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Abstract—The evolution of energy-efficient ultra-low-power
(ULP) parallel processors and the diffusion of convolutional
neural networks (CNNs) are fueling the advent of autonomous
driving nano-sized unmanned aerial vehicles (UAVs). These sub-
10 cm robotic platforms are envisioned as next-generation ubiq-
uitous smart-sensors and unobtrusive robotic-helpers. However,
the limited computational/memory resources available aboard
nano-UAVs introduce the challenge of minimizing and optimizing
vision-based CNNs – which to date require error-prone, labor-
intensive iterative development flows. This work explores method-
ologies and software tools to streamline and automate all the
deployment of vision-based CNN navigation on a ULP multicore
system-on-chip acting as a mission computer on a Crazyflie 2.1
nano-UAV. We focus on the deployment of PULP-Dronet [1], a
state-of-the-art CNN for autonomous navigation of nano-UAVs,
from the initial training to the final closed-loop evaluation.
Compared to the original hand-crafted CNN, our results show
a 2× reduction of memory footprint and a speedup of 1.6× in
inference time while guaranteeing the same prediction accuracy
and significantly improving the behavior in the field, achieving:
i) obstacle avoidance with a peak braking-speed of 1.65m/s and
improving the speed/braking-space ratio of the baseline, ii) free
flight in a familiar environment up to 1.96m/s (0.5m/s for the
baseline), and iii) lane following on a path featuring a 90 deg turn
– all while using for computation less than 1.6% of the drone’s
power budget. To foster new applications and future research,
we open-source all the software design in a ready-to-run project
compatible with the Crazyflie 2.1.

SUPPLEMENTARY MATERIAL

Open-source code and dataset are available at: https://github.
com/pulp-platform/pulp-dronet. In-field experiments video
footage at: https://youtu.be/41IwjAXmFQ0, https://youtu.be/
Cd9GyTl6tHI.

I. INTRODUCTION

In the past years, unmanned aerial vehicles (UAVs) have
been adopted in a wide range of applications, such as surveil-
lance and inspection of hazardous areas [1], [2]. Nano-size
UAVs, with a form factor of a few centimeters and a weight
of tens of grams, are the ideal candidates for fully autonomous
indoor navigation as they can safely operate near humans and
reach narrow spots with their reduced dimensions [1], [3], [4].
However, these platforms have a total power envelope of a

few Watts, of which only 5−15% is allotted for computation,
making it challenging to deploy real-time navigation pipelines
directly onboard [5]. Furthermore, the small physical foot-
print and limited payload that can be carried by nano-UAVs
constrains the battery and printed circuit board sizes. Overall,
these constraints mean that onboard computing devices need
to have the physical footprint, power envelope, and on-chip
memory of a typical microcontroller unit (MCU).

For traditional UAVs, the classical approach for autonomous
navigation is simultaneous-localization-and-mapping (SLAM),
which creates a map of the environment and plans the trajec-
tory according to it [6]. Classical SLAM is too computation-
ally intensive to be feasible on nano-UAVs. An alternative
emerging approach is to infer relevant navigation information
directly from onboard sensors and cameras, using machine
learning-based algorithms. In particular, deep convolutional
neural networks (CNNs) have recently proved to provide good
performance in autonomous navigation, at a fraction of the cost
of SLAM: enough to run practical navigation tasks directly on
highly resource-constrained platforms [3], [7]. Still, achieving
more sophisticated navigation skills requires to deploy more
complex CNNs under even stricter real-time constraints, to
promptly react to challenging dynamic environments, avoid
collisions, plan new routes, etc. Therefore, it is imperative to
look for strategies to minimize the models’ complexity and
footprint while maintaining high accuracy.

Recently, low-power multi-core System-on-Chips (SoCs)
have been introduced as potentially ideal devices to combine
an MCU’s flexibility with AI-oriented compute acceleration
capabilities [8], [9]. At their peak performance, these devices
deliver up to 10–100× better performance and efficiency than
conventional MCUs, constituting an ideal platform for fully
onboard DNN-driven autonomous navigation. However, their
complex architecture, together with the non-trivial require-
ments of DNN-based algorithms, requires a complex proce-
dure including training, quantization, and a difficult hand-
tuning phase to maximize performance on the final target –
a critical step to achieve high frame rate and thus good in-
field navigation performance.

In this work, we focus on automating the end-to-end deploy-
ment of a DNN-based neural flight controller on top of a nano-

https://github.com/pulp-platform/pulp-dronet
https://github.com/pulp-platform/pulp-dronet
https://youtu.be/41IwjAXmFQ0
https://youtu.be/Cd9GyTl6tHI
https://youtu.be/Cd9GyTl6tHI
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UAV employing the GreenWaves Technologies (GWT) GAP8
SoC [8] – one of the most advanced commercially available
AI-oriented SoCs suitable to nano-size drones. We evaluate
two distinct toolsets available for GAP8, namely the GAPflow
provided by GWT and the open-source NEMO/DORY flow
fostered by the research community [10]. Specifically, we
adapt and tune these flows to automatically deploy a CNN
for autonomous navigation based on the state-of-the-art (SoA)
PULP-Dronet [1]. PULP-Dronet is a residual network used
to drive a nano-UAV through an interior (e.g., a corridor) or
exterior (e.g., street) environment, deriving a probability of
collision, used for obstacle avoidance, and a steering angle
to keep within a lane – implemented as a classification and a
regression task, respectively.

Differently from the seminal PULP-Dronet, which relied
on 16-bit fixed-point data representation, we focus on fully
automated deployment, including network quantization to 8-
bits, data tiling, code generation for the GAP8 SoC, evaluation
of performance on the regression and classification tasks. We
also improve the integration of the new PULP-Dronet with
the flight controller, with a more robust approach to deal with
situations where the network’s output is not providing strong
guidance. We compare our results in terms of accuracy to the
original PULP-Dronet showing that the prediction capability
is maintained (∼90% for the classification despite the stronger
quantization). Our results show a throughput up to 19 frame/s,
improved by a factor of up to 1.6× and total energy consump-
tion of ∼ 3−4mJ/frame, which is ∼ 44− 58% less than our
baseline.

Moreover, we contribute a thorough exploration of the
real-world performance of the CNN in exterior and interior
environments, evaluating the drone’s adherence to expected be-
havior in several controlled experiments performed in a room
equipped with a Vicon motion capture system. We individually
assess the obstacle avoidance and steering capabilities. We
find that the drone can stop 0.42m away from a dynamic
obstacle that appears 1.5m in front of the drone while flying
with 1.41m/s, with a significant 25.3% improvement in the
speed/braking-distance ratio vs. the original PULP-Dronet.
Furthermore, we also demonstrate the capability of the drone
to fly an angled narrow tunnel, and we record the trajectories
for various drone velocities. We also evaluate the free-flight
capabilities of the drone in a controlled indoor environment,
achieving 110m path in 56 s, which marks an improvement
of ∼ 4× vs. our baseline.

Our new, streamlined approach significantly improves the
autonomous flight capabilities of PULP-Dronet while freeing
up resources (i.e., reduced memory footprint and inference
time), which allows the system to handle even more tasks (e.g.,
localization, detection, tracking, etc.). Also, we investigate
the generalization capabilities of the drone flying in new
environments that are not captured by the training dataset.
Among all considered environments, we recorded the longest
flight time of 171 s in an urban street.

II. RELATED WORK

Standard/micro-sized UAVs: Customarily, we divide UAVs
into four categories, shown in Table I, according to size,

TABLE I
UAVS TAXONOMY BY VEHICLE CLASS-SIZE [11].

