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We study non-Newtonian effects associated with power-law rheology of behaviour index
n on the propagation of horizontal gravity currents. Two different setups are examined:
i) converging flow toward the origin in a channel of gap thickness b(x) ∝ xk and k < 1
and ii) converging flow along r toward the centre in a cylinder. The front of the current
propagates in the negative x or r direction reaching the origin in a finite touch-down
time tc during the pre-closure phase; in the post-closure phase, the current flows back in
the positive direction and progressively levels out. Under the classical viscous-buoyancy
balance, the current propagation is described by a differential problem amenable to a
self-similar solution of the second-kind coupling space and reduced time tr = tc − t. The
problem formulation in the phase plane brings to an autonomous system of differential
equations which requires numerical integration and yields the shape of the current and
its front as ξf ∝ tδcr , ξf being the self-similar variable value at the front and δc being the
critical eigenvalue. The latter is a function of fluid rheology n and of channel geometry
k for the first setup; it is a function only of n for the second setup. The dependency
on n is modest. The theoretical formulation is validated through experiments conducted
during both pre- and post-closure phases and aimed at measuring the front position and
the profile of the current. Experimental results are in fairly good agreement with theory
and allow quantitative determination of the time interval of validity of the intermediate
asymptotics regime, when self-similarity is achieved and when is lost.

Key words: gravity currents, second-kind self-similarity, intermediate asymptotics, non-
Newtonian, Hele-Shaw cell

1. Introduction

Gravity driven flows under a viscous regime are recurrent in the industry (outflow
from plants, process engineering applications) and environment (both in surface and
subsurface domains) (Simpson 1982; Huppert 2006). These phenomena are described by
nonlinear diffusion equations with counterparts in several fields of physics, such as heat
conduction by electrons and by radiation, or flow in porous media under the Dupuit-
Forchheimer approximation (Diez et al. 1992a). In many applications having a simple
geometry, the spreading is adequately described by self-similar solutions of the first-
kind, representing intermediate asymptotics according to the definition by Barenblatt
(Barenblatt & Zel’Dovich 1972). In this case the variables that entangle space and time
(these are the two independent variables in most problems) can be found on the basis
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2 Longo et al.

of concepts of simple dimensional analysis. The seminal publications by Huppert (1982)
and Didden & Maxworthy (1982), later extended to porous media flow in plane (Huppert
& Woods 1995) and axisymmetric geometry (Lyle et al. 2005), are relevant examples of
the application of first-kind self-similarity to modelling the free-surface advancement of
Newtonian fluids into air or another fluid.

Extensions of this kind of modelling to non-Newtonian rheology, mainly of power-law
nature, were first due to Aronsson & Janfalk (1992), Kondic et al. (1996) and Kondic
et al. (1998): these works deal with the analysis of fingering in Hele-Shaw cells. A contri-
bution devoted to bubble contraction analysis in a Hele-Shaw cell for the case in which
the surrounding fluid is of power-law type is due to McCue & King (2011). Further con-
tributions of interest are Gratton et al. (1999); Perazzo & Gratton (2003); Di Federico
et al. (2012) and Perazzo & Gratton (2005); Longo et al. (2015b). The combined effect
of rheology and confining boundaries was analysed in Longo et al. (2015a).

More variegate are the theoretical and experimental studies of gravity currents in
fractures (Di Federico 1998) and in porous media, possibly with variable permeability
and analysing the coupled effect of non-Newtonian rheology and spatial heterogeneity;
(see Lauriola et al. 2018, and references therein).

Pressurized flows of power-law fluids in porous media with variable conductivity are
also amenable to self-similar solutions of the first-kind (Ciriello et al. 2013); the same
holds for unsteady flows of shear-thinning fluids in infinite domains with pressure-dependent
properties and different geometries, due to a generalized formulation incorporating the
three main cases: plane, radial and spherical (Longo & Di Federico 2015).

A key step in the process of looking for a self-similar solution to a propagation prob-
lem is the individuation of the transformation (a group) that combines two independent
variables, space and time, into a single one, thus reducing a set of partial differential
equations (PDE) into an ordinary differential equation (ODE), provided the initial and
boundary conditions coalesce as well. The fundamental element is the principle of general
covariance in physics: whenever we individuate a transformation that leaves a mathemat-
ical problem invariant, the best and in minimum number variables completely describing
that problem are invariant within the same transformation. A power function structure
of the terms involved in the differential problem is propitious for self-similar solutions,
and this justifies the choice, as a trial set-up, of a variation of the channel gap ∝ xk. Man-
aging an ODE is by far simpler than solving a PDE, and allows in some cases analytical
solutions. The transformation is mostly of the form ξ = x/tβ (a well known exception
is the transformation ξ = ct − x, c being celerity, adopted in solving wave propagation
problems on the surface of heavy fluids, see Stokes (1880), although this case too can be
reduced to the standard power form, see Gratton & Minotti (1990)) where the exponent
β is obtained by balancing the dimensions of all terms of the equations, including initial
and boundary conditions. The solution to the resulting ordinary (nonlinear) differential
problem represents the system behaviour in an intermediate time interval: not too early,
as initial and boundary conditions at an early stage still control the details of the flow;
not too late since, in general, the solutions do not describe properly the ultimate equilib-
rium state of the system (Barenblatt 1996), mainly due to the instability of the solution
under small perturbations or to inconsistencies in balances when time tends to infinity.

Another class of propagation problems is again self-similar, as shown by numerical
integration or by experiments, but the evaluation of the exponent β is impossible simply
via dimensional analysis; the solution of the whole problem is required, with a procedure
similar to the determination of eigenvalues in linear problems. This type of self-similarity
is quoted as “second-kind” or “incomplete similarity”; an indicator of a possible self-
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similarity of second-kind is the presence of scales of the problem in excess, with fewer
dimensional equations than variables (Barenblatt 2003).
Early analyses of these kind of solutions for gravity currents are due to Gratton &

Minotti (1990); Diez et al. (1992a,b); Aronson & Graveleau (1993); Angenent & Aron-
son (1995a,b); Aronson et al. (2003). The work by Zheng et al. (2014) accounts for
second-kind self-similar solutions arising in converging flows in heterogeneous porous
media. A subsequent contribution adopted a similar setup and developed a theoretical
and experimental analysis in the presence of a permeable substrate (Zheng et al. 2015).

A general approach containing the tools for selecting first-kind and second-kind self-
similar solution is the phase-plane formalism, described in the context of viscous gravity
currents by Gratton & Minotti (1990), and applied also to inviscid gravity currents by
Slim & Huppert (2004). A general description of singularities and their role in second-
kind self-similar solution, in the context of phase-plane formalism, is contained in Eggers
& Fontelos (2015). The phase-plane formalism is adopted also in Daly & Porporato
(2004), where different classes of problems connected to mathematical hydraulics and
non-Newtonian fluids are discussed. In many cases, numerical methods are used for in-
tegration, although an asymptotic approach has also been developed, based on the idea
that some second-kind similarity solutions can be viewed as a perturbation of problems
with known similarity solution (Cole & Wagner 1996; Wagner 2005).

The present work focuses on the theoretical and experimental analysis of gravity cur-
rents of power-law fluids in a context where a second kind of self-similarity is expected.
The power-law rheology is the simplest model that approximates the behaviour of a
non-Newtonian fluid in which the strain rate is scaled non-linearly with applied stress,
a category of fluids that is widespread not only in environmental flows on the surface
(Coussot & Meunier 1996) but also in the food industry (Lareo et al. 1997), sewage treat-
ment (Eshtiaghi et al. 2013), biomechanics (Carpenter et al. 2020), oil and gas drilling
systems (Epelle & Gerogiorgis 2020) and pipeline flow (Livescu 2012). Its limitation is
being valid over only a limited range of shear rates, hence its properties depend on the
range of shear rates taken into account. Yet, it constitutes the most frequently adopted
model in engineering applications.
The possibility to have reliable solutions to adopt as benchmarks for the asymptotic

behaviour of numerical solutions, and to extract relevant scalings for the front speed
and depth of gravity currents, justifies the extension of the analyses already available
in literature for a Newtonian fluid to the power-law model. The two specific settings
examined both involve converging gravity currents and are: i) a horizontal channel or
fracture of variable width, and ii) an axisymmetric geometry. Analytical solutions and
numerical results based on second-kind self-similarity adopting the phase-plane formalism
are derived for both the pre-closure phase (before the current nose reaches the origin)
and the post-closure phase (after the nose reaches the origin and the current flows back).
The first theoretical results in axisymmetric geometry are due to Gratton & Perazzo
(2010), results confirmed in the present work and extended to experimental verification.

