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Abstract
For each n ≥ 0, let μn be a tight probability measure on the Borel σ -field of a metric
space S. Let (T , C) be a measurable space such that the diagonal

{
(t, t) : t ∈ T

}

belongs to C ⊗ C. Fix a measurable function g : S → T and suppose μn = μ0 on
g−1(C) for all n ≥ 0. Necessary and sufficient conditions for the existence of S-valued
random variables Xn , defined on the same probability space and satisfying

Xn
a.s.−→ X0, Xn ∼ μn and g(Xn) = g(X0) for all n ≥ 0,

are given. Such conditions are then applied to several examples.The tightness condition
on μ0 can be dropped at the price of some assumptions on S and g.

Keywords Convergence of probability measures · Coupling · Skorohod
representation theorem

Mathematics Subject Classification 2020 60B10 · 60A05 · 60A10

1 Introduction andMain Results

Throughout, S is a metric space, B the Borel σ -field on S, and (μn : n ≥ 0) a
sequence of probability measures on B. Moreover, (T , C) is a measurable space,
g : (S,B) → (T , C) a measurable function, and

σ(g) = g−1(C) = {
g−1(C) : C ∈ C

}
.
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If μn → μ0 weakly and μ0 is separable (namely, μ0(A) = 1 for some separable
A ∈ B), then, on some probability space, there are S-valued random variables Xn

such that Xn ∼ μn for all n ≥ 0 andXn
a.s.−→ X0. This is Skorohod representation

theorem (SRT) as it appears after Skorohod [21], Dudley [12] and Wichura [23]. See
[13, p. 130] and [22, p. 77] for historical notes, and [5] for the case where μ0 is not
separable. Some other related references are [3,4,8–10,14–16,18,20].

This paper stems from the following question. Suppose μ0 is separable, μn → μ0
in some sense, and

μn = μ0 on σ(g) for all n ≥ 0. (1)

Is it possible to take the Xn in SRT such that g(Xn) = g(X0) for all n ?More precisely,
the question iswhether, on someprobability space, there are S-valued randomvariables
Xn satisfying

Xn
a.s.−→ X0, Xn ∼ μn and g(Xn) = g(X0) for all n ≥ 0. (2)

Such a question is intriguing, quite natural from the foundational point of view, and
also has some practical implications. Examples are in Sect. 3.

Some more notation is needed. If X is any topological space, B(X ) denotes the
Borel σ -field on X and Cb(X ) the set of real bounded continuous functions on X . In
caseX = S, we just writeB instead ofB(S). Moreover, we say that (T , C) is diagonal
if

{
(t, t) : t ∈ T

} ∈ C ⊗ C.

In particular, (T , C) is diagonal if T is a separable metric space and C = B(T ).
We are now able to state our main result.

Theorem 1 Suppose (T , C) is diagonal, μn is tight and μn = μ0 on σ(g) for every
n ≥ 0. Then, there are S-valued random variables Xn, defined on the same probability
space, such that

Xn ∼ μn and g(Xn) = g(X0) for all n ≥ 0. (3)

Such Xn can be taken to meet condition (2) (namely, they also satisfy Xn
a.s.−→ X0) if

and only if

Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) for each f ∈ Cb(S). (4)

In a nutshell, Theorem 1 states that, under mild conditions on μn and (T , C),

(1) ⇔ (3) and (1) ∧ (4) ⇔ (2).
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The second equivalence is possibly more meaningful but the first may be useful as
well; see, e.g., Example 3. We also note that the notation Eμn ( f | g) stands for

Eμn ( f | g) = Eμn

[
f | g−1(C)

]
.

Some more remarks are in order.

(i) Any countably generated sub-σ -field G ⊂ B can be written as G = σ(g) for
some Borel measurable function g : S → R.

(ii) Some assumption on (T , C) is necessary. As an obvious example, take T = S and
C the collection of countable and co-countable subsets of S. If g is the identity
map, conditions (1) and (4) hold true wheneverμn → μ0 weakly andμn{x} = 0
for all n ≥ 0 and x ∈ S. But, since g is the identity, condition (3) fails unless
μn = μ0 on all of B.

(iii) Let μ = ∑∞
n=0 2

−n−1μn . In view of Theorem 1, it is tempting to say that μn

converges toμ0 conditionally with respect to g, written asμn
g−→ μ0, whenever

Eμn ( f | g) μ−a.s.−→ Eμ0( f | g) for each f ∈ Cb(S).

This notion of convergence allows for a version of SRT and reduces to weak
convergence in the special case where g is constant. Furthermore, if S is Polish,

μn
g−→ μ0 is equivalent to

γn(x) → γ0(x) weakly for μ-almost all x ∈ S,

where γn = {γn(x) : x ∈ S} is a regular conditional distribution for μn given
σ(g); see Sect. 2.

(iv) In condition (4),Cb(S) can be replaced by the set of bounded Lipschitz functions
on S. Note also that, if g is constant, condition (1) is trivially true and condition
(4) reduces to μn → μ0 weakly. Thus, when the μn are tight, SRT is contained
in Theorem 1.

