
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors /
Bruschi, Nazareno; Haugou, Germain; Tagliavini, Giuseppe; Conti, Francesco; Benini, Luca; Rossi, Davide. -
ELETTRONICO. - (2021), pp. 409-416. (Intervento presentato al convegno IEEE International Conference
on Computer Design (ICCD) tenutosi a Storrs, CT, USA nel 24-27 Oct. 2021)
[10.1109/ICCD53106.2021.00071].

Published Version:

GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors

Published:
DOI: http://doi.org/10.1109/ICCD53106.2021.00071

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/847041 since: 2022-01-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICCD53106.2021.00071
https://hdl.handle.net/11585/847041

This is the final peer-reviewed accepted manuscript of:

N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini and D.
Rossi, "GVSoC: A Highly Configurable, Fast and Accurate Full-
Platform Simulator for RISC-V based IoT Processors," 2021 IEEE
39th International Conference on Computer Design (ICCD), 2021,
pp. 409-416, doi: 10.1109/ICCD53106.2021.00071.
The final published version is available online at:

https://ieeexplore.ieee.org/document/9643828

Rights/License:
The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see
the publisher’s website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it)
When citing, please refer to the published version.

GVSoC: A Highly Configurable, Fast and Accurate
Full-Platform Simulator for RISC-V based IoT

Processors
Nazareno Bruschi∗, Germain Haugou†‡, Giuseppe Tagliavini∗, Francesco Conti∗, Luca Benini∗†, Davide Rossi∗

∗University of Bologna, Bologna, Italy, †ETH, Zurich, Switzerland, ‡GreenWaves-Technologies, Gronoble, France
{nazareno.bruschi, giuseppe.tagliavini, f.conti, davide.rossi}@unibo.it
lbenini@iis.ee.ethz.ch, germain.haugou@greenwaves-technologies.com

Abstract—The last few years have seen the emergence of IoT
processors: ultra-low power systems-on-chips (SoCs) combining
lightweight and flexible micro-controller units (MCUs), often
based on open-ISA RISC-V cores, with application-specific accel-
erators to maximize performance and energy efficiency. Overall,
this heterogeneity level requires complex hardware and a full-
fledged software stack to orchestrate the execution and exploit
platform features. For this reason, enabling agile design space
exploration becomes a crucial asset for this new class of low-
power SoCs. In this scenario, high-level simulators play an
essential role in breaking the speed and design effort bottlenecks
of cycle-accurate simulators and FPGA prototypes, respectively,
while preserving functional and timing accuracy. We present
GVSoC, a highly configurable and timing-accurate event-driven
simulator that combines the efficiency of C++ models with the
flexibility of Python configuration scripts. GVSoC is fully open-
sourced, with the intent to drive future research in the area of
highly parallel and heterogeneous RISC-V based IoT processors,
leveraging three foundational features: Python-based modular
configuration of the hardware description, easy calibration of
platform parameters for accurate performance estimation, and
high-speed simulation. Experimental results show that GVSoC
enables practical functional and performance analysis and de-
sign exploration at the full-platform level (processors, memory,
peripherals and IOs) with a speed-up of 2500× with respect to
cycle-accurate simulation with errors typically below 10% for
performance analysis.

Index Terms—Simulator, IoT Devices, System Level Design,
Deep Neural Networks, Embedded Systems

I. INTRODUCTION

During the last few years, a growing number of research and
commercial systems exploit the concept of Parallel Ultra-Low
Power (PULP) computing, to tackle performance, flexibility,
and energy efficiency requirements of complex near-sensor
data analytics applications, including Deep Neural Networks
(DNNs) [1]. This computing paradigm aims to exploit het-
erogeneous system-on-chips (SoCs) composed of state-of-the-
art microcontroller unit (MCU) accelerated by tightly coupled
clusters of digital signal processors operating near the voltage
threshold [2].

From a system and application perspective, the exploitation
of such extreme heterogeneity requires a full-fledged software
stack to orchestrate the execution and exploit platform fea-
tures. For this reason, enabling fast and accurate design space
exploration (DSE), including peripheral subsystems and off-
chip components such as memories and sensors, becomes a

crucial asset for this new class of low-power systems. In this
scenario, high-level simulators play an essential role in break-
ing the speed and design effort bottlenecks of cycle-accurate
simulators and FPGA prototypes, respectively, while preserv-
ing functional and timing accuracy. The trade-off between
the target platform, desired outcomes, application, flexibility,
time to simulate, and simulation accuracy determines which
simulator use. The most accurate simulators are typically
slow because they simulate cycle-by-cycle using the entire
platform description [3], often written in Hardware Description
Language (HDL). In contrast, the fastest simulators typically
simulate only the functionalities of a system but without
timing and performance information [4]. In the middle, several
simulators provide reasonable fast simulation and accuracy but
typically without simulating the entire system and the possi-
bility to quickly explore a range of different configurations,
crucial for DSE [5].