Vehicle class � : Weight [cm:kg] Power [W] Onboard Device

standard-size [12] ∼ 50 : ≥ 1 ≥ 100 Desktop
micro-size [13] ∼ 25 : ∼ 0.5 ∼ 50 Embedded
nano-size [1] ∼ 10 : ∼ 0.01 ∼ 5 MCU
pico-size [5] ∼ 2 : ≤ 0.001 ∼ 0.1 ULP

weight, total power consumption, and onboard processing
platform. The latter two characteristics are directly linked,
as the budget for onboard electronics is limited to ∼5-15%
of the total [5]. The overwhelming majority of complex
robotic perception algorithms have been demonstrated aboard
standard- and micro-sized UAVs [12], [13], [14], which feature
powerful onboard computers, often equipped with GPUs, such
as NVIDIA Jetson TX1/TX2. The sophisticated functionality
that can be achieved with these platforms include onboard
autonomous navigation in an unstructured natural environ-
ments [12]; and search for particular objects in the field of
view using semantic segmentation, for example for smart
agriculture [13]. To work, these functionalities need multiple
CNNs and other non-neural algorithms, such as visual SLAM,
to enable multiple concurrent tasks, such as pose estimation,
collision avoidance, and trajectory planning.

MCU-based nano-sized UAVs: Highly miniaturized nano-
size UAVs [1], [7], [4] have a diameter of about 10 cm,
weigh only a few tens of grams, and have a total power
budget of a few Watts – not enough to directly support the
functionality discussed above, with only simple MCU-class
devices and a few MB of memory onboard. We can distinguish
three categories of solutions to enable autonomous navigation
despite these limitations: restricting to limited functionality to
minimize the workload [7], [15], [16], [17], [18], [19]; offload-
ing computation to an external base-station [20], [21], [22]; or
extending the onboard computing device either with general-
purpose visual navigation engines [3], [4] or with application-
specific processors [23], [24], [25], [26], [27]. From the first
category, Lambert et al. [15] exploit the STM32F4 MCU to
implement a simple DL-based flight-controller for hovering on
a Crazyflie 2.0. Similarly, Guanya Shi et. al.[16] apply a simple
DNN-based controller (∼ 27 kMAC) on a swarm of nano-
drones, which enables multiple drones to fly safely in close
proximity. Zhao et al. [7] implement a CNN to improve the
localization accuracy of a nano-UAV by modeling the sensor
biases of the localization system. This last DL model can run
at 200Hz on the onboard ARM Cortex M4 MCU requiring
about 2.7 kMAC/frame, i.e., 10000× less operations than
existing SoA CNN-based autonomous navigation workloads,
e.g., ∼40MMAC/frame in [1]. In [18], the authors propose
a lightweight navigation algorithm that enables a swarm of
drones to explore an indoor area while avoiding collision
with the walls by exploiting four laser distance sensors on
each drone. The autonomous navigation is commanded by
a finite state machine, which maps the sensor output into
drone control commands. The simple sensor input (i.e., four
single laser beams) results in an avoidance mechanism that
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can only detect large and homogeneous obstacles. In contrast,
our solution is based on the visual cues of the environment
and, therefore, more general and robust against various types
of obstacles. [19] proposes an approach for navigation with
obstacle avoidance using a random forest classifier. They
report a classification accuracy of 90% while using a size
of 229 nodes for the decision tree. However, their approach
was only developed and tested with synthetic data generated
with the aid of a simulator. While useful for some specific
tasks, these tiny models are not a viable solution for more
challenging navigation problems, like the ones we tackle in
this work.

An approach to overcome the computational limitations of
single-core MCUs is to offload intensive computation to off-
board, wireless-connected computing resources. For example,
in [22] the authors propose an autonomous navigation ap-
proach based on a CNN that uses reinforcement learning
to adjust part of its parameters online. The initial values of
the weights are obtained by training the whole network with
synthetic images obtained from a game engine, and they also
prove the in-field functionality using a 80 g drone. However,
the action space of their algorithm is limited to: move 50m
forward, steer 45° and steer −45°. This results in less smooth
and flexible navigation than our approach, which provides a
continuous output for the steering angle and adaptive forward
velocity. In [20] the authors implement a fuzzy logic position
controller and vision-based position estimation by offloading
all the computation to an Intel i7 processor streaming images
with a 2.4GHz radio. This class of approaches, however,
suffers from several important drawbacks [28]: i) it intro-
duces network-dependent latency, which prevents the drone
to operate farther than few tens of meters from the remote
base-station, ii) the noise on the transmission channel affects
the reliability of the transmitted data, iii) security becomes
a concern for eavesdropping of confidential images and data
and for denial-of-service attacks on the wireless connections,
and iv) the power consumption of the high-frequency radio
transmission is significant and the wireless transceiver may
dominate the power budget for control.

Accelerated nano-size UAVs: A possible solution to the
limitations imposed by single-core MCUs is augmenting nano-
UAVs with better compute functionality. For larger UAVs, this
is a common choice – using devices such as NVIDIA GPUs,
Intel Myriad, or Google Edge TPU[12], [13], [29], [30] that are
both flexible and highly efficient. For nano-UAVs, however, the
possibilities are more limited. Some recent works emphasize
the efficacy of application-specific integrated circuits (ASIC),
which suitable for autonomous navigation functionalities [26],
[27], [23], [24], [25] on an low-power budget. Some of
these systems have been designed to tackle specific UAV
applications, such as visual-inertial odometry (VIO) [23] and
simultaneous localization-and-mapping (SLAM) [24], [25],
within a power envelope of few hundred mW. While ex-
tremely efficient, these systems are inflexible and they do not
implement end-to-end flying functionality, but only accelerate
some sub-functions, requiring anyways a mission and flight
controller MCU.

The approach we follow in this work targets end-to-end

mission control using a fully programmable parallel computing
accelerator [31]. Parallel ultra-low-power (PULP) processors
use small-scale multi-core clusters with 4-16 cores, with an
enhanced RISC-V instruction set architecture (ISA), to exploit
intrinsic parallelism of vision workloads, including CNNs. An
example of this new generation of energy-efficient devices is
the 9-core GWT GAP8 SoC, which has been already applied to
nano-drones [1], [3], [4] for tasks such as obstacle avoidance,
lane detection, and pose estimation using CNNs in the range of
10-100MMAC/frame. The key advantage of this approach is
its flexibility and the capability to handle the end-to-end flight
control task.

Automatic deployment tools: Deploying multi-MMAC
CNNs on an MCU-class device requires coping with a power
envelope of less than 1W, a memory of just a few MB or
less, and limited peak performance, demanding for a strict
co-optimization of the algorithmic, software, and hardware
components [10], [32]. Minimization of a DL model can be
performed either with specific topological choices, like using
depth-wise convolutions [33], [34] or using quantization as a
compression technique [35], [36] from float32 down to int8
or less, with a net 4× reduction of model footprint. Quanti-
zation can also expose more data parallelism exploitable by
packed-SIMD instructions [37], improving the final inference
throughput and the energy consumption.

Moreover, given a size-optimized network, the deployment
challenge must be addressed, which consists in achieving the
maximum utilization of computing resources by i) paralleliz-
ing computation, ii) managing the memory hierarchy (i.e.,
topology-dependent tiling), and iii) minimizing data transfers
overheads. This is a key step especially for MCU devices,
where the processing units are scarce by definition [10].

General-purpose tools such as TFLite for MCUs and
Larq [38], [39], [40], as well as vendor-locked tools like
STM32 X-CUBE-AI1 have been proposed to ease deploy-
ment on MCUs. For PULP platforms, on which we focus
in this work, two deployment tools have been recently in-
troduced: GWT’s AutoTiler2, which is partially closed-source,
and DORY [10] with PULP-NN backend [41], an alternative
open-source academic framework.

In this work, we exploit these recent advancements to
bring the deployment of DL-based visual navigation on nano-
drones from handcrafted and hand-tuned deployment [1] to a
new streamlined, automated methodology. We leverage DNN
deployment frameworks by integrating them in our flow and
we achieve significantly improved performance and energy ef-
ficiency on autonomous navigation DL workloads, improving
the nano-UAV in-field behavior and freeing resources for even
more complex missions and tasks.