(v) As an obvious application, suppose the μn are tight and take a countable Borel
partition

{
H0, H1, . . .

}
of S. Then, there are random variables Xn such that

Xn
a.s.−→ X0, Xn ∼ μn and 1Hj (Xn) = 1Hj (X0) for all n, j ≥ 0

if and only if

μn(Hj ) = μ0(Hj ) for all n, j ≥ 0 and

Eμ0( f 1Hj ) = lim
n

Eμn ( f 1Hj ) for all f ∈ Cb(S) and j ≥ 0.

This follows from Theorem 1 with T = {
0, 1, . . .

}
, C the power set of T , and

g(x) = j for all x ∈ Hj .
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(vi) Suppose S is Polish, G ⊂ B is a countably generated sub-σ -field, and some
element A ∈ G satisfies {x} ∈ G for all x ∈ A. Then, A ∩ G = A ∩ B by a
result of Blackwell [7], and one can take T = S and g(x) = x for all x ∈ A.
Therefore, under condition (3), one obtains Xn = X0 on the set {X0 ∈ A}.

(vii) A weak version of condition (2) is

Xn → X0 in probability, Xn ∼ μn and g(Xn) = g(X0) for all n ≥ 0.

This condition can be characterized by the same argument as Theorem 1. If
(T , C) is diagonal, the μn are tight and condition (1) holds, the weak version of
(2) is actually equivalent to

Eμn ( f | g) → Eμ0( f | g), in μ0-probability, for each f ∈ Cb(S). (5)

Indeed, as shown by Example 1, it may be that conditions (1) and (5) hold but
condition (4) fails.

To motivate Theorem 1, in addition to the previous remarks, some examples are
given in Sect. 3. Here, we close this section with three corollaries.

Given the metric spaces S1 and S2, define

S = S1 × S2 and g(x, y) = x for all (x, y) ∈ S.

If S1 is separable, it is possible to let T = S1 and C = B(S1), so that

σ(g) = {
A × S2 : A ∈ B(S1)

}
.

Therefore, Theorem 1 yields:

Corollary 2 Let ν(·) = μ0(·×S2) be themarginal ofμ0 on S1. Suppose S1 is separable,
μn is tight and

μn(· × S2) = ν(·) for every n ≥ 0.

Then, on some probability space, there are random variables Y and (Zn : n ≥ 0),
where Y is S1-valued and the Zn are S2-valued, such that

(Y , Zn) ∼ μn for all n ≥ 0.

Moreover, the Zn can be taken such that Zn
a.s.−→ Z0 if and only if

Eμn ( f | g) ν−a.s.−→ Eμ0( f | g) for each f ∈ Cb(S2). (6)

An obvious application of Corollary 2 is as follows. Let (Un, Vn) be a sequence of
random variables such thatUn ∼ U0 for all n ≥ 0. For some reason, we would like to
replace (Un, Vn)with another sequence Xn = (Y , Zn), possibly defined on a different
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probability space, such that Xn
a.s.−→ X0 and Xn ∼ (Un, Vn) for all n. Note that all the

Xn have the same first coordinate Y , and this is basic in various frameworks, including
optimal transport and stochastic control. Corollary 2 states that, under mild conditions,
to replace (Un, Vn) with Xn is admissible if and only if condition (6) holds with μn

the probability distribution of (Un, Vn). See also [4, Prop. 2] for an analogous result.
The second corollary concerns the tightness condition. The main reason for assum-

ing μn tight, for every n ≥ 0, is to reduce the proof of Theorem 1 to the special case
where S is a Borel subset of a Polish space. We do not know whether the tightness
condition can be weakened for all n ≥ 0. However, arguing as in [3], the tightness
condition on μ0 can be dropped at the price of requiring something more on S and g.

Corollary 3 Suppose (T , C) is diagonal, S is a subset of a Polish space X , and g can
be extended to a function φ : X → T such that φ−1(C) ⊂ B(X ). Suppose also that
μn is tight and μn = μ0 on σ(g) for each n ≥ 1. Then, condition (3) holds for some
S-valued random variables Xn (defined on the same probability space). Moreover,
under condition (4), the Xn also satisfy condition (2).

The third corollary deals with the probability space, say (�,A, P), where the Xn

can be defined. In Theorem 1 and Corollary 2, one can take � = (0, 1)2, A = B(�)

and P the Lebesgue measure. In Corollary 3, since μ0 is not necessarily tight, �

is a suitable subset of (0, 1)2 and P the Lebesgue-outer measure. In our last result,
the μn are the probability distributions of random variables Un defined on the same
probability space. In this case, a question is whether the Xn can be defined on the
probability space where the Un live.

Corollary 4 Let (Un : n ≥ 0) be a sequence of S-valued random variables on the
probability space (�,A, P). Define μn(·) = P(Un ∈ ·) and suppose

• (T , C) is diagonal and (�,A, P) is nonatomic;
• Conditions (1) and (4) hold and μn is tight for each n ≥ 0.