In this work, we present GVSoC, an open-source simulator1

targeting the PULP architectures that can simulate complex
full-platforms, including multicore, multi-memory levels (i.e.,
on- and off-chip), multi I/O peripherals, and accelerators,
laying the bases of a real DSE for IoT embedded systems,
with <10% of error with respect to physical embodiments
of the target architecture. Besides this high accuracy, GVSoC
is up to 2500× faster than strictly cycle-accurate simulators,
guaranteeing the fastest and reliable way to explore new ar-
chitecture features. To demonstrate the performance, accuracy,
and flexibility of the proposed simulator, we propose several
examples of real-life applications that exploit the key features
of this simulator.

In Section II, we analyze the state-of-the-art simulators the
embedded systems, providing a comprehensive overview of the
main techniques to simulate platforms. Then, in Section III we
discuss the PULP architecture. Section IV details the GVSoC
features, describing the internal architecture and the tools that
allow the users to inspect the execution. In Section V, we
illustrate how GVSoC can be used to simulate real appli-
cations, evaluating its accuracy and simulation performance
with respect to an hardware-accurate FPGA-based full-SoC
emulator. Finally, in Section VI we compare the results and
the features of GVSoC with other widely spread simulators.

1https://github.com/pulp-platform/pulp-sdk

II. RELATED WORK

Simulators can be classified based on i) their level of
abstraction in modeling the target platform; and ii) their
specialization for target systems and metrics such as mul-
tiprocessor/multicore [6], energy/power [7], and accelerator
simulators [8]. Along the first axis, we can distinguish two
major classes: functional and timing simulators [9]: in this
section, we survey the main simulation approaches with a
focus on simulators for RISC-V systems.

A. Functional Simulators
Functional simulators aim at replicating functional behavior,

without modeling the internal details of the target architec-
ture. For instance, a functional simulator can model just the
Instruction Set Architecture (ISA) of the core and not its
pipeline. For this reason, they are typically very fast but do
not model the different micro-architectural parameters and
do not support accurate performance assessment. A notable
example of simulators in this class is Spike2, which is the
golden reference functional software simulator for RISC-V
architecture. It is written in C++ and can be used as a starting
point for running software on a RISC-V target. SimpleCPU
of gem5 [10] includes a model for atomic memory accesses,
which, after a memory request, returns an approximate time
to complete the request without simulating contentions and
queuing. This information is used to estimate overall cache
access time [11]. Binary translators follow different approach,
converting, statically or dynamically, one or more basic blocks
from the simulated ISA to the host native code, emulating the
target architecture. QEMU is a widely used binary translator
that can also be modified to collect meta-data from the
execution, such as memory accesses [12]. RISCV-QEMU3 is
the version of QEMU that supports RISC-V target architecture.

Although functional simulators can be used to develop run-
time frameworks, compilers, and firmware, their poor accuracy
prevents their adoption for DSE and application optimizations.

B. Timing Simulators
Unlike functional simulators, timing simulators model the

micro-architecture of the target. Thanks to their lower level of
system abstraction, the modeling accuracy of the target archi-
tecture increases, including cache hierarchies, core pipelines,
predictors, DMA, and more other micro-architectural features.
Moreover, also this category requires a further distinction
among cycle-accurate, instruction-level and event-driven [9].

a) Cycle-accurate: The simulation proceeds with an ac-
curate cycle-by-cycle approach, using a hardware description
language (HDL) such as System Verilog, translated with tools
such as closed-source ModelSim or open-source Verilator.
ModelSim is a source-level verification tool [13], while Ver-
ilator converts System Verilog description to C++, increasing
parallelism and multi-threading and executing it on host hard-
ware like an executable file [14]. Overall, these simulators are
as hard to extend or implement new features as directly in the
hardware and have low simulation speed than the other kind
of simulators, running in the kMIPS range [9].

