
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

When does ambiguity fade away? / Massari, Filippo; Newton, Jonathan. - In: ECONOMICS LETTERS. - ISSN
0165-1765. - ELETTRONICO. - 194:(2020), pp. 109404.1-109404.5. [10.1016/j.econlet.2020.109404]

Published Version:

When does ambiguity fade away?

Published:
DOI: http://doi.org/10.1016/j.econlet.2020.109404

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/847657 since: 2023-03-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.econlet.2020.109404
https://hdl.handle.net/11585/847657


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Massari, F., & Newton, J. (2020). When does ambiguity fade away?. Economics 
Letters, 194, 109404. 

The final published version is available online at:  

 https://doi.org/10.1016/j.econlet.2020.109404 

 

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1016/j.econlet.2020.109404
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Abstract

If the prior support is finite, long-run ambiguity is known to be a possible outcome only if

the learning problem is misspecified (Marinacci and Massari, 2019). We show that if the prior

support is naturally rich, long-run ambiguity cannot occur.
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1 Introduction

Researchers have considered the implications of ambiguity for many economic phenomena. Ex-

amples include trade (Kajii and Ui, 2006), portfolio selection (Garlappi et al., 2006), risk pricing

(Augustin and Izhakian, 2020), savings behavior (Hansen et al., 1999), job search (Nishimura

and Ozaki, 2004) and the possibility of speculative bubbles (Werner, 2019).1 Given the salience

of ambiguity in economic and financial research, it is natural to wonder about how persistent

it is. In the current paper, we focus on the multiple prior model of ambiguity and consider

conditions under which ambiguity fades away in the long run as a consequence of learning.

When a Bayesian decision-maker’s set of priors comprises a finite set of iid models that

includes the true model, Marinacci (2002) shows that ambiguity fades away over time as the

decision-maker learns the true model. Marinacci and Massari (2019) drop the iid assumption

and allow the problem to be misspecified so that it is impossible for the decision-maker to learn

the true model. Nevertheless, they can still provide tight conditions under which ambiguity

∗Corresponding author. E-mail: massari3141@gmail.com.
1The reader is referred to the survey article by Gilboa and Marinacci (2016) for more examples.
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fades away. However, many applications, including all those mentioned above, feature decision-

makers with sets of priors on the whole parameter space, a set of positive Lebesgue measure.

It is this latter setup that we study in the current paper. We demonstrate that, under natural

assumptions, ambiguity fades away on all sequences with finite maximum likelihood. Over time,

all the posteriors concentrate on a shrinking neighborhood of this estimate and ambiguity fades

away. Notably, the result holds even if the maximum likelihood estimate does not converge to a

limit: all priors eventually concentrate around the estimate, even if the estimate itself changes

over time.

The impact of ambiguity fading away will differ across models. For example (I) Kajii

and Ui (2006) give necessary and sufficient conditions under which trade can take place under

ambiguity. Trade that does take place in these conditions will be unaffected by ambiguity

fading away, but additional opportunities for trade may arise.2 (II) Werner (2019) shows that

speculative trading bubbles can arise when market participants have common but ambiguous

beliefs. Consequently, if ambiguity fades away, then another explanation for long-run speculative

trade is required. (III) Garlappi et al. (2006) consider mean-variance portfolio selection with

an ambiguous parameter. If ambiguity fades away, then the model eventually returns to the

classical mean-variance model (Markowitz, 1952; Sharpe, 1970).3

There are other models that study the effect that learning has on ambiguity, and some of

these models (see, e.g. Epstein and Schneider, 2007) allow for persistent ambiguity. The multiple

prior model we describe relies on the strong law of large numbers. Because the strong law of

large numbers holds for each prior, all priors concentrate on the same model and ambiguity

fades away.