Then, (�,A, P) supports S-valued random variables Xn satisfying condition (2).

It is worth noting that, for (�,A, P) to be nonatomic, a sufficient condition is
P(Un = x) = 0 for some n ≥ 0 and all x ∈ S; see, e.g., [3, Lem. 3.3].

2 Preliminaries

In the sequel, m is the Lebesgue measure on B((0, 1)) and δz the unit mass at the
point z. We denote by P the collection of all probability measures on B and we write
μ( f ) = ∫

f dμ whenever μ ∈ P and f : S → R is a bounded Borel function.
Let F ⊂ Cb(S) and Q ⊂ P . Say that F is a convergence determining class for Q

if, for any sequence (λn : n ≥ 0) ⊂ Q,

λn → λ0 weakly ⇔ λ0( f ) = lim
n

λn( f ) for each f ∈ F .

Let G ⊂ B be a sub-σ -field. We recall that a regular conditional distribution (r.c.d.)
for μn given G is a collection γn = {γn(x) : x ∈ S} such that
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• γn(x) ∈ P for each x ∈ S;
• x �→ γn(x)(B) is G-measurable for each B ∈ B;
• ∫

A γn(x)(B) μn(dx) = μn(A ∩ B) for all A ∈ G and B ∈ B.
A r.c.d. forμn given G exists and isμn-a.s. unique whenever B is countably generated
and μn tight.

The following version of SRT is involved in the proof of Theorem 1.

Theorem 5 (Blackwell and Dubins [8]) If S is Polish, there is a Borel map	 : (0, 1)×
P → S such that

• m
{
β ∈ (0, 1) : 	(β, λ) ∈ B

} = λ(B) for all λ ∈ P and B ∈ B;
• m

{
β ∈ (0, 1) : 	(β, λn) → 	(β, λ0)

} = 1 if λn ∈ P and λn → λ0 weakly.

A clear and detailed proof of Theorem 5 can be found in [16, pp. 52–54] (Blackwell
andDubins actually provide only a sketch of the proof).Moreover, it is straightforward
to verify that Theorem 5 is still valid if S is only a Borel subset of a Polish space.

We finally state two technical lemmas. The first is certainly known, but we give a
proof since we are not aware of any explicit reference.

Lemma 6 A measurable space (T , C) is diagonal if and only if there is a countably
generated sub-σ -field C0 ⊂ C such that {t} ∈ C0 for all t ∈ T . Moreover, if (T , C) is
diagonal and Q is a probability measure on C ⊗ C, then

Q
{
(t, t) : t ∈ T

} = 1 ⇔ Q
(
A × Ac) = 0 for all A ∈ C. (7)

Proof Let � = {
(t, t) : t ∈ T

}
. If (T , C) is diagonal, there are An, Bn ∈ C such

that � ∈ σ(A1 × B1, A2 × B2, . . .). Let C0 = σ(A1, B1, A2, B2, . . .). Then, C0 is
countably generated and � ∈ C0 ⊗ C0. Therefore, {t} = {u : (t, u) ∈ �} ∈ C0 for all
t ∈ T . Conversely, if C0 ⊂ C is countably generated and includes the singletons, there
is a distance ρ on T such that (T , ρ) is a separable metric space and C0 is the Borel
σ -field on T under ρ. Therefore, � ∈ C0 ⊗ C0 ⊂ C ⊗ C.

Finally, we turn to (7). Fix C0 as above, and recall that (T , C0) can be regarded as a
separable metric space equipped with the Borel σ -field. Hence, Q(�) = 1 provided
Q

(
A × Ac

) = 0 for all A ∈ C0. This proves "⇐" while "⇒" is trivial. ��
Lemma 7 If B is a σ -compact subset of S, there is a countable convergence determin-
ing class for Q = {

μ ∈ P : μ(B) = 1
}
.

Proof Since B is σ -compact, there is a sequence (xn) ⊂ B such that {x1, x2, . . .} = B.
Let H = [0, 1]∞ be the Hilbert cube (equipped with the usual metric) and

h(x) = (
d(x, x1) ∧ 1, d(x, x2) ∧ 1, . . .

)
for all x ∈ S,

where d is the distance on S. Then, h : S → H is continuous, and it is an homeomor-
phism as a map h : B → h(B), and h(B) ∈ B(H) (for h(B) is σ -compact). Take a
countable subset G ⊂ Cb(H), dense in Cb(H) under the sup-norm, and define

F = {
g ◦ h : g ∈ G

}
.
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Then, F ⊂ Cb(S) is countable. Suppose now that λn ∈ Q and λn( f ) → λ0( f )
for each f ∈ F . Then, λn ◦ h−1 → λ0 ◦ h−1 weakly, since G is dense in Cb(H).
Hence, λn → λ0 weakly follows from h : B → h(B) is an homeomorphism and
λn ◦ h−1(h(B)) ≥ λn(B) = 1 for all n ≥ 0. This concludes the proof. ��

3 Examples

It may be that conditions (1) and (5) hold but condition (4) fails. In this case, condition
(2) can not be realized (since (4) fails). However, as noted in Remark (vii), some
random variables Xn satisfy a weak version of (2).