2https://github.com/riscv/riscv-isa-sim
3https://github.com/riscvarchive/riscv-qemu

b) Instruction-level: The simulation is conducted imitat-
ing the target system, instruction-by-instruction, but modeling
the hardware with a coarse-grain level of abstraction (i.e., not
in a cycle-accurate way). Instruction-level simulators are faster
than cycle-accurate but still relatively slow with respect to the
event-driven ones [9]. The O3 CPU model of gem5 adopts
a model that executes the instructions in the execute pipeline
stage [15]. Another example in gem5 is the TimingSimple
model [11], which gives up micro-architectural details to
boost performance, assuming one cycle for every non-memory
instruction and modeling accurately only memory access in-
structions.

c) Event-driven: These simulators do not directly con-
sider cycles but the more abstract concept of event, i.e., a
change of state in the system occurring at a specific instant in
time. Hardware models schedule events in a queue based on
their latency, and no change in the system is assumed to occur
between consecutive events. With this approach, the simulator
can directly jump to the occurrence time of the next event
in the queue, with a consistent saving in simulation time.
SystemC is a Domain-Specific Language (DSL) built upon
C++ classes and helper macros that provides an event-driven
simulation environment. In addition to its basic features for
system-level modeling, SystemC provides a Transaction Level
Modeling (TLM) layer to model the interface between interop-
erable modules [16]. RISC-V-TLM [17] is a RISC-V simulator
based on SystemC+TLM, including an ISS, a memory, and a
basic set of peripherals. GVSoC adopts a similar approach,
and its accuracy is comparable with a SystemC+TLM model.

Timing simulators are often enough to explore parts of
the system. However, they require a long time to simulate
a real-life end-to-end application in state-of-the-art optimized
platforms or have insufficient accuracy. GVSoC, like other
event driven simulators, provides an advantageous trade-off
between simulation speed, timing accuracy, and completeness;
while at the same time enabling highly flexible simulation
of the full-systems, justifying its use for DSE with realistic
workload and I/O interactions.

III. TARGET ARCHITECTURE

The proposed simulator targets systems implementing the
architectural template defined by the Parallel Ultra-Low Power
(PULP) platform [18]. PULP is an open-source4 heterogeneous
computing platform consisting of a state-of-the-art micro-
controller unit (PULP SoC) accelerated by a parallel pro-
grammable accelerator, as shown in Fig.1.

The PULP SoC is hosted by a RISC-V processor called
Fabric Controller (FC), managing the peripherals subsystem
and offloading compute-intensive tasks to a parallel computing
cluster (PULP CL). The PULP SoC is equipped with a
main memory typically ranging from 256kB and 2 MB of
SRAM (L2), hosting the resident code and application data.
The PULP SoC features a complete set of micro-controller
peripherals, including JTAG, SPI, I2C, I2S, GPIOs, as well as
an HyperBUS DDR interface used to connect to external IoT
DRAM or Flash memories such as Cypress Semiconductor

4https://github.com/pulp-platform

Fig. 1: Target architecture. On the left the PULP SoC and on the on the right the PULP CL

HyperRAM/FLASH [19] or APMemory IoT RAMs [20]. An
I/O DMA (micro-DMA), integrated inside the I/O subsystem,
performs autonomous data transfers between the L2 memory
and the peripherals, once programmed by the FC. Once the
transfer is finished, the micro-DMA notifies the end of the
transfer to an interrupt controller, which notifies the core
accordingly to the pre-configured policy. Typically, in PULP
platforms, the PULP SoC, the peripherals, and the PULP CL
reside in three different clock domains so that the frequency of
each domain can be tuned to sustain the application workload
with low power consumption (typically up to 500 MHz for a
22nm technology node). The clocks of the peripherals can be
further divided in order to match the operating frequency of
slower external devices.

PULP CL consists of a parametric number of identical
RISC-V cores sharing a multi-banked Tightly Coupled Data
Memory (TCDM), whose size and the number of banks can
be configured as well (typically between 64 and 256kB).
The TCDM banks can be accessed in a single clock cycle
through a low-latency logarithmic interconnect, enabling fast
data sharing among processors for data-parallel applications.
TCDM, like L2, addresses the banks in a word-level inter-
leaved fashion (i.e., 4B per bank), reducing the probability
of contentions between simultaneous core accesses. The cores
fetch instructions from a 2-level instruction cache composed
of a small private L1 cache (e.g., 512B - 1kB) refilling from
a larger shared L1.5 cache (e.g., 4-8kB) within the cluster.
The L1.5 cache refills from the L2 memory through a 64-
bit AXI bus. A multi-channel DMA autonomously moves
the data from L1 to L2 and vice versa. At the same time,
a hardware synchronization unit implements in hardware
common hardware synchronization functions such as barriers,
thread dispatching, and critical sections. The cores within the
PULP CL support DSP extensions targeting energy efficient
digital signal processing. These ISA extensions, called Xpulp,
have several versions [21] [22] and are updated across SoC
generations to better match the target application domain.
Floating-point units can be shared among the cores, where
the degree of sharing is an architecture parameter, depending
on the area and power constraints. A standard interface, named
HWPE5 [23], allows to include specific hardware accelerators

5https://hwpe-doc.readthedocs.io/en/latest/

in the PULP CL domain, sharing L1 memory (i.e., the TCDM)
with general-purpose cores.