The manuscript is structured as follows. Section 2 presents the problem formulation
for the horizontal channel and its solution, while Section 3 contains the same analysis
for radial geometry. Section 4 provides details on the experimental setups and on three
sets of experiments, comparing the theoretical and experimental positions of the front
of the current and its profiles for both pre- and post-closure phase. Section 5 contains
the conclusion. Two Appendices complete the paper. Appendix A reports the numerical
values of the critical eigenvalue δc governing self-similar propagation for the two setups;
Appendix B describes plane flow of a power-law fluid converging toward the origin in a
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Figure 1. Horizontal channel with varying gap thickness b1x
k: a converging gravity current in

viscous-buoyancy balance propagates toward the origin. xf is the instantaneous front position,
x0 is the front position at time t = 0.

porous medium with porosity and permeability varying in the horizontal direction. Under
the conditions of validity of the Hele-Shaw analogy for power-law fluids, the solution to
the problem is analogous to that of converging flow in a channel of varying gap thickness.

2. Converging flow in channel of variable cross-section

A viscous gravity current of a Ostwald-de Waele fluid (power-law, PL) (Ostwald 1929;
Morrell & De Waele 1920) propagates in the negative x direction within a channel (or
fracture or Hele-Shaw cell) of variable cross-section (see figure 1), starting at x0 and
reaching the origin x = 0 at a finite touch-down time tc.

The PL model for a shear-thinning/thickening fluid reads in one dimension

τ = µ0|γ̇|
n−1γ̇ (2.1)

in terms of the tangential stress τ and of the strain rate γ̇. The consistency index µ0

represents a viscosity-like parameter, and the fluid behaviour index n controls the extent
of shear-thinning (n < 1) or shear-thickening (n > 1); n = 1 corresponds to the New-
tonian case. A slightly more complicated description using tensors is required for three
dimensional flows; this general formulation is not reported here as a one-dimensional
problem is considered. The fluid advances in a horizontal channel with a gap thickness
varying as b(x) = b1x

k ([b1] = L1−k and 0 < k < 1), see figure 1, under the hypotheses
of (i) hydrostatic pressure distribution; (ii) τxy ≫ τxz and negligible τyz, i.e. tangential
stress acting on the plane of normal x along the cross direction y, is dominant with
respect to tangential stress acting on the same plane in vertical direction z; no slip at
the side wall at y = ± b/2 and symmetry at y = 0; (iv) negligible surface tension and
no fingering at the interface with the ambient fluid, and (v) inviscid ambient fluid. The
lubrication approximation holds and the flow is one-dimensional along the x axis except
near the origin, where also the capillary length is comparable to the gap thickness and
τxz is comparable to τxy. The stream-wise horizontal velocity of the current averaged
over the cross-section is

u(x, t) = −sgn

(

∂h

∂x

)(

b1x
k

2

)(n+1)/n
n

2n+ 1

(

∆ρ g

µ0

)1/n ∣
∣

∣

∣

∂h

∂x

∣

∣

∣

∣

1/n

, (2.2)

where h(x, t) is the current depth, ∆ρ ≡ ρc − ρa is the density difference between the
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intruding current and the ambient fluid and g is gravity. The mass conservation reads

∂h

∂t
+

1

xk

∂(xkhu)

∂x
= 0. (2.3)

The boundary conditions are motivated by the singular points in the phase plane
described later. We anticipate that the boundary conditions allowing a solution are as
follows: for t < tc are h = 0 for x = xf and u = 0 for x → ∞, where tc is the touch-
down time required by the front of the current to reach the origin of the channel; for
t > tc are u = 0 and ∂h/∂x = 0 for x = 0; for t = tc a singularity is reached, which
is then removed upon a proper reformulation of the dependent variables. The integral
mass conservation, although not specifically involved in the sought self-similar solution
of the second-kind, are important in numerical integration schemes; the most common
representation corresponds to V ∝ tσ, where σ = 0 is the lock-release of a finite and
constant volume of fluid, σ = 1 is the constant inflow rate, 0 < σ < 1 is a waning and
σ > 1 is a waxing inflow rate, respectively.
A first-kind self-similar solution cannot be obtained and a second-kind self-similar

approach is pursued introducing the phase-formalism with the adoption of the indepen-
dent variables, x and t, as length and time scales, respectively, to render the governing
equations dimensionless.
We let

u(x, t) =
x

tr
U(x, tr), (2.4a)

h(x, t) =

(

2

b1

)n+1(
2n+ 1

n

)n(
µ0

∆ρ g

)

x(n+1)(1−k)

tr|tr|n−1
H(x, tr), (2.4b)

where H and U are dimensionless and tr = tc − t. tr > 0 represents the pre-closure
phase, with the fluid advancing towards the origin of the channel; tr < 0 identifies the
post-closure phase, with the fluid occupying the entire channel length, the fluid surface
undergoing a progressive levelling and the front position being xf = 0. U is negative and
H is positive in the pre-closure phase, and change sign during the post-closure phase
since tr becomes negative.
Substituting eqs.(2.4a–2.4b) into eqs.(2.2–2.3) yields

U |U |
n−1

+ (n+ 1)(1− k)H + x
∂H

∂x
= 0, (2.5a)

tr
∂H

∂tr
− nH −HU(n+ 2− nk)− x

∂HU

∂x
= 0. (2.5b)

We assume a similarity variable ξ = xt−1
r |tr|

1−δ, where the exponent δ cannot be
determined by using dimensional arguments and must be determined in a different way.
Inserting the similarity variable into eqs.(2.5a–2.5b) gives

U |U |
n−1

+ ξH ′ + (n+ 1)(1− k)H = 0, (2.6a)

δξH ′ + nH + ξ(HU)′ + (n+ 2− nk)HU = 0, (2.6b)

where the prime indicates the derivative with respect to ξ and where the variable tr does
not appear. Eliminating ξ from the two equations results in























dH

dU
=

H[(n+ 1)(1− k)H + U |U |
n−1

]

H[(k + 1)U − (n+ 1)(1− k)δ + n]− (U + δ)U |U |
n−1 ,

d ln ξ

dH
= −

1

U |U |
n−1

+ (n+ 1)(1− k)H
.

(2.7a)

(2.7b)
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These two equations are a set of autonomous planar ODEs, with boundary conditions
represented by points in the phase space. We notice that the similarity variable has
been embedded in its logarithm, with d ξ/ξ ≡ d(ln ξ). We define as singular points the
simultaneous zeros of numerator and denominator of eq.(2.7a), with a further singular
point obtained by setting the denominator to infinity. Hence there are four singular
points, namely

O : (H,U) ≡ (0, 0),

A : (H,U) ≡ (0,−δ),

B : (H,U) ≡

([

n

2 + n(1− k)

]n
1

(n+ 1)(1− k)
,−

n

2 + n(1− k)

)

,

C : (H,U) ≡

(

−∞,
(n+ 1)(1− k)δ − n

k + 1

)

.

In the phase plane a solution connects two points representing the boundary conditions.
In this sense, the singular points are crucial because they are the candidates for the role
of representatives of the boundary conditions, and the behaviour of the solution must be
sought in the neighborhood of these singularities.

