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Featured Application: These preliminary data on the differences among aquatic microoorgan-
isms in their response to benzo-fused nitrogen heterocyclic pollutants can help in selecting the
most suitable biotest for environmental toxicity monitoring activities.

Abstract: The evaluation of the ecotoxicological effects of water pollutants is performed by using
different aquatic organisms. The effects of seven compounds belonging to a class of widespread
contaminants, the benzo-fused nitrogen heterocycles, on a group of simple organisms employed in
reference ISO tests on water quality (unicellular algae and luminescent bacteria) have been assessed
to ascertain their suitability in revealing different contamination levels in the water, wastewater,
and sediments samples. Representative compounds of benzotriazoles, benzothiazoles, and ben-
zenesulfonamides, were tested at a concentration ranging from 0.01 to 100 mg L−1. In particular,
our work was focused on the long-term effects, for which little information is up to now available.
Species-specific sensitivity for any whole family of pollutants was not observed. On average, the
strongest growth rate inhibition values were expressed by the freshwater Raphidocelis subcapitata and
the marine Phaeodactylum tricornutum algae. R. subcapitata was the only organism for which growth
was affected by most of the compounds at the lowest concentrations. The tests on the biolumines-
cent bacterium Vibrio fisheri gave completely different results, further underlining the need for an
appropriate selection of the best biosensors to be employed in biotoxicological studies.

Keywords: microalgae; Vibrio fisheri; benzenesulfonamide; benzothiazole; benzotriazole;
biotoxicity tests

1. Introduction

The presence of any xenobiotic compounds in fresh, ground, or marine water represents
a threat to organisms living in these ecosystems and, therefore, to human health. Among
organic pollutants, a group of high production volume chemicals, benzotriazole (BTRs),
benzothiazoles (BTs), and benzenesulfonamides (BSAs), benzo-fused nitrogen heterocyclic
compounds containing a benzene ring, has been used for several decades in a large number
of industrial activities and consuming products [1].

BTRs are corrosion inhibitors, antifreeze fluids, and aircraft de-icers, and they are
employed in photography, plastic production, and dishwasher detergents [2–5]. BTs include
vulcanization accelerators, corrosion inhibitors, biocides, UV light stabilizers in textiles and
plastics, and precursors in the production of several kinds of pharmaceuticals [6]. BSAs
are used for synthesizing dyes, photo-chemicals, disinfectants, and intermediates in the
production of pharmaceuticals [7,8]. These polar compounds, some of them resistant to
biodegradation, can constitute an environmental threat due to their widespread application
and consequent ubiquitous occurrence in various environmental compartments [1,7].
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Benzothiazoles, for example, are pervasive and spread into the atmosphere through
tire chemical leaching [9]; they have been detected in human matrices, including exhaled
breath, adipose tissue, urine, and amniotic samples [10–13]. They can be carcinogenic to
humans [14], act as dermal sensitizers [15], and produce allergenic effects and respiratory
tract irritation at sufficient exposure [16–18]. Several studies suggested that they show acute
toxicity to fish, aquatic plants, and invertebrates at relatively high concentrations [19,20].

Benzotriazoles are spread through the progressive corrosion of metals, act as potent
air pollutants, and may give rise to water pollution because of run-off from urban areas
and roads [9,21]. Together with benzothiazoles, they were found in the watershed, sur-
face freshwater, drinking water, and at high concentrations in primary and secondary
wastewaters [22–26]. Their concentrations range from a few ng L−1 in water bodies to
hundreds of µg L−1 in sewage and indoor dust [6,17,22,26]. Existing evidence suggests
that benzotriazoles harm aquatic plants and animals and have estrogenic effects in fish and
Daphnia magna [6,19,27–29].

Benzenesulfonamides were found in rivers and sewage plants in concentrations up
to µg L−1 [7,30]. Concerning BSAs, studies exist only for p-toluene-sulfonamide (p-TSA),
which was defined as moderately toxic [8,30], but the large amounts currently used recom-
mend additional tests.

The toxicological and ecotoxicological information is estimated to be scarce, espe-
cially concerning chronic effects, although acute aquatic toxicity has been repeatedly
reported [19,28,30–34]. Information about toxicity on wildlife is scarce, particularly con-
cerning reptiles, birds, and marine mammals. Recently, benzotriazole UV filters have been
found in the blood plasma of fishes, snapping turtles, double-crested cormorants, and
bottlenose dolphins from various locations in North America and Europe, thus confirming
the widespread diffusion of such compounds in the aquatic environments [35,36].