IV. GVSOC ARCHITECTURE

GVSoC falls into the event-driven simulator category with
a hardware-oriented description based on PULP architecture.
It can simulate a complete PULP platform modeling the
micro-architecture and building common blocks such as cores,
memory, cluster, peripherals, interconnect, TCDM.

GVSoC aims at allowing developers to test new archi-
tecture functionality (i.e., ISA extensions), to design micro-
architecture and I/O drivers easily, and to explore design space
for new chip features. It also enables early-stage performance
evaluation based on hardware counters and valuable debugging
information to see how the components interact. It correctly
simulates the timing across different clock domains such as
PULP SoC, PULP CL, and peripherals, getting the precise
performance. It also supports different debugging tools, such
as a test file of important architecture events and VCD traces,
which can be dumped to help to debug the application and
visualize application activity using profiling tools and optimize
it.

A. Structure
GVSoC includes three main components, as shown at the

top of Fig.2a: C++ models, describing the behavior of the
system components (e.g., core, memories, DMAs, peripher-
als, interconnect); configuration JSON files to configure the
parameters of the architecture (e.g., bandwidth and latency of
the interconnect), and a set of Python generators to instantiate
all components of the specified target platform. This modular
structure allows to compile the C++ models of the system
components at the beginning and then to build a specific
platform modifying the JSON files without recompiling the
simulator and enabling fast DSE. The JSON files describe
the architecture to simulate and its modules, including the
description of the FC, its main memory, the peripherals set,
the PULP CL, how many Processing Elements (PEs) are in a
PULP CL, TCDM size, cluster peripherals, and every element
that summarize the particular chip to simulate.

All models are part of a library of components that can
be assembled at runtime to build the system to be simulated.
The interaction between components is based on requests as

(a) (b)

Fig. 2: GVSoC structure and features. (a) Main parts that compose GVSoC: JSON files describe the architecture, Python
generators instantiate the components and C++ models describe all the IPs (b) How GVSoC components interact with each
other. Every component receives a request containing the information to forward it to another component or to handle it by
itself.

Fig. 3: GVSoC events management. A circular buffer contains
every enqueued event to be executed in a fixed time window
Tw, and its positioning algorithm

shown in Fig.2b. Requests contain every useful information
to be shared with other modules such as memory-mapped
location, payload, latency to accumulate and account for the
current event, and the size of the reading or writing operation.
When a request comes from a component X to a component
Y, the latter extracts the information it needs and responds
with an appropriate returned value, depending on the nature
of the request. If the request needs to be forwarded to another
component, a specific method will be in charge of building the
request and forwarding to one of its port. Every intermediate
component could add latency to the initial request. The chain
of requests will be concluded when a new event is generated
or when the request reaches the receiver. Main components of
GVSoC are finely described in the following part.

a) CPU: The CPU component models the internal
pipeline of a generic core with ports connected to the interfaces
(instruction cache, logarithmic interconnect, and peripheral
interconnect). The pipeline includes an instruction fetch stage,
a decode stage, and an execution stage. The instruction can
specify a specific latency to modify the number of cycles
required in the execution stage or a write-back latency related

to data dependencies on the output register. The main sub-
component is the event-based ISS. The baseline RISC-V
ISA and optional ISA extensions can be described using a
configuration file that specifies the binary encoding and related
metadata (e.g., instruction classes). For each instruction, a
callback function specifies its functional behavior and latency.
The latency depends on the required execution cycles and
the inferred pipeline stalls, which are modelled as events.
Finally, the callback function also updates the internal core
status (e.g., register values). Platform designers can model a
new instruction set by providing a tabular description of the
instruction and the related callback functions.