Point O corresponds to null velocity and height at tr = 0 (and to ξ → ∞); point A
corresponds to the moving front where h(xf (t), t) = 0, with xf the front position and
xf (t = 0) = x0 (and to ξ = ξf ); point B has no specific clear meaning, and from an
analytic point of view corresponds to the condition d2H/dU2 ≡ dH/dU = 0; point C
is active during the post-closure levelling of the current, and represents the asymptotic
flow condition (it also corresponds to ξ = 0). For n = 1 point B corresponds to the value
given in Zheng et al. (2014) (where n in Zheng et al. 2014, corresponds to our k).

The expansion about point O, computed by assuming H = ̟Uν , substituting in
eq.(2.7a) and balancing the smaller order terms to calculate ̟ and ν, gives

U ≈ −

[

δ(1− k)(n+ 1)− n

δ

]1/n

H1/n; (2.8)

the expansion about point A, the front of the current, computed by assuming H =
̟(U + δ)ν , substituting in eq.(2.7a) and balancing the smaller order terms, yields

U ≈

[

(2 + n− kn)δ − n

2δn

]1/n

H − δ; (2.9)

the asymptotic expression for H → −∞ (point C) is computed by assuming 1/H =
̟(1 − U/UC)

ν , substituting in eq.(2.7a) and balancing the smaller order terms, and
gives

U ≈ UC +
Un+1
C (UC + δ)

UC(k + 1) + (n+ 1)(1− k)

1

H
, (2.10)

where UC is the coordinate of the singular point C.

Given these properties of the singular points, we expect that the pre-closure phase is
described by an integral curve joining A and O, the post-closure phase by a curve joining
O and C.

Numerical integration with Mathematica (Wolfram Research, Inc. 2017) has been per-
formed in the pre-closure time interval (t < tc) by adopting eq.(2.7a), starting nearby
the origin O and assuming that U = −ǫ with the local expansion for H given by eq.(2.8)
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in the form

H|
−ǫ ≈

δ

δ(1− k)(n+ 1)− n
ǫn, (2.11)

with ǫ = 10−5, and computing H(U) in the interval U ∈ [−δ,−ǫ]. An initial value of δ
was chosen, with iterative modifications of this value and stop criterion when H(−δ) <
10−3. The computed eigenvalues, named critical eigenvalues δc, are listed in table A.1 of
Appendix A.

Numerical integration in the post-closure interval (t > tc) has been performed with
the same equation (2.7a) used for the pre-closure interval, but starting nearby point C
where U = UC − ǫ, with the expansion for H given by eq.(2.10) in the form

H|(UC−ǫ) ≈ −
Un+1
C (UC + δc)

UC(k + 1) + (n+ 1)(1− k)
ǫ−1, (2.12)

again with ǫ = 10−5, and computing H(U) in the interval U ∈ [ǫ, UC − ǫ]. No iteration
was required since the value of δc was already known.

Figure 2 shows the phase portrait of eq.(2.7a) with the trajectories for the critical
eigenvalue δc = 1.5836 for n = 0.5 (a typical value for a shear-thinning fluid) and
k = 0.5 (a fracture enlarging with the square root of the abscissa). Continuous and
dashed curves describe the pre-closure and post-closure phases, respectively. Figure 3a
shows the heteroclinic trajectories connecting: i) point A and point O (continuous curves,
pre-closure) and ii) point O and point C (dashed curves, post-closure or levelling) for
fixed n = 0.5 and increasing k values. For k → 1 the variation of the current depth
with U tends to zero near the front and to −∞ near the origin, and UC → 0. Figure 3b
shows the same curves but for fixed k = 0.5 and increasing values of the flow-behaviour
index n. Figure 4 shows the eigenvalues as a function of k for different n. The asymptotic
value for k → 1 is δc ≈ n/[(n + 1)(1 − k)] and corresponds to UC → 0. The Newtonian
fluid (n = 1) shows the minimum eigenvalues for a given value of the width coefficient
k. Relative differences between eigenvalues corresponding to different values of n are
modest while k 6 0.7, then increase rapidly, especially for very shear-thinning fluids.
We observe that the eigenvalues are not monotonic with n, and are decreasing with n if
n < 1, increasing if n > 1, see also the numerical values of δc in Table A.1. An increase
in the eigenvalue results in a higher front velocity (Uf = −δc). This seems to be the
result of an interplay between rheology and channel geometry. Observing Figure 5a, it
appears that the slope of the free surface current (i.e. the gradient pressure) for ξ → ξf
increases with n. The front speed results from a balance between gradient pressure and
flow resistance. For shear thinning fluids the reduction of resistance with n is more than
the reduction of gradient pressure, and the nose of the current is faster for decreasing
n; for shear-thickening fluids the increase of resistance is less than the increase of the
gradient pressure, and again the nose of the current is faster for increasing n.

Once the function H(U) has been computed, in order to evaluate the independent
similarity variable ξ it is convenient to rewrite the l.h.s. eq.(2.7b) as d ln(ξ)/dU via the
chain rule and the inverse function theorem using eq.(2.7a), and also to map the domain
of varying size ξ ∈ [ξf ,∞] into ξ/ξf ∈ [1,∞]. The resulting differential equation

d ln ξ/ξf
dU

= −
H

H[(k + 1)U − (n+ 1)(1− k)δc + n]− (U + δc)U |U |
n−1 (2.13)

can be integrated in the range U ∈ [−δc,−ǫ] starting from A, the front of the current,
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Figure 2. Converging gravity current in a fracture of gap thickness b = b1x
k. Phase portrait of

(2.7a) for n = 0.5 (shear-thinning fluid) and k = 0.5, with δc = 1.5836. The singular points are
O : (0, 0), A : (0,−1.5836), B : (0.6285,−0.2222), C : (−∞, 0.4585). The continuous curve refers
to the pre-closure phase, the dashed curve refers to the post-closure (levelling) phase, the thin
red vertical line indicates the asymptote in the levelling phase, the dash-dot blue curves are the
approximate solutions about points O and A.
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Figure 3. Converging gravity current in a channel of gap thickness b = b1x
k. Shape of the

heteroclinic trajectories in rescaled coordinates for (a) n = 0.5 (shear-thinning fluid) as k → 1;
(b) k = 0.5 (a fracture enlarging with the square root of the abscissa) as n varies from 0.5
(shear-thinning) to 1 (Newtonian) and to 1.5 (shear-thickening). Continuous curves refer to
pre-closure, dashed curves to post-closure (levelling) phase.
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Figure 4. Converging gravity current in a channel of gap thickness b = b1x
k. Eigenvalues

representing the exponent of the similarity variable ξ = x/(tc − t)δc for fluids with different
flow behaviour index n. The dashed pink curve refers to a shear-thickening fluid with n = 1.5,
the hatched area is limited by the upper boundary, 1/(1 − k), and by the lower boundary,
n/[(n+ 1)(1− k)], for n = 0.3, of the critical eigenvalues.

with the boundary condition ξ/ξf |U=−δc
= 1, equivalent to d ln(ξ/ξf )|U=−δc

= 0. The
origin O is reached for U → 0 at ξ/ξf → ∞.

Figure 5a shows the self-similar current shape profiles and the velocity profiles in the
pre-closure phase, for k = 0.5 and different values of n. We notice that velocity profiles
are almost coincident, while the shape of the current is markedly influenced by the flow
behaviour index n, with a crest near the front more evident the more shear-thickening is
the the fluid.
A similar approach is adopted for the post-closure phase, when the front of the current

has reached the origin and a progressive levelling occurs. In this phase it is convenient
to integrate eq.(2.7b) from point O, with ln ξ|H=−ǫ = −(δc/n) ln(ǫ). For increasing H
(in absolute value), the similarity variable ξ → 0, the neighborhood of point C where
U → UC . Figure 5b shows the current depth and velocity for different values of the fluid
behaviour index n and for k = 0.5. The results for other values of the width exponent k
are similar (not shown).
Inserting the expansion (2.8) near the origin O into eq.(2.7b) and solving the resulting

differential equation, yields

H ≈ Kξ−n/δc , (2.14)

U ≈ −

[

δc(1− k)(n+ 1)− n

δc

]1/n

K1/nξ−1/δc . (2.15)

Switching to dimensional variables gives

h(x) =

(

2

b1

)n+1(
2n+ 1

n

)n(
µ0

∆ρ g

)

Kx(n+1)(1−k)−n/δc , (2.16)
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Figure 5. Converging gravity current in a channel of gap thickness b = b1x
k. Self-similar current

shape profiles and velocity profiles for k = 0.5 (a fracture enlarging with the square root of the
abscissa) and for n = 0.3, 0.5, 0.7, 1.0, 1.5 (a) in the pre-closure phase, and (b) in the post-closure
phase.

u(x) ≈ −

[

δc(1− k)(n+ 1)− n

δc

]1/n

K1/nx1−1/δc , (2.17)

where K is a constant. Notably, eqs.(2.16–2.17) are time independent.
For x → ∞ the depth of the current grows in the positive direction, hence dh/dx > 0

that in turn implies

δc >
n

(n+ 1)(1− k)
, (2.18)

which also satisfies the condition of a negative velocity. The minimum value of δc grows
with n and k, and tends to infinity for k → 1 (a linearly expanding fracture).

