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Abstract: Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid
cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB
development is controlled by gene expression dysregulation. These unleashed programs that outline
NB cancer cells make them highly dependent on specific tuning of gene expression, which can act
co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar
regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on
a small set of key master transcriptional regulators as the convergence point of multiple signalling
pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing
NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive
regulatory networks of this pathology. Furthermore, we underline the significance of multi-target
therapies against these hallmarks, showing how novel approaches, together with chemotherapy,
surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of
tumorigenic pathways through combinations of different treatments.

Keywords: neuroblastoma; oncogene; tumour suppressor; regulatory network; gene expression;
MYCN; CRC; HDACi; GD2; epigenetic therapies

1. Neuroblastoma: An Overview

Childhood and paediatric cancers are among the most relevant causes of death that
affect children during the first years of life. Although researchers took into consideration
several risk factors that can determine cancer development in children and adolescents,
their causes are mostly unknown. Moreover, the absence of recommended screening tests
able to define tumour formation and evolution was complicated by methodological difficul-
ties related to the biological variety of these diseases, all contributing to the poor pathology
outcome. Nevertheless, progresses of new high-throughput sequencing techniques and
the application of genome-wide analyses made it possible to better understand the genetic
backgrounds of many paediatric cancers, which influences their initiation and evolution. In
this context, neuroblastoma (NB) is a clear example of how altered gene expression affects
the dysregulation of crucial cellular mechanisms, such as proliferation, differentiation, chro-
mosome stability, and self-renewal [1]. Remarkably, NB is considered the most common
extracranial solid tumour identified in infancy, with 25–50 cases per million individuals.
It is the first cause of death for children between one and five years of age, representing
13% of overall paediatric cancers. This neuroendocrine tumour arises in the developing
sympathetic nervous system, the fallout of which is tumour development localized both
in the adrenal glands and sympathetic ganglia, and it differs from other solid tumours by
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its biological and clinical heterogeneity, spanning from spontaneous regression to overly
aggressive metastatic diseases [1].

The cellular origin of NB is not precisely identified yet; therefore, the observed clinical
diversification of NB is ascribed to the disruption of the meticulously arranged process
of neural crest maturation through the connection of many molecular components at var-
ious stages. The broad spectrum of NB clinical behaviour describes a challenging goal
for diagnosis, prognosis, and selection of the most fruitful treatment strategy—moreover,
its obstacles compare clinical trials between different studies. In 1988, an international
congress was held to elaborate a system intended to help the clinical trial procedures.
The result was the International NB Staging System (INSS), according to which NB can
be classified into five distinct stages [2]. Stage 1 and stage 2 NB, considered low-risk
tumours (>90% survival rate), are relatively small, specifically localized, not metastatic
and can be entirely removed by surgery; however, stage 2 NB could be persistent after
surgery, requiring further treatment with chemotherapy and/or irradiation. Stage 3 NB is
an intermediate/high-risk tumour (30–50% survival rate), with metastatic infiltration in
lymph nodes nearby the original onset site but not in distant parts of the body. The more
aggressive Stage 4 is the high-risk tumour (<30% survival rate), with metastases spread
through distinct parts of the body, including lymph nodes, liver, skin, and bone marrow.
The fifth stage, 4S, is significantly different from the earlier classes; it can initially manifest
typical aggressive tumours, but then it undergoes spontaneous regression with minimum
treatment, or even without medical intervention (average survival rate 50–80%). This tu-
mour is usually diagnosed via standard histology analysis and detection of unusual urinary
catecholamines. At the same time, the five stages are recognized according to a series of
features that include the age of diagnosis, MYCN gene amplification status, histology, and
localisation of eventual metastases [2]. More than 50% of all patients are diagnosed with
either stage 3 or stage 4 NB that may yield various tumour phenotypes [3]. This incredible
tumour variability well reflects the genetic heterogeneity typical of this condition.

2. Genetic Predisposition and Chromosome Instability in NB

To date, no single genetic lesions are known to account for all NB patients. These
data support the idea of NB as a spectrum of diseases rather than a single pathological
condition. Nonetheless, some genetic alterations and oncogenic drivers have diagnostic
and prognostic significance in specific stratification groups (Table 1) [4,5]. Although the
aetiology of this disease is still not fully understood, NB can be classified as either sporadic
or familial, depending on whether the mutation occurred in the patient. Indeed, the NGS
(next generation sequencing) revolution has led to a deeper understanding of the NB
genomic landscape. These novel approaches shed light on several aberrations already
involved in the tumorigenesis and revealed new ones, spanning from gains and deletions of
entire chromosomes to segmental chromosome alterations and single-nucleotide mutations.
The first identified familial gene for NB was PHOX2B, whose mutations predispose to
disease development in ~10% of familial cases. It encodes a master regulator transcription
factor (master TF), playing a pivotal role in early embryogenesis for autonomic nervous
system development [6–8]. Consequently, mutations in this gene are associated with a
spectrum of pathological phenotypes. PHOX2B NB-specific mutations are gain-of-function,
missense, and frameshift variants, mapping at 200–300 bp and 600–714 bp from the ATG
start codon [9].

Despite PHOX2B, the anaplastic lymphoma kinase (ALK) gene is considered the
major susceptibility gene for familial NB and the most often mutated gene in sporadic
cases. ALK encodes a transmembrane receptor tyrosine kinase involved in nervous sys-
tem development. It acts as an oncogene for several human tumours (such as several
types of lymphoma and non-small cell lung cancer), mainly activated by chromosomal
rearrangements resulting in fusion genes. Differently, the most frequent ALK alterations
in NB are both sequence mutations, involving the tyrosine kinase protein domain and
causing constitutive ALK activation and kinase activity, and copy number alterations,
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given by trisomy 2p and gene amplification [10,11]. ALK can also be affected more rarely
by structural alterations resulting in N-terminal deletions, leading to a truncated isoform
being constitutively activated and supporting oncogenic properties [12–14].