2 Probabilities

We consider a family of models M = {Pθ : θ ∈ Θ} parameterized by a positive Lebesgue

measure parameter set Θ ⊂ Rk, defined on a σ-algebra Σ∞ of subsets of X∞ with repre-

sentative element x∞ = x1, x2, ..., where X∞ := ×∞X is the infinite Cartesian product of a

state space X with representative element x and σ-algebra Σ. With a slight abuse of nota-

tion, we use Pθ(x
t) to denote the probability that model Pθ attaches to the cylinder with base

2In the model of Kajii and Ui (2006), trade between two players is possible if and only if their sets of priors do
not overlap. It is easy to see that if their sets of priors do not overlap under ambiguity, then the players will differ
in their beliefs after ambiguity has faded away. Conversely, even if their sets of priors overlap under ambiguity, it is
possible that the players will differ in their beliefs after ambiguity has faded away.

3Garlappi et al. (2006); Hansen et al. (1999) belong to a special class of ambiguous models known as ε-
contamination models (see, e.g. Berger, 2013), in which the set of priors consists of all models within some distance
ε of an estimated model. Such models satisfy our condition of a positive Lebesgue measure of models in the support
of the decision-maker.
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xt (i.e., Cyl(xt) := {x1, ..., xt, Xt+1, Xt+2, ...}), as well as the likelihood that model Pθ attaches

to the partial sequence (x1, ..., xt).

Specifically, we focus on the case in which M is a regular exponential family in the natural

parametrization— most of the commonly used distributions form a regular exponential family

and can be re-parametrized into their natural parametrization form (e.g. Gaussian, Multino-

mial, Poisson,...) —, which covers most standard learning settings, including those cited in the

introduction.4

Definition 1 (Exponential family.). Let ν be a σ-finite measure on the Borel subsets of Rk

and H be the support of ν. Define

Θ :=

{
θ ∈ Rk :

∫
H

exp(θTx)ν(dx) <∞
}

;

define a function ψ and a probability densities Pθ on X with respect to ν by ψ(θ) := ln
∫
X
exp(θTx)ν(dx)

and Pθ(x) := exp(θTx − ψ(θ)). We refer to M := {Pθ(x)|θ ∈ Θ} as an exponential family in

the natural parametrization. An exponential family is regular if Θ is an open set.

The prior information about the parameters is summarized by prior distributions µ ∈ ∆Θ.

The set of prior distributions is C. For any prior distribution µ ∈ C the joint distribution of the

parameters and the observations is Pµ ∈ ∆(Θ × X∞), defined by, for all sets A ⊆ Θ and all

cylinders xt,

Pµ(A× xt) :=

∫
A

Pθ(x
t)dµ.

We denote by µ(.|xt) ∈ ∆Θ the usual posterior given the observations xt,5 while Pµ(.|xt) ∈

∆(Θ × X) is the one-step-ahead predictive distribution of xt+1, given observations xt. By

definition, for all A ⊆ Θ we have

Pµ(A× xt+1|xt) :=

∫
A

Pθ(xt+1|xt)dµ(.|xt) :=

∫
A

Pθ(xt+1|xt)
Pθ(x

t)dµ∫
Θ
Pθ(xt)dµ

.

When A = Θ we use the lighter notation Pµ(x|xt) := Pµ(Θ× xt+1|xt).

3 Long-run ambiguity

As in (Marinacci, 2002), we consider the difference between a decision-maker’s expected utility

under the most advantageous prior and under the least advantageous prior in C to be a measure

4We refer the reader to Nielsen and Garcia (2009) for a brief and schematic description of the main characteristic
of the exponential family and a useful mapping between their canonical and natural parametrization.

5We rule out the possibility of observing an event which is impossible according to all models in M.
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of the ambiguity that the decision-maker perceives in evaluating an act. If the set of priors C is

compact, as we always assume, a tight sufficient condition for this difference to be zero is that

the posteriors calculated from all priors in C eventually coincide (Marinacci and Massari, 2019).

Definition 2. Ambiguity fades away at path x∞ ∈ X∞ if,

lim
t→∞

[
sup

µ′,µ′′∈C

∫
X

∣∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣∣] = 0 (1)

where, for each t > 0, xt indicates the first t realizations of path x∞.