b) Memory (TCDM / L2): The memory component stores
the data in an array and is accessible as word-data, half-word,
or byte. Memories model the banks, which are configurable
from configuration files, and every bank has a port to the
interleaver, a component that interfaces the banks with the
interconnect. Internally, memories model the access requests
from cores and DMAs as sequential events, setting a busy state
with latency to serve the subsequent request. The requests
of less or equal words are served in 0 latency if there are
no contentions to the same memory bank. Simultaneously
accesses or greater requests introduce latency.

c) DMA: DMA is a component that resides at the PULP
CL domain and is specialized to autonomously move data from
L1 memory to L2 and vice versa. It is directly connected to the
memory via interleaver and to the cores via dedicated ports.
It is also connected to peripheral interconnect from PULP
CL side and from SoC Domain to soc interconnect. DMA
has a memory region to be programmed, in which setting the
size, the direction, and the memory locations of the transfer.
Internally, it has a burst-based model and an associated latency,
configurable from JSON files. The component splits the whole
transaction in bursts of max burst size and moves the data as
an event that can be overlapped with other system events.

d) Interconnect: There are two types of Interconnects
component in GVSoC. Interleavers and Routers, which model
the interfaces of the interleaved memory and the routing of

(a) (b)

Fig. 4: (a) GVSoC time management and clock domains synchronization. Example of request from FC to PULP CL L1 memory
(b) GVSoC available performance counters.

the generic non-word-level interleaved crossbars, respectively.
The former models the routing from its ports (i.e., cores
and DMA) to the TCDM memory banks, starting from the
memory request address. The latter models the ports and have
an associated latency to do the routing from one component
to another. It statistically models the contentions, using the
latency that will be incremented to the forwarded request like
seen for Fig.2b. For this reason, calibration is needed to better
model the timing behaviour of the target architecture. Both the
interconnect components are configurable from configuration
files, specifying, for example, the number of ports, the latency,
and the mapping.

e) I-Cache: The I-Cache model implements an n-ways
set-associative cache adopting a least recently used (LRU) re-
placement policy. The configurable parameters are the number
of ports, associativity, number of ways, and line size. The
cache is connected to an I-cache controller component, which
connects the cache to the peripheral interconnect (to support
data refill from the L2 memory) and to the cores (to support
input, flush, and flush line requests).

f) Accelerators: The accelerators are integrated both to-
wards to the L1 interconnect and to the PULP CL’s peripheral
interconnect, exposing a memory-mapped programming inter-
face. The programming procedure involves setting the internal
accelerator registers values and then triggering the beginning
of a job. Accelerators can support a queue of multiple jobs
by employing a register shadowing mechanism. When active,
they fetch data directly from L1 with one or more dedicated
ports on the interconnect to minimize contentions with the
cores. GVSoC already implements several accelerators and the
standard interface to use as a template for new ones. Adding a
new accelerator requires specifying its address space, the name
and the number of ports, and the events that it can raise.

g) I/O: I/O interfaces are grouped in the peripherals and
micro-DMA domain. This component is connected to the L2,
and the APB interconnect to be programmed by the core.
GVSoC can be extended with a new peripheral modifying
the proper configuration file, defining memory space, id and
name of interfaces, and the chip selects. Then, the micro-DMA
model instantiates the current peripheral, which are reachable
from requests as the other components. Requests program

the micro-DMA transactions, write/read internal register of
specific peripheral, and kick-off the transfer between L2 and
external device. Events are generated and executed at the
peripheral speed, and synchronization is needed before fetch
and store data from/to L2.

B. Time Modeling

In addition to the functional top-accuracy, GVSoC has
timing models for every relevant activity, such as instructions
execution, DMA transfers, and memory accesses. It can emu-
late the actual system execution and provides a comprehensive
set of statistics using hardware features or dedicated profiling
tools. In this context, a global time engine manages the overall
time (at the picosecond scale). A clock engine models a
clock source as a forward monotone counter associated with
a queue of related clock events, which are generic workloads
associated with a specific clock cycle. Each event includes a
data payload and a pointer to an associated callback function.
Clock engine defines a time window (Tw) in which the close
enough events are included in a circular buffer as that in Fig.3
for Tw = 8. The execution of these events is done cycle-by-
cycle, and simultaneous ones are executed sequentially using
a non-ordered queue. The circular buffer can be fed with new
events at any time if its execution cycle is inside Tw. If it is
greater than Tw, the clock engine stores the event information
in an ordered queue that is read every time a circular lap is
completed. Fig.3 shows the block diagram of the decision. A
different frequency can be set for each clock engine, enabling
the integration with the global time engine. The mapping of
clock events into the global time domain is performed by
multiplying the clock period by the difference between the
current clock counter and the clock time associated with the
event. As an additional level of modeling, all the components
are related to a clock domain, which includes a clock engine
and models the connections of the clock tree. A specific
interface, called stub, can be instantiated to synchronize the
cycles if a request crosses two different clock domains. Fig.4a
shows the stub interface between PULP SoC domain and
PULP CL domain when a request from FC has to reach TCDM
memory, and also the pseudo-code to convert the different
cycle counts when a request is crossing a clock domain.

