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Abstract—In-Memory Acceleration (IMA) promises major ef-
ficiency improvements in deep neural network (DNN) inference,
but challenges remain in the integration of IMA within a digital
system. We propose a heterogeneous architecture coupling 8
RISC-V cores with an IMA in a shared-memory cluster, analyzing
the benefits and trade-offs of in-memory computing on the
realistic use case of a MobileNetV2 bottleneck layer. We explore
several IMA integration strategies, analyzing performance, area,
and energy efficiency. We show that while pointwise layers
achieve significant speed-ups over software implementation, on
depthwise layer the inability to efficiently map parameters on the
accelerator leads to a significant trade-off between throughput
and area. We propose a hybrid solution where pointwise convolu-
tions are executed on IMA while depthwise on the cluster cores,
achieving a speed-up of 3x over SW execution while saving 50%
of area when compared to an all-in IMA solution with similar
performance.

Index Terms—In-memory computing, RISC-V, MobileNetV2

I. INTRODUCTION

Analog In-Memory Computing (AIMC) is an emerging
paradigm holding promise to overcome the well-known von
Neumann bottleneck by executing operations such as matrix-
vector products in the analog domain within a crossbar ar-
rangement, with millions of operations executed simultane-
ously. Both charge-based memory technologies (e.g. SRAM,
DRAM, and flash), and resistance-based memory technologies
(e.g. RRAM, PCM, and STT-MRAM) can serve as elements
for such computational units [1].

Among several application domains, demonstrations of
AIMC-based architectures have appeared in the field of Deep
Neural Network (DNN) inference acceleration, showing out-
standing peak energy efficiency in the order of hundreds
of TOPS/W [1], [2]. An early market industrial example is
represented by Mythic [3], claiming efficiency of 4 TOPS/W
exploiting 8-bit flash-based Mythic Analog Matrix Processors
(MAMP) arranged as a systolic array, all connected through a
mesh topology network on chip. From a research perspective,
several approaches claimed tens to hundreds of TOPS/W by
exploiting several different approaches, with a quite diverse
set of choices in levels of numerical precision and memory
technologies [1], [2].

However, several fundamental challenges are still open to
achieve the claimed levels: the intrinsic variability of analog
computing both in the charge based and resistive domain [1];
difficulties in dealing with low-precision computations that are
often the only ones supported by AIMC-based architectures
[1]; the necessity of specialized training [4]; the poor flexibility
of IMC, that is well matched only for a limited set of
primitives such as matrix-vector multiplications [2]. As a
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result, most AIMC-based architectures fabricated so far have
been demonstrated on trivial neural networks (up to ten layers)
trained on single layers or simple data sets such as CIFAR-
10 or MNIST [1], which are not representative of real-life,
DNN-based applications.

In this work, we focus on the architectural challenges
described above. To tackle the limited flexibility of AIMC-
based computing, some architectures couple general-purpose
processors to analog in-memory computing cores. This al-
lows extending the functionality of In-Memory Accelerators
(IMA) creating heterogeneous analog/digital computing tiles,
connected to the system bus [3], [5]. However, performing
linear operators with accelerators such as IMA moves the
bottleneck of the computation to the digital part. For this rea-
son, augmenting the heterogeneous cluster with a single core
might not be sufficient to sustain the computing requirements
of IMAs; moreover, low bandwidth and high communication
latency between the processor and the IMA might form a
remarkable bottleneck for heterogeneous computing.

We propose a new paradigm for AIMC-based heterogeneous
computing, where an IMA is integrated within a parallel
tightly-coupled cluster of RISC-V processors. We present a
design space exploration based on a key building block of the
MobileNetV2 CNN, representative for a wide range of modern
DNNs leveraging depthwise convolutions to reduce the size
of the model by up to one order of magnitude with respect to
first-generation models. We demonstrate that, for this use-case,
the proposed approach improves performance by more than
one order of magnitude with respect to traditional approaches
where the IMA is connected through a low-bandwidth, high-
latency system bus [5]. Finally, we analyze the remaining
architectural bottlenecks for MobilenetV2 execution on such
heterogeneous system. The IMA on itself can reach outstand-
ing performance and efficiency peaks that are dictated by
the size of the activated crossbar given the constant time to
output for analog computations. But, the cost for auxiliary
computation, data marshalling and inefficiency of depthwise
layers from a significant constriction for efficiency (80%)
suggesting to further extend these clusters with specialized
digital accelerators better tuned for these functions.

II. BACKGROUND

A. PCM-based In-Memory Accelerator
The In-Memory Accelerator (IMA) used in this paper is

based on a Phase-Change Memory (PCM) crossbar array [6].
In this architecture, the memory devices are resistors with
programmable conductance placed at the crosspoints of a 2D
array with one terminal connected to horizontal wires called
bitlines and the other terminal connected to vertical wires
called wordlines, enabling execution of several computational
primitives concurrently.