Example 1 Let

S = [−1, 1], T = [0, 1], C = B(T ) and g(x) = |x |.

Take a sequence (Bn : n ≥ 1) ⊂ B[0, 1] such that

∞⋂

n=1

∞⋃

j=n

B j = [0, 1] and lim
n

m(Bn) = 0.

Using such Bn , define Cn = [−1, 1] \ Bn and

fn(x) = (1/2) 1Cn (x) + (1/4)
{
1Bn (x) + 1Bn (−x)

}
for all x ∈ [−1, 1].

Moreover, let f0 = 1/2 and

μn(dx) = fn(x) dx for all n ≥ 0.

Then,

μn ◦ g−1 = μ0 ◦ g−1 = m for all n ≥ 0.

Furthermore, a r.c.d. γn = {γn(x) : x ∈ S} for μn given σ(g) (see Sect. 2) is

γ0(x) = (1/2)
{
δ|x | + δ−|x |

}
and

γn(x) = γ0(x) if |x | /∈ Bn and γn(x) = δ|x | + 3 δ−|x |
4

if |x | ∈ Bn .

Thus, for each f ∈ Cb[−1, 1] and ε > 0,

μ0
{
x ∈ [−1, 1] : |γn(x)( f ) − γ0(x)( f )| > ε

} ≤ m(Bn) → 0.

Therefore, conditions (1) and (5) are both satisfied. However, condition (4) fails, since
every x ∈ [−1, 1] is such that |x | ∈ Bn for infinitely many n.
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In a sense, the next example completes the previous one.

Example 2 Let S = S1 × S2, where S1 and S2 are Polish spaces, and (Un, Vn) a
sequence of S-valued random variables such that

(Un, Vn) → (U0, V0) in distribution and Un ∼ U0 for all n ≥ 0.

Then, by [17, Cor. 2.9], one obtains E
[
f (Un, Vn)

] → E
[
f (U0, V0)

]
for each bounded

Borel function f : S → Rwhich is continuous in the second coordinate. Nevertheless,
itmay be that E

[
f (Vn) | Un

]
does not converge to E

[
f (V0) | U0

]
, even in distribution,

for some f ∈ Cb(S2). As an example, take S1 = S2 = (0, 1) and (U0, V0) uniform on
S = (0, 1)2. Then, (Un, Vn) → (U0, V0) in distribution for some sequence (Un, Vn)
such that

Un ∼ Vn ∼ m and Vn
a.s.= ϕn(Un) for all n ≥ 1

where the ϕn : (0, 1) → (0, 1) are suitable Borel functions; see, e.g., [1, Prop. 2.7].
Therefore,

E(V0 | U0)
a.s.= E(V0) = 1/2 and E(Vn | Un)

a.s.= Vn ∼ m for all n ≥ 1.

Another example, similar to the previous one, is [11, Ex. 6.1]. Even in this case,
E

[
f (Vn) | Un

]
does not converge in distribution to E

[
f (V0) | U0

]
for some f ∈

Cb(S2). In addition, one also obtainsUn ∼ Vn ∼ m for all n ≥ 0 and E
[
h(U0, V0)

] =
limn E

[
h(Un, Vn)

]
for each bounded Borel function h : S → R.

Two remarks are in order. First, to obtain theweak version of (2) involved inRemark
(vii), condition (5) cannot be dropped. As noted in [11], however, condition (5) can
be weakened into

Eμn ( f | g) → Eμ0( f | g), in distribution, for each f ∈ Cb(S).

Second, if ((U , Vn) : n ≥ 0) are S-valued random variables, it may be that Vn → V0
in probability and yet there are not random variables (Y , Zn) satisfying Zn

a.s.−→ Z0
and (Y , Zn) ∼ (U , Vn) for all n ≥ 0; see Example 1.

Let d be the distance on S. Sometimes, one aims to realize the μn by random
variables which converge (say in probability) under some distance ρ stronger than d;
see [4,5]. This motivates the next example.

Example 3 Suppose S is separable and the μn are tight. Fix A ∈ B and define

b(x, y) = 1A(x) 1 ∧ d(x, y) + 1Ac (x) 1 ∧ ρ(x, y) for (x, y) ∈ S2,

where ρ is any distance on S such that the map (x, y) �→ ρ(x, y) is measurable with
respect to B⊗B. For instance, ρ could be the 0-1 distance. Or else, S could be the set
of real cadlag functions on [0, 1], d the Skorohod distance, and ρ the uniform distance.

