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Abstract—IoT end-nodes require extreme performance and
energy efficiency coupled with high flexibility to deal with the
increasing computational requirements and variety of mod-
ern near-sensor data analytics applications. Low-Bitwidth and
Mixed-Precision arithmetic is emerging as a trend to address
the near-sensor analytics challenge in several fields such as
linear algebra, Deep Neural Networks (DNN) inference, and
on-line learning. We present Dustin, a fully programmable
Multiple Instruction Multiple Data (MIMD) cluster integrating
16 RISC-V cores featuring 2b-to-32b bit-precision instruction set
architecture (ISA) extensions enabling fine-grain tunable mixed-
precision computation, improving performance and efficiency
by 3.7 × and 1.9 × over state-of-the-art fully programmable
devices. The cluster can be dynamically configured in Vector
Lockstep Execution Mode (VLEM), turning off all IF stages
except one, reducing power consumption by up to 38% with
no performance degradation. The cluster, implemented in 65nm
CMOS technology, achieves a peak performance of 58 GOPS and
a peak efficiency of 1.15 TOPS/W.

I. INTRODUCTION

Near-sensor data analytics applications increasingly require
to run complex workloads, such as deep neural networks, on
top of IoT end-nodes severely constrained in terms of power
envelope, memory, and cost (i.e., silicon area and technology).
An emerging trend to approach the complexity of this problem
is to employ the simplest data representation usable for each
given sub-task of a workload, using Low-Bitwidth Mixed-
Precision arithmetic. This approach is well-established in the
floating-point computation, where transprecision techniques
have been demonstrated in domains such as traditional near-
sensor data analytics [1] and training of neural networks [2].
In the integer domain, emerging fixed-point transprecision and
mixed-precision techniques can be pushed down even more
significantly to extreme low-bitwidth for applications based on
linear algebra [3] and inference of deep neural networks [4].
Up to now, extreme Low-Bitwidth Mixed-Precision arithmetic
has been mainly applied in specialized accelerators [2], [4]
– its application to fully programmable architectures is chal-
lenged by the saturation of encoding space and the related
complexity of instruction fetch and decode. Moreover, mixed-
precision operations require data casting as well as packing/un-
packing operations when the format is updated on the fly,
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Fig. 1. Overview of the Dustin SoC Architecture.

triggering overheads that significantly reduce the effectiveness
of this approach [5].

To deal with this challenge, we present DUSTIN: a low-
power IoT end-node with an accelerator cluster of 16 RISC-V
cores. Each DUSTIN core is augmented with mixed 2b-to-32b
single instruction multiple data (SIMD) instructions, where the
format of the input operands is customized on-line through a
dedicated control register.

A common trait of machine learning and data-analytics
algorithms is data-parallelism. To boost energy efficiency on
data-parallel code, the cluster can be dynamically configured
into a fine-grain Vector Lockstep Execution Mode (VLEM),
turning off all instruction fetch stages except one. This reduces
power consumption by up to 38% with no performance degra-
dation on critical data-parallel kernels while keeping multi-
ple instruction multiple data (MIMD) flexibility for general-
purpose code.

Implemented in robust and cost-effective 65 nm CMOS
technology, DUSTIN achieves 15 GOPS and 303 GOPS/W
on 8-bit integer arithmetic, similar to SoA fully programmable
systems implemented in much more scaled technology nodes
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Fig. 2. i) Mixed-Precision Dot Product 8x2; ii) Dot product functional Units; iii) Performance spanning through bit-widths.

(40 nm and 22 nm) – with a further boost in perfor-
mance (3.7×) and efficiency (1.9×) on Low-Bitwidth Mixed-
Precision workloads, up to 58 GOPS and 1.15 TOPS/W.

II. SOC ARCHITECTURE

Fig. 1 shows the architecture of DUSTIN. It is built around
a tightly-coupled cluster of 16 32-bit RISC-V cores sharing
a 128 kB, 32-banks Tightly-Coupled Data Memory (TCDM)
through a single-cycle latency logarithmic interconnect (LIC)
leveraging a request/grant protocol. The LIC implements a
word-level interleaving scheme to reduce banking conflict
probability (typically 5% even for highly memory-intensive
applications). The cores share a 2-level latch-based instruction
cache: the first level (512 B) is private, the second level (L1.5)
is a 4 kB 8-banks shared cache connected to the L1s with
an interconnect similar to the LIC. The L1.5 refills from a
larger 80 kB L2 memory hosting resident code. A dedicated
hardware block (Event Unit) assists the cores to accelerate
parallel computation patterns, such as thread dispatching and
barriers. Finally, the SoC includes a controlling RISC-V core,
a set of standard peripherals, and 3 FLLs for frequency control.

