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Abstract
Passes are undoubtedly the more frequent events in football and other team sports. 
Passing networks and their structural features can be useful to evaluate the style of 
play in terms of passing behavior, analyzing and quantifying interactions among 
players. The present paper aims to show how information retrieved from passing 
networks can have a relevant impact on predicting the match outcome. In particular, 
we focus on modeling both the scored goals by two competing teams and the goal 
difference between them. With this purpose, we fit these outcomes using Bayesian 
hierarchical models, including both in-match and network-based covariates to cover 
many aspects of the offensive actions on the pitch. Furthermore, we review and 
compare different approaches to include covariates in modeling football outcomes. 
The presented methodology is applied to a real dataset containing information on 
125 matches of the 2016–2017 UEFA Champions League, involving 32 among the 
best European teams. From our results, shots on target, corners, and such passing 
network indicators are the main determinants of the considered football outcomes.

Keywords  Network intensity · Poisson regression · Regularized horseshoe prior · 
Skellam distribution · UEFA Champions League

 *	 Riccardo Ievoli 
	 riccardo.ievoli@unife.it

	 Aldo Gardini 
	 aldo.gardini2@unibo.it

	 Lucio Palazzo 
	 lucio.palazzo@unina.it

1	 Department of Economics and Management, University of Ferrara, Ferrara, Italy
2	 Department of Statistical Sciences “P. Fortunati”, University of Bologna, Bologna, Italy
3	 Department of Political Sciences, University of Naples Federico II, Napoli, Italy

http://orcid.org/0000-0001-9489-3564
http://orcid.org/0000-0002-2164-5815
http://orcid.org/0000-0001-7529-4689
http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-021-00411-x&domain=pdf


	 R. Ievoli et al.

1 3

1  Introduction

New technologies, such as wearable devices, multiple-camera player trackers, and 
drone-based analysis of training sessions, are increasing the ways to retrieve data 
and provide new opportunities in team sports analysis. The statistical analysis of 
collected data recently spread in real applications concerning team sports and 
football especially (Albert et al. 2005; Memmert 2019).

In this applied field, most statistical methods focus on modeling football out-
comes, such as the team winning, exact match result, scored goals, and ball pos-
session. In fact, statistical models are useful to assess the main determinants that 
explain and/or predict football outcomes. In this sense, in-match indicators, polit-
ical-economic factors, or socio-geographic features are often used as explanatory 
variables.

According to Egidi and Torelli (2020), two main types of statistical models 
can be distinguished in this context: result-based and goal-based. The first type 
is based on a multinomial outcome, typically constituted by the following catego-
ries: home win, draw, and home loss (labeled as 1, X, 2). The second one consid-
ers the number of goals scored by each competing team. For clarity, we propose 
to distinguish a further family of models characterized by the goal difference as 
the response variable. We decide to denote them as difference-based models, even 
if, sometimes, they are included among the goal-based models. In this paper, the 
difference-based and the goal-based approaches are considered.

Goal-based models are usually defined assuming a probability distribution 
suitable for counts to model the response. From the seminal work by Maher 
(1982), the use of conditionally independent Poisson distributions represents the 
default choice in modeling the number of scored goals by each team in a match. 
Some notable extensions are the works by Dixon and Coles (1997) and Rue and 
Salvesen (2000) that take into account changes in team conditions usually occur-
ring along the season. Karlis and Ntzoufras (2003) proposed to include the pos-
sibility that scored goals are positively correlated within matches, specifying a 
bivariate Poisson distribution. On the other hand, the work by Karlis and Ntzou-
fras (2009) can be denoted as the first example of a difference-based model: the 
authors assumed a Skellam distribution to fit the goals-difference between two 
teams. Many of these fundamental contributions belong to the Bayesian frame-
work, the inferential approach considered in this paper. Among the others, it is 
worth citing Baio and Blangiardo (2010), Egidi and Torelli (2020), and Mander-
son et al. (2018) as empirical applications based on Bayesian inference.

Besides individual skills of players, tactics and team strategies are key ele-
ments for succeeding in football, and appropriate methodology to deal with these 
elements is still under debate. Furthermore, network metrics are recently becom-
ing more popular in football, as highlighted in Pena and Touchette (2012) and 
Clemente et al. (2015). In particular, network analysis is applied to football pass-
ing distributions: a relevant contribution is Grund (2012), and other interesting 
applications can be found in Gonçalves et al. (2017), Mclean et al. (2018), Cle-
mente et  al. (2020), and Ichinose et  al. (2021).This approach is also exploited 
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in other team sports (see, e.g., Braham and Small 2018, for an application to 
Australian football). Passing networks present some advantages: they help to 
detect patterns or strong/weak ties among players and their positions in the line-
up. They also provide valuable evidence of players’ skills, tactics, and connec-
tions between positions. Unfortunately, the data at the individual level, required 
to generate passing networks, are open access only for the major international 
competitions.

The first main contribution of the paper is to show the potential of Bayesian hier-
archical models in either managing covariates and finding the determinants of foot-
ball outcome. In fact, the flexibility of Bayesian models and the usage of appealing 
computational tools allow us to review and discuss the practical meaning of dif-
ferent model specifications, considering diverse dependence relationships between 
the response and the covariates. Several probabilistic programming languages can 
be employed in a Bayesian framework to draw samples from the posterior distri-
butions of the parameters. The models presented in this work are estimated using 
Stan (Stan Development Team 2020), and the code is available as supplemen-
tary material. We aim to carefully compare several expressions for the linear pre-
dictors, assessing their potential drawbacks on real data, in order to advise applied 
researchers and experts. Regularized horseshoe priors (Piironen and Vehtari 2017) 
are assumed for the regression coefficients to control their posterior variance, avoid 
multicollinearity, and limit the occurrence of over-fitting issues that might lead to 
poor out-of-sample performances. Regularized estimates of the coefficients were 
considered in recent works (Groll et al. 2015; Schauberger et al. 2018) from a pure 
frequentist perspective.