However, familial cases of NB account for only 1–2% of cases and the majority of NB
are the sporadic ones. The most common and most clearly implicated genomic alteration is
the MYCN gene amplification, which is present in ~18% of cases, considering WGS or WES
data of 1232 NB samples from two different studies combined with data generated by the
Therapeutically Applicable Research to Generate Effective Treatment initiative (TARGET,
https://ocg.cancer.gov/programs/target_phs000467 (accessed on 21 June 2021 via cBio
Portal for Cancer Genomic https://www.cbioportal.org/)) [15,16]. MYCN focal gain is a
well-established prognostic factor for high-risk cases, marked by advanced tumour stage,
high aggressiveness, and poor outcome. The origin of MYCN amplification is still unclear,
but it is considered an initiating event for tumorigenesis in high-risk cases, conferring
stem-like properties to MYCN amplified cells [17–19]. Approximately 70% of NB patients
with MYCN amplification show loss of heterozygosity (LOH) at 1p36, a segmental chro-
mosomal alteration common to different human cancers, especially the ones affecting the
nervous system. The hypothesis is that this region holds several gene-dosage-sensitive
tumour suppressor genes co-operating with driver mutations for oncogenesis. Regarding
NB, 1p36 deletion is the most common genomic lesion in high-risk cases. Its role in tu-
morigenesis has been explained by in vitro studies in mouse-derived cell models, which
revealed 1p36 LOH could achieve neoplastic transformation collaborating with other al-
terations or encourage MYCN amplification, depending on deletion sizes. Moreover, two
tumour suppressor genes have been revealed. CHD5 has been proposed as a distal tumour
suppressor, involved in smaller 1p36 deletions associated with MYCN single-copy NB
and MYCN-amplified NB. Otherwise, ARID1A acts as a proximal tumour suppressor,
promoting tumorigenesis via MYCN amplification in tumours harbouring larger 1p36 dele-
tions [20]. ARID1A encodes a factor belonging to the SWI/SNF complexes and regulates
gene expression through chromatin structure modulation. ARID1A depletion supports the
adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression,
thus promoting cell invasion and tumour resistance to chemotherapy [21].

Other frequent structural variants in NB are 17q gain and 11q deletion. Gain of
the long arm of chromosome 17 (17q) is the most common chromosomal rearrangement
in NB, considered a characteristic sign of high-risk cases, in association with MYCN
amplification and 1p deletion [22]. The hypothesis for the increased aggressiveness of 17q
gain NB is that 17q gain itself could enhance genomic instability, increasing tumour cell
mutational burden. Particularly, the resulting overexpression of several electron transport
chain genes mapping at the 17q locus would lead to an increase in ROS production and, so,
improve tumour genetic alterations, intensifying tumour aggressiveness [14]. Several genes
have been proposed as 17q oncogenes, but further analysis is needed to better define 17q
oncogene contribution to NB. JMDJ6 gene has been identified as an NB tumorigenesis factor,
inducing reduction in NB cell proliferation and survival in vitro and tumour progression
in mice when it is knocked down [23]. Using both whole-genome and RNA sequencing
data, prohibiting gene (PHB) is highly expressed in 17q gain NB, enhancing tumour cell
proliferation and suppressing differentiation with a novel mechanism [24]. Increased NME1
gene expression has also been associated with high-risk NB, suggesting a potential role
of histidine kinase signalling in tumour pathogenesis [25]. Moreover, ALYREF gene has
been proposed as a codriver factor for oncogenesis in NB by in vitro and in vivo transgenic
models, co-operating with N-Myc for USP3 transcription upregulation, and thus regulating
MYCN turnover [26]. However, a better definition of these genes’ involvement is still to be
determined. 11q deletion is the segmental chromosomal alteration most often associated
with other genomic alterations in high-risk NB, and the most identified following MYCN
amplification and 17q gain. MYCN amplification and 11q deletion co-occurrence are
sporadic; 11q deletion has been shown to be associated with large 2p gain, including
MYCN and other genes, such as ALK [27]. This inverse correlation between deletion of 11q
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locus and MYCN focal gain could be due to their common effect in NB pathogenesis: both
can disrupt microRNA let-7, which is considered to possess a fundamental role in tumour
development. 11q deletion could be the missing aberration to acquire in order to reach
the threshold for let-7 disruption in a context of insufficient MYCN copy number [28]. 11q
deletion tumours are characterised by older diagnosis, more advanced disease stages, and a
higher risk of relapse. Several genes involved in DNA repair mechanisms map at this locus,
such as TSLC1, ATM, and H2AFX. Their missing activity caused by haploinsufficiency
or inactivation of the second allele by other mutational events could explain the high
chromosomal instability marking 11q del NB and the higher relapse probability and
worse prognosis [27]. Chromosome 11 is also involved in other NB-relevant chromosomal
rearrangements, such as translocation involving chromosome 11 and 17 (t (11;17)) and
disrupting SHANK2 gene. SHANK2 is a neurodevelopmental gene encoding a scaffold
protein in the postsynaptic density and was recently identified as a new tumour suppressor
gene in NB. Indeed, among genes recurrently disrupted by structural variants in NB, a
strong enrichment in neurodevelopmental disorders (NDDs) genes has been found, in
addition to their downregulation in high-risk NB cases. Among them, SHANK2 showed the
most reduced expression, and it has been proposed that its deregulation can promote NB
cell dedifferentiation and poor survival. Moreover, other autism spectrum disorder (ASD)
and synaptic genes, such as DLG2 (also mapping at 11q locus and frequently disrupted by
translocation events in NB), have been proposed as candidate genes with a similar role in
NB pathogenicity. In contrast, germline mutations associated with NDDs have been found
to confer an increased risk of developing the tumour [29]. Therefore, neurodevelopmental
processes seem to have a key role in NB tumorigenesis, and further investigations on these
genes need to be performed.

Most NB cancer cells also show genomic alterations resulting in the activation of
telomeres maintenance mechanisms, allowing tumour cells infinite proliferation and sur-
vival, consisting of the upregulation of telomerase activity or the activation of the ALT
pathway. Elevated telomerase activity is associated with high-risk NB and can be due to
both MYCN amplification and TERT gene rearrangements, which occur, respectively, in
40% and 20% of high-risk NB. Rearrangements in TERT upstream and downstream regions
would cause TERT overexpression by genomic repositioning, acting as potent cancer driver
mutations [15,30]. Instead, ALT pathway activation is principally caused by ATRX muta-
tions, usually age-correlated, and occurs in patients older than 18 months [31]. ALT is a
telomeres maintenance machinery based on homologous recombination and telomerase
independence. ATRX protein belongs to a polyprotein complex involved in chromatin re-
modelling, nucleosome assembly, and telomeres maintenance. Loss-of-function mutations
in ATRX lead to defective H3.3 deposition and replicative forks stall at the telomeric regions,
inducing ALT activation for telomeres elongation. Furthermore, the second mechanism
of contribution to tumorigenesis has been shown for ARTX: defective H3.3 deposition in
other genomic regions, such as promoter and enhancer regions of neuronal differentiation
genes, would cause their attenuated expression and proliferation of cancer cells [32].