123



380 Journal of Theoretical Probability (2023) 36:372–389

A question is whether there are S-valued random variables Xn such that

lim
n

E
{
b(X0, Xn)

} = 0 and Xn ∼ μn for each n ≥ 0. (8)

Equivalently, the question is whether the μn can be realized by some Xn such that
d(Xn, X0) → 0 in probability on the set {X0 ∈ A} and ρ(Xn, X0) → 0 in probability
on {X0 /∈ A}.

Corollary 2 allows to answer this question. For any μ, λ ∈ P , let �(μ, λ) denote
the collection of those probability measures τ on B ⊗ B such that τ(· × S) = μ and
τ(S × ·) = λ. By Corollary 2, there are Xn satisfying condition (8) if and only if

lim
n

τn(b) = 0 for some sequence τn ∈ �(μ0, μn).

In turn, by a duality theorem [19], the above condition can be written as

sup
( f ,h)

{
μ0( f ) + μn(h)

} → 0 (9)

where sup is over all pairs ( f , h) of bounded Borel functions on S such that

f (x) + h(y) ≤ b(x, y) for all (x, y) ∈ S2.

The equivalence between (8) and (9), obtained above, improves [4, Theorem 4]. It
also improves [20, Theorem 2.1] in the special case where S is separable and the μn

are tight.

The next example deals with exchangeable sequences, but the same argument
applies to many other types of sequences, including martingale difference and sta-
tionary.

Example 4 Let (Tn : n ≥ 1) be an exchangeable sequence of real random variables on
the probability space (�,A, P). Suppose E(T 2

1 ) < ∞ and define

T =
⋂

n

σ(Tn, Tn+1, . . .), V = E
(
T 2
1 | T ) − E

(
T1 | T )2

and Mn = √
n

{ ∑n
i=1 Ti
n

− E
(
T1 | T )}

.

Moreover, let N be a standard normal random variable independent of (Tn) and

M0 = √
V N .

Then, Mn → M0 in distribution (and even stably); see, e.g., [2, Theorem 3.1]. In
addition, even if the tail σ -field T is not countably generated, there is a real random
variable U such that

σ(T ∪ N ) = σ
(
σ(U ) ∪ N

)
where N = {

A ∈ A : P(A) = 0
}
.
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Apart from trivial cases, Mn fails to converge in probability. However, thanks to
Corollary 2, some real random variables Y and Zn satisfy

Zn
a.s.−→ Z0 and (Y , Zn) ∼ (U , Mn) for each n ≥ 0.

Take in fact S1 = S2 = R and define μn to be the probability distribution of
(U , Mn). Conditionally on T , the sequence (Tn) is i.i.d. with mean E

(
T1 | T )

and
variance V . Hence, given f ∈ Cb(R), the standard CLT yields

E
{
f (Mn) | U} = E

{
f (Mn) | T } a.s.−→

∫
f (x) N (0, V )(dx),

where N (0, V ) denotes the Gaussian law with mean 0 and (random) variance V with
N (0, 0) = δ0. On the other hand,

E
{
f (M0) | U} = E

{
f (M0) | T } =

∫
f (x) N (0, V )(dx).

Therefore, condition (6) is satisfied.

Our last example concerns conditionally identically distributed sequences.

Example 5 Let S = R
∞ and T the set of probability measures on B(R) (equipped

with the topology of weak convergence). Moreover, let C = B(T ) and g : S → T the
weak limit of the empirical measures. Precisely, for each x = (x1, x2, . . .) ∈ S,

g(x) = lim
n

1

n

n∑

i=1

δxi provided the limit exists and g(x) = δx1 otherwise,

where the limit is meant as a weak limit of probability measures.
A sequence Y = (Y1,Y2, . . .) of real random variables is conditionally identically

distributed (c.i.d.) if

(Y1, . . . ,Yn,Yn+2) ∼ (Y1, . . . ,Yn,Yn+1) for all n ≥ 0.

An exchangeable sequence is c.i.d. but not conversely; see, e.g., [6] and references
therein. However, as in the exchangeable case, if Y is c.i.d. one obtains

1

n

n∑

i=1

δYi (B)
a.s.−→ g(Y )(B) for all B ∈ B(R).

Suppose Y is c.i.d. and define

N = g(Y ), μ0(·) = E
(
N∞(·)

)
and μn(·) = P

(
(Yn,Yn+1, . . .) ∈ ·

)
.
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Here, N∞ = N × N × . . . denotes the random probability measure on (S,B) which
makes the coordinate random variables i.i.d. with common distribution N . Hence, μ0
is exchangeable (for it is a mixture of i.i.d. probability measures).Moreover,μn → μ0
weakly and μn = μ0 on σ(g) because of [2, Theorem 2.6].

Since μn = μ0 on σ(g), Theorem 1 applies. Thus, under condition (4), there are
real random sequences

Xn = (Xn,1, Xn,2, . . .), n ≥ 0,

such that

X0, j
a.s.= lim

n
Xn, j and g(X j ) = g(X0) for each j ≥ 1,

X0 ∼ μ0 and Xn ∼ (Yn,Yn+1, . . .) for each n ≥ 1.