III. BACKGROUND

A. Robotic platform and Hardware

The algorithmic kernel of our application use case, i.e.,
PULP-Dronet V2, runs on a commercial embodiment of the

1https://www.st.com/en/embedded-software/x-cube-ai.html
2https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/

index.html

https://www.st.com/en/embedded-software/x-cube-ai.html
https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html
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Fig. 1. AI-deck diagram and the GAP8 System-on-Chip architecture.

PULP platform [37], the GWT GAP8 SoC [8]. GAP8 is a
1+8 general-purpose RISC-V-based multicore MCU, where
the nine cores are organized in two power and frequency
domains, namely the fabric controller (FC) and the cluster
(CL), as shown in Figure 1. The former features one single
core for control-oriented tasks, acting as an “activity super-
visor” managing the interfaces to off-chip sensors/memories
and orchestrating on-chip memory operations. On the other
hand, the CL is designed to execute computationally intensive
parallel workloads, such as vision-based CNNs, so to enable
high-level energy efficiency via the parallel computational
paradigm [31].

All nine cores are based on the open-source RI5CY
core [37], which implements the RV32IMC instruction set
and the Xpulpv2 extension with digital signal process-
ing (DSP) instructions: register-register multiply-accumulate,
hardware loops, load/store operations with post-increment,
packed single-instruction-multiple-data (SIMD), and special-
ized instructions for dot-product – the latter two operating
on vectors of 8-bit or 16-bit data. The on-chip memory
hierarchy is organized with 512 kB of L2 SRAM and 16 kB
of L1 on the FC, while the CL has a 64 kB shared L1
as a tightly-coupled data memory (TCDM). The TCDM is
organized in sixteen banks, providing an aggregate band-
width of 11.2GB/s@175MHz. It is connected to the cores
by means of a fully combinational logarithmic interconnect,
which guarantees 0-wait state access from the cores in the
absence of collisions – in which case, one of the colliding
accesses is stalled for one cycle. To enable data transfer, the
GAP8 SoC features two DMA engines: the first one, called
µDMA, is in charge of data exchange with external I/O
peripherals (e.g., DRAM, cameras, etc.) across a wide range of
interfaces (e.g., QSPI, HyperBus, etc.). Inside the CL domain,
the second DMA controller is connected on one side to the
TCDM logarithmic interconnected; on the other side to the
AXI interconnect. The CL DMA can be used to transfer data
between the L2 and the L1 TCDM memory at up to 8B/cycle
in either direction, guaranteeing data availability for the eight
CL cores.

The robotic platform we employ in this work is the COTS

open-source Crazyflie 2.1 nano-quadrotor from Bitcraze3. This
tiny UAV weighs 27 g, has a diameter of ∼10 cm, and a total
payload of ∼ 15 g. The underlying robotic platform is built
around the STM32F405 MCU, in charge of all low-level flight
controller functionalities, such as sensors’ interfacing, state
estimation, and low-level control.

In this work, we employ a configuration that extends
the basic nano-drone with two commercially available open-
source, pluggable printed circuit boards (PCBs): the Flow-
deck and the AI-deck 4. The former features a low-resolution
down-looking optical-flow camera coupled with a time-of-
flight (ToF) sensor, enabling the drone to detect motions in
any direction and providing a distance measurement from the
ground, respectively. The latter is the commercially supported
version of the PULP-Shield research prototype, introduced
in [3]. This board, shown in Figure 1, extends the nano-
drone’s onboard capabilities with an energy-efficient GAP8
processor, off-chip DRAM, and Flash memory (8MB and
64MB, respectively), a QVGA resolution low-power gray-
scale camera (i.e., Himax HM01B0 sensor), and a versatile
ESP32-based WiFi module5.

Combining the STM32 MCU with the GAP8 SoC enables
the heterogeneous architectural paradigm at the ultra-low-
power scale [31], enabling onboard execution of sophisticated
vision-based algorithms. In this host-accelerator context, the
STM32 represents the host, handling control-oriented tasks
(i.e., flight controller), while the GAP8 offers general-purpose
parallel computation capabilities, acting as the accelerator for
compute-intensive perception and navigation tasks.

B. PULP-Dronet CNN

Dronet [42] is a vision-based end-to-end autonomous drone
navigation CNN, deployed on a nano-drone, for the first time,
in the seminal PULP-Dronet project [1]. This shallow NN is
based on three consecutive ResNet [43] blocks that branch the
last layer to produce two outputs: a probability of collision
(classification problem) and a steering angle (regression prob-
lem). The CNN was originally developed using 16-bit fixed-
point arithmetic as the result of a quantization-aware training
process. Images used in the original training/validation/testing,
and also in this work, are partitioned in three disjoint sets:

• Udacity: ∼39.1K high-resolution images labeled only
with steering angle.

• Bicycle: ∼32.2K high-resolution images labeled only
with collision probabilities.

• Himax: ∼1.3K low-resolution images collected from the
same camera aboard our target nano-drone and labeled
only with collision probabilities.

The union of Udacity and Bicycle sets results in the so-called
Original dataset that we use to train our PULP-DroNet V2 in
PyTorch (100 epochs) and to select the models that minimize
both regression and classification error on the validation set.

3https://www.bitcraze.io/products/crazyflie-2-1
4https://store.bitcraze.io/products/ai-deck
5We remind the reader that, in this work, the Wi-Fi radio has been used

only for debugging and showcasing video-streaming purposes.
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IV. DEPLOYMENT AUTOMATION FLOW

The development of AI-based algorithms on MCU-class
processors, aboard a nano-drone, is a complex multi-objective
optimization problem that must take into account: i) memory
availability, ii) power envelope, iii) hardware limitations (e.g.,
no FPU), and iv) throughput. Therefore, to enable the execu-
tion of PULP-Dronet on GAP8 under these constraints, we
assemble and streamline a flow of automated tools that divide
the process into two main stages: i) quantization of the neural
network, and ii) hardware-aware deployment of the quantized
model.

A. Quantization

This stage, remapping the CNN’s numerical representation,
e.g., from float32 to int8, enables efficient integer com-
putation on the underlying hardware. From a mathematical
viewpoint, the tools we consider in this work focus on uniform
affine quantization: all tensors t (typically inputs x, outputs
y or weights w) are first restricted to a known range [αt, βt),
then they are mapped to N -bit purely integer tensors t̂ by
means of a bijection:

t = αt + εt · t̂ , (1)

where εt = (βt − αt)/(2
N − 1). εt is often called the

scaling factor used to scale tensors from their floating-point
to their integer representation. Quantization flows enforce the
representation quantized tensors of all waits and part of the
data tensors in the network – the latter typically together with
ReLU activation functions.

NNTOOL is the NN mapping flow developed by GWT, in-
cluded in the GAPflow, that converts a TFLite topology graph
into a new custom representation. It is distributed as part of the
GAP8 software development kit6. NNTOOL performs “layer-
fusion”, post-training calibration and quantization (8/16-bit),
and folds batch normalization (BN) into the convolution
layer that precedes it, avoiding costly intermediate buffers
and saving a small amount of memory traffic (i.e., 1.792 kB
in Dronet). On the other hand, NEMO is the quantization
tool used by the open-source pipeline NEMO/DORY [10],
which provides both post-training quantization (i.e., quantizing
the model without further re-training, using only lightweight
calibration) and quantization-aware training (i.e., quantization
at training-time, to mitigate potential accuracy loss). NEMO
does not fold BN layers, but instead, it converts them into
fully integer channel-wise scaling operations [32].