In addition to the above-mentioned and well-known segmental chromosomal alter-
ations, other structural variants have also been identified in NB cases, such as 3p and
4p deletions and 1q gain. However, they are relatively more rare alterations whose role
has still to be clarified. Similarly, the implication of numerical chromosomal alterations
(NCA) is still not well defined. It is known that gains or losses of entire chromosomes
and triploidy are associated with the absence of segmental chromosomal alterations and
a favourable prognosis. For example, in a recent retrospective multi-centric study, whole
chromosome 19 gain has been identified in a subgroup of samples with lower tumour
stages, absence of structural variants, and better outcomes. Moreover, in a previous study,
whole chromosome X loss has been proposed as a new prognosis marker for NCA cases.
However, few specific issues have been described, and studies are needed [33]. As briefly
described above, the presence of genomic alterations in NB cells seems to be nonrandomly
distributed. Instead, it appears to be under a relationship of co-occurrence and mutual



Int. J. Mol. Sci. 2021, 22, 12883 5 of 33

exclusion. For example, MYCN amplification, TERT gene rearrangement, and ALT path-
way activation caused by ATRX mutations converge on the similar cellular result (telomere
length maintenance) and are mutually exclusive [15,30]. Specifically, MYCN amplification
and ATRX-inactivating mutations are incompatible in all stages of NB, leading to synthetic
genetic lethality due to the excessive DNA-replicative stress caused by these alterations [32].
By contrast, MYCN and TERT rearrangement relationships are not clear, and there is still
no consensus among data about it. In some cases, both MYCN and TERT alterations
have been identified in the same samples [14]. Differently, due to their common location
at 2p, ALK amplification often shows co-occurrence with MYCN amplification. Indeed,
an MYCN–ALK co-operation model based on PI3K signalling has been proposed [19].
However, from a recent analysis of WGS data from 182 diagnosis samples, no statistically
significant co-occurrence has been identified between ALK and other gene alterations. The
same study also confirmed the mutual exclusivity relationship between MYCN alterations
and other segmental chromosome aberrations, such as t (11;17), 3p deletion, 4p deletion,
and 11q deletion. Moreover, these data support the already known absence of correlation
between 1p deletion and other copy number alterations, and confirm the co-occurrence
between 3p deletion, 4p deletion, 11q deletion, 7q gain, and 17q gain. NB genomic alter-
ation shows different prevalence among age: it has been proposed that the acquisition
of specific oncogenic mutations could be age-correlated due to a different sensibility of
developmental stage. MYCN and TERT alteration are more common in patients below
five years old, while ARTX mutations are enriched in older patients. Otherwise, segmental
chromosomal alteration is more common from 1.5 years old [14]. Several studies have
also investigated the molecular genetic profiling of adult-onset NB, proposing that the
poorer survival in an adult could be caused by the presence of different genetic alterations
between paediatric and adult NB [31,34,35]. However, from a recent study investigating
the molecular genetics of adult-onset NB, no differences have been identified in the type of
genetic alterations between paediatric and adult NB, supposing that paediatric and adult
NB differ in frequency and not to the kind of specific changes [36].

Table 1. Leading genetic alterations in NB.

Gene
Name CHr. Alteration

Type Known NB Variants Mutation
Effect MYCN Status ◦ References

Single-Gene Alterations

ALK 2p23

Point
mutation

(missense)

Met1166Asn;
Ile1171Asn/Thr;

Phe1174Leu/Cys/
Ile/Val/Ser §;
Leu1240Val;

Phe1245Ile/Cys §;
Arg1275Gln/Leu §

Gain of
function

Amp +
non-Amp [37], #

Amplification - Amp [38]

Translocation/
Deletion - - [12,13]

ATRX Xq21.1

Point
mutation

(nonsense)

Glu285 *; Glu990 *;
Leu1645 * Loss of function non-Amp [32], #

Point
mutation

(frameshift
deletion)

Phe2113Serfs *9
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Table 1. Cont.

Gene
Name CHr. Alteration

Type Known NB Variants Mutation
Effect MYCN Status ◦ References

PHOX2B 4p13

Point
mutation

(missense and
frameshift)

Several variants
clustered at 200–300
bp and 600–714 bp

from the translation
start codon

Gain of
function - [9]

TERT 5p15.33

Upstream/
downstream

regions
rearrangements

- Gain of
function non-Amp [15,30]

Segmental Chromosomal Alterations

- 1p36 Deletion - Loss of function Mostly amp [20]

- 17q Gain - Gain of
function Amp [39]

- 11q Deletion - Loss of function non-Amp [27]

MYCN status: Amp = presence of amplified MYCN; non-Amp = non-amplified MYCN. * indicates translation termination codon in
nonsense and frameshift variants. § Amino acid residue identified as a recurrent hotspot (statistically significant) in a population-scale
cohort of tumour samples of various cancer types, using methodology based in part on Chang et al. [40] and according to cancerhotspots.org.
# cBio Portal for Cancer Genomic [41,42]. NB data come from 1459 patients/1472 samples obtained by combining four different studies
[15,16,43] and data generated by the Therapeutically Applicable Research to Generate Effective Treatment initiative (TARGET, https:
//ocg.cancer.gov/programs/target_phs000467 (accessed on 21 June 2021 via cBio Portal for Cancer Genomic https://www.cbioportal.org/)).
Sequence variants are reported according to Human Genome Variation Society (HGVS).