The increasing amount of potentially harmful pollutants in freshwater and marine
environments requires fast and low-cost methods of analysis to carry out effective mon-
itoring activities on the contaminants level. As recommended by the Organization for
Economic Co-operation and Development (OECD), additional tests on the bioactivity of
new pollutants are mandatory [37]. Advanced chemical technologies are usually the first
choice because of their high sensitivity and selectivity, but they are time-consuming, re-
quire expensive instruments, and can reveal just the searched compounds [1,7,35]. On the
contrary, biomonitoring methods are cheaper, faster, and extremely useful in evaluating the
xenobiotics’ overall biological effects on the ecosystems [34,38]. Nevertheless, the results
obtained from the various employed organisms, even belonging to the same trophic level,
must be carefully evaluated and interpreted always keeping in mind that each one will
represent just a single aspect of the possible scenario, and then multiple organisms must
be investigated.

This paper aimed to carry out a comparative evaluation of the response of four organisms,
three microalgae and a marine bioluminescent bacterium, for the presence of seven compounds,
separately tested. The compounds belong to the above-mentioned three classes of chemi-
cals: benzothiazole (BT), 2-methylthiobenzothiazole (MeSBT), 2-hydroxybenzothiazole (HOBT),
benzotriazole (BTR), 5-methylbenzotriazole (5TTR)), benzenesulfonamide (BSA), and p-toluene-
sulfonamide (p-TSA) (Figure 1).

In detail, we tested the freshwater alga Raphidocelis subcapitata (previously
Pseudokirchneriella subcapitata) and two marine organisms, the diatomea Phaeodactylum tricornutum,
and the green alga Dunaliella tertiolecta. These algal species, are widespread in rivers, deltas, la-
goons, and coastal habitats and showed a high degree of habitat tolerance. They are relatively easy
to maintain in laboratory cultures and are used as standard toxicity test organisms for organic
chemicals [39–42].

D. tertiolecta (Chlorophyceae, Chlamydomonadales) is a biflagellate green marine
microalga, able to grow in severe environments. It lacks a cell wall that may be a potential
barrier to the passage of pollutants into the cell [43,44]. It is easy to cultivate, has rapid
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growth, and is considered a good indicator to evaluate the toxicity of contaminants present
in marine water.
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R. subcapitata (Chlorophyceae, Sphaeropleales) is a freshwater sessile unicellular green
alga. It is easy to cultivate and shows a high growth rate and high sensitivity to several
substances. It is one of the green algae representative of oligotrophic and eutrophic
environments, a frequently used organism in toxicity studies [45].

P. tricornutum (Bacillariophyta, Bacillariophyceae) is a benthic pennate diatom with a
rigid siliceous cell wall. It is the only standardized marine species for wastewater toxicity
tests. It is characterized by easy cultivation and sensitivity to pollutants [46].

The well-established dependence of light emission intensity of the bioluminescent
bacterium Vibrio fisheri from its wellness, i.e., from the presence of harmful or beneficial
components, has been exploited to develop one of the most-used toxicity reference assays.
V. fisheri is a bioluminescent marine bacterium for which light emission intensity is highly
influenced by the conditions of its environment. Based on the ascertained inversely pro-
portional reduction in light intensity with the increase in toxicants in solution, the test
based on this bacterium has long represented the quicker and easier standardized assay for
drinking water quality assessment [47,48].

2. Materials and Methods
2.1. Chemicals

BSA, p-TSA, BT, BTR, HOBT, MeSBT, and 5TTR pure compounds were supplied by
Sigma-Aldrich (MI, Italy), as well as all chemicals requested to prepare the algae culture
media and the bioluminescent bacteria nutrient broth. Thermo Scientific (Vantaa, Finland)
supplied the 96-well “Black Cliniplate” microplates for luminescence detection, carried
out on the “Victor light 1420” luminescence counter (Perkin-Elmer). Lyophilized aliquots
of the luminescent bacteria V. fischeri were prepared from fresh cultures at our laboratory,
starting from an original batch supplied by the Pasteur Institute (Paris, France). The Istituto
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Zooprofilattico Sperimentale of Abruzzo and Molise “G. Caporale” (Teramo, Italy) supplied
the three microalgae starting cultures.