In a similar manner, inserting the expansion (2.10) near C into eq.(2.7b) and solving
the differential equation, yields

H ∝ ξ|ξ|−(n+1)(1−k)−1, (2.19)

or

h ∝ tr|tr|
δc(n+1)(1−k)−n−1, (2.20)

in dimensional variables. Eq.(2.20) is independent on x and represents the levelling pro-
cess near x = 0.

The condition of a time increasing h during levelling, dh/dt > 0, equivalent to dh/dtr <
0, requires that

dh

dtr
∝ [δc(n+ 1)(1− k)− n]tr|tr|

δc(n+1)(1−k)−n−2 < 0 → δc >
n

(n+ 1)(1− k)
, (2.21)

coincident with the condition (2.18). Imposing that the levelling process vanishes in time,
i.e.

lim
tr→−∞

dh

dtr
= 0, (2.22)
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Figure 6. Converging gravity current in a channel of gap thickness b = b1x
k. Time exponent

of the growth rate of the depth of the current at the origin during levelling (see eq.(2.20)as a
function of k for fluids with different flow behaviour index n ranging from shear-thinning to
shear-thickening. The dashed thin curve indicates the minimum for each n value.

requires that

δc <
1

1− k
. (2.23)

In conclusion, the critical eigenvalue is bounded above and below, i.e.

n

(n+ 1)(1− k)
< δc <

1

1− k
, (2.24)

with the two bounds collapsing to 1/(1− k) = δc for an infinitely shear-thickening fluid
or n → ∞. Note that the upper bound is independent on the fluid nature. The lower
bound for n = 1 coincides with the result by Zheng et al. (2014) (their n is our k). For
k → 0 (constant gap thickness) and n → ∞, it results δc = 1.
Due to these constraints on the eigenvalues, the time exponent of the depth growth

rate at the origin during levelling, defined in eq.(2.20), varies in the range [0, 1], see
figure 6 where its value is depicted versus k for different values of the flow behaviour
index n. As the parameter k describing the growth rate of the fracture gap increases, the
same exponent decreases up to a minimum value depending on the fluid rheology, then
modestly increases; this is so only for shear-thinning fluids, while the exponent for shear-
thickening and Newtonian fluids reaches a minimum and remains approximately constant.
The minimum value of the exponent in eq.(2.20) is reached for k = 0.75 − 1. Finally,
the exponent increases as the flow behaviour index decreases from shear-thickening to
shear-thinning rheology.
In Appendix B we consider a related problem: the propagation of a plane gravity cur-

rent of profile h(x, t) toward the origin of the coordinate system in an heterogeneous
porous medium with spatially variable permeability and porosity. If both quantities ex-
hibit a power-law variation in the streamwise direction x, a formal analogy can be estab-
lished between two domains, the porous medium and the Hele-Shaw cell or channel of
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Figure 7. Radial converging flow: a gravity current in viscous-buoyancy balance propagates
towards the origin. rf is the instantaneous front position, r0 is the front position at time t = 0.

variable gap thickness. The analogy is subject to constraints in the values of parameters
describing the heterogeneity as detailed in Appendix B.

3. Converging axisymmetric flow

We consider the converging flow of a cylindrical gravity current as shown in figure 7:
the current propagates towards the origin of a cylindrical coordinate system. We assume
again: (i) the current to be thin, allowing a hydrostatic pressure distribution, (ii) τrz to
be the dominant shear, with negligible contributions by τrθ and τθz; and (iii) no surface
tension effects and no fingering at the interface with the ambient fluid; (iv) inviscid
ambient fluid. Gravity is the driving force balanced by viscous forces. In the limits of
lubrication model, the vertically averaged horizontal velocity in the radial direction,
calculated by imposing the no slip condition u = 0 for z = 0 and a zero tangential stress
at the interface with the ambient fluid, corresponding to ∂u/∂x = 0 for z = h, is

u(r, t) = −sgn

(

∂h

∂r

)

h(n+1)/n n

2n+ 1

(

∆ρ g

µ0

)1/n ∣
∣

∣

∣

∂h

∂r

∣

∣

∣

∣

1/n

, (3.1)

and mass conservation reads
∂h

∂t
+

1

r

∂(ruh)

∂r
= 0. (3.2)

Again, in a general approach we should specify the initial and boundary conditions, but
as already discussed in 2, the boundary conditions are motivated by the singular points
in the phase plane.
The dependent variables u and h are rendered non dimensional as follows:

u(r, t) =
r

tr
U(r, tr), (3.3a)

h(r, t) =

(

2n+ 1

n

)n/(n+2)(
µ0

∆ρ g

)1/(n+2)
r(n+1)/(n+2)

tr|tr|−2/(n+2)
H(r, tr). (3.3b)

Then the similarity independent variable ξ = rt−1
r |tr|

1−δ is introduced, where δ is the
yet unknown eigenvalue. With the same approach described for converging flow in a
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horizontal fracture, eqs.(3.1–3.2) are rearranged to obtain






















dU

dH
=

H|H|n+1[2(n+ 2)U − (n+ 1)δ + n]− (U + δ)(n+ 2)U |U |
n−1

H[(n+ 1)H|H|n+1 + (n+ 2)U |U |
n−1

]
,

d ln ξ

dH
= −

n+ 2

(n+ 2)H−1|H|−nU |U |
n−1

+ (n+ 1)H
.

(3.4a)

(3.4b)

The singular points are

O : (H,U) ≡ (0, 0),

A : (H,U) ≡ (0,−δ),

B : (H,U) ≡

(

[

n+ 2

n+ 1

]1/(n+2) [
n

5 + 3n

]n/(n+2)

,−
n

5 + 3n

)

,

C : (H,U) ≡

(

−∞,
(n+ 1)δ − n

2(n+ 2)

)

,

and have the same meaning of the points described for converging fracture flow.
The case n = 1 refers to a Newtonian fluid, and eqs.(3.4a–3.4b) become



















dU

dH
=

H3[6U − 2δ + 1]− 3U(U + δ)

H[2H3 + 3U ]
,

d ln ξ

dH
= −

3H2

3U + 2H3
,

(3.5a)

(3.5b)

and the singular points are

O : (H,U) ≡ (0, 0),

A : (H,U) ≡ (0,−δ),

B : (H,U) ≡

(

[

3

16

]1/3

,−
1

8

)

,

C : (H,U) ≡

(

−∞,
2δ − 1

6

)

,

corresponding to the differential problem in Diez et al. (1992b) with a different definition
of the variables. The results are equivalent to those reported in McCue et al. (2019), where
a slightly different approach and a broader perspective is adopted, with an improved
clarity of the various steps. See also Gratton & Perazzo (2010).