A further aim of this work is to exploit performance indicators derived from 
passing networks in the analysis football outcomes, including network indices as 
explanatory variables. We decide to take advantage of this information with other 
in-match variables to explore their interplay in determining the game outcome. In 
fact, passes represent more than 80% of the events in football (Cintia et al. 2015), 
and they convey crucial information on the strength of a team. To summarize, we 
include network indices with team-level control variables (usually free available 
match statistics) to suggest to football insiders which factors are the most important 
in determining the outcome on the pitch.

To the best of our knowledge, none of the previously cited works takes into 
account the strength of relationships among players, neither the type of interac-
tions among them. Exceptions can be found in Grund (2012), which does not use 
in-match covariates, and, more recently, in Diquigiovanni and Scarpa (2019), which 
exploited network-based clusters to model the scored goals. Furthermore, Ievoli 
et al. (2021) used network indicators to model the probability of winning the game 
for a team. From a slightly different perspective, Carpita et al. (2019) included the a 
priori evaluation of players’ abilities (involving passing skills) in predicting the win, 
without using passing network information.

The rest of the paper is organized as follows: in Sect. 2, we present the main vari-
ables of our analysis, dividing them into in-match variables and network summary 
measures. In Sect. 3, we introduce goal based and difference based Bayesian hier-
archical models, using four different specifications of the linear predictor. Section 4 



	 R. Ievoli et al.

1 3

contains the main results of proposed models applied to a real dataset regarding the 
2016-2017 UEFA Champions League (UCL). They are followed by a brief discus-
sion regarding the meaning of our results and their practical implications in football 
(Sect. 5). Finally, concluding remarks are summarized in Sect. 6.

2 � Variable measurement

In this section, we define the set of variables that will be used in the proposed sta-
tistical models. The football outcomes and the in-match covariates are firstly intro-
duced, then we skip to the definition of the network-based summary measures. It is 
worth stressing that, for each generic match g, we record observations both for the 
home team (H) and the away team (A).

2.1 � Football outcomes

Throughout the paper, the football outcome is defined in the following ways: 

(a)	 yH
g
 is the number of goals scored by the home team

(b)	 yA
g
 is the number of goals scored by the away team

(c)	 zg = yH
g
− yA

g
 is the difference between goals scored by two competing teams (or 

margin of victory).

Definitions (a) and (b) characterize the goal-based modeling approach and can be 
found, for instance, in Maher (1982), Dixon and Coles (1997), Rue and Salvesen 
(2000), and Karlis and Ntzoufras (2003). On the other hand, definition (c) refers to 
the difference-based approach and appears in Karlis and Ntzoufras (2009) or Man-
derson et al. (2018), among others.

2.2 � In‑match variables

Regarding the in-match covariates, we collect indices for the two competing teams 
of each match. The focus is mainly on conventional quantities often used in applied 
works (Castellano et al. 2012; Carpita et al. 2015; Schauberger et al. 2018; Lepschy 
et  al. 2020). These variables refer to actual events in match g, and their observed 
values are stored in vectors xH

g
 and xA

g
 for the home team and the away team, together 

with the network-based variables. The set of in-match variables is described in the 
following.

Shots on target: it is the number of attempted shots on goal per team in a match. 
It measures the ability to produce concrete opportunities.
Corners: it is the count of obtained corner kicks, which can be another relevant 
output of the offensive actions.
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Fouls suffered: it is the raw number of suffered fouls (including hands), which 
can interrupt the offensive actions.
Ball possession: it is the ratio between the time in which a team plays the ball and 
the total match time.
Distance: it is the sum of meters covered by all the players of a team, represent-
ing a synthetic measure of athletic skills.

2.3 � Network‑based variables

Network analysis deals with relational data, emphasizing the investigation of the 
structure generated between units, driven by quantity and quality of ties occurring 
among them. Network theory includes all possible methods to analyze data present-
ing interactions between a set of units (agents) to investigate patterns and commu-
nity structures (Wasserman and Faust 1994).

A network is defined as the ordered triple (V,A,W) consisting of a set of vertices 
v ∈ V , a set of arcs a ∈ A ⊆ V × V , and a set of weights � ∈ W . Both sets of verti-
ces V and arcs A are assumed to be finite. An ordered pair of vertices denotes an arc 
through a function � : �(vi, vj) = aij ∈ A , mapping the one-directional tie from ver-
tex vi to vj , with i, j = 1,… , n . The mapping � ∶ A → ℝ defines a weight related to 
each arc. A network can be expressed in the form of an adjacency matrix P =

(
pij
)
 , 

with pij = �(aij) if ∃ aij ∈ A and pij = 0 otherwise and i ≠ j . We also assume that 
“loops”, i.e., arcs connecting a vertex to itself, as are not allowed. Therefore, pij = 0 
when i = j.

In football, a specific adjacency matrix can be obtained for each match of a team. 
Considering the starting line-up, eleven players ( n = 11 ) are depicted in rows and 
columns of the matrix, and cells contains the number of completed passes between 
players of a given team. In practice, this matrix can be read in two different ways, 
i.e., row-wise and column-wise. In the former, a generic cell pij contains the number 
of passes that i-th player gives to j-th player, while, in the latter, the cell expresses 
the number of passes that j-th player receives from i-th player. To summarize, this 
matrix is composed by 110 cells, since we assume that a player cannot pass the ball 
to himself, and it is generally not symmetric.

In Table  1, an example of adjacency matrix is reported. It concerns the team 
passing network distribution of Arsenal observed for the match against PSG of 
09/13/2016. Figure 1 represents the directed and weighted graph obtained through 
the adjacency matrix of Table  1. Players pi are connected by arrows (represent-
ing the arcs), and the strength of the relationships (i.e., the number of passes) is 
expressed through the arrows’ width. The graph is obtained using the package 
igraph (Csardi and Nepusz 2006) in R software (R Core Team 2020). This rep-
resentation primarily allows to make comparisons at the individual (micro) level 
involving players, but some information can also be extracted at the team (macro) 
level to evaluate the overall performance.

After introducing the passing networks, it is necessary to find techniques able 
to synthesize the information contained in them. Several network indices can be 
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found in the literature (see, Wasserman 1994; Carrington et  al. 2005; De Nooy 
et  al. 2018, among others). They can be computed from team passing networks 
and interpreted as performance indicators (see, e.g., Clemente et  al. 2016). We 
focus on some network summary measures that are able to capture the complexity 
of network topology with a meaningful interpretation for football. These indices 
are described in the following.