2.2. Algal Growth Inhibition Assay

Culture media differed between the three species: for the D. tertiolecta the f/2 medium
was prepared by adding to sterilized synthetic seawater (Instant Ocean®) a mixture of
vitamin (cyanocobalamin + biotin + thiamine) and trace elements [49]. The P. tricornutum
medium was prepared by adding sodium silicate (30 g L−1) to the D. tertiolecta medium.
The R. subcapitata was cultivated in Jaworski’s culture medium [50].

The stock cultures were prepared by inoculating 0.5–1 mL of microalgae suspension on
an Erlenmeyer flask containing 250 mL of the respective medium. The flasks were covered
with a porous cotton plug and maintained under illumination (white lamp/red lamp Osram
Daylight 2 × 36 W plus Osram Gro-Lux lamp 36 W) (8 h light/16 h dark) at 20 ◦C. The stock
cultures were allowed to grow until the required cell density was reached to prepare a fresh
stock culture. To perform the assay, a specimen of the stock culture in log phase growth was
diluted, obtaining a cell suspension that contained no more than 1.103 cells mL−1. Since
physiological or metabolic defects can be better evaluated following a prolonged period of
growth in spiked culture, a diluted inoculum was employed to let the algae grow for quite
a long time before reaching the log phase again. The assays were performed not within the
usual interval of 72–96 h, but the growth rate of algae was checked at different intervals after
starting the test, about 20 ± 2 (interval A), 27 ± 2 (interval B), and 34 ± 2 days (interval C).
The 10 mL test tubes were filled with the appropriate medium containing the desired
pollutant’s final concentration (100, 50, 25, 10, 5, 1, 0.1, and 0.01 mg L−1), and then the
algal culture inoculum (0.1 mL of the diluted suspension) was added. To prepare the
controls, the algal inoculum was simply added into the appropriate medium. The tubes
were covered with sterilized porous cotton and gauze and kept under the same conditions
(light and temperature) as the stock cultures.

We evaluated the algal density, after gentle shaking to homogenize the suspension, by
measuring the absorbance of the cultures at 684 nm, an indirect method for cell counting
also mentioned in an ISO procedure [51]. The overall experiments were replicated on three
independent samples.

The toxic effects were evaluated by calculating the percent of growth inhibition in the
samples with respect to the controls according to the absorbance values (Equation (1)).

I% =
Acontrol − Asample

Acontrol
× 100 (1)

where A is the absorbance at 684 nm.
The EC50 values for each compound were calculated according to Finney, 1971 [52],

by using the average value of the % samples inhibition, since the toxic effects are always
relative to the respective controls in each experiment.

2.3. Bioluminescence Inhibition Assay

Lyophilized aliquots of V. fischeri containing 3% NaCl were reconstituted with 1 mL of
distilled water and re-suspended in 10–30 mL of the nutrient broth (NaCl 15 g, peptone
2.5 g, yeast extract 1.5 g, glycerol 1.5 mL, HEPES 0.01 M in 500 mL, pH 7). An amount of
200 µL of the bacteria suspension and 100 µL of each sample in distilled water plus 3%
NaCl or blank (i.e., 3% NaCl in distilled water) were added to the microplate wells. The
emitted light was recorded at various intervals between 0–48 h after preparation of the
microplate. Each sample was replicated on five independent wells. The concentrations
tested on this organism were in the µg L−1 range, precisely 100, 50, and 0.1 µg L−1, because
of the high sensitivity usually displayed by this assay.
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The bioluminescence inhibition percentage (I%) was used to express the toxicity of
the tested samples and calculated according to the same equation employed for the algae,
by using, in this case, the intensity of the emitted light (L):

I% =
Lcontrol − Lsample

Lcontrol
× 100

2.4. Statistical Analyses

Significant differences at 5% and 1% probability levels (p ≤ 0.05 and 0.01, respectively)
were determined via one-way/two-way non parametrical analysis of variance (Kruskal–
Wallis test), with data reported as the mean ± standard error. The relationship between
growth rate and light absorbance was tested by the Pearson’s r correlation test; the predic-
tive value of the growth-absorbance equation and explained variance were tested by the
linear regression method. A non-parametrical U–Mann test for unmatched samples was
adopted to evaluate pairs comparison. SPSS statistical software version 13.0 was used for
all the tests [53].