Fig. 5: MobileNetV1 execution cycles layer-by-layer and design space exploration on number of cores and L3 memory
bandwidth for Layer6 and Layer26 respectively

TABLE I: Hardware performance counters in layer-by-layer
MobileNetV1 execution

Layer Total cycles Active cycles Difference
Layer6 1263047 1244504 1%

Layer26 2481056 1340781 46%

C. Performance Assessment

To extract the execution and timing information, every core
models a set of performance counters as the real hardware,
measuring the events summarized in Fig.4b. These counters,
unlikely the actual hardware for a reason of area and power
optimization, could be activated simultaneously, having one
counter for each metric and saving a lot of simulation time.
Timing information is also stored in a complete set of system
traces as shown at the bottom side of Fig.2a which provides
information of what happens during the execution in every
relevant module. Every trace could be either an event or if
the event is quite critical, could there be more than one trace
per event. The example of Fig.2a is referred to the same trivial
example of C code beside, in which the core pipeline is shown
in pseudo-code. The same system traces that could be used to
extract timing information are beneficial to extract debugging
information such as the content of the registers during the
execution on FC or PULP CL cores and all the other events
in the platform, such as DMA ids and pointers, L1, L2, and L3
memory accesses, cache event, event unit, and many others.

V. USE CASES

We take into account three use cases to demonstrate the
suitability of GVSoC to deal with application optimizations,
DSE of the key architectural parameters, and architecture
structural design (e.g., including domain-specific accelerators).
Firstly, we prototype the execution of a full MobileNetV1
[24] showing the capabilities in terms of tracing, debug,
and performance analysis enabled by execution on GVSoC;
these features are not available on the real hardware, such
as exploring the effect of the off-chip memory bandwidth
on the computation performance, which is limited at 1.6
GBit/s. The second use case concerns the DSE of the TCDM

banking factor, analyzing the execution of multiple common
Digital Signal Processing (DSP) kernels. Finally, we propose a
comparison between an hardware accelerator for convolutions
kernels and the execution on 16 PULP CL cores, with the aim
to inspect the architecture limitations and bottlenecks.

a) MobileNetV1: We employ the emulation of the target
architecture on a Xilinx ZCU102, featuring an HyperRAM
chip of 64 Mbytes of Flash and 8 Mbyte of DRAM, im-
plementing the L3 level memory hierarchy. The network is
deployed by DORY [25], an open-source tool that allows
automatic generation of optimized C-code for multiple state-
of-the-art CNNs. MobilenetV1 execution massively uses FC,
L2 memory, micro-DMA, L3 HYPERRAM, PULP CL cores,
DMA, and L1 TCDM. To evaluate the accuracy with respect
to the FPGA emulation, We have used the dedicated perfor-
mance counter to get the total amount of cycles layer-by-
layer, as shown at the top of Fig.5 with 8 PULP CL cores
in Single Instruction Multiple Data (SIMD) fashion. In our
experiment, we have observed an average error of around 10%.
To provide more insights into the potential of the proposed
simulator, we have performed DSE on a compute-bound and
a communication-bound layer. In particular, we have focused
on Layer6 and Layer26, two of the most expensive in terms
of latency in the network. As shown in Tab.I, the difference
between total cycles and active cycles for Layer6 is minimal.
For this reason, we can conclude that performance is limited
by computation and not by memory transfers. As shown at
the bottom-left of Fig.5, Layer6 potentially takes advantage
of the parallelism of such computation, reaching a speed-up
over the serial execution of 7.3×. Differently, Layer26 has
a significant difference between the cycle counters; for this
reason, we can deduce the communication limits the execution.
This layer, in fact, stores weights and input/output activations
in L3 memory, and thanks to the double-buffering approach,
the code generated using DORY orchestrates the data transfers
between different memory levels, up to PULP CL TCDM,
overlapping as much as possible the data movements with
core execution. However, if the PULP CL cores execute faster
than DMA transfers, the cores enter sleep mode, waiting for

(a) (b)

Fig. 6: Common DSP kernel execution to show (a) the scalability with number of cores (b) how much TCDM banks impact
the performance in relation with the TCDM contentions.