For our application, we apply post-training quantization at
8-bit for both NEMO and NNTOOL, which is – to date
– the most commonly adopted quantized bit-width and is
supported by both flows. Specifically, NNTOOL employs a
signed int8 format for both activations and weights, whereas
NEMO employs uint8 for activations and int8 for weights.
Both tool-sets require a Conv-BN-ReLU pattern for all main
branches of each ResBlock. This simplifies both quantization
and deployment: the accumulated tensor at the output of the
Conv operation naturally requires a finer grain representation

6https://github.com/GreenWaves-Technologies/gap sdk

Fig. 2. ResBlocks of PULP-DronetV1, PULP-DronetV2 GAPflow and PULP-
DronetV2 NEMO/DORY (top-bottom order).

than that of inputs and weights – both flows employ 32 bits.
Integer scaling and ReLU can be applied to a single element
at a time, meaning that there is no need to materialize a full
tensor of 32 bits elements – rather, each element is produced at
32 bits by Conv but immediately reduced to 8 bits by ReLU or
BN+ReLU. The baseline version of the NEMO flow does not
support the quantization of data that is not at the output of a
ReLU; as a consequence, we introduce a further modification
by pushing the final ReLU of the ResBlocks back to the resid-
ual branch. Figure 2 summarizes the minor modifications that
were used in the two flows with respect to PULP-DronetV1 –
establishing two new NN topologies, namely, PULP-DronetV2
GAPflow and PULP-DronetV2 NEMO/DORY.

B. Hardware-aware deployment

The deployment goal is to enable and exploit the hardware
platform by generating C code that: i) maximizes the parallel
execution over all available cores, and ii) minimizes the data
transfers overhead. On GAP8, the main challenge is the limited
L1 memory (64 kB), that forces the deployment tools to solve
an optimization problem, partitioning the tensors into smaller
chunks of data, called tiles, to be moved between L2 and the
L1 memory.

Both GAPflow and NEMO/DORY partition this problem
in two separate parts: i) a set of optimized kernels operating
exclusively on L1 data tiles, and ii) a tiling solver to define
the optimal size for tiles and generate the code for the
related data transfers between L2 and L1, including double
buffering for all tensors. As optimized primitives, GAPflow
relies on a set of open-source kernels available within the
GAP SDK, with the possibility of defining custom ones.
NEMO/DORY uses the open-source PULP-NN library7 [41].
The tiling solver employed by the GAPflow is a proprietary
tool called AutoTiler, whereas NEMO/DORY employs DORY,
an open-source flow [10].

The two primitive libraries exploit different data layouts,
affecting the final performance on the Conv layers. PULP-
NN, employed by NEMO/DORY, exploits the height-width-
channel (HWC) layout, where the data along the channels’
dimension is stored with a stride of one, while the data along

7https://github.com/pulp-platform/pulp-nn

https://github.com/GreenWaves-Technologies/gap_sdk
https://github.com/pulp-platform/pulp-nn
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the width dimension is stored with a stride equal to the number
of channels. NNTOOL uses the channel-height-width (CHW)
format, reverting the previous order. The convolutional layer
can be performed either as a direct convolution or as a matrix-
matrix multiplication, optimized for CHW and HWC layouts,
respectively. Both implementations have pros and cons. Direct
convolution uses a sliding window with a masking/shuffling
mechanism, while in the matrix multiplication case, we need
to pay some extra overhead to rearrange the input data to a
single-dimension tensor (i.e., im2col, image-to-column) so
that the convolution can be computed as matrix multiplication.
On the other hand, matrix multiplication is a more regular
operation than convolution, it is essentially identical for any
filter size, and it does not require any data shuffling. In general,
the HWC layout and the matrix-matrix multiplication become
more convenient when the feature map of the convolved
layer has many input channels. Conversely, the CHW data
layout used by the GAPflow is most advantageous with direct
convolutions on Conv layers with spatial dimensions much
larger than the number of input channels.

The tiling solver employed by GAPflow is the AutoTiler,
whereas the open-source flow employes DORY [10]. AutoTiler
is a proprietary partially closed-source tool. It can automati-
cally promote full tensors from L3 to L2 and to L1 or tile
them in order to maximize performance using the GAPflow
backend primitives. On the other hand, DORY specifies tiling
as two separate problems – one for L3/L2, the other for L2/L1
transfers. To promote data from L3 to L2, DORY uses a set of
simple heuristics, such as looking at the known-good solution
first (e.g., copying the full weights for the next layer in L2
while the current one is being run; keep all activations in L2)
and revert to less optimal ones when the former ones are not
feasible (e.g., move part of the activations in L3). For the
L2/L1 transfers, insisting on a much smaller L1 size (64 KB),
tiling is specified as a constrained optimization problem with
the objective to maximize L1 utilization, and at the same time
maximize a few hardware-aware heuristics (e.g., favor tiles
that are better parallelized due to their specific sizes).

Overall, we observe that for our CNN the AutoTiler finds
a better solution for layers that are spatially large and without
many input channels, such as the first convolutional layer;
DORY, on the other hand, performs better for layers where
the number of input channels is high. By inspection of
generated code, we also notice that the AutoTiler is able to
fuse consecutive layers (e.g., convolutions, max-pooling, and
ReLU) and apply multiple operations directly on the same L1
tile, avoiding an intermediate copy to L2. This is the case for
the first part of PULP-Dronet (i.e., Conv5 × 5 + MaxPool),
where the AutoTiler merges the first two layers, while DORY
executes them one after the other, as it can not store in
the L1 memory all the needed parameters required by the
HWC layout. Both GAPflow and NEMO/DORY implement,
whenever is possible, pipelined memory/computation phases
by means of the GAP8’s µDMA (L3-L2).

C. Platform integration & low-level control
To enable autonomous navigation on the nano-drone, the

inference results of the CNN running in the AI-deck have

to be communicated to the flight controller, running on the
Crazyflie’s main board. This controller is in charge of running
control algorithms that drive the drone and run on top of
the STM32F405 MCU. Communication between the Crazyflie
flight controller and the AI-deck happens via UART commu-
nication at 115200 baud. Figure 3 shows the stages of the
perception and control. In the AI-deck side (purple), whenever
a new inference is started for the current image (k) in the
CL, the FC also commands the acquisition of the next image
(k+1), which will serve as input for the next inference. Every
time a new inference result is available, the AI-deck sends
this data via UART. When using GAPflow, the outputs of
the deployed CNN are also quantized at 8 bits: the inference
result, therefore, simply consists of 2 bytes - one for the
probability of collision and one for the steering rate. When
using NEMO/DORY, the accumulated values after the final
layer – represented as 32 bit integers – are directly used as
outputs. In this case, the inference result is sent as a packet
of 8 bytes.

The program that allows receiving the data from the AI-deck
and processing it to drive the drone is integrated as a new task
in the drone’s firmware. To achieve a computational-efficient
data exchange, the drone’s MCU uses a DMA mechanism
to receive the UART data from the AI-deck. The DMA is
configured to trigger an interrupt whenever a certain number of
bytes has been received – which is two in our case. When the
interrupt is triggered, a binary flag (i.e., 0 or 1) that indicates
new data available from UART is set. The main loop of the
application evaluates the value of this flag every 5ms, and in
case it is set, it reads the two received bytes and then resets
the flag back to 0.

