-21 \le k \le 21$
	-27 ≤ 1 ≤27	$-24 \le 1 \le 24$	-32≤1≤32
Reflections collected	88629	56876	88935
Independent reflections	30951 [R _{int} = 0.1020]	5781 [R _{int} = 0.0707]	9511 [R _{int} = 0.0957]
Completeness to θ max	98.3%	99.0%	99.8%
Data / restraints /	30951 / 1535 / 1996	5781 / 272 / 417	9511 / 451 / 663
parameters			
Goodness on fit on F ²	1.040	1.060	1.078
$R_1 \ (I > 2\sigma(I))$	0.1236	0.0791	0.0588
wR ₂ (all data)	0.3279	0.1757	0.1347
Largest diff. peak and hole, $e \text{ Å}^{-3}$	4.856 / -2.438	2.883 / -1.175	1.614 / -1.184

$$_{x}Pd_{5+x}(CO)_{46}]$$
•3CH₃CN•solv (x = 0.41).

References

- 1. Sheldrick, G. M. SADABS-2008/1 Bruker AXS Area Detector Scaling and Absorption Correction; Bruker AXS: Madison, WI, 2008.
- 2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3-8.
- (a) Spek, A. L. Single-crystal structure validation with the program *PLATON. J. Appl. Cryst.* 2003, *36*, 7-13. (b) Spek, A. L. Structure validation in chemical crystallography. *Acta Cryst.* 2009, *D65*, 148-155.