A. Bit-Scalable Precision Processor

The proposed processor extends RI5CY, a 32-bit 4-pipeline
stages core featuring DSP extensions such as 16-bit and 8-bit
SIMD dot product fully supported by a GCC 7.1.1 toolchain
[6]. The key efficiency-boosting enhancement is a new mixed-
precision SIMD dot product execution unit, shown in Fig. 2. It
includes 4 multiplexed sub-units implementing 16b down to 2b
dot products (DOTP). To enable any SIMD mixed-precision
computation, a slicer-and-router unit selects the correct bits

in the source registers and forwards them to the DOTP unit
featuring the higher precision between the two operands after
optional bit manipulation. A dedicated circuit gates the clock
of the input registers of the unused SIMD units. With no
timing overhead and an increase in area smaller than 10% with
respect to RI5CY, the proposed power-aware design allows
the extended core to run in the same power envelope as the
original one, safeguarding its general-purpose computing effi-
ciency. To encode the new mixed-precision SIMD instructions,
we define a virtual instruction: the opcode (e.g., dotp) is
decoded in the ID stage, the precision of its operands (e.g.,
4x8) is specified by a control and status register (CSR), written
by the processor before issuing a portion of code containing
virtual SIMD instructions. This approach is essential to address
the saturation problem of the RISC-V encoding space, as it
avoids to explicitly encode all the 500 combinations of mixed-
precision operands.

B. Vector Lockstep Execution Mode

The second key efficiency enhancement is at the cluster
level: we support a new Vector Lockstep Execution Mode
(VLEM), where all cores execute the same instructions cycle-
by-cycle. In VLEM, only the master core’s L1 cache and
IF stage are active, forwarding instructions to the ID stages
of all cores (Fig. 3). The related activity reduction by clock
gating saves up to 38% total power. To enter in VLEM,
all cores have to i) synchronize on a barrier, ii) write to a
memory-mapped register. Banking conflicts on TCDM are
solved by delaying the grant signal assertion for the time
required to serve all requests. To avoid systematic conflicts
(e.g., when all cores access the same address in memory – a
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common pattern in linear algebra kernels), the VLEM unit is
enhanced with a broadcast control, activated when all cores
access the same memory location. Together with proper data
organization, broadcast can entirely eliminate the overheads
introduced by banking conflicts, as shown in Fig. 3, and can
reduce the number of memory accesses up to 66%. After the
execution of a kernel in lockstep, the cores exit VLEM by
writing into a memory-mapped register. The increase in area
of the slave cores (gating and isolation) is negligible (<3%)
compared to the baseline as well as the design cost of the
entire lockstep unit, which impacts for less than 1% on the
total cluster area.

III. MEASUREMENTS

Figure 4 shows a die photograph of DUSTIN, together
with its main features. The SoC is implemented in 65 nm
CMOS technology with a die size of 10 mm2. Figure 5
reports the maximum operating frequency and the energy per
cycle of the cluster over the 0.8V to 1.2V voltage range. The
measurements are carried out on the silicon prototype, running
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a typical high-utilization deep neural network workload, the
matrix-multiplication (matmul), with 8-bit precision operands.
Linearly increasing with the voltage, we can reach the highest
operating frequency of 205 MHz at 1.2V.

Figure 6 shows the performance of heavily quantized and
mixed-precision convolutional kernels on the proposed cluster.
On kernels where the activations are the only sub-byte preci-
sion operands, the performance benefits of the mixed-precision
hardware extension are marginal due to the unpacking of data
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executed in a less arithmetic intensive portion of the kernel.
In all other configurations, the mixed-precision instruction set
extensions provide a significant advantage ranging from 2×
to 7.7× improvements with respect to a baseline cluster.

To highlight the energy savings of the VLEM mode on
regular computing kernels, we measure energy consumption
with the cluster running the matrix-multiplication in two
modes: the classic MIMD mode and the VLEM mode, enabled
via software. Fig. 6 shows the related efficiency. The execution
of linear kernels in VLEM mode achieves 1.5× better energy
efficiency and no performance overhead with respect to the
default MIMD execution.

Figure 8 shows a comparison with the SoA. Compared to
similar fully programmable IoT end-nodes [7], [8], [9], [10],
the proposed SoC delivers similar performance and energy
efficiency on 8-bit format, despite the less scaled technology
node used for implementation. This is achieved thanks to
the larger parallelism of the cluster and the VLEM mode
saving up to 38% of overall power consumption. The proposed
work is the only one featuring support for fully flexible bit-
scalable precision from 2b to 32b, improving performance and
efficiency by 3.7x and 1.9x over the state-of-the-art (SoA) for
heavily quantized and mixed-precision workloads, delivering
a peak performance of 58 GOPS and a peak efficiency of 1.15
TOPS/W.

IV. CONCLUSION

We presented DUSTIN, a fully programmable Multiple
Instruction Multiple Data (MIMD) cluster integrating 16
RISC-V cores featuring 2b-to-32b bit-precision instruction
set architecture (ISA) extensions enabling fine-grain tunable
mixed-precision computation. The cluster can be dynamically
configured into a Vector Lockstep Execution Mode (VLEM),
turning off all instruction fetch stages and L1 I$ except one,
thereby reducing power consumption by up to 38% with no
performance degradation. The cluster, implemented in 65nm
CMOS technology, achieves a peak performance of 58 GOPS
and a peak efficiency of 1.15 TOPS/W – competitive with IoT
end-nodes using much more scaled and expensive technology
nodes.
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