
Physics Letters B 826 (2022) 136900

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A quantum state for the late Universe

Andrea Giusti a, Silvia Buffa a,b, Lavinia Heisenberg a, Roberto Casadio b,c,∗
a Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
b Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
c I.N.F.N., Sezione di Bologna, I.S. FLAG, viale B. Pichat 6/2, 40127 Bologna, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 August 2021
Received in revised form 15 October 2021
Accepted 10 January 2022
Available online 12 January 2022
Editor: R. Gregory

We consider the quantum description of a toy model universe in which the Schwarzschild-de Sitter 
geometry emerges from the coherent state of a massless scalar field. Although highly idealised, this 
simple model allows us to find clear hints supporting the conclusion that the reaction of the de Sitter 
background to the presence of matter sources induces i) a modified Newtonian dynamics at galactic 
scales and ii) different values measured for the present Hubble parameter. Both effects stem from the 
conditions required to have a normalisable quantum state.
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1. Introduction

General Relativity is the most successful theory of gravity and, 
within it, the �CDM model provides the reference description of 
the late Universe, which thus appears dominated by a cosmological 
constant �, a form of Dark Energy (DE), and (Cold) Dark Mat-
ter (DM). One of the underlying assumptions in this picture is 
that the Universe at large scales can reliably be described solely 
in terms of classical physics. One might argue that all of physics 
should be described by quantum theories and that classical be-
haviours are only approximately reproduced by suitable quantum 
states. However, this perspective remains of purely academic inter-
est unless a better understanding of observations is gained. In this 
work, we will investigate the possibility that some of the features 
of the observed Universe, which appear as otherwise unexplained 
ingredients in the �CDM model, can indeed be understood by con-
sidering a suitable quantum state for the DE and the gravitational 
field generated by matter sources.

For this purpose, we shall consider a highly idealised isotropic 
universe containing the cosmological constant � and just one lo-
calised matter source of Misner-Sharp-Hernandez mass

M = 4π

Rs∫
0

r2 dr ρ(r) , (1.1)

* Corresponding author.
E-mail addresses: agiusti@phys.ethz.ch (A. Giusti), silvia.buffa@studio.unibo.it

(S. Buffa), laviniah@phys.ethz.ch (L. Heisenberg), casadio@bo.infn.it (R. Casadio).
https://doi.org/10.1016/j.physletb.2022.136900
0370-2693/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
where ρ = ρ(r) is the matter density profile and Rs the source 
radius. In General Relativity, the corresponding geometry, in the 
exterior of the matter source, is given by the Schwarzschild-de Sit-
ter (SdS) solution [1]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2 d�2 , (1.2)

where f = 1 + 2 V SdS and

V SdS = − GN M

r
− � r2

6
. (1.3)

This spacetime contains at most two horizons, determined by the 
roots of f = 0. In particular, for a compact source in a much larger 
universe, we can assume 

√
3/� � 2 GN M and one then finds the 

black hole horizon1

RH ≈ 2 GN M (1.4)

and the much larger cosmological horizon

L ≈ √
3/� . (1.5)

We finally recall that V SdS is the gravitational potential in the ra-
dial geodesic equation

1

2
m

(
dr

dτ

)2

+ m V SdS = m

2

(
E

m
− 1

)
, (1.6)

1 For a regular matter source, Rs > RH and RH in Eq. (1.4) is its gravitational 
radius.
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where τ is the proper time and E = m f dt/dτ is the conserved 
energy of a test particle of proper mass m moving in the region 
RH ∼ Rs < r < L.

Under the assumption of staticity and spherical symmetry, the 
Einstein–Hilbert action effectively reduces to a scalar field theory 
in the weak-field limit [2,3]. Upon quantisation, one then finds 
that the classical gravitational potential in the exterior of a com-
pact source emerges as the mean-field approximation for a suit-
able coherent quantum state of this effective scalar field [2,3] (and 
the classical geometry can be reconstructed accordingly [4,5]).2 In 
this perspective, the whole geometrical picture of gravity needs 
only emerge at the classical level of the dynamics. Moreover, the 
fact that the Einstein-Hilbert action suffers from the known issue 
of perturbative non-renormalizability could be resolved if quan-
tum states describing the (trans-)Planckian energy regime do not 
contain excitations for all of the modes which would build up 
divergences. This (conjectured) phenomenon has been termed clas-
sicalization in the framework of corpuscular gravity [9,10] and a 
possible connection with asymptotic safety has also been sug-
gested [11]. Some further indications for classicalization in the 
gravitational collapse can be found in Ref. [12].