(a) (b)

Fig. 7: Comparison on convolution executions between 16 PULP CL cores and hardware accelerator varying CHin in: (a)
Ksize = 3 (b) Ksize = 1.

the end of the data movement. This condition creates a gap
between the two counters reported in Tab.I. As shown at the
bottom-right of Fig.5, increasing the bandwidth up to 3 GBit/s
improves the speed-up metric up to 60%.

b) DSP Applications: The second use case explores how
the number of cores and TCDM banks affects the execution on
the PULP CL. As shown in Fig.6a, bars represent the speed-
up from 1 up to 16 cores, where the last is not designed for
the FPGA emulation, with respect to 32 TCDM banks. The
average error in these tests is below 3%, and Fig.6a shows
how only convolution, matrix multiplication, and FFT current
implementations can benefit from the highly parallel execu-
tion. The second experiment has been conducted considering
the speed-up of having 16 PULP CL cores when the number
of TCDM banks changes from 8 to 64. The speed-up of
the best efficient execution layers improves by increasing the
number of TCDM banks. This reduces the TCDM contentions,
depicted in the bars at the bottom of Fig.6b. Conversely, the
other layers can not exploit the same benefit since they are not
entirely parallelizable and TCDM contentions are structurally
limited (i.e., the IIR filter in Fig.6b, that reaches just 4× of
speed-up over 16 cores).

c) Hardware Accelerators: The third use case proposes
an insight into a convolution hardware accelerator in PULP

CL. We have analyzed the latency of different convolution
operations to detect the architectural limitations of this type
of accelerator with respect to an extremely parallel execution.
Fig.7 shows that the error of the GVSoC accelerator model
is less than 4%. The experiment has been conducted with 16
PULP CL cores with convolution dimensions of CHin×8×8,
Ksize × Ksize and 32 × 8 × 8 where we have varied CHin

from 16, to 32 and then 64 and Ksize from 3 to 1. As shown
in Fig.7a, where the filter size is 3 × 3, the accelerator has
a better response, reaching up to 3.6× less latency than the
parallel execution. However, when the filter size decreases
to 1 × 1, the accelerator performance drops, showing an
architectural limitation. This approach can quickly test new
design parameters of the accelerator without implementing a
complete hardware design.

VI. COMPARISON WITH THE STATE-OF-THE-ART

Just the most used RISC-V simulators have been considered
and summarized in Tab.II, showing that GVSoC has a better
trade-off between the simulation speed, accuracy, and the
possibility of simulating complete and heterogeneous systems
and platforms. Our experiment, to assess the simulation speed,
is done on an Intel Core i7-8550U CPU at 1.88GHz and
16GB of memory. As explained in Section II, functional
simulators are typically complete and the fastest, but they do

TABLE II: Comparison between the state-of-the-art RISC-V simulators
RISC-V Simulator Target Field Category Open-Sourced Core Extensions Multicore I/O Peripherals Accelerators Speed [MIPS] Timing Accuracy

Spike [17] CPU functional yes yes yes no no 170 n.d
RISCV-OVPSim [26] Full-platform functional yes yes yes yes no 1000 n.d.

QuestaSim [27] all cycle-accurate no yes yes yes yes 0.01 100%
Verilator [27] all cycle-accurate yes yes yes yes yes 0.1 100%

gem5 (MinorCPU) [28] System instruction-level yes no yes no no 0.2 75%
RISCV-TLM [17] Full-platform event-driven yes no no yes no 8 unknown
RISCV-VP [29] Full-platform event-driven yes no no yes no 27 95%

GVSoC Full-platform event-driven yes yes yes yes yes 25 90%

not model the timing and can not provide information about
the execution. Cycle-accurate simulators are very slow, and
GVSoC is up to 2500× faster than them, simulating all the
system with high accuracy. Instruction-level simulators are
not good enough in terms of accuracy and can not allow
real design space exploration. The event-driven simulators like
GVSoC simulate the entire platform but typically not model
all key building blocks of a complete multicore SoC, such as
heterogeneous accelerators, and I/O peripherals

VII. CONCLUSION

In this work, we presented GVSoC, a configurable, fast
and accurate simulator for IoT devices that enables design
space exploration of real-world embedded devices. With its
modular structure and configuration JSON files to describe
the architecture and the components, Python-based generation
scripts to build and instantiated the platform and the C++ IP
models it can simulate several combinations of architectures
and available resources simply changing parameters in the
architecture description at run-time. For this reason, it can be
used as a fast and robust simulator, reaching 25 MIPS and
10% of mismatch between simulation and FPGA emulation
timing results.