Numerical integration of the pre-closure phase starts with a first tentative value of
δ and moving from the origin O (ξ → ∞), where H → 0 and the solution for U is
approximated by

U ≈ −H|H|2/n
[

(n+ 1)δ − n

(n+ 2)δ

]1/n

. (3.6)

Upon successive iterations with changes of the δ value, the integral curve reaches exactly
point A (ξ = ξf ), the front of the gravity current, where H → 0 and the approximate
solution for U is

U ≈ −δ +
2

(n+ 3)δn−1
H|H|n+1. (3.7)

The value of δ that allows the integral curve to reach A from O is the critical eigenvalue
δc.
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Figure 8. Converging radial gravity current. Phase portrait of (3.4a) for n = 0.5 (shear-thinning
fluid), δc = 0.78261. The continuous curve refers to the pre-closure phase, the dashed curve refers
to the post-closure (levelling) phase, the thin red vertical line indicates the asymptote in the
levelling phase, the dash-dot blue curves are the approximate solutions about points O and A.

Numerical integration of the post-closure phase starts about point C, where H → −∞
(and ξ → 0) and where the approximate solution for U is

U ≈ UC +
(3 + n)(n+ 2)

Un
C [UC + (n+ 2)δc]

1

H|H|n+1
, (3.8)

and the integral curve reaches point O (ξ → ∞), where the approximate solution is (3.6).
In this second integration, iterations are not necessary since δc is already known. The
expansion about the singular points O, A and C has been obtained in the same way as
that reported for the differential problem describing the gravity current in a converging
channels, see 2.
Figure 8 shows the phase portrait for a shear-thinning fluid with n = 0.5, with the

integral curves for the pre- and post-closure phases, corresponding to an eigenvalue
δc = 0.78261. The eigenvalues for different values of n are listed in table A.2 of Ap-
pendix A and are shown in figure 9, where a shear-thinning behaviour is accompanied
by higher δc, although the variability is quite modest; the corresponding integral curves
are depicted in figure 10a, followed by the shape profiles and velocity profiles in the
pre-closure phase in figure 10b. No specific trend is observed, although the thickness of
the current immediately behind the front is larger for more shear-thinning fluids. The
horizontal velocity is almost indistinguishable for currents with different value of the fluid
behaviour index. The results for the eigenvalues coincide with those shown in Figure 1
in Gratton & Perazzo (2010), after converting the horizontal axis with their λ equal to
1/n in the notation of the present research.

The behaviour of the integral curves approaching O can be obtained by expanding
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Figure 9. Converging radial gravity current. Eigenvalues representing the exponent of the
similarity variable ξ = x/(tc − t)δ for axisymmetric flow towards the origin for fluids with
different flow behaviour index n.
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Figure 10. Converging radial gravity current. (a) Shape of the heteroclinic trajectories in the
pre-closure (continuous curves) and post-closure (dashed curves) phase, and (b) shape profiles
and velocity profiles in the pre-closure phase as n varies from 0.5 (shear-thinning) to 1 (Newto-
nian) and to 1.5 (shear-thickening).

H = a0ξ
b + a1ξ

b+1 + . . .. Then introducing the approximation (3.6) in eq.(3.4b) and
balancing yields

H = Kξ−n/[δc(n+2)], (3.9)

U = −K(2+n)/n

[

(n+ 1)δc − n

(n+ 2)δc

]1/n

ξ−1/δc , (3.10)

where K is a constant. Switching to dimensional variables, one obtains for the current
depth and velocity

h(r) =

(

2n+ 1

n

)
n

n+2
(

µ0

δcρ g

)
1

n+2

Kr
(n+1)δc−n

(n+2)δc , (3.11)
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u(r) = −K(2+n)/n

[

(n+ 1)δc − n

(n+ 2)δc

]1/n

r(δc−1)/δc , (3.12)

that are time-independent. For r → ∞ the depth of the current grows in the positive
direction, hence dh/dr > 0 that in turn implies δc > n/(n + 1), which also ensures a
negative velocity.
A similar analysis can be conducted to describe the post-closure phase, with results

similar to those obtained for converging flow in a horizontal fracture.

4. The experimental validation

4.1. The experimental setup

Three different experimental setups were developed in the Laboratory of Hydraulics of
the University of Parma in order to validate the theoretical models.

The first setup consists of a tank to reproduce the propagation of gravity currents in
converging channel flow. The channel consists of two rectangular plates, 150 cm long and
20 cm high, with a front wall made of transparent plastic for an easy visualization, while
the back wall is made of yellow polyvinyl chloride (PVC) machined with a computerized
numerical control machine; the gap thickness is b(x) = b1 x

0.6, where x is the abscissa
with origin at the corner, as shown in figure 11; b1 = 0.01176 m0.4 and the width of the
channel at x = 150 cm equals 1.5 cm. Lock release gravity currents were generated with
different lengths of the lock, equal to 12, 14, 20, 30 cm. One experiment was performed
with a different boundary condition of given flux, in order to check the sensitivity of the
solution to the inflow mode. A similar setup was adopted in Zheng et al. (2014) and also
documented in Ghodgaonkar (2019), with a length of 75 cm. With this setup, the heavy
fluid was Newtonian or non-Newtonian power-law shear-thinning, while the ambient fluid
was always air.
A second series of experiments reproduced radial converging gravity currents and was

carried out in a transparent plastic cell shaped as a circular sector (a wedge) with an
angle at the centre β = 12◦, a radius R = 75 cm and a height of h = 18 cm. The front,
side and top view are shown in figure 12a-c. The front vertical wall is rigidly attached to
the bottom, while the back wall is removable. At a distance r0 = 60 cm a vertical gate is
inserted in order to separate the heavy fluid in the upstream lock from the light ambient
fluid in the downstream chamber. Three clamps are applied on top of the tank in order
to push the walls against the bottom and prevent any leakage. Figure 12d is a picture of
the experimental apparatus.
A third set of experiments for radial converging gravity currents was conducted in a

fully metallic cylinder with an inner radius of R2 = 30 cm. A smaller cylinder with an
external radius R1 = 19.5 cm is positioned concentrically to the prior one and pushed
against the glass bottom (a soft rubber sealing gasket is present) in order to create
an annular lock with a gap ∆R = R2 − R1 = 10.5 cm. Particular attention was paid
to the levelling of the base of the apparatus, so as to prevent asymmetries due to the
gravitational force. An electronic level is used to this purpose, with an accuracy of 0.1◦.
The annulus is filled with dense fluid up to a depth of h0 = 3.3 − 4.5 cm. The inner
cylinder is filled with light ambient fluid. At the beginning of the experiments, the inner
cylinder is lifted up to a known height h < h0. A similar setup was used in Diez et al.

(1992b), with radius of the external/internal cylinder of 20 and 5 cm, respectively.
For the currents in converging channel flow (setup #1), the Newtonian fluids were

prepared with glycerol, while the non-Newtonian fluids were prepared with (i) a mixture
of water (95% vol.), glycerol (5% vol.) and carboxymethyl cellulose (CMC, 2% by weight),
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Figure 11. Experimental setup #1: tank with a gap thickness of b1 x
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Figure 13. Experimental setup #3: radial symmetric cell. (a) Front view; (b) top view at t = 0,
before the lift of the inner cylinder (sketch), and for t > 0, after the lift of the inner cylinder
(photo).

or a (ii) a mixture of water (40% vol.), glycerol (60% vol.) and E415 (0.1% by weight).
All the non-Newtonian fluids have power-law, shear-thinning rheology.
For the radial converging currents (setups #2−3), the Newtonian fluids were prepared

with either glycerol or a mixture of glycerol, salt and water, and non-Newtonian fluids
with a mixture of water (60% vol.), glycerol (40% vol.) and Xanthan Gum (E415, 0.25%
by weight). The light ambient fluid is water or a mixture of water, salt and glycerol
with a density slightly less than the current fluid. The combination of different ambient
fluids and intruding fluids was required in order to guarantee the viscous regime, with
negligible inertial effects, and to increase the duration of the experiments for an accurate
estimation of tc. Aniline water color was finally added to the denser fluid for an easy
visualization of the propagating current.
The rheology was measured by the parallel plate twin-driver MCR702 rheometer by

Anton Paar, at a temperature of Θ = 25 − 27◦, equal to the ambient temperature
during the experiments. Several different tests were performed in order to evaluate the
fluid behaviour index and consistency index for non-Newtonian fluids, and the dynamic
viscosity of Newtonian fluids. Figure 14 shows the experimental shear-stress/shear-rate
curves for two different shear-thinning fluids. The limited range of shear-rate is dictated
by the evidence that, except at the early stage of the current propagation, after the gate
lift, the average shear-rate is quite modest. The estimated accuracy is ∆n/n 6 4% and
∆µ0/µ0 6 6%. The mass density of the fluids was measured by a hydrometer (STV350023
Salmoraghi), and by the DMA 5000 by Anton Paar, with an accuracy of ∆ρ/ρ0 6 0.1%.