Following the same line of reasoning, we shall assume that the 
SdS solution is described by a coherent state |g〉 of a scalar field 
from which the classical potential V SdS is recovered as a mean-
field approximation in the region RH ∼ Rs � r � L. In the process 
of constructing the state |g〉, we shall see that the finite gravi-
tational radius (1.4) and cosmological horizon (1.5) play a crucial 
role in ensuring that |g〉 is well-defined, which leads to non-trivial 
consequences.

In particular, we shall find that the coherent state |g〉 neces-
sarily contains a contribution from “soft scalar gravitons”3 corre-
sponding to the dark force found in Refs. [13–15], which can re-
produce the phenomenology at galactic scales usually attributed to 
the presence of DM. In fact, we shall explicitly show the connec-
tion with Milgrom’s Modified Newtonian Dynamics (MOND) [16]
in Section 3. Moreover, the presence of baryonic sources alters the 
cosmological horizon and this could help to alleviate (or even re-
solve) the tension between different measurements of the Hubble 
constant [17], as we shall discuss in Section 4. Even though the 
discrepancy could be just due to systematic errors, at this stage 
it cannot be discarded that it might signal deviations from the 
�CDM model. One possible resolution might arise from interac-
tions between the DE and the DM sectors. Such effective couplings 
in the dark sector can be motivated from stringy completion in 
the UV [18]. An effective coupling between DE and DM can suc-
cessfully give rise to a reduction of mass of DM while increasing 
the DE value, leading to an increase in H0. If one can convert a 
sufficient amount of DM into DE, not only the H0 tension can be 
reduced but also the σ8 tension since there would be less DM to 
form cosmic structures. The same can be achieved in the presence 
of a vector field with a phantom-like equation of state parame-
ter [19]. In the present work, the changes in the quantum state of 
the system due to inclusion of matter to the de Sitter space will 
effectively give rise to an interacting DE-DM model in the low en-
ergy effective field theory.

Throughout this work we use units with c = 1, but display ex-
plicitly h̄ = �P mP and GN = �P/mP, with �P the Planck length and 
mP the Planck mass.

2 For a similar description of the de Sitter spacetime, see also Refs. [6].
3 These quanta are the analogue of virtual photons in the Coulomb potential and 

can be used to describe any static classical field configuration [7,8].
2

2. The Universe as a macroscopic quantum system

We start the quantum description of the idealised universe in-
troduced in the previous section by noticing that the potential V SdS

is an exact solution of

�V = 4π GN ρ − � . (2.1)

This Poisson-like equation in turn can be viewed as the static limit 
of a field theory defined by the Lagrangian

L[	, J ] = 4π

∞∫
0

r2 dr

(
1

2
	�	 − J 	

)
, (2.2)

for the canonically normalised scalar field 	 = V (r)/
√

GN
4 cou-

pled to the current

J = 4π
√

GN ρ − �√
GN

. (2.3)

We can then proceed with the canonical quantisation based on the 
normal modes of the corresponding free field equation

�	(t, r) =
(
−∂2

t + �
)

	 = 0 . (2.4)

For our purposes, solutions to Eq. (2.4) can be conveniently written 
as [3,4]

uk = e−i k t j0(k r) , (2.5)

where j0(x) = (sin x)/x is the spherical Bessel function of zero or-
der. For any function F = F (r), we then have

F̃ (k) = 4π

∞∫
0

r2 dr j0(kr) F (r) ⇔ F (r) =
∞∫

0

k2 dk

2π2
j0(kr) F̃ (k) ,

(2.6)

which allow us to write the quantum field operator in terms of 
creation and annihilation operators,

	̂(t, r) =
∞∫

0

k2 dk

2π2

√
h̄

2 k

[
âk uk(t, r) + â†

k u∗
k (t, r)

]
, (2.7)

acting on the Fock space built from the vacuum defined by âk |0〉 =
0 for all k > 0.