We finally turn to condition (4), namely

E
{
f (Yn,Yn+1, . . .) | N} a.s.−→

∫
f (x) N∞(dx) for all f ∈ Cb(S).

We do not know whether this condition holds for any c.i.d. sequence, but it holds in
some (meaningful) special cases, including N a.s. discrete; see also [6, Th. 18].

4 Proofs

From now on, to make the notation easier, we let

G = σ(g).

4.1 Proof of Theorem 1

We first prove that (2) ⇒ (4). Suppose condition (2) holds for some S-valued random
variables Xn defined on the probability space (�,A, P). Fix f ∈ Cb(S). Because of
condition (1), for each n ≥ 0, there is a measurable function φn : (T , C) → (R,B(R))

such that

Eμn ( f | g) = φn ◦ g, μ0-a.s.

It is straightforward to verify that EP
{
f (Xn) | g(Xn)

} = φn
[
g(Xn)

]
a.s. Hence,

g(Xn) = g(X0) implies

EP
{
f (Xn) | g(Xn)

} = φn
[
g(X0)

]
a.s.
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On the other hand, since f is bounded, f (Xn)
a.s.−→ f (X0) and g(Xn) = g(X0) for

all n, one also obtains

EP
{
f (Xn) | g(Xn)

} = EP
{
f (Xn) | g(X0)

} a.s.−→ EP
{
f (X0) | g(X0)

}
.

Therefore, φn
[
g(X0)

] a.s.−→ φ0
[
g(X0)

]
, or equivalently

μ0

(
Eμn ( f | g) → Eμ0( f | g)

)
= μ0

(
φn ◦ g → φ0 ◦ g

)

= P
(
φn

[
g(X0)

] → φ0
[
g(X0)

]) = 1.

Thus, condition (4) holds.
The rest of the proof is split into two steps.

Step 1 We first suppose that S is a Borel subset of a Polish space. Then, for every
n ≥ 0, we can fix a r.c.d. γn = {γn(x) : x ∈ S} for μn given G. We will write

γn(x)( f ) =
∫

f (y) γn(x)(dy)

for all x ∈ S and all bounded Borel functions f : S → R.
Let 	 : (0, 1) × P → S be the Borel map involved in Theorem 5 and

(�,A, P) =
(
(0, 1)2, B((0, 1)2), m2

)
.

For each n ≥ 0 and (α, β) ∈ (0, 1)2, define

φ(α) = 	(α,μ0) and Xn(α, β) = 	
(
β, γn[φ(α)]

)
.

The Xn are S-valued random variables on (�,A, P). We now prove that they meet
condition (3).

Fix n ≥ 0 and note that

m
{
β : Xn(α, β) ∈ B

}
= m

{
β : 	

(
β, γn[φ(α)]

)
∈ B

}
= γn[φ(α)](B)

for all α ∈ (0, 1) and B ∈ B. Hence, Fubini’s theorem yields

P(Xn ∈ B) =
∫ 1

0
m

{
β : Xn(α, β) ∈ B

}
dα =

∫ 1

0
γn[φ(α)](B) dα

=
∫

γn(x)(B) μ0(dx) =
∫

γn(x)(B) μn(dx) = μn(B),

where the third equality is becausem◦φ−1 = μ0 while the fourth depends onμn = μ0
on G and x �→ γn(x)(B) is G-measurable. This proves Xn ∼ μn .

123



384 Journal of Theoretical Probability (2023) 36:372–389

We next prove P
(
g(Xn) �= g(X0)

) = 0. To this end, since (T , C) is diagonal, it
suffices to show that P

(
g(Xn) ∈ C, g(X0) /∈ C

) = 0 for all C ∈ C; see Lemma 6.
Fix C ∈ C, define A = {g ∈ C}, and note that

m
{
β : Xn(α, β) ∈ A, X0(α, β) /∈ A

}

≤ min
{
m

{
β : Xn(α, β) ∈ A

}
, m

{
β : X0(α, β) /∈ A

}}

= min
{
γn[φ(α)](A), γ0[φ(α)](Ac)

}
for all α ∈ (0, 1).

Recalling that m ◦ φ−1 = μ0, one obtains

P
(
g(Xn) ∈ C, g(X0) /∈ C

) = P
(
Xn ∈ A, X0 /∈ A

)

=
∫ 1

0
m

{
β : Xn(α, β) ∈ A, X0(α, β) /∈ A

}
dα

≤
∫ 1

0
min

{
γn[φ(α)](A), γ0[φ(α)](Ac)

}
dα

=
∫

min
{
γn(x)(A), γ0(x)(A

c)
}

μ0(dx).

Let

G = {
x ∈ S : γn(x)(A) = 1A(x), γ0(x)(A

c) = 1Ac (x)
}
.

Since
{
x ∈ S : γn(x)(A) = 1A(x)

}
belongs to G, condition (1) implies

μ0(G) = μ0
{
x ∈ S : γn(x)(A) = 1A(x)

} = μn
{
x ∈ S : γn(x)(A) = 1A(x)

} = 1.