Definition 2 does not depend on the true model, which in any practical learning situation

is not known by the decision-maker. It requires that all priors concentrate eventually on the

same parameter (or on a set of parameters with identical predictions) on the realized path. Its

relation with the familiar notion of weak merging (Kalai and Lehrer, 1994) is as follows. In

well-specified learning problems all priors weakly merge to the true and ambiguity fades away.

However, ambiguity might and does fade away in many misspecified learning problems in which

the priors do not weakly merge with the truth.

4 Main result

In this section, we identify conditions that guarantee that ambiguity fades away in the long-run

when Θ has positive Lebesgue measure. These regularity conditions are borrowed from Grünwald

(2007) conditions for the BIC approximation (Schwarz (1978), Clarke and Barron (1990)), to

which we add a compactness assumption on the set of priors C to ensure convergence.

Definition 3. The learning problem is regular if

A1: M is a regular exponential family;

A2: the set of priors, C, is compact;

A3: priors in C are continuous and strictly positive on every compact subset of Θ.

Condition A1 is a high order assumption that limits our attention to densities that are

measurable jointly in x and θ and regular enough for the empirical maximum likelihood to be

unique in every period (in the canonical representation Θ is a convex set). Further, it allows

writing the Fisher information matrix as the Hessian of the relative entropy. This assumption

is stronger than condition i) of Berk (1966) and, together with A3, allows us to drop all as-

sumptions about the data generating process. Unlike Berk (1966), we do not require draws to

be iid. A2 is needed to ensure uniform convergence in the set of priors (Marinacci, 2002). A3

requires that priors have full, and thus common, support. This assumption reflects the attitude
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of an agent that does not rule out a-priori any parameter choice. The restriction on priors to

be strictly positive in every compact subset of Θ, rather than Θ itself, is due to the fact that

|Θ| = Rk for many members of the exponential family in the the canonical representation.

Definition 4. θ̂(xt) denotes the (vector valued) maximum likelihood estimator at xt :

θ̂(xt) = argmax
θ∈Θ

Pθ(x
t);

The equality in the definition above is justified because Assumptions A1 and A3 guarantee

that the support, Θ, is convex, so that a unique maximum likelihood exists at every finite

history. We now present our main result: ambiguity fades away on all sequences such that the

sequence of maximum likelihoods is bounded.

Theorem 1.

If the learning problem is regular, ambiguity fades away on all sequences such that lim sup ‖θ̂t‖ <
∞.

Proof. See Appendix.

Theorem 1 makes no reference to the truth. The point of view we adopt in Theorem 1 is em-

pirical and differs from that of standard convergence results (e.g., Blackwell and Dubins (1962);

Doob (1949); Berk (1966)). Instead of postulating the existence of a true distribution and de-

riving almost sure results, we show that convergence to the same predictive distributions occurs

on all paths in which the sequence of maximum likelihood parameters is uniformly bounded.

Being agnostic about the true distribution renders our approach particularly suited to discuss

convergence in possibly misspecified learning environments.

Theorem 1 shows that ambiguity cannot persist in the long-run in the multiple-priors

Bayesian learning model with naturally rich support. Its result naturally translates to ex-

ponential families when expressed in their canonical parameterization. For example, it tells us

that:

• Ambiguity fades away on all sequences with frequency of heads uniformly bounded away

from 0 and 1 if the Bayesian decision-maker believes draws are from an ambiguous coin

and C is a compact set of not-degenerate Beta priors on the probability of heads ph (i.e.,

C = {Beta(α, β), α ∈ [a, b], β ∈ [c, d]}, with [a, b], [c, d] strictly positive, finite intervals).

In order to apply Theorem 1, we need to verify that on all sequences with frequency of

heads ph uniformly bounded away from 0 and 1 the maximum likelihood estimator of the

natural parameter of Bernoulli family θ̂ satisfies the condition lim sup ‖θ̂t‖ <∞. From the
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conversion table of Nielsen and Garcia (2009), we see that θph = ln ph
1−ph ; so, (‖θ̂pht ‖)∞t=1 is

bounded if and only if (p̂ht )∞t=1 is uniformly bounded away from 0 and 1.