Given a solution 	 = 	cl(r) of Eq. (2.1), one can always find a 
coherent state |gcl〉 such that the classical solution is reproduced 
by the expectation value

〈gcl| 	̂(t, r) |gcl〉 = 	cl(r) . (2.8)

The state |gcl〉 satisfies âk |gcl〉 = ei γk(t) gcl(k) |gcl〉, with γk = −k t
and

gcl(k) =
√

k

2 h̄
	̃cl(k) . (2.9)

Moreover, since

|gcl〉 = e−Ncl/2 exp

⎧⎨⎩
∞∫

0

k2 dk

2π2
gcl(k) â†

k

⎫⎬⎭ |0〉 , (2.10)

4 The gravitational potential is dimensionless (in our choice of units), whereas 
a canonically normalised scalar field must have dimensions of (mass/length)1/2, 
hence the factor of G−1/2

N = √
mP/�P [3].
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the total occupation number of “scalar gravitons” with respect to 
the vacuum |0〉 is given by

Ncl =
KUV∫

K IR

k2 dk

2π2
|gcl(k)|2 , (2.11)

where we made explicit that the momentum k for which gcl(k) �=
0 must in general range between a finite minimum, encoded by 
the infrared (IR) cut-off K IR, and a finite maximum given by the 
ultraviolet (UV) cut-off KUV in order to obtain a finite expression 
for Ncl. This condition is necessary for the corresponding |gcl〉 to 
be a normalisable, hence well-defined, state and will play a crucial 
role in the following.

Since the SdS background (1.3) is an exact solution of Eq. (2.1), 
we are interested in the case

	SdS = V SdS√
GN

= −
√

GN M

r
− � r2

6
√

GN
. (2.12)

Taking the Fourier transform (2.6) of Eq. (2.12), one finds

	̃SdS(k) = 	̃M(k) + 	̃�(k) , (2.13)

with5

	̃M(k) = 4π

R∞∫
0

r2 dr j0(kr)

(
−

√
GN M

r

)

= 4π
√

GN M

k2 [cos (kR∞) − 1] (2.14)

and

	̃�(k) = 4π

R∞∫
0

r2dr j0(kr)

(
− � r2

6
√

GN

)

= 2π �

3
√

GN k5

[
k R∞

(
k2 R2∞ − 6

)
cos (k R∞)

−3
(

k2 R2∞ − 2
)

sin (k R∞)
]

, (2.15)

where 0 < R∞ < ∞ is an upper bound that is required to make 
both of the above expressions formally well-defined.

From Eq. (2.9), the coherent state for the SdS solution is char-
acterised by

gSdS(k) =
√

k

2 h̄

[
	̃M(k) + 	̃�(k)

]
, (2.16)

which implies

|gSdS(k)|2 = k

2 h̄

[
	̃2

M(k) + 	̃2
�(k) + 2 	̃M(k) 	̃�(k)

]
. (2.17)

Therefore, one can split Eq. (2.11) into three contributions, namely

NSdS = NM + N� + NM� , (2.18)

with

5 In asymptotically flat infinite space (R∞ → ∞), one can show that the first 
term in square brackets does not contribute and 	̃M yields the coherent state of 
Refs. [3,4].
3

NM =
KUV∫

K IR

k3 dk

4π2 h̄
	̃2

M(k) � GN M2

h̄
log

(
KUV

K IR

)
(2.19)

N� =
KUV∫

K IR

k3 dk

4π2 h̄
	̃2

�(k)

� �2

GN h̄ K 6
UV

[(
KUV

K IR

)6

log

(
KUV

K IR

)]
(2.20)

and

NM� =
KUV∫

K IR

k3 dk

4π2 h̄
	̃M(k) 	̃�(k)

� � M

h̄ K 3
UV

[(
KUV

K IR

)3

log

(
KUV

K IR

)]
, (2.21)

where the final expressions are the leading order terms in 
KUV/K IR � 1 and � denotes equality up to order-one multiplica-
tive factors. As we mentioned above, the momentum integra-
tion is effectively restricted to a finite range by 	̃SdS(k < K IR) =
	̃SdS(k > KUV) = 0, otherwise NSdS would not be finite and |gSdS〉
would be ill-defined. Furthermore, since the integration range 
in Eqs. (2.14) and (2.15) is limited above by R∞ , the momenta 
0 < k < 1/R∞ ∼ K IR must necessarily be excluded.