In turn, this implies

P
(
g(Xn) ∈ C, g(X0) /∈ C

) ≤
∫

G
min

{
1A(x), 1Ac (x)

}
μ0(dx) = 0.

Hence, P
(
g(Xn) �= g(X0)

) = 0. To get g(Xn) = g(X0) everywhere, as prescribed
by condition (3), it suffices to modify Xn on a P-null set.

This proves condition (3). It remains to show that, under condition (4), one also
obtains Xn

a.s.−→ X0 as n → ∞. Since S is separable (it is in fact a Borel subset of a
Polish space), there is a countable convergence determining class F ⊂ Cb(S) for P .
Let

H = {
x ∈ S : γ0(x)( f ) = lim

n
γn(x)( f ) for each f ∈ F

}
.
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Then, γn(x) → γ0(x) weakly for each x ∈ H . Moreover, since F is countable,
condition (4) implies μ0(H) = 1. Therefore, Theorem 5 yields

P(Xn → X0) =
∫ 1

0
m

{
β : 	(β, γn[φ(α)]) −→ 	(β, γ0[φ(α)])

}
dα

=
∫

H
m

{
β : 	(β, γn(x)) −→ 	(β, γ0(x))

}
μ0(dx)

=
∫

H
1 dμ0 = 1.

This concludes the proof when S is a Borel subset of a Polish space.

Step 2 Suppose now that S is an arbitrary metric space. For each n ≥ 0, since μn is
tight, there is a σ -compact set Bn ⊂ S such that μn(Bn) = 1. Let B = ∪n Bn and let
X be the completion of B. Since B is σ -compact, X is a Polish space and B ∈ B(X )

(in fact, B is still σ -compact as a subset of X ). Since μn(B) = 1 for each n ≥ 0, the
μn can be regarded as probability measures on B(B). Furthermore, as shown below,
condition (4) implies

Eμn

(
f | B ∩ G

) μ0−a.s.−→ Eμ0

(
f | B ∩ G

)
for each f ∈ Cb(B). (10)

Hence, to conclude the proof, it suffices to replace S with B, G with B ∩ G, and to
apply what already proved in Step 1.

We finally prove that (4) ⇒ (10). For each n ≥ 0, as μn(B) = 1 and B ∈ B(X ),
there is a r.c.d. for μn given σ(G ∪ {B}), say ρn = {ρn(x) : x ∈ S}, such that

ρn(x)(B) = 1 for all x ∈ S. (11)

By Lemma 7, there is a countable convergence determining class F ⊂ Cb(S) for
Q = {μ ∈ P : μ(B) = 1}. Moreover, condition (4) implies

ρn(·)( f ) = Eμn ( f | g) μ0−a.s.−→ Eμ0( f | g) = ρ0(·)( f ) for all f ∈ F .

Hence, because of (11) and F is countable, there is a set H ∈ G such that

μ0(H) = 1 and ρn(x) → ρ0(x) weakly for all x ∈ H .

On the other hand, thanks to (11), ρn(x) → ρ0(x) weakly if and only if

ρn(x)(· ∩ B) → ρ0(x)(· ∩ B) weakly with respect to the relative topology on B.

Therefore,

ρ0(x)( f 1B) = lim
n

ρn(x)( f 1B) for all x ∈ H and f ∈ Cb(B).
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Since μ0(H) = 1 and

Eμn

(
f | B ∩ G

) = ρn(·)( f 1B), μ0-a.s.,

this proves condition (10) and concludes the proof of the theorem.

4.2 Proof of Remark (vii)

Suppose S is a Borel subset of a Polish space and define the Xn as in Step 1 of
the proof of Theorem 1. Since condition (3) holds, it suffices to prove Xn → X0
in probability. Equivalently, we have to show that, for each subsequence n j , there is

a sub-subsequence n jk such that Xn jk

a.s.−→ X0 as k → ∞. Fix a subsequence n j

and a countable convergence determining class F for P . Since F ⊂ Cb(S), by a
diagonalizing argument, there is a sub-subsequence n jk satisfying

Eμn jk
( f | g) μ0−a.s.−→ Eμ0( f | g), as k → ∞, for each f ∈ F .

Since F is a convergence determining class for P , one obtains

γn jk
(x)

weakly−→ γ0(x), as k → ∞, for μ0-almost all x ∈ S,

where γn is a r.c.d. for μn given G. In turn, this implies

Eμn jk
( f | g) μ0−a.s.−→ Eμ0( f | g), as k → ∞, for each f ∈ Cb(S).

Hence, Xn jk

a.s.−→ X0. Finally, the general case (where S is arbitrary but the μn are
tight) can be handled as in Step 2 of the proof of Theorem 1.

4.3 Proof of Corollary 2

Let ν(·) = μ0(· × S2) denote the marginal of μ0 on S1. In view of Theorem 1, we
only have to prove that (6) ⇒ (4).