The main overview of the inference post-processing stages
is given in Figure 3, and each step (scale, transform, filter) is
detailed by Listing 1. First, the two pieces of data (data[0]
and data[1]) associated with the output of the CNN are
dequantized by multiplying them by the scaling constants

Fig. 3. Overview of the main acquisition and control loops. The AI-deck
is in charge of image acquisition and perception, and the drone’s MCU runs
the application that interprets the perception results and transforms them into
flight commands .
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while 1:
if uart_data_available:

# reset the flag
uart_data_available ← 0
# scale data
pcol ← data[0] ∗ cscale0
ωsteer ← data[1] ∗ cscale1
# compute the integral
I(k)← I(k + 1) + (pcol − 0.3)
I(k)← clip[0,3)(I(k))
# transform: compute forward velocity
pcol ← pcol + w · I(k)
vunfilt ← vtarget(k) · (1− pcol)2
# filter forward velocity
vset(k)← α1 · vunfilt + (1− α1) · vset(k − 1)
# filter steering rate
ωset(k)← α2 · ωsteer + (1− α2) · ωset(k − 1)
# command the drone
command(vset(k), ωset(k))

Listing 1: The listing describes the data processing that is
applied to the raw output of the CNN to obtain the setpoint
that is communicated to the drone’s commander.

resulting from the quantization process. The scaling constants
are programmed in the drone’s MCU firmware. Next, I(k)
is computed, which is an integral term that is added to the
probability of collision (pcol), and it is meant to penalize the
lasting effect of the obstacles in the field view. We noticed
that the CNN is sometimes unsure about particular frontal
obstacles, and the probability of collision oscillates from
values > 0.8 to values below 0.3. Thanks to the addition of
the integral term, when the CNN is indicating an obstacle
with a pcol > 0.3, I will increase over time, building up
the drone’s confidence that it is facing an actual obstacle.
When the CNN’s inference indicates an obstacle-free horizon
(pcol < 0.3) for a longer time again, pcol−0.3 is negative and
therefore the integral decreases. We clip the value of I(k) to
the interval [0, 3) as negative confidence is meaningless (on the
lower side), and excessive confidence could result in a windup
effect. We scale I(k) by a scaling constant w that establishes
how much impact the integral has on the final value of the
probability of collision. In our experiments, we set this value
to 0.2.

To convert the probability of collision pcol into forward
velocity (vunfilt), we use a simple square low – penalizing
velocity quadratically with respect to pcol. Furthermore, to
reduce the high-frequency noise associated to vunfilt, this
value is filtered using a first-order, low-pass infinite impulse
response (IIR) filter defined by the coefficient α1 (we use
α1 = 0.6. The same type of filter (defined by α2) is also used
for the steering rate ωsteer. We use α2 = 0.7; we observed
experimentally that a lower value results in an increased delay
and in low-frequency oscillations around the navigation path.
The filtered values for the forward velocity and the steering
rate (vset and ωset) represent the new flight setpoint, which is
transmitted to the drone’s flight controller.

V. RESULTS

In this section, we present three main classes of results: i)
regression and classification capability of the proposed PULP-
Dronet V2 CNNs; ii) onboard power analysis and inference

TABLE II
REGRESSION & CLASSIFICATION – IN BOLD OUR BEST FIXED8 SCORES

Training Testing
NN

topology
Dataset Precision Original Dataset Himax Dataset

RMSE Acc Acc

V1
Original Float32 0.105 0.945 0.845

Fixed16 0.097 0.935 0.873
Original
+Himax

Float32 0.109 0.964 0.900
Fixed16 0.110 0.977 0.891

V2
GAPflow

Original Float32 0.126 0.915 0.831
Fixed8 0.124 0.916 0.840

Original
+Himax

Float32 0.136 0.925 0.881
Fixed8 0.135 0.925 0.886

V2
NEMO/
DORY

Original Float32 0.146 0.902 0.841
Fixed8 0.143 0.903 0.836

Original
+Himax

Float32 0.118 0.893 0.905
Fixed8 0.120 0.892 0.900

performance; iii) in-field closed-loop control accuracy and the
real-time performance.

A. Regression & classification performance

In Table II, the NNs quality metrics are reported as accuracy
for the classification problem and root-mean-squared error
(RMSE) for the regression one, using the Original and Himax
datasets for both training and testing. We also evaluate the
impact of quantization w.r.t. floating-point calculation for each
model proposed and each training set. Particular attention
should be given to the scores achieved on the Himax testing
set as it maps the type of images available on our flying drone.

1) Testing on Original Dataset: When training on the
Original dataset with a float32 format, both the proposed
models show a lower performance w.r.t. the PULP-Dronet V1.
The drop is between 0.02 and 0.04 in RMSE and up to ∼ 4%
of accuracy. This small difference can be ascribed to i) the
differences in the NNs topologies and quantization factors
(8-bits vs. 16-bits), and ii) a weak CNN’s convergence. We
attribute this weak convergence to the disjoint training datasets
for the two problems (i.e., classification and regression); the
relatively large unified CNN front-end, resulting in shared
weights for two very different tasks up to the very last layer,
may also contribute. Our models reveal a different behavior
when training on the Original+Himax dataset (float32)
than the equivalent models trained on the Original set. The
GAPflow model (similarly to the V1 baseline) slightly im-
proves the classification performance (∼ +1% accuracy) at
the price of a small reduction in the regression capability
(∼ +0.01 RMSE); instead, the NEMO/DORY model shows
the opposite behavior, i.e., accuracy ∼ −1% and RMSE
∼ −0.02. The small differences are mainly because the two
pipelines use slightly different topologies (Figure 2), due to
the different approach to batch normalization in the quantized
regime.

Our four 8-bit quantized models show a minimal variation
in both RMSE and accuracy metrics (within 0.003 and 0.1%,
respectively) compared to the respective float32 version,
which is not the case for the V1 baseline as it improves
the RMSE of 0.008 and drops 1% of accuracy. The lower
variance is the consequence of the different quantization
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schemes adopted. In fact, in contrast to the quantization-
aware training used in V1, we do not need to retrain the
NNs to change the numerical domain due to our post-training
quantization. Moreover, post-training quantization does not
require the model’s training dataset, enabling a faster and
straightforward process for producing the quantized model.

2) Testing on Himax Dataset: When training on the Origi-
nal dataset with a float32 format, all the three NN topolo-
gies score a similar accuracy of ∼ 83−84%. Instead, training
on the Original+Himax dataset, the accuracy of all models
increases up to ∼ 88 − 90%, proving the beneficial effect
of the dataset extension. Finally, the 8-bit quantization of the
V2 models does not affect the accuracy, keeping the same
maximum (90%) achieved by the 16-bit quantized baseline
(V1), which again shows higher variance. Ultimately, the
proposed PULP-Dronet V2 models achieve the same accuracy
of the V1 baseline on the in-field-collected Himax dataset,
despite the reduced data-type (8-bit vs. 16-bit), leading to
a highly desirable 2× reduction in the memory footprint.
Including the Himax dataset in the training process does
not aim at mitigating any quantization effect, but to ensure
a better tuning between the CNN model and the onboard
camera. In conclusion, regardless of the testing dataset, the 8-
bit quantization preserves the CNN’s accuracy unaltered w.r.t
to the float32 representation and allows us to deploy and
run our model on the target platform successfully. 8

B. Onboard performance

1) Power consumption & inference performance: We eval-
uate the execution time and power traces of the proposed
models running them on the GAP8 and using a Rocket-
Logger data logger [46] (64 ksps). For these experiments,
the SoC’s operating points are FC@50MHz, CL@100MHz,
VDD@1V, as the most energy-efficient configuration [1],
and FC@250MHz, CL@175MHz, VDD@1.2V to push the
system at its maximum performance. The GAPflow model
processes one frame in 1.05Mcycle, while the NEMO/DORY
model needs 11% fewer cycles. Since our models use almost
the same topology of PULP-Dronet V1, they all compute
∼ 41MMAC/frame, as the original baseline. We mention,
however, that each MAC in PULP-Dronet V2 is an 8x8-bit
MAC rather than a 16x16-bit MAC as in V1.

Figure 4 shows the power consumption for one frame
inference for both models (most energy-efficient configuration)
and highlights the time intervals associated with the execution
of each CNN’s layer. The GAPflow model (Figure 4-A) shows
an initial extra stage to normalize the 8-bit input data-range to
[-127,+128], as well as some cluster idleness at the begin of
layer 7, due to a µDMA transfer wait. A major difference
between the two models is visible in the first two layers
(i.e., conv5×5 and max-pool), as the GAPflow model achieves
better performance merging them (see Section IV). Never-

8The model’s memory footprint could be further reduced with stronger
quantization, e.g., 4/2/1-bit; however, this approach is not guaranteed to be
sufficient to maintain the full precision regression/classification performance
as shown by our work and by the SoA when adopting 8-bit quantization [44],
[45].