Table 1   Example of an adjacency matrix in football

It represents the team passing network of Arsenal observed in a Group Stage match of the 2016–2017 
UCL

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
11

Ospina p
1

1 1 1 1 1 4 1 11 2 1
Koscielny p

2
1 3 2 0 1 13 11 12 1 1

Alexis Sanchez p
3

0 3 9 4 4 0 4 0 2 4
Ozil p

4
0 2 8 2 8 3 6 2 3 5

Oxlade-Chamberlain p
5

0 2 2 2 0 0 4 0 2 1
Iwobi p

6
0 4 6 8 0 7 3 4 4 2

Monreal p
7

3 3 8 2 3 7 5 1 0 6
Santi Cazorla p

8
0 10 11 13 5 7 5 8 7 6

Mustafi p
9

6 13 1 1 2 2 0 15 13 1
Bellerin p

10
1 0 2 1 4 5 0 2 11 3

Coquelin p
11

0 3 5 3 1 4 3 9 2 3

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

Fig. 1   Graph of the team passing network of Arsenal (vs PSG, 09/13/2016), generated from the adja-
cency matrix illustrated in Table  1.  Dark lines emphasize links presenting weights higher than the 
median of adjacency matrix
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Pass accuracy: at the team level, it is defined as the sum of ratios between com-
pleted ( Pc

i
 ) and attempted ( Pa

i
 ) passes for each i-th player. It is proposed as a 

measure of the overall technical skills of a football team since it may have a key 
role in creating offensive actions and, in some cases, can avoid to receive coun-
terattacks from the opponent. To summarize, this index represents a “bridge” 
between in-match covariates and network summary measures.
Network intensity: it is defined as Time−1

e

∑
i

∑
j pij , where Timee is the actual 

ball possession time (in minutes), and pij is the generic element of the adjacency 
matrix of a team in a match (e.g., see Table 1). Since it is crucial to take into 
account the real minutes of ball possession (i.e., excluding when the ball is out of 
play), we propose the usage of effective time of ball possession ( Timee ). This is 
a modification of the index introduced by Grund (2012), which used the overall 
time of ball possession instead of Timee . From a football perspective, this index 
quantify the passing speed of a team in a match, i.e., the aptitude to circulate the 
ball quickly among teammates.
Network diameter: it is the geodesic distance between most distant vertices of 
a graph, without taking into account the link weights. Given a set of vertices of 
a network V and the geodesic distance d(u,  v), measured between two vertices 
u, v ∈ V , the diameter can be expressed as maxu,v∈V d(u, v) . High network diam-
eter values express the ability to generate as many direct connections as possible 
in terms of passes, even considering that the theoretical maximum in our setting 
corresponds to the number of players (11). It can be also viewed as a measure of 
tactical variety (e.g., the ability to make cross-field passes).
Reciprocity: it is computed as the proportion of mutual connections in a directed 
graph, i.e., the frequency of opposite counterpart of a directed arc also included 
in the graph. Given L↔ = {a | a is a bidirectional arc } ⊆ A , reciprocity corre-
sponds to |L↔|∕|A| . In football, it measures the ability of two players to have 
mutual connections with each other. Moreover, it also evaluates the balance of a 
team in terms of passing directions. For example, high values of reciprocity can 
be related to the propensity of certain type of relationships, such as the so-called 
“give and go” or “wall passes”.
Median of average nearest neighbors (MANN): it is computed as the median of 
the average nearest neighbors. For each player pi , the average degrees of partners 
for the i-th vertex can be computed as (Clemente et al. 2016): 

where pi⋅ and p
⋅i are, respectively, the row and column marginal sums of the 

adjacency matrix. This is an individual index expressing the correlation levels 
between pairs of players. The overall index (MANN), at the team level, measures 
the cohesion in terms of passing behaviors: the presence of one or few key play-
ers on the pitch, in terms of completed and received passes, leads to higher values 
of this index.
Third quartile of hub ( Q3-Hub): it is computed as the 75-th percentile of the indi-
vidual hub indices. The algorithm to compute hubs can be found in Kleinberg 

ANNi =

∑
j

�
pij + pji

��
pj⋅ + p

⋅j

�

2
�
pi⋅ + p

⋅i

� ,
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et al. (2011). High values of such index are associated to players with good abil-
ity in passing the ball to other players. Hub players can be seen as play-makers 
of a team. Q 3-Hub can be considered a synthetic measure expressing the level of 
“play-making” of a team.

Table  2 has the role of summarizing the variables of this section, depicting their 
description, the covered dimension of the game, the domain, the mathematical 
expression (when required), and, lastly, the associated references. A detailed expla-
nation on how passing network matrices can be processed to obtain graphs and 
compute the previously illustrated summary measures is provided as supplementary 
material, including code and data example.

3 � Bayesian modeling of football outcomes

In this section, statistical models that will be estimated on UCL data are illustrated. 
Recalling the football outcomes defined in Sect. 2, we can distinguish two families of 
statistical models. Goal-based models are specified if the couple of scored goals 

Table 2   Input variables setting scheme

Legend: [1], see, e.g., Castellano et al. (2012); Carpita et al. (2015); Schauberger et al. (2018); Lepschy 
et al. (2020) among others. [2], Schauberger et al. (2018). [3], Grund (2012) [4], Clemente et al. (2016). 
[5], Ievoli et al. (2021)

Description Dimension Domain Expression Ref.