The profiles of the advancing current after the lift of the gate, are recorded by either a
high-resolution video camera (Canon Legria 1920 × 1080 pixels) operating at 25 frames
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Figure 14. Experimental rheometry of two shear-thinning fluids. (a) Mixture of water, NaCl
and Xanthan Gum, Θ = 27◦C; (b) mixture of of water, NaCl and Xanthan Gum, with two
series of measurements to check repeatability, Θ = 25◦C. The solid curves are the power-law
interpolation and the dashed curves are the 95% confidence limits.

per second (fps), or an iPhone 4K video camera working at 30 fps. For some experiments
both videos were used in order to capture the whole profile of the current with an adequate
resolution, see figure 11c where the panoramic image results from two frames extracted
from two synoptic videos. The frames extracted from the video are post-processed using
a Matlab code that converts pixels into metric coordinates. This conversion is possible
thanks to a square grid attached onto the inner side of the front vertical wall, which allows
compensation of the optical distortion. The overall accuracy in detecting the position of
the nose and the profile of the current is approximately 0.1 cm, while the accuracy in
measuring time is negligible (1/50− 1/60 s).
Figure 15 shows a sequence of snapshots for one of the experiments in lock-release,

Exp. 11, with both pre- and post-closure instants. After closure, the effect of capillarity
near the origin is evident, with an increase in the level compared to the average value
observed far from the origin. Local level for post-closure analysis was obtained correcting
data for capillarity uprise.

4.2. The experiments

The parameters of the experiments are listed in table 1; 10 experiments were performed
in the converging channel and 11 experiments in radial geometry, either in the 12◦ sector
or in the full circle configuration. The theory assumes the dominance of viscous and
buoyancy forces over inertia. The Reynolds number for channel flow can be expressed as
ratio between the inertial and viscous forces per unit volume,

Fi ∼ ∆ρ
u2

L
, Fv ∼ µ0

un

Ln+1
,→ Re =

∆ρ u2−nLn

µ0
, (4.1)

where L is a length scale, taken to be equal to the channel maximum width L = b1x
k
0 .

The velocity scale can be assumed equal to x0/tc, hence

Re =
∆ρ x2−n+k

0 b1

µ0t
2−n
c

. (4.2)
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Figure 15. Time-lapse of the current profile for Exp. 11 in a channel of varying gap thickness.
Closure is at tc = 16.4 s, then levelling starts.

For radial gravity currents a similar analysis brings to a Reynolds number defined as

Re =
∆ρ u2−nhn+1

µoR
, with u ∼

(

∆ρ g

µ0

)1/n
h(n+2)/n

R1/n
, (4.3)

hence

Re =

(

∆ρ

µ0

)2/n

g(2−n)/nh
(n+4)/n

R2/n
. (4.4)

The values of Reynolds number listed in the last column of table 1 refer to the initial
stage of the current propagation; for channel flow Re < 1 and for radial flow Re ≪ 1, with
only one test initially characterized by Re ≈ 0.8. In the other tests, inertial effects are
negligible since the very beginning, and the viscous balance dominates the advancement
of the currents at all stages.
Figure 16 shows the time series of the front position for the experiments in converging

channel flow. The experiments are separated in two groups, namely Newtonian and shear-
thinning gravity currents. For the former tests the theoretical eigenvalue is δc = 1.787
and the corresponding trajectory is fairly well followed by the experiments. Similar exper-
iments were conducted in Zheng et al. (2014) in channels with different width exponent
k, although only in lock-release mode. In the present Newtonian subset, four tests are
in lock-release mode, while Exp. 1 is a constant influx experiment. The results indicate
that in lock-release mode the current requires a much longer time to forget the initial
condition and to reach self-similarity, whereas with a constant influx the current evolves
rather quickly to reach the intermediate asymptotic regime of self-similarity. The differ-
ent lengths of the locks do not influence significantly the current propagation in the far
field. The grey symbols are considered outliers attributed to several disturbances and
interferences, like capillarity and three dimensionality of the flow field not modelled in
the theory. The Exp. 3 and 5 are a repetition with the same fluid and under the same
conditions, to get an estimate of the repeatability and uncertainty.
For the non-Newtonian fluid experiments the fluid behaviour index ranges from 0.54 to

0.90, and the consistency index ranges from 0.42 to 2.63Pa sn. The two straight lines in
figure 16 correspond to extreme values of δc ≈ 1.79 and ≈ 1.85. Again the experimental
results, all in lock-release mode, adequately follow the theory, reaching the self-similar
regime although the differences with the value of n cannot be appreciated. Essentially,
the long tank favours the evolution of the current with enough space to forget the inlet
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Exp. geom. inflow h, h0 a lock length r0, x0 n µ0 ρc ρa tc Re
condition (cm) (cm) (cm) (cm) (Pa sn) (kgm−3) (kgm−3) (s) (×10−3)

1 c c-Q - - - 150 1 1.10 1250 1.2 298 85
2 c l-r 16.0 - 14 136 1 0.84 1250 1.2 350 81
3 c l-r 16.0 - 20 130 1 1.10 1250 1.2 206 98
4 c l-r 16.0 - 30 120 1 1.10 1250 1.2 126 141
5 c l-r 16.0 - 20 130 1 1.10 1250 1.2 229 89
6 c l-r 16.0 - 20 130 0.87 2.63 1022 1.2 670 4.6
7 c l-r 16.0 - 30 120 0.87 2.63 1022 1.2 406 7.1
8 c l-r 16.0 - 12 138 0.54 0.42 1070 1.2 80 94
9 c l-r 16.0 - 14 136 0.90 1.74 1022 1.2 635 9.6
10 c l-r 16.0 - 20 130 0.54 0.42 1070 1.2 28 387
11 c l-r 16.0 - 20 130 0.54 0.42 1070 1.2 16.4 848

12 r12 c-h 9.2 1.4 15 60 1 0.11 1240 1210 237 6.0
13 r12 c-h 9.2 2.0 15 60 1 0.08 1241 1210 31 10
14 r12 c-h 9.2 2.0 15 60 1 0.13 1247 1220 56 3.4
15 r360 l-r 4.5 1.0 10.5 19.5 1 1.10 1260 1200 492 2.5
16 r360 l-r 4.5 2.0 10.5 19.5 1 1.10 1250 1190 22 2.5
17 r12 c-h 9.2 3.0 15 60 0.29 0.58 1031 1000 5233 0.0008
18 r12 c-h 9.2 2.2 15 60 0.40 0.24 1045 1000 58 4.2
19 r12 c-h 9.2 2.0 15 60 0.27 1.07 1024 1000 826 0.0001
20 r12 c-h 9.2 2.0 15 60 0.28 1.05 1036 1000 204 0.0001
21 r360 l-r 3.5 1.5 10.5 19.5 0.63 0.15 1032 1000 600 226

Table 1. Parameters for the experiments on converging flow in a channel of variable thickness
and in radial geometry. The second column indicates the geometry of the flow field, where
“c” stands for channel and where “r12” and “r360” stand for radial geometry with an angle
at the centre of 12◦ and 360◦, respectively; “c-Q”, “l-r”, “c-h” stand for constant inflow rate,
lock-release and constant head; h and h0 are the constant head or the initial depth in the lock;
a is the height of the slot at the bottom of the gate; r0, x0 is the initial position of the front
of the current in radial geometry and in the channel; n and µ0 are the fluid behaviour index
and the consistency index (the viscosity for Newtonian fluids) of the current fluid, respectively;
ρc, ρa are the current/ambient fluid density and tc is the touch-down time; Re is the Reynolds
number according to the expressions (4.2–4.4), where an average value h = 2 cm is assumed for
radial gravity currents.

and initial conditions and before reaching the proximity of the origin, where capillarity
renders the theoretical model invalid.
A comparison of the shape of the current with the experiments is reported for two ex-

periments, with Newtonian and power-law fluids, respectively. A main variable in check-
ing the validity of the model is the time position of the front of the current. We expect
that xf (t) ∝ tδcr , hence

xf (t)

x0
= α

(

tr
tc

)δc

, (4.5)

where the dimensionless coefficient α is the intercept of the straight interpolating line in
a diagram xf/x0 − tr/tc drawn in logarithmic scale. It also results

ξf =
αx0

tδcc
, (4.6)

which is a constant for each experiment. The value of α is obtained by interpolating the
experimental front-position of the advancing current in pre-closure phase.