To perform the product of a matrix A by a vector x,
the PCM devices are programmed with conductance values



Fig. 1. IMA Subsystem in a PULP cluster. The subsystem can be configured
at design time to support a total of 2 × N 32-bit ports towards TCDM,
evenly split between load and store units connected directly to the PCM array
by means of DACs and ADCs, respectively.

proportional to the values Aij of A, with a precision of 4 bits
(signed). Then the wordlines are driven with voltage pulses,
whose duration are proportional to xj , using a set of digital-to-
analog converters (DACs) with 8 bits of precision. By Ohm’s
law, each PCM device contributes a current proportional to
Aij ·xj on the i-th bitline, resulting in a total integrated current
proportional to the dot product yi =

∑
j Aij · xj . At the end

of each bitline, there is an analog-to-digital converter (ADC)
used to sample the bitline current and convert it into an 8-bit
digital value.

For DNN inference, the A matrix can be used to store the
weights of the linear part of a Fully Connected, Convolutional,
or Depthwise Convolutional layer. Note that typically 2 PCM
devices are used to denote a signed weight [7]. In conventional
digital architectures, the dot product of 4-bit weights and
8-bit input activations require a high-precision intermediate
representation (often, 32 bits) that is subject to scaling, clip-
ping, and quantization to produce a vector of 8-bit output
activations [8]. In the IMA, the intermediate representation is
an analog current, while scaling, clipping and quantization are
performed directly by the bitline ADCs by setting appropriate
current limits. Recent work has shown that it is possible to
achieve software-equivalent classification accuracy using this
approach [7].

B. Heterogeneous Cluster
Highly parallelizable workloads such as DNNs are a perfect

fit for high core count heterogeneous systems that can integrate
specialized accelerators. We based our work on the PULP
cluster [9] which structure can be seen at Fig. 1 on the left.
The cluster incorporates 8 RISC-V cores who share a single-
cycle latency, word interleaved data memory called tightly
coupled data memory (TCDM), or referred to as L1 memory.
The cores are enhanced with a custom ISA extension called
Xpulp [10] that aims to accelerate arithmetic intensive kernels.
The work can be offloaded to accelerators (IMA in this case)
by accessing the internal control register file via peripheral
interconnect and programming them based on the workload.

III. IMA SUBSYSTEM ARCHITECTURE

The IMA exposes a control and a data interface towards
the rest of the cluster based on a standardized Hardware
Processing Engine (HWPE) interface 1. The data interface
employs a direct connection with TCDM memory, composed
of 16 parallel 32-bit banks in this work, through the same
interconnect used by cores. The number of master ports is a

1https://hwpe-doc.readthedocs.io/en/latest/

Fig. 2. IMA mapping of standard convolutions on the PCM crossbar. Below
a timeline of the execution model.

design-time parameter Nport that can be chosen depending on
the required bandwidth – as we show in Section IV-2, IV-3.

In Fig. 1, we show a detailed view of the IMA subsys-
tem. The accelerator is composed of three main blocks. The
controller includes the register file and the internal FSM
coordinating the other blocks. The engine contains both the
digital and analog parts of the IMA datapath. The digital
part is composed of buffers for ADCs and DACs and control
circuitry; the analog core encloses all the PCM devices (in-
cluding PCM programming circuitry), as well as the ADCs and
DACs themselves. The streamer block contains the address
generators for memory transactions, implements the request
protocols towards the TCDM, realigns data, and takes care
of contentions. The address generators are capable of three-
dimensional stridden access. Data coming from Nport 32-bit
TCDM ports are merged into a unique stream of data using
a simple ready/valid handshake, which is fed to the engine.
Conversely, data streams coming from the engine towards the
TCDM memory are split in Nport 32-bit TCDM accesses.

The configuration sequence of the IMA starts when a core
acquires a lock over the accelerator by reading a special
ACQUIRE register through the peripheral control interface.
After that, the core can interact with the IMA by: programming
the PCM devices with the weights of one or multiple layers;
reading the conductance value of a PCM device; configuring a
job by setting the address of input and output data in TCDM
and the ADC configuration; when the configuration is over the
job can be started by writing to a special TRIGGER register.
To minimize IMA configuration and synchronization overhead,
multiple jobs can be pipelined by setting the register file with
the correct strides. Thus, a whole layer can be executed with
only one configuration phase.