In-
match

Shots on target Effective scoring 
chances

ℕ – [1]

Corners Inactive scoring 
chances

ℕ – [1]

Fouls suffered Interruption of play ℕ – [1]
Ball possession Control of the ball [0, 1] – [1]
Distance Health and physical 

strength
ℝ

+ – [1]

Net-
work

Accuracy Passing skills [0, 1] ∑
i

Pc

i

Pa

i

[2]

Network intensity Passing speed ℝ
+

Time
−1
e

∑
i

∑
j pij [3]

Network diameter Quality of the play {0,… , 11} maxu,v∈V d(u, v) [4]
Reciprocity Balance in terms

of passing direc-
tions

[0, 1] |L↔|
|A|

[4]

MANN Cohesion in terms
of passing behaviors

ℝ
+

Medi

�∑
j(pij + pji)(pj⋅ + p

⋅j)

2(pi⋅ + p
⋅i)

�
[4]

Q
3
-Hub Level of playmak-

ing
[0, 1] HITS algorithm [5]
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(
yH
g
, yA

g

)
 is considered as the response for match g = 1,…G . Alternatively, difference-

based models are fitted if the goal difference between the competing teams zg is 
employed as the response. Starting from goal-based models, the first setting we discuss 
relies on Maher (1982) model. He proposed to specify two conditionally independent 
Poisson distributions for the scored goals (labeled with IP in following):

The Poisson parameters �H
g

 and �A
g
 are modeled specifying the following linear mod-

els on their logarithmic transformations:

In football, such linear predictors are characterized by the following fixed compo-
nents: a common location parameter � , a home effect parameter h, accounting for the 
possible favorable conditions that the team hosting the game may have, and a linear 
combination of p covariate values ( ug ∈ ℝ

p for the home team and vg ∈ ℝ
p for the 

away team) with the associated regression coefficients �H and �A . Teams-crossed 
random effects are included too: �t conveys the attacking ability of team t = 1,… , T , 
whereas �t concerns its defense ability. The subscripts of the effects ( Hg and Ag ) rep-
resent the indices of teams involved in match g, remembering that the attacking effect 
of a given team and the defense effect of the opponent team concur in explaining the 
number of scored goals.

Karlis and Ntzoufras (2003) noted that setting a model by means of conditionally 
independent Poisson distributions might neglect the positive correlation that is com-
monly observed between the number of goals scored by the competing teams. To 
overcome this issue, they proposed to model the couples of scored goals through a 
bivariate Poisson (BP) distribution:

Under this model, the following moment’s expressions hold: �
[
yH
g

]
= �H

g
+ �C

g
 , 

�

[
yA
g

]
= �A

g
+ �C

g
 , and the covariance is ℂ

[
yH
g
, yA

g

]
= �C

g
 . For parameters �H

g
 and �A

g
 , 

the same predictors of (2) are assumed, whereas for the correlation parameter, in 
line with Karlis and Ntzoufras (2003):

where �C is the baseline correlation level and �t is a team-specific random effect.
In parallel, moving to the framework of difference-based modeling, following 

Karlis and Ntzoufras (2009), we model the margin of victory zg assuming a Skellam 
distribution (Sk):

(1)yH
g
|�H

g
∼ Poi

(
�H
g

)
, yA

g
|�A

g
∼ Poi

(
�A
g

)
; g = 1,… ,G.

(2)
log

(
�H
g

)
= � + h + uT

g
�H + �Hg

+ �Ag
;

log
(
�A
g

)
= � + vT

g
�A + �Ag

+ �Hg
.

(3)
(
yH
g
, yA

g

)
|�H

g
, �A

g
, �C

g
∼ Biv-Poi

(
�H
g
, �A

g
, �C

g

)
; g = 1,… ,G.

(4)log
(
�C
g

)
= �C + �Hg

+ �Ag
,
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The Skellam distribution is defined as the difference between two Poisson dis-
tributions having intensity parameters �H

g
 and �A

g
 , which are defined as in (2). We 

stress that, unlike goal-based models, the use of the zg leads to the loss of the match 
outcome magnitude, and the two Poisson intensity parameters do not directly pertain 
to the number of scored goals by a given team. On the other hand, assuming a Skel-
lam distribution for the difference implies marginal distributions for the scored goals 
that are more flexible than the Poisson (even in the bivariate case). As a matter of 
fact, the BP model accounts for the correlation of the couple (yA

g
, yH

g
) through a Pois-

son distribution (that has intensity �C
g
 in our notation), whereas, under the Sk model, 

the correlation is implicitly modeled by means of any discrete random variable. For 
further details of this aspect see Karlis and Ntzoufras (2009).

3.1 � Prior distributions

Since we are in the Bayesian inferential framework, we need to specify a prior distribu-
tion for each parameter included in the model. Starting from the random effect vectors 
� , � and � , we assume them as a priori independent, following zero-mean Gaussian 
distributions:

and the classical sum-to-zero constraints are imposed: 
∑T

t=1
�t = 0 , 

∑T

t=1
�t = 0 , and ∑T

t=1
�t = 0 . In doing so, the random effects capture the deviations due to the attack-

ing and defensive abilities of the specific team from the fixed part of the linear pre-
dictor, i.e., the overall mean, the possible home effect, and the linear combination 
of coefficients with the observed covariates (Karlis and Ntzoufras 2003). To sample 
from the constrained posterior distribution, see the manual of the Stan software 
(Stan Development Team 2020).

The regression coefficients ( �H and �A ) included in (2) might be estimated through 
the introduction of a penalty term. In fact, several variables could affect the response, 
all being included in the linear predictor. For this reason, regularization methods are 
used for variable selection since they shrunk to zero coefficient estimates related to 
negligible covariates, reducing the parameters’ variance. Among the others, Groll et al. 
(2015) and Tutz and Schauberger (2015) considered the LASSO framework, whereas 
the problem has not been tackled yet from the Bayesian perspective. A plethora of 
shrinkage priors for the regression coefficients are available (Bhadra et al. 2019), here 
we decide to adopt the regularized horseshoe prior by Piironen and Vehtari (2017): it 
easily allows to incorporate prior information about sparseness and can be interpreted 
as the continuous version of the popular spike-and-slab priors. The prior setting for the 
generic regression coefficient is defined as follows:

(5)zg|�Hg , �
A
g
∼ Sk

(
�H
g
, �A

g

)
; g = 1,… ,G.

�|�2
�
∼ NT

(
0, �2

�
IT
)
; �|�2

�
∼ NT

(
0, �2

�
IT
)
; �|�2

�
∼ NT

(
0, �2

�
IT

)
,
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where �k represents a global scale, �k,j a local scale, and c is a further scale param-
eter that controls the prior assumed on the coefficients not shrunk toward 0, i.e., the 
slab part of the prior.