So far the IR and UV cut-offs have appeared as formal require-
ments, but we can now give them a clear physical meaning. As 
we recalled in the Introduction, the SdS spacetime of interest to 
us is contained within the two length scales RH in Eq. (1.4) and 
L in Eq. (1.5). The mean-field description does not need to repro-
duce the classical behaviour in regions beyond these two horizons, 
hence the coherent state can satisfy the weaker condition6

〈g| 	̂(t, r) |g〉 � V SdS(r)√
GN

for RH � r � L , (2.22)

where the equality needs only to hold within experimental 
bounds. Since modes with k � 1/L do not contribute significantly 
for a system of size L, we can set the IR cut-off K IR ∼ 1/L. The UV 
cut-off is similarly determined by KUV ∼ 1/RH, since the SdS solu-
tion does not apply inside the compact source of radius Rs � RH. 
By employing these values for the cut-offs, we find

NM � M2

m2
P

log

(
mP L

M �P

)
(2.23)

N� � L2

�2
P

log

(
mP L

M �P

)
(2.24)

and

NM� � M L

mP �P
log

(
mP L

M �P

)
, (2.25)

where we used h̄ = mP �P, GN = �P/mP, L � 1/
√

�, and RH � GN M .
The total occupation number of the coherent state |g〉 for our 

toy universe finally reads

N �
(

M2

m2
P

+ L2

�2
P

+ ML

mP �P

)
log

(
mP L

M �P

)
. (2.26)

6 For L → ∞, the effect of the cosmological constant disappears and one obtains 
the results of Ref. [4].



A. Giusti, S. Buffa, L. Heisenberg et al. Physics Letters B 826 (2022) 136900
Note that NM and N� exactly match the scaling laws resulting 
from the corpuscular description of the Schwarzschild black hole 
and the de Sitter space, respectively (up to the logarithmic fac-
tor, see Refs. [10,20,21]). While the complete expression for NM
was first derived in Ref. [3], the computation presented here pro-
vides the first equivalent derivation of the scaling law of N� for 
the de Sitter space.

3. Modified Newtonian dynamics

The additional NM� in Eq. (2.25) enters as a typically quantum 
cross-term between the component 	̃� accounting for the de Sit-
ter global geometry and 	̃M reproducing the local gravitational 
interaction. Furthermore, this additional contribution matches the 
predictions of corpuscular gravity for the emergence of an effective 
dark force responsible for the modification of Newtonian physics at 
galactic scales [14]. These results hint at a theoretical explanation 
for DM phenomenology that does not require the ad hoc addition 
of exotic matter.

A well-known alternative to the DM paradigm of modern cos-
mology is provided by Milgrom’s MOND [16,22]. This effective 
non-relativistic and low-energy empirical model for gravity mod-
ifies Newton’s law when the acceleration of test particles falls 
below a critical scale a0. This modification then provides a fairly 
accurate description of the flattening of galaxy rotation curves (see, 
e.g., Ref. [23]). In order to see the connection with the model uni-
verse of Section 2, we first note that the critical acceleration scale 
a0 is equivalent to a critical length scale � ≡ √

GN M/a0, where M
is the mass of a galaxy. Astronomical observations set a0 � H0, 
with H0 denoting the Hubble parameter today,7 which implies 
� = √

GN M/H0. Assuming that the late Universe is effectively de-
scribed by the de Sitter space at very large scales, L = 1/H0 defines 
the cosmological horizon, and we find

� = √
GN M L . (3.1)

In other words, the critical scale of MOND is determined precisely 
by the two fundamental scales, RH � GNM and L, of the toy uni-
verse described in the previous section.