Let S = S1 × S2 and g(x, y) = x for all (x, y) ∈ S. Suppose condition (6) holds.
For any f1 : S1 → R and f2 : S2 → R, define a function f1 × f2 on S as

( f1 × f2)(x, y) = f1(x) f2(y) for all (x, y) ∈ S.

Also, as in the proof of Theorem 1, take a σ -compact set B ⊂ S satisfyingμn(B) = 1
for each n ≥ 0. Then, by Lemma 7 and separability of S1, there are two countable
collections F1 ⊂ Cb(S1) and F2 ⊂ Cb(S2) such that

F = {
f1 × f2 : f1 ∈ F1, f2 ∈ F2

}
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is a convergence determining class for Q = {
μ ∈ P : μ(B) = 1

}
.

Having noted this fact, fix a r.c.d. ρn = {
ρn(x, y) : (x, y) ∈ S

}
for μn given

σ
(
G ∪ {B}) such that ρn(x, y)(B) = 1 for all (x, y) ∈ S. Since g(x, y) = x and

μn(B) = 1, we can write ρn(x) instead of ρn(x, y). Then, for each f = f1 × f2 ∈ F ,
condition (6) implies

ρn(x)( f ) = f1(x) ρn(x)( f2) −→ f1(x) ρ0(x)( f2) = ρ0(x)( f )

for ν-almost all x ∈ S1. Since F is countable, it follows that

ν
{
x ∈ S1 : ρn(x) → ρ0(x) weakly

} = 1,

which in turn implies condition (4). This concludes the proof.

4.4 Proof of Corollary 3

Let

Ĝ = φ−1(C) and μ̂n(D) = μn(S ∩ D) for all n ≥ 0 and D ∈ B(X ).

The μ̂n are probability measures on B(X ) and

μ̂n
(
φ−1(C)

) = μn
(
S ∩ φ−1(C)

) = μn
(
g−1(C)

) = μ0
(
g−1(C)

) = μ̂0
(
φ−1(C)

)

for all n ≥ 0 and C ∈ C. Thus, μ̂n = μ̂0 on Ĝ for each n ≥ 0.
Let L = (0, 1)2 and let L = m2 be the Lebesgue measure on B(L). Because of

Theorem 1 (and its proof), on the probability space
(
L,B(L),L), there are X -valued

random variables X̂n such that

X̂n ∼ μ̂n and φ(X̂n) = φ(X̂0) for all n ≥ 0.

Furthermore, X̂n
a.s.−→ X̂0 provided

Eμ̂n ( f | Ĝ)
μ̂0−a.s.−→ Eμ̂0( f | Ĝ) for all f ∈ Cb(X ). (12)

Let L∗ denote the L-outer measure and

� = {
X̂n ∈ S for each n ≥ 0

}
and A = B(�) = � ∩ B(L).

Suppose L∗(�) = 1. Under this assumption, one can define

P(B ∩ �) = L(B) for all B ∈ B(L).
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Such a P is a probability measure on A and condition (3) is satisfied by the S-valued
random variables

Xn(ω) = X̂n(ω) for all n ≥ 0 and ω ∈ �.

We next prove L∗(�) = 1. Since μn is tight for n ≥ 1, there is a σ -compact subset
B ⊂ S such that μn(B) = 1 for each n ≥ 1. On noting that B ∈ B(X ) (in fact, B is a
σ -compact subset of X ), one obtains

{
X̂n ∈ B

} ∈ B(L) and L(X̂n ∈ B) = μ̂n(B) = μn(B) = 1 for each n ≥ 1.

It follows that

L
(
X̂n ∈ B for each n ≥ 1

) = 1.

Moreover, since L is tight,

L∗(X̂0 ∈ S
) = μ̂∗

0(S) = 1

where μ̂∗
0 is the μ̂0-outer measure; see the proof of [3, Th. 3.1] and [13, Th. 3.4.1].

Thus, B ⊂ S implies

L∗(�) ≥ L∗(X̂0 ∈ S and X̂n ∈ B for each n ≥ 1
) = L∗(X̂0 ∈ S) = 1.

Hence, L∗(�) = 1 and this proves condition (3).
Finally, it is not hard to show that condition (4) implies condition (12) (we omit

the explicit calculations). Therefore, under (4), one obtains X̂n
a.s.−→ X̂0, which in turn

implies Xn
a.s.−→ X0. This concludes the proof.

4.5 Proof of Corollary 4

Thanks to the assumptions on (T , C) and (μn : n ≥ 0), on the probability space(
(0, 1)2,B((0, 1)2), m2

)
, there are random variables Vn such that Vn

a.s.−→ V0, Vn ∼
μn and g(Vn) = g(V0) for all n ≥ 0; see Theorem 1 and its proof. Moreover, being a
nonatomic probability space, (�,A, P) supports a randomvariableT with distribution
m2, namely, T ∼ m2 for some measurable map T : � → (0, 1)2; see, e.g., [3, Th.
3.1]. Therefore, it suffices to let Xn = Vn ◦ T for all n ≥ 0.
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