• Ambiguity fades away on all bounded sequences, if the Bayesian decision-maker believes

that realisations are Gaussian with known positive variance σ and unknown mean µ, and

he has a compact set of non-degenerate Gaussian priors on the values of µ(i.e., Cµ :=

{N (µµ
∗
, σµ

∗
), µµ ∈ [a, b], σµ ∈ [c, d]} with [a, b] finite and [c, d] finite strictly positive

intervals). In order to apply Theorem 1, we need to verify that if the sequence is bounded,

the maximum likelihood estimator of the natural parameters of the Gaussian family θ̂ =

(θ̂1, θ̂2) ∈ R× (R−) satisfies the condition lim sup ‖θ̂t‖ <∞. From the conversion table of

Nielsen and Garcia (2009), we see that θ = ( µσ2 ,− 1
2σ2 ), so that θ̂ = ( µ̂t

σ̂2
t
,− 1

2σ̂2
t
), where µ̂t

and σ̂t are the maximum likelihood estimators of mean, µ̂t := 1
t

∑t
τ=1 xt, and variance,

σ̂2
t := 1

t

∑t
τ=1 (xτ − µ̂t). So, lim sup ‖θ̂t‖ < ∞ because for all t, µ̂t < ∞ on all bounded

sequences and σ > 0⇒ σ̂t > 0 for all large t.

5 Appendix

In this appendix θ̂t := θ̂(xt), and we make use of the K-L divergence. Let S(M,Θ) be the set

of sequences such that lim sup ‖θ̂t‖ <∞.

Definition 5. The K-L divergence from Pθ̂t to Pθ is

D
(
Pθ̂t ||Pθ

)
:= EPθ̂t

[
ln
Pθ̂t(x)

Pθ(x)

]
.

The proof is a standard application of the Laplace method. The strategy is to show that
for t large, for all priors in C, the value of the integral of the unconditional probabilities
is well approximated by the value it assumes on a shrinking interval around the minimizer
of the K-L divergence (i.e., by the maximum likelihood model). Because Θ is convex and
−D(Pθ̂t ||Pθ) is strictly concave, this minimizer is unique. Because the exponential family is

regular x∞ ∈ S(M,Θ) ⇒ (θ̂t)
∞
t=1 belongs to a compact subset of Θ and the approximation

below is never on the boundary of the support.6

Proof of Theorem 1

Proof. C compact ⇒ ∀xt, argmaxµ∈C lim
t→∞

∫
X
|dP g(x|xt)− dPh(x|xt)| exists. Thus, it suffices to

show that if the learning problem is regular, then ∀x∞ ∈ Ŝ(M,Θ) and ∀g, h ∈ C, lim
t→∞

∫
X
|dP g(x|xt)−

dPh(x|xt)| = 0.

6For non-regular member of the exponential family, the proof below cannot be adopted for those sequences on which
the maximum likelihood estimator are within an order 1/

√
t to the boundary of θ because Laplace approximation

is truncated. For those sequences the shape of Pθ(x
t) becomes a truncated Gaussian with a reduced value of the

integral in Lemma 1. For those sequences, however, the discrepancy in the approximation is only a constant (Xie
and Barron, 2000), and it would not affect our result.
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0 ≤ lim
t→∞

∫
X

|dP g(x|xt)− dPh(x|xt)| := lim
t→∞

∫
X

∣∣∣∣∫
Θ

Pθ(x)

(
Pθ(x

t)g(θ)

P g(xt)
− Pθ(x

t)h(θ)

Ph(xt)

)
dθ

∣∣∣∣ dx
=a lim

t→∞

∫
X

∣∣∣∣∣∣
∫

Θ

Pθ(x)

 e
−tD

(
P
θ̂t
||Pθ

)
g(θ)∫

Θ
e
−tD

(
P
θ̂t
||Pθ

)
g(θ) dθ

Pθ̂t(x
t)

Pθ̂t(x
t)
− e

−tD
(
P
θ̂t
||Pθ

)
h(θ)∫

Θ
e
−tD

(
P
θ̂t
||Pθ

)
h(θ) dθ

Pθ̂t(x
t)