3. Emerging Concepts of Epigenetic Dysregulation in NB

While most of the alterations responsible for inducing the familial NB cases have
been well characterised, the same cannot be said regarding the sporadic ones, which show
reduced levels of genetic alterations when sequenced [43]. This fact has shifted the attention
on the epigenome: the whole asset of chemical modifications targeting DNA or histone
protein tails can bear regulating gene expression throughout the genome. The epigenetic
changes shape chromatin conformation, thereby easing or obstructing the binding of spe-
cific factors to specific genomic sequences. Several different actors take part in this process,
and they can be roughly summarized in three classes: “writers” able to label histones with
post-translational modifications, “readers” which bind specifically to the labelled chro-
matin regulating gene expression, and “erasers” restoring the unmodified protein [44]. The
concentred action of these factors generates a specific signature that can be interpreted to
gain further insight into normal development and pathological contexts. Recent chromatin
immunoprecipitation (ChIP) assays coupled with high throughput sequencing revealed
distinct epigenetic labelling, characterising not only subtypes of NB itself [45], but also
differentiating subtypes of neural stem cells (NSCs)-derived tissues, such as neuroecto-
derm, neural crest, and more mature neural states, thus, stating the ability of NSCs to adopt
multiple fates upon commitment [46]. The epigenome is, thereby, a cell fate indicator: an
observation that can be exploited to highlight alterations within chromatin structure during
mammalian development [47,48]. Malignancies usually involve both the genetic and the
epigenetic landscape, with nonfamilial NB cases being an exception: the poor frequency of
genomic mutations states an epigenetic-mediated alteration of the transcription’s balance,
leading to cancer progression via multiple ways, such as increased cell plasticity or tumour
suppressor gene silencing [49].

For instance, both NSCs and embryonic stem cells (ESCs) are characterised by many
genes kept transcriptionally silenced until differentiation, even though they display both
permissive and repressive epigenetic marks on the relative promoters [50]. The defini-
tion of “bivalent domains” can explain this situation. Both permissive (H3K4me3) and
repressive (H3K27me3) marks consent to rapidly route cells towards any fate, considering
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that genes enriched with H3K27me3 in ESCs include those involved in early embryonic
development, organogenesis, and cell fate decisions. Genes needed to be transcribed lose
most of their polycomb-mediated repressive H3K27 methylation. On the other hand, those
maintained as silenced lose their H3K4 methylation and/or increase the polycomb-induced
repressive epigenetic mark [50,51]. The high impact at which epigenetic regulation can
influence transcriptional balance is commonly acknowledged among the scientific commu-
nity. Interestingly, one of the most prominent histone methyltransferases (HMT), EZH2, a
“writer” member of the polycomb repressive complex 2 (PRC2) and responsible for H3K27
trimethylation, is characterised by increased expression levels in NB [52]. In fact, several
in vitro and in vivo studies reported that, in MYCN-amplified NBs, the gene promoter
of EZH2 is directly regulated by N-Myc [53–55]. N-Myc can also directly interact with
EZH2, and overexpression of EZH2 promotes an undifferentiated NB tumour phenotype
associated with poor clinical outcomes [53,56].

A further example of an important chromatin-regulating actor in NB biology is the hi-
stone demethylase LSD1 (KDM1A), an “eraser” factor able to demethylate H3K4me2/me1
to unmethylated H3K4, which is associated with gene silencing. A high level of LSD1 func-
tion in an NB context correlates with a bad prognosis of patients and poorly differentiated
cells (in vitro assays) [57].

Transcription factors (TFs) can also recruit chromatin-remodeller-containing repressive
complexes to their target loci. Above all, N-Myc can exert repressive functions interacting
with the basal transcription factor 1 (SP1). This repressive complex requires the sequence-
specific transcription factor MIZ-1 to bind targets’ promoter regions and recruit other
chromatin modifiers, such as the “eraser” histone deacetylases (HDAC) [58,59]. The most
well-characterised repressive complexes that are known to have a role in NB development
are the polycomb repressive complex 2 (PRC2), Sin3, nucleosome remodelling and deacety-
lase complex (NuRD), silencing mediator for retinoid and thyroid hormone receptors
(SMRT), C-terminal binding proteins (CtBP), and REST corepressor (CoREST) complexes
all sharing one or more protein of the HDAC family [60]. These complexes have been
widely investigated in a cancer landscape, even though just a modest number of studies
have drawn attention to their behaviour in NB and to how they differentially work in this
context. Providing some examples, Gajer et al. [61] showed that inhibition of HAT activity
in vitro and in vivo blocked NB cells growth; Chen et al. [54] demonstrated that knock-
down of the PRC2 component EZH2 or its depletion upon inhibitor treatment resulted
in markedly decreased NB cell viability; Yang et al. [62] proved that the silencing of the
histone demethylase LSD1, a component of CoREST complexes, resulted in a reduction in
cell proliferation, colony formation, migration, and invasion of NB cell lines. Despite the
scarcity of information regarding how these complexes work and influence the initiation
and maintenance of NB, the fact that the tumorigenic phenotype is reduced or inhibited af-
ter depletion of some of these complexes’ components represents a great suggestion of their
importance in NB. Interestingly, these machineries show a high level of interconnection in
terms of shared components, similar binding sites on chromatin, and downstream effects.
Further investigations on these potentially druggable regulators might be fundamental
for developing new therapeutic strategies to tackle down one or more critical pathways in
maintaining a tumorigenic profile in an NB landscape.

4. NB Regulatory Networks

While almost half of the encoded human TFs are expressed in every cell type, a
restricted subgroup of them, named master TFs, can dictate the expression of cell-type-
specific genes, thereby controlling transcriptional programmes in a tissue-specific fashion
that will characterise the differentiated cell state (Figure 1). These core TFs are highly
expressed in specific cell types, and they tend to co-occupy many enhancer and super-
enhancer elements within multi-subunit protein complexes [63]. Enhancers typically drive
gene transcription of multiple genomic loci, and also display consensus DNA binding
sequences for several transcription factors and are found in euchromatic regions. On the
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other hand, super enhancers (SEs) show the same features on a higher level of magnitude:
they space for a range of more than 20kb on average, have highly dense clusters of TF
binding sites, and their genomic loci show outstanding levels of open chromatin histone
modifications, such as H3K4me1 and H3K27ac [64]. Overall, SEs exhibit a stronger ability
in activating transcription and a more substantial influence on the genes they control
(Figure 1) [65].

Figure 1. (A)Transition between mesenchymal (MES) and adrenergic (ADRN) neuroblastoma states depends on specific
core regulatory circuitries. (B) Convergence of genetic mutations and epigenetic alterations results in oncogenic signalling
dysregulation depending on feed-forward core transcriptional circuitries in human NBs. CRCs result in interconnected and
autoregulated networks among TFs, which can drive the development of specific subtypes of NBs by establishing distinct
gene expression signatures. “SE” refers to “Super Enhancer”.