3. Results
3.1. Preliminary Assessments

We adopted optical density measurements as the index of cells’ density inside vessels,
and the reliability of the relationship between the growth rate of target species and light
absorbance was evaluated by regression analysis. In all cases, we found a highly significant
correlation and a very high explained variance (R > 99% s), i.e., a highly predictive correla-
tion between the two variables (Figure 2), as previously described [54]. Consequently, the
differences in growth rate expressed as light absorbance between controls and samples have
been considered a suitable parameter for describing the toxicant effect on target species.
These effects were evaluated after a long time of contact, until one month, to highlight
the possible chronic effects produced by these long-lasting pollutants. The environmental
concentrations in water usually range from ng to µg L−1, but we tested concentrations in
the range 10 µg L−1 to 100 mg L−1 since, according to the literature, negligible toxic effects
are generally reported at the environmental concentrations, so higher ones are employed
to analyze the in vitro effects [19,31,34,55].
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3.2. Growth Response of Dunaliella tertiolecta

The response of the algae to the presence of the different compounds was expressed
as the % growth inhibition with respect to the control. The values reported in Figures 3–5
were calculated by comparing the absorbance values recorded during the last measurement
(34 ± 2 days).

• Benzenesulfonamides. The algae growth rate was affected by p-TSA at the tested
concentrations down to 0.1 mg L−1 (Figure 3). This concentration reduced the growth
rate by about 5%, a quite negligible value. BSA also showed a harmful effect on
algae, but the growth rate was decreased with respect to the control only by the
concentrations in the range 100–10 mg L−1 (K–Wallis χ2

BSA = 5.21, df = 2, p < 0.05
χ2

pTSA = 5.34, p = 0.06).
• Benzothiazoles. All the benzothiazoles affected D. tertiolecta growth rate at the higher

concentrations (Mann–U100 = 7, p < 0.05; Mann–U50 = 8, p < 0.05), but the lowest
effective concentration was different for the three compounds. Concerning BT, it
corresponded to 50 mg L−1, whereas 5 mg L−1 was the lowest concentration of HOBT,
which reduced the population growth in a significant way. The lowest concentration
of MeSBT producing a reduction in the growth rate was the 10 mg L−1 one (Figure 4).

• Benzotriazoles. The concentrations in the range 5–100 mg L−1 of BTR reduced the
growth rate of the algal population, and 5TTR showed to be a little more toxic than
BTR since all concentrations were able to produce a minimal but measurable reduction
(K–Wallis test; χ2

BTR = 5.99, df = 2, p = 0.05 and χ2
5TTR = 7.65, p < 0.05) (Figure 5). The

effect of some compounds, such as BT and BSA, became significant only at the B or C
measuring time, confirming that the toxicity, as well as the possible eutrophic effects,
is more frequently evident in these organisms after chronic exposure.
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3.3. Growth Response of Raphidocelis subcapitata

Benzenesulfonamides, benzothiazoles, and benzotriazoles. All the pollutants showed
detrimental effects on the alga and inhibited, even if not always with a linear trend, the
growth rate. In the whole tested range, 0.01–100 mg L−1, a variable and apparent reduction
in population viability was observed after exposure to benzenesulfonamides (K–Wallis test;
χ2

BSA = 5.1, p = 0.072; χ2
pTSA = 5.31, p = 0.06; Figure 3) and benzothiazoles (K–Wallis test;

χ2
BT = 6.41, p < 0.05; χ2

HOBT = 6.77, p < 0.05; χ2
MeSBT = 5.99, p = 0.05; Figure 4). Differently

from the other two organisms, this alga showed an unexpected higher sensitivity towards
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most parts of the compounds at lower concentrations. Only in the case of 5TTR, which
significantly affected its growth (K–Wallis test; χ2

BTR = 10.1, p < 0.01; χ2
5TTR = 8.05, p < 0.05;

Figure 5), the percent of inhibition values were in a relatively perfect linear relation with
the respective concentrations.
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Figure 5. Values of the percentage of growth inhibition produced by the two benzotriazoles on the
three algal species.