The hierarchy is completed assuming:

where �slab and s2
slab

 can be interpreted as the degrees of freedom and scale of the 
Student’s t prior on the slab part, since the prior on the regression coefficient tends 
to a N

(
0, c2

k

)
 in absence of shrinking . The prior scale of �k is fixed as 

𝜏2
0
= p0𝜎̃∕

�
(p − p0)

√
G
�
 : p0 is interpreted as the prior number of expected non-null 

effects and 𝜎̃2 is the pseudo-variance of generalized linear models that in the Poisson 
case with logarithmic link can be fixed as the reciprocal of the sample mean (Pii-
ronen and Vehtari 2017).

Eventually, in line with Gelman et al. (2006), half-Student’s t priors are set for 
the scale hyperparameters �� , �� and �� , choosing 3 degrees of freedom. A non-
informative Gaussian prior centered in zero having large variance is chosen for the 
parameters � , h, and �C.

3.2 � Model specifications: linear predictors

One of this paper aims is to explore and compare possible relationships that can be 
assumed between the response variable and the covariates included in the model. 
As discussed in Sect. 2, variables listed in Table 2 are used as auxiliary information, 
and, referring to game g, they are contained in vector xH

g
 for the home team and xA

g
 

for the away team.
Firstly, baseline models without any auxiliary information are considered. 

Throughout the paper, we will label this formulation of the linear predictors as M0 , 
where M will be replaced by the specified model (i.e., IP, BP, or Sk). Then, follow-
ing Groll et al. (2015) and Groll et al. (2018), the differences between the covariates 
observed for the two teams in match g are used: we refer to this specification with 
M1 . With M2 , we indicate the most flexible model specification considered: we link 
each linear predictor to the covariates observed on the specific team. Finally, the lat-
ter framework is simplified in M3 by assuming a common vector of regression coef-
ficients for both the competing teams. Table 3 has the role of summarizing the con-
sidered specifications in terms of algebraic relationships and restrictions imposed on 
equations terms in (2).

𝛽k,j|𝜏2k , 𝜆
2
k,j

∼ N

(
0, 𝜏2

k
𝜆̃2
k,j

)
, k ∈ {H,A}, j = 1,… , p;

𝜆̃2
k,j

=
c2
k
𝜆2
k,j

c2
k
+ 𝜏2

k
𝜆2
k,j

,

�k,j ∼ C
+(0, 1),

�k ∼ C
+(0, �0),

c2
k
∼ Inv-Gamma

(�slab
2

,
�slab

2
s2
slab

)
,
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3.3 � Model checking and model selection

To draw samples from the posterior distribution of the parameters that character-
ize the models described in this section, the Stan software is used through its R 
interface rstan. In this way, Markov Chain Monte Carlo (MCMC) samples are 
obtained from each parameters posterior distribution and can be used to carry 
out inference. Any posterior distribution can be synthesized by computing Monte 
Carlo estimates of the usual summary statistics such as the mean, the standard 
deviation, and the quantiles, that are used to produce the credible intervals.

The natural way in which prediction is carried out represents an appealing fea-
ture of the Bayesian inferential framework. In fact, the posterior predictive distri-
bution allows to perform the prediction of a potentially unknown future observa-
tion of the outcome, here labeled as 

(
ỹH, ỹA

)
 and z̃ . For example, considering the 

difference response variable z , and indicating with � the vector containing all the 
model parameters, the posterior predictive distribution of z̃ is defined by the fol-
lowing integral:

where p(z̃|�) is the likelihood function of the predicted observation and p(�|z) is the 
posterior distribution of the model parameters.

The posterior predictive distribution is obtained integrating out the model param-
eters, and therefore the predictions include all the uncertainty due to the estimation 
procedure. Moreover, since the MCMC samples from the posterior of � are avail-
able, sampling from p(z̃|z) is trivial. This distribution can be exploited both for fore-
casting purposes and for checking the model goodness-of-fit through the posterior 
predictive checks (Rubin 1984).

The samples generated from the posterior predictive distribution of the scored 
goals can be further combined to obtain the prediction of the multinomial game out-
come Og ∈ {1,X, 2} . More in detail, the posterior probabilities of the outcomes of 
the g-th match ( p1g, pXg, p2g, ) are computed, then the predicted result by the model 
is fixed as Ôg = maxi={1,X,2} pig.

As synthetic measures of the models’ ability in capturing the final result of a 
match, we used the correct classification rate (CC) both computed for the G in-sam-
ple units ( CCin ) and for the Gtest matches belonging to an out-of-sample set ( CCout):

p(z̃|z) = ∫�

p(z̃|�)p(�|z)d�,

Table 3   Assumptions of linear 
predictors under the different 
models

Specification Assumptions

M
0 uT

g
�
H
= vT

g
�
A
= 0

M
1 ug = xH

g
− xA

g
 ; vg = xA

g
− xH

g

�
H
= �

A
= �

M
2 ug = xH

g
 ; vg = xA

g

�
H
≠ �

A

M
3 ug = xH

g
 ; vg = xA

g

�
H
= �

A
= �
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and the Brier (1950) score (BS), a popular goodness-of-fit measure for categorical 
outcomes:

Note that 1{E} is an indicator function that assumes value 1 when the event E 
occurs and 0 otherwise.

Lastly, to compare models with the same response variable, information crite-
ria aimed at estimating the point-wise out-of-sample model prediction accuracy are 
widely used in Bayesian inference. According to Vehtari et al. (2017), an efficient 
way to estimate this quantity is through the approximate leave-one-out cross-vali-
dation information criterion using Pareto-smoothed importance sampling (LOOIC-
PSIS). Its computation is implemented in the R package loo (Vehtari et al. 2017), 
and the best model is the one with the smallest LOOIC value.