Intriguingly, recent genome-wide H3K27ac profiling in patient-derived NB samples
revealed four distinct SE-driven epigenetic subtypes, characterised by their own and
specific master regulatory networks. Three of them are named after the known clinical
groups: MYCN-amplified, MYCN non-amplified high-risk, and MYCN non-amplified low-
risk NBs, while the fourth displays cellular features which resemble multipotent Schwann
cell precursors. Interestingly, the cyclin gene CCND1 was regulated through distinct and
shared SEs in the different subtypes, and, more importantly, some tumours showed signals
belonging to multiple epigenetic signatures, suggesting that the epigenetic landscape is
likely to contribute to intratumoural heterogeneity [45].

The establishment of interconnected and autoregulated networks among TFs repre-
sents the core transcriptional regulatory circuitry (CRC) of a cell. In cancer cells, stem and
lineage-specific TFs and other epigenetic regulators are often hijacked by cancer-associated
CRCs, which are activated to prevent terminal differentiation and reshape tumour cell
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behaviour [63,66–69]. Particularly, in NB, recent evidence reported by several groups, and,
notably, by van Groningen and colleagues [70], suggested two predominant types of cell
identity among neuroblastoma cell lines. These two groups are defined by highly different
phenotypes and divergent gene expression profiles governed by unique core TFs and super-
enhancer transcriptional networks. The first group, showing a sympathetic-noradrenergic
identity, includes committed sympathoadrenal cells (ADRN), while the second group
comprises multipotent undifferentiated cells with a neural crest-cell-like or mesenchymal
identity, referred to as MES identity (Figure 1) [70–72]. In particular, it was demonstrated
that around 369 genes have corresponded with ADRN mRNA expression, and 485 genes
associated with MES mRNA expression in four isogenic cell lines. Interestingly, ChIP-seq
analyses for H3K4me3 and H3K27ac histone modifications were performed in five ADRN
and four MES NB cell lines, revealing around 276 SEs related to the ADRN type, while 286
associated with MES type.

Some essential genes, such as IL13RA1, FN1, IGFBP2, and WNT5A, were associated
with MES-specific states, while genes such as DLK1, CHGA, and GBH correspond with
ADRN differentiation. Further studies also revealed 20 essential MES TF genes, such as
SIX1, SIX4, MEOX1, MEOX2, WWTR1, SMAD3, and SOX9, and about 18 SE-associated TF
genes, such as, for example, HAND1, GATA3, EYA1, and ASCL1 [65,69,73].

Moreover, the ADRN and MES cells can transdifferentiate, with paired mesoderm
homeobox protein 1 (PRRX1) being the driving factor in promoting the interconversion
from the ADR to the MES module, modifying transcriptional programmes and repurposing
the adrenergic super-enhancer landscape [70]. The more profound investigation of SK-
N-SH neuroblastoma-derived cells was an exhaustive example to better understand the
bidirectional and spontaneous potential of transdifferentiation in NB. Indeed, RNA-seq
of SK-N-SH cells identified two phenotypically divergent subclones, characterised by the
expression of CD44 as an MES marker [74]. Bulk RNA-seq experiments verified that CD44-
and CD44+ sorted cells displayed gene expression profiles such as the ADRN SH-SY5Y
and the MES SH-EP cells, respectively. The sorted ADRN/CD44- and MES/CD44+ cells
can generate a mixed cell population, confirming spontaneous and bidirectional plasticity
between these two states [75].

In ADRN cells of NB, downstream Notch activation [76] or overexpression of the tran-
scription factor PRRX1 induces transdifferentiation towards an MES phenotype. Notably,
this research team discovered that in vitro treatment of MES NB cells revealed more resis-
tance to frequently used NB medicines, such as cisplatin, doxorubicin, and etoposide, than
ADRN NB cells, suggesting an answer to the widespread problem of potential relapses. In
addition, in vivo studies showed that PRRX1+ MES cells increase in relapsed tumours and
tumours treated with conventional chemotherapy [76].

NBs belonging to the most frequent ADRN group are controlled by a set of super-
enhancers, including TFs loci such as HAND2, PHOX2A, PHOX2B, GATA2, GATA3, and
the ALK oncogene locus [71]. On the other hand, the MES group, significantly associated
with relapsed cases, is driven by a CRC module, including AP-1 transcription factor
family (FOSL1 and FOSL2), NFKB2, RUNX1, RARB [45], and PRRX1 [77] as major drivers,
conferring NCC-like identity. The TFs TWIST and HAND2 are known to be bound to both
cell states’ regulatory sequences [77].

Several TFs govern the gene expression programmes of neuroblastoma, notably in-
cluding different CRC transcription factors, such as PHOX2B, HAND2, GATA3, ASCL1,
ISL1, and TBX2, which show a clustered binding across open chromatin regions of their
regulatory sequences, as well as those of the other CRC partners and those of many other
driver master regulators, including MYCN and ALK. This signature array is either unique
to NB or only minimally shared with other tumour types [72].

NB’s dependence on these master regulators has been proven and confirmed by sev-
eral research groups via several different approaches, such as transient siRNA-mediated
knockdown, footprinting, HiChIP experiments, and functional genomics studies with
CRISPR–Cas9 screenings. Indeed, depletion of one of these genes resulted in a reduction in
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cell proliferation, induction of apoptosis, and a concomitant decrease in each CRC gene
expression level, demonstrating their interdependent expression [45,71,72]. In addition, the
KD of a subtype-related master regulator, specific for ADR or MES identity, strongly corre-
lated with a higher sensitivity of the associated subtype, supporting the notion that these
master TFs are required for maintaining a particular neuroblastoma cell state (Figure 1).
However, despite considerable efforts, it still remains largely unknown how distinct cell
identities can influence neuroblastoma’s tumour initiation, progression, and relapse, as
well as the molecular events that drive NB development, which are still unclear [45,78].

5. N-Myc and Other Master Regulators: Oncogenic Drivers in NB Progression

In the context of NB master regulators, N-Myc plays a crucial role, since its gene
amplification is associated with poor prognosis and advanced tumour stages, and is one of
the initiating events driving the transformation and progression of high-risk NBs [19,79,80].