MOND predicts that the effective gravitational potential in the 
outermost regions of a large distribution of matter, like a galaxy, 
should follow the logarithmic scaling (see, e.g., Refs. [13,26])

V MOND � GN M

�
log

( r

�

)
. (3.2)

Assuming this potential as our classical field configuration, we can 
construct the corresponding coherent state by repeating the steps 
in Section 2, which yield

gMOND(k) =
√

k

2 h̄

Ṽ MOND(k)√
GN

� − GN M

�P �k5/2
, (3.3)

where � denotes that two quantities are equal up to order-one 
multiplicative factors and the necessary cut-offs have been in-
cluded. The corresponding occupation number reads

NMOND =
∞∫

K IR

k2 dk

2π2
|gMOND(k)|2 � G2

N M2 R2∞
�2

P �2

� GN M R2∞
�2

P L
, (3.4)

7 For very recent analyses supporting this result, see Refs. [24,25].
4

where K IR = 1/R∞ . If we embed this scenario within a universe 
filled with vacuum energy described by the cosmological constant 
�, we have the natural cut-off K IR ∼ 1/R∞ ∼ 1/L and

NMOND � M L

mP �P
≡ NDF , (3.5)

which reproduces the prediction based on a simple energy balance 
in Refs. [13,14].

Comparing Eqs. (2.25) and (3.5), we observe that, despite the 
absence of an explicit MOND contribution (3.2) in the classical 
SdS potential (1.3), the quantum coherent state for the SdS sys-
tem obtained in Section 2 contains the additional contribution of 
NM� � NDF (up to logarithmic factors) scalar gravitons. We remark 
once more that this result explicitly follows once the necessary UV 
and IR cut-offs are included to make sense of the quantum pic-
ture and supports the conclusion that MOND-like effects naturally 
emerge as part of the response of the collective DE state 	̃� to 
the local presence of (baryonic) matter [13,14].

4. Implication for the H0 tension

So far, we have discarded any consequences of the baryonic 
matter on the actual size of the cosmological horizon. In order to 
estimate such effects, let us consider an empty de Sitter spacetime 
with horizon L̄ = √

3/�. The occupation number of the corre-
sponding coherent state would be given by [21,27]

N̄ � L̄2

�2
P

. (4.1)

If one now adds a baryonic source, e.g., a galaxy of mass M , the 
quantum state will readjust to account for the local gravity and the 
competition between the local and cosmological holographic scal-
ings will induce the emergence of a dark force reproducing MOND 
at galactic scales [13,14], as we have seen in the previous section.

In particular, once we add the localised baryonic source, the 
total occupation number of the coherent state should be given ac-
cording to Eq. (2.26) by

N � M2

m2
P

+ L2

�2
P

+ GNML

�2
P

, (4.2)

with L denoting the new size of the cosmological horizon (and 
we discarded logarithmic factors for simplicity). If we assume that 
the addition of matter does not change the total number of scalar 
gravitons, but only their distribution g(k) in momentum space, 
equating N̄ in Eq (4.1) to N in Eq. (4.2) yields

L̄2

�2
P

� M2

m2
P

+ L2

�2
P

+ GN M L

�2
P

, (4.3)

from which we can immediately infer that L̄ > L. Then, solv-
ing Eq. (4.3) for L and expanding the result to O(N3

M/N3
�), we 

find [14]

L � L̄ − �P M

2 mP

(
1 + 3 M �P

4 mP L̄

)
. (4.4)

This result can be used to address different measurements of the 
present Hubble constant H0.

The physics of the early Universe should be related to a quasi-
de Sitter configuration, thus it is reasonable to assume that N̄
should describe this early phase and that the value of H0 ob-
tained from the Cosmic Microwave Background (CMB) radiation 
should carry information about L̄. Hence, we simply assume that 



A. Giusti, S. Buffa, L. Heisenberg et al. Physics Letters B 826 (2022) 136900
HCMB
0 � 1/L̄. On the other hand, L is related to the late time evolu-

tion of the Universe, thus measurements of H0 from Type Ia super-
novae should carry information about the latter, i.e., HSNeIa

0 � 1/L. 
We already have a rough consistency check in this respect, since 
Eq. (4.4) tells us that L < L̄, which implies that HSNeIa

0 > HCMB
0 .