Fig. 4. GAP8’s power waveforms for: FC@50MHz, CL@100MHz,
VDD@1V, i.e., the most energy efficient configuration.

theless, NEMO/DORY outperforms its counterpart during the
Conv+ReLU pattern, present in each ResNet block.

In the most energy-efficient configuration, the GAPflow
and NEMO/DORY models achieve similar performance for
one frame inference, as ∼ 9 frame/s @ ∼ 40mW and
∼ 10 frame/s @ ∼ 35mW, respectively, improving the
throughput vs. PULP-Dronet V1 (40% − 60%). Running the
same test, with the SoC’s maximum frequencies, the GAPflow
model scores ∼ 17 frame/s @ ∼ 119mW, while the NEMO/-
DORY one peaks at ∼ 19 frame/s @ ∼ 102mW. Even if the
GAPflow model exposes a more balanced utilization of the
available cores, i.e., almost constant CL power consumption,
it pays the overhead for the CWH layout applied to small
WH. Conversely, DORY, even with a less balanced parallel
workload, i.e., scattered profile inside layers 3, 4, 5, 6, and 7,
reduces overheads due to its HWC layout.

Ultimately, quantization is a key-enabler technique to fully
deploy a DNN model on resource-constrained COTS MCUs,
which usually lack floating-point units (e.g., the GAP8 SoC).
For the same reason, it is hard to precisely compare the
execution performances of a full-precision model vs. a quan-
tized one on such a processor. An option is represented by
soft-float emulation of all floating-point operations; although,
this approach would introduce a major execution overhead.
Therefore, we show how quantization improves memory foot-
print and inference throughput by comparing the proposed 8-
bit model to the quantized V1 baseline (16-bit). On the one
hand, the 2× reduction in the data-type format halves the
total size of parameters from 0.64MB to 0.32MB. On the
other hand, it allows for efficient exploitation of the GAP8’s
SIMD instructions, resulting in a throughput speedup of 1.5-
1.6× w.r.t. the baseline. This mismatch in speedups (i.e.,
memory footprint and throughput gain) can be ascribed to
multiple factors, such as i) non-MAC and non-accelerable
operations, and ii) non-idealities, e.g., imbalanced workload
and marshaling overheads.
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Fig. 5. The nano-drone’s power envelope break-down, with AI-deck zoom-in. A/B) NEMO/DORY, and C/D) GAPflow framework. SoC running at
FC@50MHz, CL@100MHz (A/C) and FC@250MHz, CL@175MHz (B/D), the most energy efficient and maximum performance configurations,
respectively.

2) State-of-the-Art comparison: We validate the two pro-
posed GAP8’s pipelines, comparing their performance against
one of the most popular CNN libraries for MCUs: CMSIS-
NN [40]. CMSIS-NN peaks at 0.71MAC/cycle on 8-bit data
convolutions [40] on a CNN’s layer similar to our 3× 3 con-
volution, for which we achieve at best 0.81MAC/cycle/core
and 1.0MAC/cycle/core for the GAPflow and NEMO/DORY,
respectively. Considering all the inevitable non-idealities, such
as sub-optimal load balancing, we yield a weighted perfor-
mance, for the entire CNN, of 3.9MAC/cycle (GAPflow) and
4.7MAC/cycle (NEMO/DORY), employing all the GAP8’s
cores. To concertize this comparison, we consider the CMSIS-
NN on top of a high-performance Cortex-M7-based single-
core STM32H723VE, which can achieve up to 390MMAC/s
@ 203mW, running at 550MHz. The GAP8, at the maxi-
mum frequency of CL@175MHz, achieves 1.44GMAC/s @
102mW and 1.14GMAC/s @ 119mW with NEMO/DORY
and GAPflow, respectively. This analysis shows that, whether
using the GAPflow or the NEMO/DORY pipeline, the GAP8
outperforms the Cortex-M7-based MCU with CMSIS-NN by
more than 1.7× in power consumption and by more than 3×
in throughput. The throughput is of high importance because
it has a significant impact on the navigation capabilities, as
showed and discussed in Section V-C.

3) Power break-down: This section analyzes the power-
breakdown of the entire nano-UAV running both PULP-Dronet
V2 pipelines – i.e., NEMO/DORY and GAPflow. We frame
this investigation also considering – for each PULP-Dronet
V2 version – the two GAP8’s operating points introduced in
Section V-B, called most energy efficient and maximum perfor-
mance, respectively running at FC@50MHz CL@100MHz,
and FC@250MHz CL@175MHz.

The analysis in Figure 5 refers to three main parts: i)
the nano-drone’s motors, ii) its basic electronics running the

stock flight controller, and iii) the AI-deck executing our
visual-workloads. The electronics slice accounts for both flight
controller MCUs (i.e., STM32 and nRF51) and all the basic
platform’s sensors (e.g., IMU, barometer). Additionally, for
all four configurations, we also report a break-down zoom-in
on the three main AI-deck’s components: i) the GAP8 SoC,
ii) the off-chip DRAM, and iii) the ULP camera. The reader
should note that the DRAM is considered active at full speed
only for the time required to copy the CNN’s parameter from
L3 to L2 and otherwise turned off. Similarly, Flash memory
is not considered in this power break-down evaluation, as
it is necessary only for the system initialization (i.e., data
movement from Flash to DRAM) and then never again used
during the drone’s mission.

Figure 5 shows how the four motors consume the vast
majority of the total power budget, i.e., 7.3W, while the rest
of the drone’s electronics accounts for 277mW in all four
configurations, as they are always kept at the same operative
conditions. Conversely, the power consumption for the AI-
deck changes depending on both exploration parameters, but
it is never higher than 1.64%, resulting in a motors’ power
consumption between 94.8% and 96.0% of the total budget.

Focusing on the comparison between the two PULP-Dronet
V2 versions, we can identify two main behaviors: i) the version
developed using the NEMO/DORY framework always shows
higher average power consumption for the DRAM and ii)
the GAPflow-based version always has a marginally higher
average power consumption for the GAP8 computation. In
the most energy efficient configuration, the NEMO/DORY
implementation accounts for the 0.63% of the system’s power
consumption (Figure 5-A), while GAPflow accounts for the
0.67% (Figure 5-C). In fact, as shown in Section V-B1,
the GAPflow-based implementation brings, on average, to
a slightly higher power consumption compared to NEMO/-
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Fig. 6. A) Experimental setup for the obstacle avoidance evaluation. In-field tests are carried sweeping vtarget, for both the most energy efficient (B) and
the maximum performance (C) SoC’s configurations.

DORY one, 39mW and 34mW, respectively. Moreover, due
to the L2 data pre-loading during the initialization stage, the
GAPflow version accesses the DRAM fewer times than its
counterpart, resulting in a lower DRAM power consumption
w.r.t. NEMO/DORY, i.e., 8mW and 10mW, respectively.

Moving to a comparison on the SoC’s operating points,
the max performance configuration gives a slight advantage
to the NEMO/DORY version of PULP-Dronet, which makes
the AI-deck consuming 1.43% of the total system’s power
(Figure 5-B), while using GAPflow the percentage becomes
1.64% (Figure 5-D). This small advantage comes from the
fact that the NEMO/DORY version, requiring more L3-L2
data transfer w.r.t. the GAPflow version, can benefit more
from the increased FC’s frequency of the max performance
configuration. This difference results in a minimal reduction
of the AI-deck’s power consumption for the NEMO/DORY-
based version, as much as 0.04% and 0.21% compared to
the GAPflow, for the most energy-efficient configuration and
the maximum performance one, respectively. Therefore, from
a practical viewpoint, both PULP-Dronet V2 versions per-
form with a very similar power envelope when deployed on
our nano-drone. Ultimately, in all four configurations, we
can remark how the addition of the AI workload to our
quadrotor only accounts for the smallest portion of the power
consumption of the entire system, never higher than 1.64%.
Such a small impact on the whole system’s power budget
demonstrates the capability of running the PULP-Dronet V2
at the highest performance point, only marginally impacting
the quadrotor lifetime. This enables the possibility to further
extend the onboard intelligence with additional tasks (e.g.,
tracking, detection, localization), aiming at more complex
mission objectives.