As a pivotal oncogenic transcription factor, N-Myc, along with its partner MAX, can
activate or repress many genes, thereby orchestrating expression programmes of several
targets that cannot be ascribed to a single regulatory pathway. When deregulated, N-Myc
governs the cis-regulatory landscape of NB. Among its targets, it co-occupies the same
regulatory regions bound by adrenergic CRC TFs, further promoting the transcription of
genes induced by CRC members and reinforcing their expression as well in a model defined
by Zeid et al. as “enhancer invasion” [77]. Consequently, loss of N-Myc leads to a reduction
in global gene expression levels within the cellular transcriptome and, particularly, of its
directly targeted tumour-related genes [81], indicating its determining role in maintaining
both normal and altered NB regulatory networks. For this reason, N-Myc may act as a
general transcriptional amplifier or, otherwise, as a CRC member [72].

ChIP-seq analyses produced by Zeid and colleagues showed different N-Myc binding
profiles: in one case, its classical target genes exhibit the classical promoter occupancy, while,
in some others, N-Myc shows a more spread promoter and enhancer binding. The latter
shape was proved to be associated with crucial neuroblastoma-associated genes, suggesting
that only deregulated N-Myc invades pre-established and preacetylated enhancers in order
to amplify tissue-specific gene expression and drive oncogenic transformation [77].

In MYCN-amplified NBs, N-Myc is stabilised by several mechanisms and has a
leading role in regulating different downstream pathways and proteins, notably including
the anaplastic lymphoma kinase (ALK). ALK can be coamplified along with MYCN, and its
gain-of-function mutations can potentiate MYCN oncogenic activity [82]. N-Myc and ALK
co-operation seems to be due to ALK-mediated activation of RET and MAPK/RAS/PI3K-
dependent signalling [19].

The development of MYCN-amplified NBs is also sustained by the action of other
protein interactors, such as Aurora A (AURKA), a kinase that has been demonstrated to
stabilise the N-Myc protein, inhibiting its degradation. AURKA may inhibit neuroblasts’
cell-cycle exit during embryonic and early postnatal development, thereby contributing to
NB formation. Notably, AURKA and N-Myc are connected through a positive feedback
loop: AURKA is highly expressed in MYCN-amplified NBs, while N-Myc stability is
enhanced by this kinase [83].

The action of TWIST1, an already mentioned CRC TF, also sustains MYCN’s enhancer
axis in MYCN-amplified NBs. TWIST1 and N-Myc recognise similar CANNTG E-boxe
DNA sequences and, in addition, their binding sites on enhancers strongly overlap; this
suggests crucial oncogenic co-operation between these two TFs in promoting neuroblas-
toma tumorigenesis and in driving enhancer-dependent gene expression [77]. Additionally,
the chromatin regulator WDR5 has been shown to be needed for MYC recruitment on
chromatin and, more specifically, to form a protein complex with N-Myc, leading to H3K4
trimethylation and activation of N-Myc targets. Remarkably, the repression of WDR5
resulted in a reduction in NB cell growth and apoptosis. Hence, uncovering this WDR5-
N-Myc relationship could be useful for developing new therapies against MYC-driven
tumours [84,85].
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Among all the factors taking part in NB tumorigenesis, recent genomic and functional
investigations highlighted BARD1 [32,86], LMO1, and ASCL1 [81] as important actors in
neuroblastoma tumorigenesis as well.

Genome-wide association studies (GWAS) identified common variations at the BARD1
locus to be highly associated with aggressiveness of high-risk neuroblastoma [32,86].
The expression of the full-length isoform of BARD1 has been demonstrated to prevent
malignant transformation of NB cells, negatively correlated with high-risk neuroblastoma
development. This isoform heterodimerises with BRCA1, and it is required for BRCA1
relocation and its known tumour-suppressive function as a guardian of genetic stability.
This evidence indicates BARD1 as a tumour suppressor gene. In contrast, the opposite
effect was instead ascribed to cancer-associated BARD1 shorter isoforms: their interaction
with the Aurora kinase family antagonises the functions of the full-length isoform, thereby
defining them as one of the oncogenic drivers of NB carcinogenesis [32,86].

Recent studies by Wang et al. revealed the implication of LMO1 as a major predisposi-
tion gene in NB oncogenesis. LMO proteins operate in NB cells as additional transcriptional
cofactors that function as adapters to form complexes between DNA-binding proteins, such
as basic helix–loop–helix (bHLH) proteins or GATA proteins. LMO1 acts as an oncogene
that collaborates with N-Myc, causing rapid cellular proliferation and arrest of neurob-
lasts’ differentiation into chromaffin cells or sympathetic ganglia. Although the oncogenic
pathways downstream of LMO1’s transcriptional regulation are unknown, ChIP-seq and
RNA-seq analyses revealed that a critical target regulated by LMO1 is ASCL1, a gene
encoding a bHLH TF. The regulatory elements of this gene are also bound by all members
of the adrenergic neuroblastoma CRC; moreover, ASCL1 and LMO1 proteins can cobind
to the enhancers responsible for the regulation of CRC TFs genes, and to the regulatory
regions of their target as well. This characteristic occupancy makes them, respectively, a
member and a coregulator of the ADRN neuroblastoma CRC [81].

6. Transcriptional Dysregulated Programmes and Promising Therapeutic Approaches

The description of the NB landscape through advances in DNA, RNA, and epigenetic
profiling reveals the complexity of this pathology [16,87,88]. In this regard, it is not
surprising that NB research has constantly increased over the years, showing how the
extreme variety of genetic and epigenetic backgrounds, mixed with multiple levels of
regulatory network regulations, reflect a challenging tumour to investigate. To date,
treatment of NB high-risk patients includes an intensive chemotherapy regimen with
cisplatin, vincristine, carboplatin, etoposide, and cyclophosphamide (COJEC), followed by
resection surgery and myeloablative therapy in combination with haematopoietic stem cell
reinfusion and local radiation therapy [89]. The relevance of specific targeted therapy in
NB could be crucial considering the standard strategies’ weakening approach in treating
high-risk patients and the extreme cancer heterogeneity, which spans from spontaneous
regressions to metastatic and aggressive diseases (Figure 2) [90].
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Figure 2. Targeting neuroblastoma oncogenic pathways: N-Myc pathways can be targeted by a direct or indirect approach.
Direct targeting can be achieved by blocking the N-Myc/MAX interaction, while indirect targeting can be obtained by
inhibiting enzymes involved in N-Myc post-translational modifications (PTMs) or protein–protein interactions (PPIs).
Furthermore, HDAC inhibition induces higher expression of GD2, a crucial target for immunotherapy. The N-Myc-
responsive gene product ODC1 can be targeted to inhibit spermidine biosynthesis, involved in tumoral aggressive phenotype.
Spermidine uptake from the extracellular environment can be blocked by inhibiting the SLC3A2 transporter. ALK inhibitors
are successfully used in ALK-mutated NB.