Pθ̂t(x
t)

 dθ

∣∣∣∣∣∣ dx
=b

∫
X

lim
t→∞

∣∣∣∣∣∣
∫

Θ

Pθ(x)

 e
−tD

(
P
θ̂t
||Pθ

)
g(θ)∫

Θ
e
−tD

(
P
θ̂t
||Pθ

)
g(θ) dθ

− e
−tD

(
P
θ̂t
||Pθ

)
h(θ)∫

Θ
e
−tD

(
P
θ̂t
||Pθ

)
h(θ) dθ

 dθ

∣∣∣∣∣∣ dx
=c,d

∫
X

lim
t→∞

∣∣∣∣∣∣
∫
Bt

Pθ(x)

 e
−tD

(
P
θ̂t
||Pθ

)
g(θ)∫

Bt
e
−tD

(
P
θ̂t
||Pθ

)
g(θ) dθ

− e
−tD

(
P
θ̂t
||Pθ

)
h(θ)∫

Bt
e
−tD

(
P
θ̂t
||Pθ

)
h(θ) dθ

 dθ

∣∣∣∣∣∣ dx

≤e
∫
X

lim
t→∞

∣∣∣∣∣∣∣∣
∫
Bt

Pθ(x) max


∣∣∣∣∣∣∣∣
√

(2π)kg+
t√

tk det(I−t )
√

(2π)kg−t√
tk det(I+

t )

−

√
(2π)kh−t√
tk det(I+

t )
√

(2π)kh+
t )√

tk det(I−t )

∣∣∣∣∣∣∣∣ ;
∣∣∣∣∣∣∣∣
√

(2π)kg−t√
tk det(I+

t )
√

(2π)kg+
t√

tk det(I−t )

−

√
(2π)kh+

t√
tk det(I−t )
√

(2π)kh−t√
tk det(I+

t )

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ dx

≤f
∫
X

lim
t→∞

P+(x) max


∣∣∣∣∣∣∣∣
√

(2π)kg+
t√

tk det(I−t )
√

(2π)kg−t√
tk det(I+

t )

−

√
(2π)kh−t√
tk det(I+

t )
√

(2π)kh+
t )√

tk det(I−t )

∣∣∣∣∣∣∣∣ ;
∣∣∣∣∣∣∣∣
√

(2π)kg−t√
tk det(I+

t )
√

(2π)kg+
t√

tk det(I−t )

−

√
(2π)kh+

t√
tk det(I−t )
√

(2π)kh−t√
tk det(I+

t )

∣∣∣∣∣∣∣∣
 dx

=

∫
X

lim
t→∞

P+(x) max


∣∣∣∣∣∣g

+
t

g−t

√
det(I+

t )√
det(I−t )

− h−t
h+
t

√
det(I−t )√
det(I+

t )

∣∣∣∣∣∣ ;
∣∣∣∣∣∣g
−
t

g+
t

√
det(I−t )√
det(I+

t )
− h+

t

h−t

√
det(I+

t )√
det(I−t )

∣∣∣∣∣∣ ;
 dx

=g 0.

a) A known result for members of the exponential family (e.g., Grünwald, 2007, Chapter 8) is that

P g(xt) =

∫
Θ

Pθ(x
t)g(θ) dθ =

∫
Θ
e
−tD

(
P
θ̂t
||Pθ

)
g(θ) dθ

Pθ̂t(x
t)

.

b) We can exchange the order of limit and integration by the Lebesgue dominated convergence
theorem.

c) Bt is a neighbourhood of the maximum likelihood that, in all dimensions, converges to zero at a

rate slightly slower than
√

1
t
. That is Bt := {θ ∈ Θ ⊂ Rk : ∀i = 1, ..., k, |θi − θ̂i| ≤ t−

1
2
−α} for

some α ∈ (0, .5).

d) By Lemma 1 (i),
∫

Θ\Bt
e
−tD

(
P
θ̂t
||Pθ

)
h(θ) dθ → 0 exponentially fast and it can be ignored in the

calculation of the limit.