4 � Analysis of UEFA champions league data

The models described in Sect. 3 have been applied to real data regarding the 2016-
2017 UCL, including variables described in Sect.  2 as covariates. Data were col-
lected using freely available press kits from the official UEFA website1. They 
include 125 matches and 250 passing networks for the T = 32 most competitive 
European teams. We point out that UCL is constituted by two phases:

Group stage: it consists of 8 groups composed of 4 teams (6 matches per team, 
12 matches per group) for a total of 96 matches;
Knockout phase: it is composed of Round of 16, Round of 8, Semi-Finals, and 
Final, for a total of 29 matches. Note that the final is the only one-off match.

The empirical relationships among the selected variables are firstly investigated. 
Figure  2 summarizes the correlations between couples of quantitative variables 
measured through the Spearman’s coefficient. From this figure, regarding the in-
match covariates, we can notice that shots on target, ball possession, and corners 
show a positive correlation between them (all values exceed 0.4). On the contrary, 
distance and fouls suffered seem not to show any monotonic relationship with other 
in-match variables. Considering network summary measures, network intensity 
expresses a high positive correlation with both pass accuracy (0.8) and ball posses-
sion (0.6), while reciprocity is also positively correlated with all network summary 

CCin =

∑G

g=1
1{Og=Ôg}

G
, CCout =

∑Gtest

g=1
1{Og=Ôg}

Gtest

BS =

∑G

g=1

∑
i={1,X,2}

�
pig − 1{Og=i}

�2

G
.

1  www.​uefa.​com

http://www.uefa.com
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measures, presenting high correlation values (greater than 0.6) with ball possession, 
network intensity, and pass accuracy. The diameter also shows remarkable positive 
correlations with ball possession, network intensity, and pass accuracy, whereas 
fouls suffered and distance are generally uncorrelated to overall network summary 
measures. Thus, we can conclude that quantities regarding physical activities and 
contacts between players are not mutually related to the precision of offensive 
actions and the level of passing interactions. Q 3-Hub also presents weak correlations 
with all variables.

Bayesian models described in Sect. 3 are fitted to the considered data using the 
two types of football outcomes, i.e., the scored goals 

(
yH
g
, yA

g

)
 and the difference in 

goals ( zg ). As mentioned, we use IP and BP models on the scored goals and the Sk 
model for the difference in goals, considering four different specifications of the lin-
ear predictors for each model previously presented in Subsection 3.2 and summa-
rized in Table 3. The specification of the horseshoe prior introduced in Sect. 3.1 is 
completed choosing �slab = 7 and sslab = 2.5 . The prior number of relevant effects p0 
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was fixed equal to 3, using the information from a preliminary analysis using the 
Bayesian LASSO (Park and Casella 2008). Posterior inference is carried out on 
12000 MCMC replicates that are obtained from 4 parallel chains using 6000 itera-
tions for each. The first 3000 iterations of each chain are discarded as a warm-up 
period.

The convergence of the MCMC algorithm is carefully checked by visual inspec-
tion, monitoring the posterior effective sample sizes, and computing the Gelman-
Rubin statistic. We remark that a tutorial concerning the estimation of considered 
models on our data is provided as supplementary material.

To assess the reliability of our analysis, we check the fitted models’ performance 
both inside and outside the sample: matches coming from the group stage ( G = 96 ) 
are used as the training set, the remaining Gtest = 29 (knockout phase) ones consti-
tute the test set. Although prediction is not our primary aim, this splitting procedure 
is useful to understand the consistency of the statistical relationships between the 
outcome and the set of covariates captured by the model.

Table 4 shows the performances of three different models according to the four 
goodness-of-fit indicators (LOOIC, CCin , CCout , and BS) presented in Subsec-
tion  3.3. We remark that a proper comparison between all the three models can 
not be carried out through the LOOIC value, since Sk is specified on a different 
response variable with respect to IP and BP.

As expected, the addition of covariates improves all the performance indicators 
for each model, confirming the usefulness of the available variables set. This can 
be immediately checked by observing the decreasing of LOOIC values from M0 to 
other linear predictors specifications. Considering also the corresponding stand-
ard error (S.E.), the IP and BP models have remarkably lower LOOIC values with 
formulations M2 and M3 . On the other hand, Sk1 and Sk3 appears preferable with 
respect to Sk0 and Sk2 . Comparing the three regression models in terms of predictive 
abilities of the match outcome, the best CCin can be found for models Sk2 and Sk3 , 
noting that the Sk model with auxiliary information dominates IP and BP models 
in the CCin values. On the other hand, the CCout indicator is higher in models with 
Poisson likelihoods. The mismatch between CCin and CCout values for some models 
can be due to UCL-specific features. In fact, a class imbalance between training and 

Table 4   Goodness-of-fit measures for the three Bayesian hierarchical models according to four different 
covariates specifications

Best values for each model are depicted in bold

IP BP Sk

M
0

M
1

M
2

M
3

M
0

M
1

M
2

M
3

M
0

M
1

M
2

M
3

LOOIC 583 543 522 517 583 543 522 518 397 338 343 337
(S.E.) (21) (24) (19) (19) (21) (23) (19) (19) (21) (16) (15) (14)
CC

in
0.56 0.58 0.59 0.60 0.56 0.57 0.59 0.59 0.57 0.64 0.69 0.67

CC
out

0.59 0.79 0.79 0.76 0.59 0.59 0.79 0.76 0.55 0.69 0.62 0.69
BS 0.53 0.50 0.50 0.50 0.53 0.51 0.50 0.50 0.48 0.47 0.46 0.47
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test set is observed: the draw occurrence in the knockout phase is largely lower than 
in the group stage (10.3% vs. 31.3%).

This comparison helps to understand which specification of the linear predictor 
is preferable. We decided to select one model for each football outcome, in order to 
clarify the implications of proposed statistical analysis on football. Since the addi-
tion of a correlation term in BP models seems not to improve their performances, IP3 
is chosen to model the team scored goals, preferring its parsimony compared to IP2 . 
On the other hand, Sk3 is selected as model for the goals difference outcome, since it 
performs similarly to Sk1 , but the interpretation of the coefficients is more intuitive.