C. In-field closed-loop evaluation

In the following, we perform the in-field evaluation of
the navigation capabilities of the PULP-Dronet V2, using
the implementation generated by the GAPflow framework,
and deploying it on a Crazyflie 2.1 nano-drone equipped
with an additional AI-deck, as illustrated in Section III. We
focus on four key aspects to assess the performances of our
closed-loop nano-UAV: i) the obstacle avoidance task; ii)
the lane following task; iii) the longest flight distance in a
familiar environment; iv) the generalization capability, testing
the autonomous navigation in never-seen-before environments.

1) Obstacle avoidance task: One of the two outputs of the
Dronet CNN is the probability of collision used to predict
a potential obstacle in the path followed by the nano-drone.
In this set of experiments, we assess the drone’s robustness
in avoiding dynamic obstacles by stressing the closed-loop
system with an ad-hoc setup, as shown in Figure 6-A. The
drone flies a straight trajectory of 4.5m where a dynamic
obstacle (i.e., 0.7×0.7m cardboard sheet) appears at the end
of the path, leaving only 1.5m for braking and avoiding the
collision – i.e., braking-space. The straight flight is enforced
by silencing the steering angle output of the CNN – i.e.,
always 0. We perform and record all experiments in a room
equipped with a mm-precise motion capture system @ 50Hz
(i.e., Vicon) to analyze the drone’s behavior in post-processing.

We investigate this scenario by sweeping two key pa-
rameters: i) the drone’s target forward velocity (vtarget),
i.e., a software parameter representing the forward velocity
the drone tries to reach if no obstacle is detected, and
ii) the CNN’s inference throughput by means of the two
SoC’s configurations, introduced in Section V-B, named most
energy-efficient and max performance. This evaluation is de-
picted in Figure 6-B for most energy-efficient configuration
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(FC@50MHz, CL@100MHz) peaking at 8.7 frame/s, and in
Figure 6-C for the maximum performance one (FC@250MHz,
CL@175MHz) up to 12.8 frame/s.

We stress the system with a growing velocity vtarget
that takes the following values: 0.5m/s, 1.0m/s, 1.5m/s,
and 1.75m/s in Figure 6-B, and 0.5m/s, 1.0m/s, 1.5m/s,
1.75m/s, and 2.0m/s in Figure 6-C. As the vtarget is a
software parameter, we also report, for each test, the actual
peak velocity when the drone begins braking (vbrake) recorded
with the Vicon. We stop this incremental procedure once we
reach the limit for which the nano-drone can not prevent
the collision anymore. Additionally, in all plots, we highlight
a dashed vertical line marking the time when the moving
obstacle appeared in the drone’s view.

The system proves to be fully working up to vbrake =
1.41m/s and vbrake = 1.65m/s, in the most energy-efficient
configuration and the maximum performance one, respectively.
We can notice how the maximum performance configuration
provides a similar safety distance (d =∼ 0.25m) w.r.t. its
counterpart, despite their different vbrake, thanks to the higher
inference throughput (i.e., 12.8 frame/s vs. 8.7 frame/s).
Lastly, referring to the PULP-Dronet baseline [3]; for the
same FC@50MHz, CL@100MHz configuration, we score a
25.3% higher vbrake/braking-space ratio, confirming not only
the successful deployment of our PULP-Dronet V2 on the
COTS Crazyflie nano-drone but also increased promptness of
the system.

2) Lane detection task: In the following experiments, we
assess the PULP-Dronet V2 capability to predict the correct
steering angle under two controlled curvature scenarios: a
smooth turn of 45°, and a more challenging 90° (i.e., sharp
turn). The setup consists of a path 4.5m long and 1.3m wide
with a left-side turn in the middle, as depicted in Figure 7-A/B
with the dotted lines indicating the boundaries of the path. We
explore two parameters i) the target forward velocity (vtarget)
and ii) the CNN’s throughput, like in the previous obstacle
avoidance experiments, utilizing the two SoC’s configurations
introduced in Section V-B. The software parameter vtarget is
swept with a granularity of 0.25m/s for the 45° case, and
a smaller 0.1m/s growing-step for the 90° setup, due to its
higher complexity.

Starting from vtarget = 0.5m/s for the 45° setup (Figure 7-
A) and vtarget = 0.3m/s for the 90° one (Figure 7-B), we
keep increasing the vtarget until the system reaches its limit
(i.e., collision). This exploration defines the actual maximum
average velocity (vavg) – including the initial acceleration
phase – for which the nano-drone can complete this lane
detection task, resulting in:

• scenario 45°, configuration FC @ 50MHz CL @
100MHz: maximum vavg = 1.29m/s;

• scenario 45°, configuration FC @ 250MHz CL @
175MHz: maximum vavg = 1.47m/s;

• scenario 90°, configuration FC @ 50MHz CL @
100MHz: maximum vavg = 0.49m/s;

• scenario 90°, configuration FC @ 250MHz CL @
175MHz: maximum vavg = 0.59m/s;

The increased throughput of the maximum performance con-
figuration (12.8 frame/s vs. 8.7 frame/s), enables higher flight

TABLE III
STEERING ANGLE RMSE AND ACTUAL AVERAGE VELOCITY.

SoC configuration
FC@50/CL@100

MHz
FC@250/CL@175

MHz
vtarget

[m/s]
RMSE

[m]
vavg
[m/s]

RMSE
[m]

vavg
[m/s]

Tu
rn

cu
rv

at
ur

e 45°

0.5 0.07 0.63 0.26 0.62
0.75 0.12 1.07 0.21 0.78

1 0.07 0.92 0.22 1.32
1.25 0.17 1.29 0.20 1.36
1.5 collision 1.57 0.23 1.47

90°
0.3 0.14 0.36 0.11 0.34
0.4 0.17 0.49 0.16 0.44
0.5 collision 0.63 0.20 0.59

speed in both testing scenarios. As expected, the higher com-
plexity of the 90° scenario is confirmed by a lower maximum
vavg compared to the 45° counterpart.

The 2D trajectories of all tests are reported in Figure 7,
where we define as ground truth (dashed lines) the trajectory
an ideal nano-drone would follow, keeping the path center for
the entire flight. Comparing the actual trajectories with the
ground truth one, in Table V-C2, we report the root mean
squared error (RMSE) for all tests. For both scenarios, we
can see a general trend where the higher the actual velocity
is (vavg) the more the RMSE grows, ranging between 0.07-
0.26m and 0.11-0.20m, for the 45° and 90° case, respectively.

A second interesting trend can be seen in the variation of
the RMSE between the two SoC configurations of the 45°
scenario. At a first look, it seems that a higher throughput
penalizes the system’s capability, increasing the RMSE. How-
ever, by looking at the drone’s trajectories in Figure 7-A (right
plot), it is clear how the successful tests are clustered into two
groups:

• tests vtarget 0.5 and 0.75 (yellow and blue curves) tend
to follow a shorter path trajectory;

• all the other curves exhibit a right-hand drive policy
fostered by the dataset labeled with steering angles (i.e.,
Udacity samples are collected in the US).

In both cases, the ultimate trajectory is slightly away from
the ideal central ground truth, increasing the RMSE but still
accomplishing the mission.

3) Longest flight distance: In this set of experiments, we
want to assess our closed-loop system’s autonomous naviga-
tion capability in a free-flight mission, exploring a “friendly”
environment. For this purpose, we select as mission field the
same 110m-long corridor (U-shape) used for collecting part
(16%) of the Himax dataset images. The mission field presents
only static obstacles (e.g., walls, doors, and furniture), where
we perform 25 tests, sweeping the vtarget parameter. We
employ a growing-step of 0.5m/s, from vtarget = 0.5m/s
to 2.5m/s, testing each configuration 5 times. All these
experiments are made by selecting the maximum performance
SoC’s configuration (FC@250MHz, CL@175MHz), able to
deliver up to 12.8 frame/s inference.