Figure 17ab refers to the pre-closure phase for Expts. 5 and 11, with experimental pro-
files sampled in several sections at different times and the continuous curve representing
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Figure 16. Front position of gravity currents in converging channel flow with k = 0.6. Experi-
ments 1–5 refer to Newtonian fluid (left vertical axis), experiments 6–11 refer to shear-thinning
fluids /right vertical axis). The straight lines correspond to the theoretical curves for n = 1 and
n = 0.54−0.90, respectively, with eigenvalues δc = 1.787 and δc = 1.852−1.794. The parameters
of the experiments are listed in Table 1.

the theoretical model. For the Newtonian fluid case, the early time profiles show a signif-
icant discrepancy with theory, which however decreases after approximately 190 s. That
means that at least for approximately 35 s the current is in self-similar regime, ended by
the insurgence of capillarity effects near the origin. For the power-law fluid, Exp. 11, the
profile at t = 6 s differs from the rest of the time snapshots which collapse onto one curve,
so they are self-similar; all profiles differ from theory at the peak around ξ/ξf ≈ 2.5 and
are in excess to the same degree that the profile at t = 6 s differs around ξ/ξf ≈ 10, and
is in defect. We observe that Exp. 11 has the highest initial Reynolds number and shows
an initial stage when inertial effects are comparable to viscous ones. However, the current
forgets its original regime and evolves towards self-similarity. This is another validation
of the memoryless behaviour of the gravity currents, which not only forget the type of
influx (lock-release or constant influx), but also their initial regime (inertial or in transi-
tion). The analysis of the time requested by self-similar solutions to approximate within
a given accuracy the (numerical) solutions was discussed by Ball et al. (2017); Ball &
Huppert (2019) in the context of gravity currents, also considering different shapes of the
lock or inflow rate variations. The results obtained for first-kind self-similar solutions can
be extended to experiments and to second-kind self-similar processes: the approximation
improves with time, unless disturbances effects (like capillarity) render the model invalid.
It explains the different agreement in times between experiments and theory, which im-
proves for t > 6 s although the peak value of H is underestimated by approximately 15%.
The numerous approximations of the model are responsible for this discrepancy, but the
self-similar nature of the profiles is adequately confirmed.

A comparison between experiments and theory has been conducted also for the post-
closure stage, with the current levelling near the origin. In this case the pre-factor refers
to the time evolution of the current depth in the origin, where, in the self-similar stage,
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Figure 17. Experimental profiles of the current in converging channel flow with k = 0.6 during
pre-closure (symbols) compared to the theoretical self-similar solution (bold line). (a) Exp. 5,
Newtonian fluid, tc = 229 s, δc = 1.7874, α = 0.30; (b) Exp. 11, power-law fluid, tc = 16.4 s,
δc = 1.8534, α = 0.19.

results

h(0, t)

h∞

= α′

(

−tr
tc

)δc(n+1)(1−k)−n

. (4.7)

Figure 18 shows the comparison between theory and experiments for Exp. 5 and 11.
During post-closure, the pre-factor α′ is computed by considering the experimental time
evolution of the depth h(0, t), which is initially varying according to eq.(4.7), see the
insets. The theoretical exponent of the current depth growth in the origin is δc(n +
1)(1 − k) − n, equal to 0.429 and to 0.602 for Exp. 5 and Exp. 11, respectively; the
experimental values are 0.42 and 0.51, with a fairly good agreement for the first one, an
acceptable agreement for the second one. The overall adherence between experiments and
theory is striking, with a better collapse of the experimental data and of the theoretical
curve for increasing time after closure.

The theoretical formulation for converging radial currents was also experimentally val-
idated. Figure 19 shows the time position of the front of the current in radial geometry:
experiments are divided in two groups with Newtonian and shear-thinning fluids, respec-
tively. The Newtonian fluid case was already validated by Diez et al. (1992b). Exp. 19
and 20 have very different closure times and different time evolution of the front position,
although the characteristics of the fluid are practically similar, the only difference being
the density, for both fluids a few percent larger than the water, the ambient fluid. As an
explanation of this anomaly, we remind that the difference in density is small, but the
reduced gravity appearing in buoyancy is significantly different. In addition, both tests
are partially influenced by diffusive processes which further reduce the density difference
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Figure 18. Experimental profiles of the current in converging channel flow with k = 0.6 during
levelling (symbols) compared to the theoretical self-similar solution (bold line). (a) Exp. 5,
Newtonian fluid n = 1, tc = 229 s, δc = 1.7874, α′ = 1.29; (b) Exp. 11, power-law fluid n = 0.54,
tc = 16.4 s, δc = 1.8534, α′ = 0.41. The insets are the time level series at the origin adopted to
estimate the pre-factor α′.

between the current and the ambient fluid, to a greater extent for Exp. 19 (less dense
current fluid of the two) than for Exp. 20 (denser fluid of the current between the two).
Ultimately, under such experimental conditions small variations in the parameters can
amplify differences.
In radial geometry the eigenvalue has an almost constant value for n > 0.8 although

a significant deviation from the average value of ≈ 0.78 can be observed only for very
shear-thinning fluids. Observing the time series of the front position, there are no signif-
icant differences for experiments in full circle and partial circle configuration, and also
the different mode of inflow does not apparently affect the results. However, we expect
that the two different geometries, the circular sector and the full-circle, can guarantee
the experimental reproduction of self-similarity for different time intervals. In the case
of the circular sector, when the current is approaching closure the flow field becomes
three-dimensional, with comparable tangential stresses in the vertical planes; moreover,
capillarity introduces, for the circular sector, disturbances that are not present in full-
circle geometry. In summary, the full-circle provides the conditions for the establishment
of self-similarity more than the circular sector. This happens to a greater extent the
smaller the angle at the centre of the circular sector.
The agreement between theory and experiments is generally good, with some dispersion

of the data when the current is near the closure, due to the dominance of interferences.
The early stage adaptation to the self-similar solution has a different duration for different
tests, but the duration of the intermediate self-similar regime is always quite long.
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Figure 19. Front position of gravity currents in radial converging flow. Experiments 12–16
refer to Newtonian fluid (left vertical axis), experiments 17–21 refer to shear-thinning fluids
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n = 0.29−0.63, respectively, with eigenvalues δc = 0.762 and δc = 0.822−0.772. The parameters
of the experiments are listed in table 1.