After selecting the final models, we focus on their ability to fit the data exploit-
ing the replicated datasets generated from the posterior predictive distributions 
and summarizing the results with the tools provided by the bayesplot package 
(Gabry and Mahr 2021). In the plots of Fig. 3, histograms and the 90% uncertainty 
intervals, centered on the median related to the simulated datasets under models Sk3 
and IP3 , are reported. The top line refers to the distributions of goals scored by home 
and away teams, whereas the bottom line concerns the goals difference sample dis-
tribution. We highlight that in the case of the Skellam model, the goals distributions 
are generated assuming independent Poisson distributions.

The skewness of the goals difference distribution emerges from Fig.  3: the 
winning of home teams is usually larger compared to the away teams winning. 
Considering this outcome, the Sk3 model shows its good performance in predict-
ing the draw (i.e., a difference in goals equal to zero), while the IP3 model tends 
to underestimate the probability that draws occur. This is a known feature of such 
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lines represent the 90% uncertainty intervals of counts around the medians
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models, and a possible way to face this issue is to introduce a further correla-
tion structure in the goal-based models to inflate the draw probability (Dixon and 
Coles 1997; Rue and Salvesen 2000). On the other hand, observing plots in the 
top line, we deduce that models based on the Skellam distribution achieve the 
results overestimating the event of a zero goal scored by a team.

Table 5 summarizes the results of the two selected models in terms of posterior 
means and 90% credible intervals (C.I.) for their parameters and the regression 
coefficients, remarking that standardized covariates are included in the model. 
Focusing on the determinants of football outcome, we consider the posterior prob-
ability that a coefficient is higher or lower than 0 as a measure of importance for 
the covariate. In particular, shots on target is the most relevant variable for both 
models, showing a large positive effect on both scored goals and goals difference. 
Surprisingly, corners are also relevant, but show a negative impact on the two 
outcomes ( ℙ

[
𝛽2 < 0|y

]
= 0.89 for IP3 and ℙ

[
𝛽2 < 0|z

]
= 0.95 for Sk3 ). The third 

variable appearing relevant in IP3 is the network intensity ( ℙ
[
𝛽6 > 0|y

]
= 0.87 ). 

Then, focusing on Sk3 , the ball possession has a positive impact on the outcome 
( ℙ

[
𝛽3 > 0|z

]
= 0.90 ), whereas the corresponding coefficient is shrunk toward 0 

for IP3 . Lastly, in Sk3 , a negative coefficient can be found for the MANN indicator 
( ℙ

[
𝛽10 < 0|z

]
= 0.86 ). Observing the remaining estimated coefficients, the other 

covariates share a lower relevance in explaining the football outcomes.
To conclude, we highlight that IP3 is also characterized by lower values for the 

random effects scales (both for attack and defense) and home effect parameter h.

Table 5   Posterior means and 90% credible intervals (C.I.) for models parameters

Parameter/Variable Sk
3

IP
3

Post. mean 90% C.I. Post. mean 90% C.I.

�� 0.161 [0.016; 0.372] 0.111 [0.011; 0.259]
�� 0.160 [0.012; 0.412] 0.081 [0.007; 0.201]
� −0.466 [−0.839; − 0.109] 0.046 [−0.124;0.213]

h 0.276 [0.015; 0.548] 0.186 [−0.028;0.400]

Shots on target 0.384 [0.292; 0.477] 0.304 [0.239; 0.369]
Corners −0.109 [−0.233;0.000] −0.050 [−0.133;0.004]

Ball possession 0.099 [−0.006;0.256] 0.011 [−0.028;0.074]

Distance −0.042 [−0.264;0.068] −0.016 [−0.120;0.042]

Fouls suffered −0.023 [−0.113;0.033] −0.023 [−0.090;0.015]

Network intensity 0.036 [−0.033;0.160] 0.058 [−0.007;0.161]

Pass accuracy 0.014 [−0.081;0.136] 0.023 [−0.026;0.114]

Network diameter −0.001 [−0.068;0.064] −0.002 [−0.049;0.040]

Reciprocity −0.010 [−0.110;0.058] 0.009 [−0.035;0.072]

MANN -0.069 [−0.194;0.009] −0.013 [−0.074;0.022]

Q
3
-Hub 0.029 [−0.020;0.110] 0.011 [−0.019;0.059]
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5 � Discussion

In this section we propose a football oriented interpretation of the previous results. 
In particular, Subsection 5.1 aims at investigating the meaning of the fitted models, 
whereas Subsection 5.2 extrapolates useful indications starting from the estimated 
model coefficients.

5.1 � Lessons from empirical models

In the previous section, we reported the general results of the two selected mod-
els. Here, we point out some features emerging from the comparison between differ-
ent fitted models, discussing how covariates and model specifications impact in this 
applied field.

Let us consider the features of the analyzed linear predictors. Some useful empir-
ical indications about model formulations can be deduced from the results contained 
in Table 4. From a predictive point of view, the outcomes of the model with covari-
ates are comparable, but LOOIC suggests that the best trade-off between accuracy 
and parsimony is M3 . Therefore, when the outcome (yH

g
, yA

g
) is analyzed, the usage 

of specific team covariates is preferable. On the other hand, possible differences on 
the pitch between the home and the away teams are conveyed through the covari-
ate information, hence the parsimony induced by the use of the same vector � is 
favored. In parallel, the correlation term in equation (4), introduced with the bivari-
ate Poisson distribution, does not apparently improve the model performance in fit-
ting our data.

Our results suggest that the Skellam model represents an interesting trade-off 
between the result-based models and the pure goal-based ones. It takes into account 
the gap in terms of scored goals, avoiding to discard possible information available 
on the pitch, as happens in multinomial models for the final match result. Addition-
ally, the fact that the draw constitutes a value of the response variable leads to higher 
performance in prediction. Despite the good in-sample behavior of Sk models, they 
are sensitive to the changes in the results distribution occurring between the group 
stage and the knock-out phase (see, e.g., the out-of-sample indicators).