Several biological and genetic markers of this tumour have been understudied to help
diagnosis and prognosis, giving relevant insights on the molecular landscape of NB and
attention to specific factors. Indeed, the dysregulation of gene expression programmes,
biochemical cascades, and metabolic pathways control the aggressiveness of NB, shedding
light on some crucial components capable of being directly or indirectly targeted. Activating
ALK mutations and N-Myc overexpression were shown to be the most influential de
novo oncogenic drivers. Indeed, the regulatory networks dependent on N-Myc and
ALK are considerably involved in maintaining the proliferative phenotype and blocking
differentiation pathways in neural precursors, as demonstrated by in vitro and in vivo
experiments [18].

6.1. Targeting N-Myc and Its Regulatory Networks

For instance, the N-Myc-dependent regulatory network drives the malignancy and
maintenance of stem-like state by activating the expression of genes involved in metastasis,
such as integrins α1 and β1, the FAK protein, and metalloproteinases, self-renewal and
pluripotency, such as KLF2, KLF4, and LIN28B, survival, and angiogenesis [91–95]. Thus,
novel efforts are converging on the investigation of new methods to target MYC to indirectly
achieve antitumour effects by disrupting its oncogenic programme’s key components. The
potential of selectively inhibiting N-Myc would be the most effective approach to counteract
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advanced forms of NB. Indeed, since the high frequency of MYCN amplification in cancer
and its role in driving and promoting tumorigenesis, as well as its space–temporal restricted
expression during embryo development, precise N-Myc targeting would certainly result in
successful therapeutics to support NB treatment (Figure 2) [18,96]. However, the extreme
variability in cancer mutations and the presence of homologous forms of Myc proteins are
still profoundly affecting the process of selective drug design. Specific N-Myc inhibitor
therapy still remains poorly explored [97]. To overcome this issue, the scientific community
focuses on alternative approaches that aim to control N-Myc-mediated transcriptional
activation and its regulatory networks. Once chromatin undergoes “writers” and “erasers”
labelling, it will gain or lose the ability to bind to the “readers”. One outstanding example
is the bromodomain-containing protein BRD4, which recognises and binds histones with
acetylated lysine residues [98]. BRD4 interacts with the positive elongation factor (P-TEFb)
complex as part of the general transcription machinery. It thereby regulates gene expression
by participating in the transcription preinitiation complex assembly [99].

Indeed, N-Myc-mediated transcriptional regulation is promoted mainly by the asso-
ciation with bromodomain and extra terminal (BET)-containing proteins, which work as
chromatin “readers” by binding to acetylated lysine residues and helping transcription.
The bromodomain-containing protein 2 (BRD2), BRD3, and BRD4 are of great relevance.
Several analyses showed that the application of the BET inhibitor JQ1 downregulates
N-Myc transcriptional signatures, lowering MYCN expression, thus increasing the survival
percentage in both xenograft and transgenic murine models of NB (Figure 2) [100].

Although not yet approved by the American agency of Food and Drug Administra-
tion (FDA), the application of BETi seems to be one of the most promising approaches
to treat NB patients with MYCN amplification. Further proof of this was provided by
developing new drugs, such as birabresib (MK-8628—formerly known as OTX015—an
orally bioavailable small molecule that prevents BRD2/3/4 from binding to acetylated his-
tones. Recently, Henssen et al. showed that BRD4 specifically occupies N-Myc targets and
other genes associated with super-enhancers, and that OTX015 specifically disrupts BRD4
binding to chromatin in NB MYCN-driven murine models, leading to significant survival
advantage compared with untreated controls (Table 2) [101]. This study established the
therapeutic efficacy of the BET inhibitor OTX015 in preclinical NB studies. Moreover, it
confirmed the effectiveness of this drug in phase I trials in adult haematological malignan-
cies (NCT01713582) and solid tumours (NCT02259114), as well as for GSK525762, another
BETi under phase I clinical trial for solid tumours, including NB [102]. As an amplifier of
active transcription, the modern concept of Myc proteins is constantly evolving compared
to the commonly held conclusion that Myc co-ordinates the transcription of distinct groups
of genes. This event can be possible since N-Myc can interact with a plethora of proteins,
allowing the regulation of several central control points of gene transcription, such as
promoter binding, epigenetic modifications, initiation, elongation, and post-transcriptional
processes [58,77,103,104].
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Table 2. List of chemical compounds targeting multiple regulatory networks in NB. Inhibitors are classified based on the molecular
target/mechanism, preclinical (ncbi), and clinical (FDA) status relative to NB and some paediatric solid tumours updated to 2021. All
the references are rereferred to in the “reference” section in the main manuscript.

Compound Target/Mechanism FDA Approval Clinical Trial Status
(2021) References

Crizotinib
ALK

NCT03126916
NCT01606878
NCT00939770
NCT03107988
NCT01121588

Phase III
Phase I

Phase I/II
Phase I
Phase I

[108–112]

Alectinib — — [113–116]

Lorlatinib NCT04753658
NCT03107988

Observational
Phase I [117,118]

Alisertib AURKA
NCT01601535
NCT02444884
NCT01154816

Phase I/II
Phase I
Phase II

[119–125]

JQ1
BRD2/3/4

— — [101,126–130]

OTX015 NCT01713582
NCT02259114

Phase I
Phase I [101,131,132]

GSK525762 NCT01587703 Phase I/II [133,134]

Palbociclib CDK4/6
NCT03526250
NCT03709680
NCT03155620

Phase II
Phase I
Phase II

[135,136]

Ribociclib (LEE011)
NCT01747876
NCT02780128
NCT03434262

Phase I
Phase I
Phase I

[137–140]