3.4. Growth Response of Phaeodactylum tricornutum

• Benzenesulfonamides. The toxicity of the two tested compounds on the marine diatom
can be considered very similar in both the absolute values of growth inhibition and
the lowest effective concentration, which was 5 mg L−1 in both cases (Figure 3).

• Benzothiazoles. These compounds showed quite different effects on algal growth. The
BT and HOBT higher concentrations produced inhibition values above 80% (K–Wallis
test; χ2

BT = 6.20, p < 0.05; χ2
HOBT = 6.31 p < 0.05; Figure 4). A measurable effect was

produced until the 5 mg L−1 concentration, and marginal inhibition can be ascribed
to the 1 mg L−1 solution in the case of HOBT. MeSBT resulted in being the least
toxic, and the lowest effective concentration was the 10 mg L−1 one (K–Wallis test;
χ2

MeSBT = 5.84 p = ns; Figure 4).
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• Benzotriazoles. To this alga, the 5TTR solutions resulted in being toxic at all con-
centrations between 0.1 and 100 mg L−1, producing % inhibition values quite reg-
ularly, dependent on the benzothiazole concentration (K–Wallis test; χ2

5TTR =7.15,
p < 0.05; Figure 5).

BTR resulted in being slightly less toxic, and the 5 mg L−1 solution was the lowest
one affecting the population growth (K–Wallis test; χ2

BTR = 6.24, p < 0.05; Figure 5).
In Table 1, we reported the EC50 values of the various compounds for the three algae. It

is easier to understand that the less sensitive strain was the marine green algae D. tertiolecta.
Better sensitivity was expressed by the freshwater alga and by the diatomea, the latter
already known to be a sensitive microorganism among the marine ones.

Table 1. EC50 values of the various compounds calculated for the three algae, in mg L−1.
The value “> 100” means that the maximum concentration tested (100 mg L−1) produced an in-
hibition lower than 50%.

Compound Raphidocelis
subcapitata

Dunaliella
tertiolecta

Phaeodactylum
tricornutum

BSA >100 57 >100
PTSA 92 >100 >100

BTR 67 >100 81
5TTR 38 >100 30

BT >100 >100 41

MESBT 86 >100 75
HOBT 16 >100 32

3.5. Effects of the Compounds on Vibrio fisheri Light Emission Intensity

In Figure 6, the light emission of the various compounds at 0.1 µg L−1 was com-
pared to that of the control at the typical acute (1 h) and chronic toxicity (24 h) intervals,
respectively. Moreover, the last record of emission intensity was taken at 48 h after the
bacteria–compound contact. It is possible to observe that the majority of the compounds at
this concentration have a eutrophic effect on these organisms, or at least stimulate the light
emission intensity. Indeed, their vitality was not affected by this concentration, even at the
longest possible contact time for this assay. In detail, any significant differences in light
emission between the control bacterial cultures and any of the cultures spiked with each
compound (χ2

1h = 7.53; df = 7; p = 0.38) were observed after 1 h of contact, while strong
differences were observed after 24 h (χ2

24h = 21.41; df = 7; p = 0.003) and 48 h (χ2
48h = 21.32;

df = 7; p = 0.003).
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The observed results in the presence of the 50 and 100 µg L−1 solutions showed a
more complicated behavior. At the usual acute toxicity interval, no clear inhibition effect
was observed (Figure 7A); after 48 h of contact, the majority of the compounds produced a
more or less pronounced reduction in light intensity (inhibition) in the range of 10–72%,
but HOBT, at both concentrations, greatly stimulated it. BT produced a similar eutrophic
effect only at the 50 µg L−1 concentration (Figure 7B).
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the exception of BSA, showing no effect, HOBT and BT at 50 µg L−1, shown eutrophic effects, and
other compounds resulted in a clearer toxic effect.

4. Discussion

As stated recently, toxicological data for microalgae are scanty when compared with
other taxa [56]. Most of the information on the toxicity of several pollutants in the aquatic
environments, the compounds under study included, comes from tests carried out on
crustaceans and fish, although algae can be more sensitive than animals to aquatic toxi-
city [57–60]. Another problem is the prevalence in lab repositories of freshwater species
with high tolerance to the pollution that have been frequently used as a model in ecotoxi-
cological studies [56]. These species can be unsuitable surrogates for estuarine or marine
microalgae [61].