e) By Lemma 1 (ii), with I := EP
θ̂t

[
− ∂2

∂θi∂θj
lnPθ

]
θ=θ̂t

, det(I−t ) = inf
θ′∈Bt

det(I(θ′)), det(I+
t ) =

sup
θ′∈Bt

det(I(θ′)), g−t = inf
θ′∈Bt

g(θ′), g+
t = sup

θ′∈Bt
g(θ′), h−t = inf

θ′∈Bt
h(θ′), h+

t = sup
θ′∈Bt

h(θ′).

f) With P+(x) = sup
θ∈Bt

Pθ(x) < 1.

g) Continuity and strict positivity of g(·), h(·) in det(I(·)) in Bt guarantee that for all x∞ ∈ Ŝ(M,Θ)
the following limit holds:7

max


∣∣∣∣∣∣g

+
t

g−t

√
det(I+

t )√
det(I−t )

− h−t
h+
t

√
det(I−t )√
det(I+

t )

∣∣∣∣∣∣ ;
∣∣∣∣∣∣g
−
t

g+
t

√
det(I−t )√
det(I+

t )
− h+

t

h−t

√
det(I+

t )√
det(I−t )

∣∣∣∣∣∣
→ 0.

7By construction, for all ∀x∞ ∈ Ŝ(M,Θ), Bt is a subset of a compact of Θ; thus, by (A3), g(·) and h(·) are
continuous and bounded away from zero. det(I(·)) is continuous bounded away from zero becauseM is a member of
the exponential family (A1).
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Lemma 1. Let M be a regular member of the exponential family parameterized by Θ and µ a
prior that satisfies A3, then, ∀x∞ ∈ Ŝ(M,Θ),∫

Θ

e−tD(Pθ̂t ||Pθ)µ(θ)dθ =

∫
Θ\Bt

e−tD(Pθ̂t ||Pθ)µ(θ) dθ +

∫
Bt

e−tD(Pθ̂t ||Pθ)µ(θ) dθ,

and, for t large, the following bounds holds uniformly when Bt is a neighbourhood of the maxi-

mum likelihood such that diam(Bt)→t→∞ 0 at a rate slightly slower than
√

1
t .

(i) First integral: ∃k > 0 : I1 =
∫

Θ\Bt e
−tD(Pθ̂t ||Pθ)µ(θ)dθ < e−rt

2α

.

(ii) Second integral: Let I2 =
∫
Bt
e−tD(Pθ̂t ||Pθ)µ(θ)dθ; I(θt) := EPθ̂t

{
− ∂2

∂θi∂θj
lnPθ

}
θ=θ̂t

be

the Fisher information evaluated at the maximum likelihood parameter,8 k be the dimensional-
ity of Θ, det(I−t ) = inf

θ′∈Bt
det(I(θ′)), det(I+

t ) = sup
θ′∈Bt

det(I(θ′)); and µ−t = inf
θ′∈Bt

µ(θ′), µ+
t =

sup
θ′∈Bt

µ(θ′), then

µ−t (2π)k/2√
tkdet(I+

t )i
≤ I2 ≤

µ+
t (2π)k/2√
tk det(I−t )

.

Proof. Let Bt := {θ ∈ Θ ⊂ Rk : ∀i = 1, ..., k, |θi − θ̂i| ≤ t−
1
2−α} for some α ∈ (0, .5). To

gain intuition, take α very small, so that Bt is a neighborhood of the maximum likelihood that
shrinks to 0 at a rate slightly slower than 1/

√
t in all dimensions. Because x∞ ∈ Ŝ(M,Θ) and

µ is continuous and positive on all compact subsets of Θ (by A3 ), there is a T : ∀t > T,Bt ⊂ Θ̂
where Θ̂ is a compact subset of Θ in which µ > ε > 0 for some positive ε. We always assume
t > T .