ACKNOLEDGEMENT

This work was supported by the WiPLASH project (g.a.
863337) founded from the European Union’s Horizon 2020
research and innovation program.

REFERENCES

[1] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A Review of
Low-End, Middle-End, and High-End Iot Devices,” IEEE Access, vol. 6,
pp. 70528–70554, 2018.

[2] A. Pullini, F. Conti, D. Rossi, I. Loi, M. Gautschi, and L. Benini,
“A heterogeneous multicore system on chip for energy efficient brain
inspired computing,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 65, no. 8, pp. 1094–1098, 2018.

[3] J. Yi and D. Lilja, “Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations,” IEEE Transactions
on Computers, vol. 55, no. 3, pp. 268–280, 2006.

[4] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “FPGA-Accelerated Simulation Technolo-
gies (FAST): Fast, Full-System, Cycle-Accurate Simulators,” in 40th
Annual IEEE/ACM Int. Symposium on Microarchitecture (MICRO 2007),
pp. 249–261, 2007.

[5] M. E. S. Elrabaa, A. Hroub, M. F. Mudawar, A. Al-Aghbari, M. Al-Asli,
and A. Khayyat, “A Very Fast Trace-Driven Simulation Platform for
Chip-Multiprocessors Architectural Explorations,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 11, pp. 3033–3045, 2017.

[6] Y. Fu and D. Wentzlaff, “PriME: A parallel and distributed simulator
for thousand-core chips,” in 2014 IEEE Int. Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 116–125, 2014.

[7] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-Validated CPU Performance and Energy Modelling,” in 2018
IEEE Int. Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 44–53, 2018.

[8] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, and
D. S. Milojicic, “PUMA: A Programmable Ultra-Efficient Memristor-
Based Accelerator for Machine Learning Inference,” ASPLOS ’19, (New
York, NY, USA), p. 715–731, Association for Computing Machinery,
2019.

[9] A. Akram and L. Sawalha, “A Survey of Computer Architecture
Simulation Techniques and Tools,” IEEE Access, vol. 7, pp. 78120–
78145, 2019.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, p. 1–7, Aug. 2011.

[11] “SimpleCPU: gem5 Functional Simulator.” http://www.gem5.org/
documentation/general docs/cpu models/SimpleCPU.

[12] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in 2005
USENIX Annual Technical Conference (USENIX ATC 05), (Anaheim,
CA), USENIX Association, Apr. 2005.

[13] “ModelSim: behavioral, RTL, and gate-level code Simulator.” https://
eda.sw.siemens.com/en-US/ic/modelsim/.

[14] “Verilator.” https://verilator.org/guide/latest/.
[15] “O3 of gem5.” http://www.gem5.org/documentation/general docs/cpu

models/O3CPU.
[16] “IEEE Standard for Standard SystemC Language Reference Manual,”

IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638,
2012.

[17] M. Montón, “A RISC-V SystemC-TLM simulator,” 2020.
[18] “PULP Platform.” https://pulp-platform.org/.
[19] “Cypress Semiconductor.” https://www.cypress.com/.
[20] “AP Memory.” https://www.apmemory.com/.
[21] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,

E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[22] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: Accelerating Quantized Neural Networks on RISC-V Pro-
cessors Through ISA Extensions,” in 2020 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 186–191, 2020.

[23] F. Conti, A. Marongiu, and L. Benini, “Synthesis-friendly techniques for
tightly-coupled integration of hardware accelerators into shared-memory
multi-core clusters,” in 2013 Int. Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 1–10, 2013.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” 2017.

[25] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “DORY: Automatic End-to-End Deployment of Real-World
DNNs on Low-Cost IoT MCUs,” IEEE Transactions on Computers,
pp. 1–1, 2021.

[26] “RISCV-OVPSim.” https://www.imperas.com/
riscvovpsim-free-imperas-risc-v-instruction-set-simulator.

[27] “Verilator documentation.” https://www.veripool.com/papers/Verilator
Modeling UMass2017b pres.pdf.

[28] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of GEM5 simulator system,” in 7th Int. Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–7, 2012.

[29] V. Herdt, D. Große, and R. Drechsler, “Fast and Accurate Performance
Evaluation for RISC-V Using Virtual Prototypes,” in Proceedings of the
23rd Conference on Design, Automation and Test in Europe, p. 618–621,
2020.