The IMA works on input data stored in L1 with the HWC
format, i.e., with consecutive data elements encoding pixels
that are adjacents in the channel dimension. The execution of
a job is divided into three phases: STREAMIN: fetch data from
the TCDM that is then streamed to the engine’s internal DACs
buffers; COMPUTATION: analog computation on the crossbar
and writing of the ADCs buffers; STREAMOUT: stream data
from buffers back to the TCDM. In Fig. 2, we show how a
CNN layer is mapped into the IMA and how the computational
timeline is executed. For a standard convolutional layer, the
STREAMIN phase also includes a virtual IM2COL transfor-
mation [11], which is performed directly by the streamers,
enabling to remap all computation supported by the IMA to
matrix-vector products of the form discussed in Section II-A.
As a consequence, the PCM array computes Cout output
feature maps from a complete input volume of Cin ×K ×K
pixels in a single operation, where Cin,out indicate the number
of channels and K is the filter size.
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Fig. 3. Performance on standard convolution: Software execution (SW) vs
IMA acceleration (frequency = 250MHz). The N/N configuration indicates
the number of load and store master ports (32-bit each), respectively.

IV. RESULTS & MOBILENETV2 CASE STUDY

1) Experimental Setup: Our results are obtained by synthe-
sizing the cluster while varying the number of TCDM master
ports in the accelerator, using Synopsys Design Compiler
to target the GlobalFoundries 22nm FDX technology (SSG
corner @ 0.59V and 250 MHz). For power analysis, we used
Synopsys PrimeTime with typical corner with 0.65V at 25°C,
with switching activity back-annotation from post-synthesis
simulation. The IMA model for performance and power are
estimated from [6]; each PCM device has an area of 18.2 µm2

and a single array operation takes 70ns. We assume that the
PCM array is properly sized to fit all weights. All results are
reported relative to the cluster frequency of 250MHz and using
the convention 1 MAC = 2 OPs.

2) Baseline IMA performance: The peak theoretical per-
formance of the PCM array is limited only by its size: for a
100x100 array, for example, 286 GOPS are achieved; for a
1000x1000 array, this would be 28.6 TOPS, etc. However,
real performance is limited by i) array utilization; ii) how
fast activation data is streamed in/out of the IMA. To assess
the IMA’s performance in a realistic baseline case, we used
a standard convolutional layer with 3x3 filter, with 16x16
output size, 32 input channels, and 64 output channels (∼4.7
MMAC). Fig. 3 shows the IMA performance obtained while
sweeping the number of load/store ports from 1/1 to 16/16,
compared with a pure software execution on the 8 cores using
PULP-NN [11] which achieves more than 55% utilization of
the SIMD MAC units in the cores. In this case, a significant
portion of the execution time is due to data stream-in which
can be reduced by increasing the bandwidth to the IMA. The
speed-up ranges from 10.2× on 1/1 configuration up to 36.7×
when 16/16 is used.

3) Case Study: MobilenetV2: To highlight the advantages
and trade-offs of IMC on a realistic use case for extreme
edge computing, we selected MobileNetV2, a widely used
DNN benchmark constructed as a deep stack of units called
BottleNecks. For this analysis, we focus on the BottleNeck
configuration that is shown in Fig. 4; the configuration is
chosen so to fit the on-cluster TCDM (512 kB) without
requiring any activation data tiling [8], which is beyond the
scope of this work.2

All layers in the BottleNeck can be mapped on the IMA.
For the 1x1 convolutional layers, the mapping is direct as
explained in Section III, exploiting their high-level of channel
parallelism. However, in the 3x3 depthwise layer each output
channel depends only on a single input channel. This fact

2We note that data tiling will further decrease energy efficiency.

Fig. 4. Components of MobilenetV2 bottleneck block with stride = 1 and
mapping structure in the PCM crossbar for depthwise layers. All the gray
rectangles are padding required for computing more than 1 channel per job.

means that optimizing at the same time the array utilization
and the execution performance is not possible.

A K × K depthwise layer with C in/out channels can be
mapped as a standard layer with all weights out of a diagonal
set to 0, as shown in Fig. 4. This means that out of K2 ×C2

crossbar locations, only K2 × C are useful, leading to low
utilization of the array. On the other hand, the depthwise can
be split in separate jobs for better array utilization, but this
leads to a smaller amount of operations per job, reducing
performance. The total number of crossbar elements required
is in general given by Nxbar = K2 × C × Cjob, where Cjob

is the number of channels per job. For a MobileNet-V2, full
throughput for all Bottlenecks would require a 23× larger
array than what simply counting the number of parameters
would suggest. This result stands even if the number of depth-
wise parameters is just ∼4% of the total number of weights. In
this work, we considered Cjob = 8 and 16 as reasonable trade-
off configurations, which translates to an increase of 25% and
54% in the number of devices respectively. These are indicated
as IMA8 and IMA16, respectively, in the following sections.

An alternative solution supported by the heterogeneous
cluster we propose is the parallel execution of the depthwise
layer via software [11] on the 8 RISC-V cores of the cluster,
intermixed with IMA-based execution of 1x1 layers. This
configuration, which is reported as HYBRID, requires the
parameters from the depthwise layer to be stored in memory
instead of IMA which we consider a reasonable trade-off since
those parameters account only for 4% of the total weights.