The proof is done by performing a second-order Taylor expansion of D(Pθ̂t)||Pθ) to bound
the two integrals. M is an exponential family; thus , D(Pθ̂t ||Pθ) can be exactly approximated
in Bt as follows (see Grünwald, 2007, chapter 19):

D
(
Pθ̂t ||Pθ

)
=

1

2

(
θ̂t − θ

)T
I(θ∗)

(
θ̂t − θ

)
, (2)

for some θ∗ ∈ Bt such that θ∗ lies between θ and θ̂t — here, I := EPθ̂t

[
− ∂2

∂θi∂θj
lnPθ

]
θ=θ̂t

;

because M is an exponential family, this is the Fisher information matrix evaluated at the
maximum likelihood estimator.

(i) First integral: Because D
(
Pθ̂t ||Pθ

)
, as a function of θ, is strictly convex, has a mini-

mum at θ = θ̂t, and is increasing in ‖θ − θ̂t‖, the following holds:

0 <

∫
Θ\Bt

e−tD(Pθ̂t ||Pθ)g(θ) dθ <

∫
Θ\Bt

e
−t min

θ∈Θ\Bt
D(Pθ̂t ||Pθ)g(θ) dθ

where

min
θ∈Θ\Bt

D
(
Pθ̂t ||Pθ

)
=(a) min

θ∈∂Bt
D
(
Pθ̂t ||Pθ

)
≥(b) 1

2
t−1+2α min

θ∈int(Θ)
1T I(θ)1,

where (a) holds because strict convexity of D(·||·) implies that that the D(·||·) is minimal at
the boundary of Bt; and (b) holds, with 1 being a k-dimensional vector of 1s, because of the

8Which is positive definite because M is an exponential family.
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definition of Bt and Equation 2. So, since I(θ) is continuous and > 0 for all θ ∈ Θ, and also∫
Θ\Bt µ(θ) dθ ≤ 1,

0 <

∫
Θ\Bt

e−tD(Pθ̂t ||Pθ)g(θ) dθ <

∫
Θ\Bt

e
−t
(

1
2 t
−1+2α min

θ∈int(Θ)
I(θ)

)
g(θ) dθ < e−rt

2α

,

for r = 1
2 min
θ∈int(Θ)

I(θ) > 0.

(ii) Second integral: by Equation 2,

I2 =

∫
Bt

e−tD(Pθ̂t ||Pθ)g(θ) dθ =

∫
Bt

e−
t
2 (θ̂t−θ)T I(θ′)(θ̂t−θ)g(θ) dθ

where θ′ depends on θ. Let I−t = argmin
θ′∈Bt

det(I(θ′)) and I+
t = argmax

θ′∈Bt
det(I(θ′)); it follows that

g−t

∫
Bt

e−
t
2 (θ̂t−θ)T I+

t (θ̂t−θ)dθ ≤ I2 ≤ g+
t

∫
Bt

e−
t
2 (θ̂t−θ)T I−t (θ̂t−θ)dθ.

Performing the substitutions zT =
(√

t(θ̂t − θ)
)T

A+
t on the left integral and zT =

(√
t(θ̂t − θ)

)T
A−t

on the right integral — whereA+
t andA−t are matrixes such thatA+

t (A+
t )T = I+

t andA−t (A−t )T =
I−t , respectively —, we get

g−t√
tk det(I+

t )

∫
|z|<|tα1TA+

t |
e−

1
2 z
T zdz ≤ I2 ≤

g+
t√

tk det(I−t )

∫
|z|<|tα1TA−t |

e−
1
2 z
T zdz,

— where for a vector x, the vector |x| indicates the vector whose entries are the absolute val-
ues of x and k is the dimensionality of Θk — and recognize these integrals as proportional to
standard mutivariate Gaussian. Because, as t→∞, I−t → I(θ̂t) and I+

t → I(θ̂t), the domain of
integration tends to infinity for both integrals, they both converge to

√
(2π)k.

This approximation holds uniformly for all x∞ ∈ Ŝ(M,Θ) because i) the bound on I1 does
not depend on xt, and ii) convergence of I2 is uniform because A1 and A3 guarantee that g(θ)
and I(θ) are continuous, positive functions of θ over every compact subset of Θ.
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