Regarding the role of covariates, interesting hints can be deduced from Fig.  4, 
in which the posterior means of the random effects under models IP0 and IP3 are 
compared. We note that the auxiliary information is able to explain a large portion 
of data variability, that in the case of model IP0 is absorbed by the random effects � 
and � ( �� = 0.402 and �� = 0.424 under IP0 ; �� = 0.111 and �� = 0.081 under IP3 ). 
This feature is encouraging for several reasons. Firstly, the fitted model appears to 
be correctly specified and the fixed effects well capture the scored goals behavior. 
Secondly, the included explanatory variables indirectly incorporate also the defen-
sive ability of the opponent team. In addition, also the home effect h tends to be less 
important in models with covariates: its posterior mean under IP0 is 0.391 (90% C.I.: 
[0.191; 0.593]), compared to 0.186 for IP3 (90% C.I.: [−0.028;0.400] ). The fact that 
shots on target result the most relevant covariate can be analyzed recalling that they 
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represent necessary events in order to score a goal. For this reason, it might be inter-
esting to develop a modeling framework in which this information is included as an 
offset in a Poisson regression, to study how the remaining in-match covariates and 
network-based measures influence the relative risk of scoring a goal.

5.2 � Implications in football

Undoubtedly results from statistical models can be affected by the peculiarities and 
rules of the analyzed football tournament. Throughout UCL, away goals are very 
relevant because of the “double value” rule, possibly helping a team to progress 
beyond the group stage or move forward in the knockout phase. As evidence of 
this, 40% of goals are scored by the away teams along the whole competition. In the 
group stage, draws are frequent (31%) and the away team wins are not rare (29%). 
In the knockout phase, a change in the distribution of the results is observed: home 
team wins is the dominant outcome (64.3%), and fewer draws occur (10.7%).

The precision of offensive actions is crucial to score goals, or score more goals 
than the opponent. A competitive European team has the burden of finding and buy-
ing players able to become very accurate in shooting, i.e., with an high propensity to 
score goals. According to our data, the winning home teams present a median of 7 
shots on target, while this number decreases to 5 if we consider the away teams able 
to win. Therefore, home and away teams share the same median in terms of shots on 
target (equal to 3) when they lose the match. This finding is crucial considering that 
in UCL data the ratio of scored goals over shots on target is equal to 33.4%, where 
the home teams are slightly more precise than the away ones (36% vs. 31%).

More surprisingly, our results show that collecting corner kicks may have a nega-
tive impact on the football outcome. Although it is not easy to give a unique inter-
pretation for this finding, the corner kicks can be viewed as a result of the offen-
sive actions and are positively correlated with the shots on target (see, e.g., Fig. 2). 
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Moreover, a corner kick can be caused both by an error in shot of a forward or by 
an effective defensive behavior of the opposing team (e.g., a good save by the goal-
keeper or a defensive stop), avoiding the goal. In addition, following this second 
point of view, the collection of too many corners can be harmful and may negatively 
affect the effectiveness of the offensive actions. Not all teams have the characteris-
tics to take advantage from this particular game situation and, consequently, to earn 
additional shots on goal. To give an example, in the four matches with the highest 
difference in corners between home and away teams, the home one lost by a narrow 
margin or draw. The number of corners is not correlated (in terms of Spearman’s 
coefficient) with the number of goals.

The importance of network intensity suggests that a competitive team should 
include, in its roster, players capable of making many passes per minute, even using 
more “first-time” passes. Hyballa and Te Poel (2015), in their book “Passing Drills”, 
emphasize the need of “fast, precise, variable, and creative passing”. This indicator 
is especially relevant to win the away matches: we observe that the 36 winning away 
teams present a median of network intensity equal to 9.2, outperforming their oppo-
nents by two passes per minute (median equal to 7.2). Conversely, in the 33 draws, 
the median of network intensity is slightly higher for the home teams (8.0 vs 7.6), 
while the winning home teams express a network intensity of 8.3 (the median of 
losing away teams is equal to 7.4). According to the results in Fig. 2, a team able to 
increase its passing speed usually expresses an high passes accuracy and dominates 
in terms of ball possession. The positive effect of network intensity is also stressed 
by an observed positive correlation with the number of goals (0.32).

Concerning the Sk3 model, ball possession has an impact on the goals difference, 
adding value to the positive correlation (0.38) we found between these two quanti-
ties. In addition, if the ball possession of the home team is almost 20% higher than 
the opponent’s one, the home team scores two goals more than the opponent, in 
median. Conversely, if a difference of almost 20% in ball possession is in favor of 
the away team, they score one goal more than the home team, in median.

6 � Conclusion

In this work, we firstly explored how Bayesian hierarchical models are suitable in 
finding the determinants of football outcomes, using auxiliary information only 
available from the pitch. Exploiting the widespread computational tools that are 
nowadays available to fit Bayesian models, alternative model specifications are pro-
posed and compared in order to provide useful indications regarding both in-match 
and network-based variables. In particular, we take advantage from the flexibility of 
Bayesian modeling to include auxiliary information.

To summarize the main results, the effectiveness of an offensive action is crucial 
to determine the football outcome, but variables such as the passing speed (number 
of passes in the temporal unit) can improve the propensity of scoring goals or more 
goals than the opponent. Potential over-fitting issues are mitigated by using the regu-
larized horseshoe prior for the regression coefficients. This feature leads us to mod-
els with good fitting results also for observations outside the training set. In fact, the 
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relationships between covariates and the football outcomes appear robust in terms of 
portability of the results, and might represent also an important tool for forecasting. 
To investigate this aspect, the application of these models to larger competitions, 
such as national leagues, might be appealing, keeping in mind the peculiarities of 
the competition on the fore. In these cases, a large volume of past information is 
available and it can be exploited to produce summary measures for covariates (such 
as means or medians) that can be used to forecast the result of a football match, 
without using covariates from the game itself. The inclusion of network summary 
measures will be a key point in further models, even in a predictive perspective.

In this paper, we also discuss how the structural passing network features can be 
informative for football teams’ staff, managers, and match analysts. Passing speed, 
balance in terms of passing directions, team cohesion can be reasonable determi-
nants for the football outcome.

Possible improvements on the network measures should consider spatial infor-
mation on the pitch, such as the positions of players and other events as the shots 
on target. For example, qualitative attributes of the connection, such as long versus 
short passes, measures related to the evolution of the passing structure during the 
match, and interactions between players of two opposite teams could also provide 
more information about the overall match-level performances.
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