In Table IV, we summarize all the experiments for each
vtarget configuration, reporting the average flight time over
the successful runs and highlighting in bold the peak per-



12

Fig. 7. Lane detection task evaluation. We assess the CNN’s capability of predicting the correct (ground truth) steering angle in a scenario featuring a
left-side turn – 45° (A) 90° (B) – at the center of the path. We sweep the forward target velocity (vtarget) identifying the limit of our system – in red failing
configurations.

TABLE IV
EVALUATION OF THE FLIGHT TIME AND AVERAGE VELOCITY WHEN THE

DRONE FLIES THROUGH A 110m LONG CORRIDOR.

vtarget
[m/s]

vavg
[m/s]

Average
time [s]

Distance
[m]

Success
rate

0.5 0.51 216 110 5/5
1 0.98 112 110 5/5

1.5 1.72 64 110 5/5
2 1.96 56 110 4/5

2.5 2.29 48 110 1/5

formances. We achieve the maximum success-rate (5 success
out of 5 tests, per configuration), with an actual mean flight
velocity (vavg) from 0.51 to 1.72m/s. Increasing the vavg
to 1.96m/s, lowers the the success-rate to 80%, defining the
performance upper bound of our system, as increasing even
further the vavg to 2.29m/s the success-rate quickly drops

to 20%. With such high velocity also comes an increased
acceleration the drone applies to reach the desired vtarget,
resulting in a high positive pitch. Therefore, the camera mostly
captures the floor, which turns in a minimal time to react to the
obstacles, flying at high speed. These results prove a superior
performance compared to PULP-Dronet V1, which for the
same flown distance reports an average velocity of 0.5m/s.
While PULP-Dronet V1 used a linear mapping between the
probability of collision and the forward velocity, we extended
this mechanism with a quadratic relation. This results in
a more significant reduction in the forward velocity while
approaching an obstacle, which gives the drone more time
to steer when flying at high velocities (prior to steering) 9.
The main limitation of this experiment is that the corridor

9As supplementary material, we make available video footage of one run,
with vtarget = 2.0m/s, available at https://youtu.be/41IwjAXmFQ0.

https://youtu.be/41IwjAXmFQ0
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Fig. 8. Samples of: A) the training images (both Udacity and Himax dataset); B) working-place corridor; C) office room with furniture; D) narrow pipeline-like
tunnel; E) public street.

is “known” to PULP-Dronet V2 as the training set contains
images of the corridor: in the next section, we explore the
network’s capability to generalize to never-seen-before testing
environments.

4) Generalization capability: As the last part of our in-field
evaluation, we present a set of functional experiments aiming
at demonstrating the robustness of the PULP-Dronet V2 CNN,
testing the closed-loop system in different deployment scenar-
ios. As reported in Table V, and showcased in Figure 8, we
explore four different application scenarios, namely:

1) corridor: a working-place corridor that is not part of the
Himax dataset;

2) office room: a room with tables and lab equipment;
3) narrow tunnel: a narrow pipeline-like tunnel (∼5m long

and ∼1.2m wide) made of cardboard;
4) street: a public street, with road signs and cars.

Orthogonal to the four scenarios, we also consider a second
testing criterion: the presence/absence of obstacles in the path
the nano-drone should follow. For the cases corridor, office
room, and street, the obstacle is represented by a person that
can be either standing still in the center of the path (i.e., static
obstacle) or moving and crossing the trajectory of the drone
or stopping in front of it (i.e., dynamic obstacle). Regardless
of the type of obstacle, the goal is to adjust the moving
direction, avoiding the obstacle. Instead, for the narrow tunnel
case, we employ a small cardboard panel as an obstacle, still
differentiating between a static and dynamic configuration. All
these experiments refer to a setup with a drone’s mean target
velocity vtarget = 0.5m/s.

Considering the training datasets shown in Figure 8-A, the
selected deployment fields introduce a significant difference
between the visual cues present in the in-field images and
those the CNN has been trained with. The main two sources
of difference between the training and deployment can be
ascribed to i) environmental conditions (e.g., absence of road
lane signs in the street) ii) photometric/geometric differences
between the cameras used to acquire the vast majority of the

TABLE V
IN-FIELD EVALUATION SCENARIOS OVER MULTIPLE RUNS WITH AND

WITHOUT OBSTACLES (MEAN FLIGHT TIME : SUCCESS-RATE).
Sc

en
ar

io

Obstacle
None Static Dynamic

1. Corridor 144 s : 6/6 137 s : 3/6 63 s : 4/6
2. Office room 86 s : 5/6 78 s : 4/6 67 s : 5/6
3. Narrow tunnel 12 s : 5/6 0 s : 0/6 19 s : 4/6
4. Street 171 s : 6/6 148 s : 6/6 148 s : 6/6

training dataset and the one available on the mission drone
(e.g., field-of-view and resolution).

In Table V, we report the results in terms of mean flight
time (across multiple runs) and success-rate, for each case.
For scenarios 1, 2, and 4, we consider the test successful
if the drone follows the path, with no crashes, for at least
60 s. Instead, for scenario 3, we define as success criteria the
capability of the nano-drone to complete the exploration of the
entire narrow tunnel. Among all successful cases, the mean
flight time spans from 12 s to 171 s, for scenario 3 with no
obstacles and scenario 4 with no obstacles, respectively.

The PULP-Dronet V2 sample application shows a high
success rate for all configurations except for the narrow tunnel
with static obstacles, in which case the nano-drone gets stuck
in the obstacle proximity, slowly drifting towards it, until it
suddenly crashes. As introduced in Section III, the training
datasets have disjoint labels, with the Udacity set providing
only steering labels and both Bicycle and Himax sets coupled
with only collision ones. Therefore, the actual tasks learned by
the CNN can be defined as “predict the presence of obstacles”
and “predict the steering to follow the lane”, but not explicitly
“predict the steering to prevent a collision”. This limit of the
Dronet CNN (all versions) could be mitigated in the future by
either introducing a new training dataset providing both labels
for each image sample or introducing an additional level of
intelligence between the CNN and the low-level control.

However, this group of tests aims at assessing the gener-
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alization capability of the PULP-Dronet V2 baseline model
without introducing any additional deep learning technique,
such as deep domain adaptation [47], dataset augmentation [4]
or continual learning [48], as they would be out of the scope
of this work. All the nine configurations presented in this
evaluation are provided of video footage of the experiments
available at https://youtu.be/Cd9GyTl6tHI.

VI. CONCLUSION

The recent progress in deep learning research opens new
possibilities for using vision-based end-to-end neural networks
to enable nano-drone autonomous navigation. The MCUs
found in nano-drones have limited memory and computational
resources, and therefore they are unable to run complex
CNN models in their original form. However, the available
solutions for complexity reduction of the CNNs used to
facilitate navigation mainly involve hand-crafted modifications
and typically require multiple iterations. This paper fills this
gap by analyzing and integrating tools and methodologies that
automate this optimize-and-deploy process, automating fine-
grained hardware-aware tuning of the CNN. We perform an
extensive experimental evaluation of the proposed flow, using a
SoA CNN for autonomous nano-drone navigation [1], achiev-
ing ∼ 3−4mJ/frame inference and reducing the memory
requirements by 2× and improving the throughput by 1.6×
while preserving the same ∼ 90% classification accuracy
of the original implementation. Furthermore, we perform an
in-field evaluation of the navigation capabilities of a nano-
drone, considering the collision avoidance, steering capabil-
ities, maximum flown distance, and generalization in never-
seen-before environments. We record a maximum indoor flight
distance of 110m and an average velocity of 1.96m/s, 4×
higher than our PULP-Dronet baseline. We foster the research
community releasing as open-source our code and models:
https://github.com/pulp-platform/pulp-dronet.
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