A way to directly compare our data with those of the literature is not easy to find, since
these three algae have never employed together, just two on three sporadically. Moreover,
we focused our work on the long-term effects. Previous studies included different species
of microalgae [19,34], or sometimes Raphidocelis subcapitata [62–64]. Very often, one of the
tests in the panel employed to evaluate the biotoxicity is the Microtox® one [62,65,66] based
on Vibrio fisheri, but it is an acute test (15 min), for which results are very far from our
chronic toxicity data.

Nevertheless, we tested a wide range of concentrations of the investigated pollutants
similarly to the most part of previous studies and, consistently with them, the first conclu-
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sion was that all the compounds had some effects at the higher concentrations, but at the
levels detected in freshwaters, they did not pose a risk for aquatic ecosystems.

The tested algae should be applied, for example, to reveal the high concentrations
found in wastewaters from sewage treatment plants. Sensitivity for specific families of
pollutants was not observed, and each species showed different behaviors with respect to
the three groups of compounds. It must be underlined that the differences in the response
of microorganisms to the same or to similar pollutants may depend on various factors,
ranging from lipid peroxidation to metabolic energy deficiency, decreased photosynthetic
energy, or endocrine disrupting effects, and are therefore species-specific and related to
the ecology and physiology of the organism [67]. Except for benzenesulphonamides, the
freshwater alga, in particular, and the diatomea seemed to be the most sensitive to these
compounds, not only concerning the degree of growth inhibition produced by the high
concentration, but mainly with respect to the response to the lowest ones. In this family of
pollutants, benzothiazoles and benzotriazoles showed the most marked effect on our algal
species. According to our expectations, the freshwater Raphidocelis subcapitata was more
sensitive to benzo-fused nitrogen heterocyclic pollutants than the marine ones, which are
well adapted to fast changes in the chemical balance of their habitat.

On the contrary, an unexpected result was the absence of acute adverse effects on the
Vibrio fisheri light emission, at least at the 50 and 100 µg L−1 concentrations. A detrimental
effect was observed only at the chronic toxicity intervals (24 and 48 h), and was not
produced by all compounds. In fact, two compounds showed at that time a stimulation
of light emission, and this phenomenon is quite frequent when the tested compounds
do not produce an acute toxicity effect toward the V. fisheri. Over time, the light induced
degradation or the bacterial metabolism transform the organic pollutants into carbon
sources for bacteria. This could be the effect produced by all compounds but BSA at the
0.1 µg L−1 concentration, or, in this case, it possibly involves the hormesis effect [68]. The
V. fisheri test is considered highly sensitive, but, in this case, the response of acute toxicity
tests was surprising: there was no toxicity, and no detected risks. Actually, benzotriazoles
at the concentrations present in some WWTP effluents were estimated to pose a risk to
V. fisheri [69], but it was not so evident by using solutions of the pure compounds. This
result is a more evident example of how different the effects of any chemical on organisms
belonging to the various, and even the same, trophic levels can be.

On the other hand, we estimate that it is important to underline that the most sig-
nificant results from the compounds under study were obtained from all organisms after
chronic exposure intervals, confirming the rationale of our experimental design and the
need for long-term assays in evaluating the environmental impact. The selection of the
most suitable organism and bioassay(s) design must be accurate and, in any case, based on
multiple tests.

The results of this investigation should be helpful in determining the suitability
of the various available organisms as environmental biomarkers of these and similar
chemicals. Based on these preliminary data, we can state that the three microalgae species
are unsuitable for rapidly evaluating the effect of the pure benzo-fused nitrogen heterocyclic
compounds at the low contamination levels of surface and drinking waters.

However, the continuous and large use of these compounds can lead to their accumu-
lation in particular compartments, such as sludge and sediments, and their hydrophilicity
helps in the transfer to the water. Our plan is to investigate the possible onset of physiolog-
ical and/or somatic effects of these benzo-fused nitrogen heterocycles in algae grown for
various cycles in media containing the low concentration detected in freshwater or coastal
environments. These effects, when permanent, would be employed as witnesses of long-
term pollution. Moreover, the same experiments must be repeated at similar concentrations
in real samples, to exactly evaluate the influence of the co-pollutant traces.
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