In order to refine our estimate, instead of a single clump of 
matter, let us consider ng � 1 galaxies of typical mass Mg dis-
tributed over the de Sitter configuration of our macroscopic quan-
tum state. Neglecting non-linear contributions among galaxies, we 
can generalise Eq. (4.3) to ng sources as

L̄2 � L2 + ng �2
P

(
M2

g

m2
P

+ GN Mg L

�2
P

)

� L2 + GN Mtot L + G2
N M2

tot

ng
, (4.5)

where Mtot = ng Mg. We then have

L̄ � L

[
1 + GN Mtot

L

(
1 + GN Mtot

ng L

)]
. (4.6)

If we assume a 5% component of baryonic matter in the Uni-
verse, we can insert GN Mtot � 0.05 L into Eq. (4.6) and obtain

L̄ � L

(
1.05 + 0.0025

ng

)
, (4.7)

which implies

HSNeIa
0 − HCMB

0

HCMB
0

� 0.05 +O
(

1

ng

)
, (4.8)

suggesting a 5% discrepancy between HSNeIa
0 and HCMB

0 . This es-
timate comes surprisingly close to the observed H0 tension [17], 
particularly considering that the actual time evolution of the late 
Universe was not accounted for at all in our expression of HCMB

0 . 
In our formalism, the discrepancy of the Hubble parameter H0
between the early Universe and the late Universe would be an ex-
pected phenomena and due to the effects of the baryonic sources 
to the occupation number of the coherent states. This represents 
a completely new and quantum resolution compared to the ex-
isting ones in the literature, which typically either rely on the 
presence of an additional Quintessence/Horndeski field or a Gen-
eralized Proca field or an effective coupling in the dark sector 
[17–19,28].

5. Conclusions and outlook

In this work we developed the quantum description of a toy 
model for the universe containing only the cosmological constant 
and a localised matter source. Despite its simplicity, this model al-
lowed us to reach some interesting conclusions. First, we formally 
derived the corpuscular scaling law for the de Sitter spacetime 
by means of a purely (though simplified) field-theoretic approach. 
Second, we showed that the competition between the two compo-
nents of the quantum state, respectively responsible for the cosmic 
expansion and for the local gravitational interaction, gives rise to 
an effective dark force, akin to the one derived from corpuscular 
gravity in Refs. [13,14], which reproduces the MOND phenomenol-
ogy at galactic scales. Finally, we noted that the addition of bary-
onic matter to the de Sitter configuration modifies the quantum 
state of the system in a way that also appears to relieve the ob-
served H0 tension.

Among the limitations of the model, overall staticity and the 
simplified description of each galaxy (and of the population of 
galaxies in the universe) are the most relevant. Clearly, these as-
sumptions provide a workable oversimplification of the problem, 
5

but they will have to be thoroughly reconsidered when trying to 
extend the analysis to more realistic (and testable) scenarios.

In particular, we can foresee at least two lines of further devel-
opment. First of all, in the present work we have only estimated 
the effects due to the coherent state containing only momenta in 
a finite range, namely 	̃SdS(k � 1/L) = 	̃SdS(k > 1/RH) = 0. For 
a more quantitatively analysis, the IR cut-off K IR ∼ 1/L and the 
UV cut-off KUV ∼ 1/RH will have to be determined by a refined 
description of the observable de Sitter patch and matter sources, 
respectively. An effective spacetime metric will then have to be re-
constructed by replacing V SdS in Eq. (1.2) with

V Q(r) =
KUV∫

K IR

k2 dk

2π2
j0(kr) 	̃SdS(k) . (5.9)

This will allow us to study geodesics and place detailed bounds on 
K IR and KUV from experimental data. Moreover, an effective metric 
description would serve as a fundamental tool to further analyze 
the H0 tension as well as investigate the implications of this model 
for the σ8 anomaly. Typically, resolutions of the Hubble tension 
worsen the σ8 tension. A general DE model needs to satisfy very 
specific requirements in order to perfectly balance the increase in 
the expansion with a decrease in the structure formation, which 
is being investigated somewhere else. Successful examples are in-
teracting DE-DM models and late Universe cosmologies based on 
a vector field. A second line was already mentioned in Section 4
and consists in extending the construction of the quantum state of 
the universe to include multiple matter sources, possibly including 
some non-linear contributions due to the local gravitational inter-
actions. Both lines will require us to rely (heavily) on numerical 
methods, since most expressions, like Eq. (5.9), cannot be com-
puted analytically and the number of galaxies in the Universe is 
very large.
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