5. Conclusion

We conducted an analysis of gravity currents advancing toward the origin in a chan-
nel, or fracture, of variable gap thickness and in radial geometry. Previous studies had
discovered a second-kind self-similarity solution for Newtonian fluids and provided its ex-
perimental validation. Here, we have extended the analysis to power-law fluids, a useful
approximation of some real complex fluids frequently adopted in industrial and envi-
ronmental applications. The theoretical analysis was focussed on the behaviour of the
solution about the singular points in the phase plane, computing the limiting eigenvalues
consistent with the physical behaviour of the current, and was followed by numerical
integration for the pre-closure and post-closure phase, respectively. A quite long con-
verging channel was built to favour the experimental onset of the self-similarity regime,
and two other tanks where also constructed, with two different radial geometries, a full
radial and a sector 12◦ wide. The experiments were conducted with dam-break, constant
head and constant inflow rate; in all cases the self-similarity was achieved as detected
by measuring the front position in time, giving evidence that the initial conditions do
not influence the propagation of the current after a certain time lag. The achievement
of the self-similar condition is faster for constant inflow rate than for lock release or
constant head. This is a major difference with respect to gravity currents propagating
with a self-similar regime of the first-kind, which, for example, experimentally do not
depend on the precise geometry of the injector (Lyle et al. 2005), but till have a different
shape depending on whether the overall volume of the current is constant or varies with
time. We remind that the behaviour of the second-kind self-similar currents is predicted
by the singular points joined by the integral curve. From the experimental point of view
this dependence is not so strong, and any case the injection mode influences the time
required to reach self-similarity. The existence of an experimental self-similarity confirms
that the theoretical solution is also stable.
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Specific findings are as follows:
• The eigenvalue for converging channel flow is influenced more by the fracture geome-

try (width parameter k) than by the fluid nature (flow behaviour index n); it approaches
unity for k → 0 and infinity for k → 1 (a wedge-like channel); its minimum value increases
with n and k.

• Relative differences between eigenvalues corresponding to different values of n are
modest until k 6 0.7, then increase rapidly, especially for low n values (very shear-
thinning fluids).
• The critical eigenvalue has bounds n/[(n + 1)(1 − k)] < δc < 1/(1 − k), with the

upper bound independent of the fluid nature.
• Levelling near the origin implies a time exponent less than unity for the growth of

the current depth; levelling is faster for very shear-thinning fluids and lower values of
width parameter k.
• In the case of radial converging flow, results for eigenvalues are qualitatively similar

to those for channel flow; in particular, the critical eigenvalue has an average value of
≈ 0.78, an almost constant value for n > 0.8 and shows a significant increase from the
average value only for very shear-thinning fluids (low n).

Perspectives for future extension include the adoption of more realistic rheological
models of widespread use in technical applications, such as Herschel-Bulkley (three-
parameter) or truncated power-law (four-parameter). For example, a preliminary analysis
shows that for a Herschel-Bulkley fluid the present approach brings to a spatial (three
dimensional) ODE system, with three dependent variables; this is in variance with the
present work on converging motion of power-law fluids in channelized or radial flow,
where a planar system of equations arises. Insofar, such problems have not arisen in this
sub-field of fluid mechanics.
Other classical effects often included in gravity current modelling, such as fluid infil-

tration or ex-filtration due e.g. to a porous substrate, need attention: these phenomena
imply source/sink terms representing mass addition or subtraction and complicating the
differential problem. Similar issues arise with chemical reactions. Also, surface tension
effects can be dominant in very thin fractures, almost ubiquitous in many natural for-
mations, and require a proper analysis in order to be included in the model.
As a last point, possible extensions include the analysis of converging currents with

non-axisymmetric geometry of the holes, following the analysis performed for Newtonian
fluids in Angenent et al. (2001); Diez et al. (1998).
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k = 0.5 0.6 0.7 0.8 0.9 0.95 0.98

n = 0.3 1.6505436 1.9860302 2.5629732 3.77226735 7.595576765 15.30827880 38.39318184
0.5 1.5836860 1.8674737 2.3408605 3.30194250 6.333355500 12.87070894 33.03107487
0.7 1.5555845 1.8153570 2.2396420 3.07693480 5.590929700 10.74155645 27.17726191
1.0 1.5422697 1.7874093 2.1826545 2.95561600 5.279916050 10.08649685 25.03621420
1.5 1.5479785 1.7901284 2.1841454 3.01639213 6.000000576 12.00000031 30.0

Table A.1. Eigenvalues evaluated for converging flow in a channel of gap thickness b = b1x
k

for different values of k and of fluid behaviour index n.

n δc n δc n δc

0.1 0.880292 0.6 0.775568 1.1 0.760562
0.2 0.833010 0.7 0.770503 1.2 0.759517
0.3 0.808010 0.8 0.766795 1.3 0.758815
0.4 0.792737 0.9 0.764035 1.4 0.758394
0.5 0.782610 1.0 0.762035 1.5 0.758206

Table A.2. Eigenvalues evaluated for converging radial gravity flow for different fluid
behaviour index n.

Appendices

A. Numerical values of δc
Table A.1 and table A.2 list the eigenvalues computed for converging gravity flow of a

power-law fluid in a channel of varying gap thickness and in radial geometry, respectively.

B. Flow in a porous medium of varying permeability and porosity

and Hele-Shaw analogy

Consider a plane gravity current of a power-law fluid propagating on a horizontal im-
permeable bottom toward the origin of a porous domain saturated by a lighter fluid at
rest; motion is driven by the density difference ∆ρ between the two fluids. The current
is released at a distance x0 from the origin and reaches it at time tc. Under the assump-
tions of (i) sharp interface, (ii) thin intruding current, (iii) negligible capillarity effects,
the spreading is described by the current height h(x, t), vertical velocities are neglected,
and pressure is hydrostatic with ∂p/∂x = ∆ρ g(∂h/∂x). The porous domain is heteroge-
neous with deterministic variations in permeability k and porosity φ along the horizontal
direction x given by

φ(x) = φ1x
γ , k(x) = k1x

β , (B.1)

where φ1, k1 are costants of dimensions [L−γ ] and [L2−β ] respectively, and γ, β are
dimensionless non-negative constants; for a homogeneous medium γ = β = 0.
The filtration law for the power-law fluid described by eq.(2.1) is given by (Di Federico

et al. 2014)

∇p−ρg = −
1

Λk(n+1)/2
|v|

n−1
v; Λ = Λ(φ, µ0, n) =

8(n+1)/2

2

(

n

3n+ 1

)n
φ(n−1)/2

µ0
(B.2)
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with p pressure, g gravity, v ≡ (u, v, w) Darcy velocity. The mass balance for 1-D flow
reads

∂

∂x

(

∫ h

0

u dz

)

= −
∂

∂t

(

∫ h

0

φ dz

)

. (B.3)

Substituting the horizontal velocity from (B.2) into (B.3) and using (B.1) yields

u1

xγ

∂

∂x

[

hxF1
∂h

∂x

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

1/n−1
]

=
∂h

∂t
, (B.4)

with

u1 =
(∆ρ g/µ0)

1/n
k
(n+1)/(2n)
1

φ
(n+1)/(2n)
1

; F1 =
γ(n− 1) + β(n+ 1)

2n
. (B.5)

The problem thus stated is amenable to a self-similar solution of the second-kind
analogous to that described in section 2 for converging flow in a channel of variable gap
thickness. The dimensional counterpart of (B.4) for channel flow is easily derived from
eqs.(2.2–2.3) as

u0

xk

∂

∂x

[

xk(2n+1)/nh
∂h

∂x

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

1/n−1
]

=
∂h

∂t
, (B.6)

where

u0 =

(

∆ρg

µ0

)1/n
n

2n+ 1

(

b1
2

)(n+1)/n

. (B.7)

Comparing exponents in eq.(B.4) and eq.(B.6) it is seen that the Hele-Shaw analogy for
power-law fluids (Ciriello et al. 2016) requires

{

γ = k

β = 3k.
(B.8)

Under the validity of equations (B.8) the analogy is established and one can proceed as
in Section 2, the critical eigenvalues will be the same. The above conditions are however
quite restrictive; a wider choice of parameter combinations is available using a mapping
parameter, see Appendix A.2 in Ciriello et al. (2016).
Non-standard Hele-Shaw cells with tapered plates have been widely applied in thin

film flows and slow viscous flows with a moving boundary, see, e.g., Al-Housseiny et al.

(2012); Dias & Miranda (2013); Al-Housseiny & Stone (2013); Bongrand & Tsai (2018).
See also Morrow et al. (2019) where non-standard Hele-Shaw cell configuration (tapered
of rotating) is investigated aiming to improve the efficiency in controlling interfacial
instabilities.
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