The performance results in this section are from the Bot-
tleneck with sizes reported in Fig. 4 sweeping across 1 to 16
ports for stream-in and out. In Figs. 5 (a-c) we can see how
the benefits of adding TCDM master ports start to fall off after
4/4: the depthwise layer dominates the number of cycles (see
Fig. 6) and increasing ports doesn’t render as sizeable an effect
as shown in Fig. 3. In particular, for the HYBRID solution,
increasing bandwidth toward IMA with more ports does not
influence the depthwise execution. In IMA16 configuration the
bandwidth for depthwise saturates when all the channels can
be fetched in one cycle: 4 TCDM ports of 4 bytes each are
enough; going over only benefits 1x1 convolutions. The same
reasoning can be applied to 8 channels per job, where 2 ports
are sufficient.

Thus, the importance of the depthwise layer in the Bot-
tleneck drives the total improvement when using the IMA
down to ∼3× the software implementation (down from ∼36×
on standard convolutions). Overall, the HYBRID configuration
stands out as the fastest: this is because even in the IMA16
configuration, the depthwise layer is slower than in software,
as can be seen in Fig. 6. Similar considerations can be made



Fig. 5. Performance of several design implementations of the MobileNetV2 bottleneck. a) Performance results measured in GOPS; b) Energy efficiency in
TOPS/W; c) Area efficiency in GOPS/mm2. Red circles on a) and b) indicate best results.

Fig. 6. Impact on performance of the various Bottleneck phases (hwc to chw
only needed on SW variants for depthwise). Results are taken using 4/4 port
configurations at 250 MHz.

with respect to energy efficiency, noticing that adding more
ports than necessary reduces energy efficiency with respect to
the peak at 4 (HYBRID/IMA16) or 2 ports (IMA8), as it puts
more pressure on the memory system.

To put in perspective the cost of increasing the throughput
using IMA, the area efficiency reported in Fig 5(c) is relative
to the effective area of the PCM arrays utilized to implement
the Bottleneck (including padding). The HYBRID solution has
the best result requiring ∼3.25× and 2.13× smaller PCM area
for the same bottleneck when compared to IMA16 and IMA8,
respectively. Considering also the area of the cluster itself, we
obtain 1.82× and 2.56× better GOPS/mm2, respectively.

If we compare the described HYBRID implementation for
MobileNetV2 bottleneck with a s.o.a. heterogeneous system
where the IMA is integrated through a loosely-coupled 32-
bit AXI bus controlled by a tiny processor [5], our proposed
solution performs ∼45× better. First, our core is ∼10×
faster on depthwise convolutions on a per-core basis. If we
expand the picture to the entire cluster we would look at
another ∼7× improvement factor. Finally, the loosely coupled
integration of the IMA through a 32-bit system-bus [5] forms
a huge performance bottleneck even for standard convolutions
(see Fig. 3). Our high-bandwidth tightly-coupled interconnect
scheme allows delivering to the IMA the required bandwidth
in a scalable way with low communication latency with the
cores, improving by ∼3.5× the IMA performance over [5],
making the proposed hybrid solution viable, and paving the
way for a new generation of architectures exploiting synergies
between analog and digital computing. Finally, the results of
our exploration in Fig.6 suggests that further gains in the
order of 10× can be achieved by extending these clusters with
specialized digital accelerators better tuned for key functions
of modern DNNs.

V. CONCLUSION & DISCUSSION

In this work, we integrated an In-Memory Accelerator
(IMA) into a cluster of 8 RISC-V cores. As expected, the IMA

boosts performance in standard convolutions by a significant
factor (up to 36× when compared to an 8-cores cluster
in our experiments). However, our results also show that
the inflexible Matrix-Vector product paradigm imposed by
IMAs requires some mitigation on the architectural side. This
observation strongly motivates our choice to couple a highly
efficient IMA with a highly flexible cluster of cores. In fact,
even a relatively simple Bottleneck layer from a MobileNetV2
includes blocks that are not well-mapped to the IMA, specif-
ically, depthwise separable convolutions. We show several
possible mappings trading off area and performance, demon-
strating that executing depthwise layers directly in the cores
yields up to 2.56× better area efficiency without overhead in
performance and energy. The heterogeneous system achieves
13.2 GOPS, 19.7 GOPS/mm2 and 2.55 TOPS/W on a 4/4
configuration that is competitive with declared metrics from
s.o.a. academic [5] and commercial systems [3]. We argue
that enhanced architectural heterogeneity is the key to fully
exploit the potential of IMC architectures by offsetting their
current limitations. Our future work includes further extending
heterogeneous clusters with digital accelerators tuned to key
kernels that are not well suited to IMC, such as depthwise
layers, nearing the 100 TOPS/W targets in real-world DNN
inference.
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