Abemaciclib (LY2835219) NCT02644460
NCT04238819

Phase I
Phase I [141]

THZ1 CDK7 — — [23,105,106,127]

CYC065 (fadraciclib) CDK9/2 NCT02552953 Phase I [107]

Carboplatin DNA synthesis Approved Approved [142–147]

Cisplatin DNA/RNA synthesis Approved Approved [148–150]

Cyclophosphamide DNA replication/RNA
synthesis Approved Approved [151–153]

Doxorubicin DNA/RNA synthesis Approved Approved [154–161]

Etoposide DNA synthesis/Topo II poison Approved Approved [142,144,162–164]

GD2 immunotherapy GD2 ganglioside

NCT01822652
NCT01460901
NCT01576692
NCT01953900
NCT02100930
NCT01953900
NCT04539366

Phase I
Phase I
Phase I
Phase I
Phase I
Phase I
Phase I

[165–170]

PU139
HAT

— — [61]

PU141 — — [61]

P22077 HAUSP — — [171]

Panobinostat
HDAC

NCT04897880 Phase II [23,172–175]

Valproic acid NCT01204450 Phase I [176–181]

Vorinostat (SAHA)

NCT01019850
NCT03332667
NCT03561259
NCT01208454
NCT02035137
NCT02559778
NCT01132911
NCT01163383
NCT04308330
NCT00217412

Phase I
Phase I
Phase II
Phase I
Phase II
Phase II
Phase I
Phase II
Phase I
Phase I

[182–188]
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Table 2. Cont.

Compound Target/Mechanism FDA Approval Clinical Trial Status
(2021) References

10058-F4

MYC/MAX heterodimer
inhibitor

— — [189]

10074-G5 — — [189,190]

IIA6B17 — — [191]

MYCi361 — — [192]

Omomyc (OMO-103) NCT04808362 Phase I/II [193–195]

DFMO ODC1

NCT02395666
NCT01586260
NCT04301843
NCT01059071
NCT02679144
NCT02139397
NCT02030964
NCT02030964

Phase II
Phase II
Phase II
Phase I
Phase II

Phase I/II
Phase I
Phase I

[196–202]

WS6 PA2G4 — — [203]

AZD8055
PI3K/AKT/mTOR

pathway

NCT01316809
NCT00973076
NCT00731263
NCT01194193

Phase I
Phase I
Phase I
Phase I

[204–207]

Perifosine NCT01049841
NCT00776867

Phase I
Phase I [208–210]

Picropodophyllin (PPP)
NCT01721577
NCT01725555
NCT01062620

Phase I/II
Phase I
Phase I

[211]

SF1126 NCT02337309
NCT00907205

Phase I
Phase I [212]

AMXT 1501 SLC3A2 NCT03536728 Phase I [196,202]

Lapatinib
TK

— — [106,213]

Ponatinib — — [106,214–216]

RNA polymerase II (RNA Pol II) transcriptional activation is regulated by a specific
set of cyclin-dependent kinases (CDKs), including CDK7 (cyclin-dependent kinase 7), a
crucial component of the transcription initiation factor TFIIH that phosphorylates RNA
Pol II to start transcription. In 2014, Chipumuro et al. reported that a covalent inhibitor
of cyclin-dependent kinase 7 (CDK7), THZ1, was found to disrupt the transcription of
MYCN-amplified NB cells selectively, leading to global repression of N-Myc-dependent
transcriptional amplification and induction of tumour regression in mice models (Figure 2,
Table 2) [105]. The substantial selectivity of this compound for cells with MYCN amplifica-
tion may be attributable to the reduced expression of super-enhancer-associated oncogenic
drivers, including the same N-Myc. Combinatorial therapy with THZ1 and the tyrosine
kinase inhibitor (TKi) ponatinib and lapatinib, as well as with the HDACi Panobinostat,
synergistically induced NB cell apoptosis, leading to NB tumour regression [23,106].

These novel therapeutic approaches are gaining even greater importance considering
the effect on the regulation on the CRC and global gene expression, confirming how partic-
ularly JQ1 and THZ1 injection can rapidly decrease the expression of CRC mRNA levels
after just one hour of treatment in MYCN-amplified NB cells. The expression level of each
of the CRC transcription factor genes was dramatically downregulated by the combination
of JQ1 and THZ1, with more restricted consequences regarding either drug alone. These
results underlined the impact of JQ1 and THZ1 combination treatment in MYCN-amplified
NB, although the broad implication of combining transcriptional disruption is still not fully
understood [72]. In line with these novel pharmacological strategies, recent studies shed
light on the CDK9/2 inhibitor CYC065 (fadraciclib) contribution, resulting in selective loss
of nascent MYCN transcription (Table 2). MYCN loss sensitises cells to apoptosis following
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CDK2 inhibition by selectively targeting NB cells characterised with MYCN amplification,
confirming the pivotal role of the crosstalk between the components of the transcriptional
machinery [107].

6.1.1. Inhibition of the N-Myc/MAX Interaction

N-Myc is a nuclear intrinsically disordered protein that can exist in distinct com-
plexes within the same cell by interacting with hundreds of components to keep the cell
identity [104,217,218].

All the Myc proteins are basic helix–loop–helix/leucine zipper (bHLH/LZ) tran-
scription factors capable of dimerising with the partner MAX (MYC-associated factor X)
to regulate up to 10–15% of all genes. These data assume additional relevance within
MYCN biology in NB models, considering how MAX can instruct transcriptional pro-
grammes that either reinforce or weaken the oncogenic process enacted by N-Myc [219].
Thus, the N-Myc/MAX heterodimer-controlled inhibition is an attractive approach to
counteract the oncogenic regulatory network triggered by MYCN [220]. In 2002, a 7000
peptidomimetic compound screening was performed to select novel candidates capable of
preventing the dimerisation between Myc and MAX (Figure 2). This analysis identified
IIA6B17 and IIA4B20, two small molecules that exert a strong inhibitory effect on Myc–
MAX dimerisation and DNA binding, characterised by a lower IC50 for Myc compared
to the homologous transcription factor Jun [221]. The ground-breaking work of Berg et al.
began the development of novel therapeutic interventions to inhibit the MYCN-mediated
oncogenic programme. The identification of new drugs, such as 10074-G5, 10058-F4, KJ-
Pyr-9, the Myc inhibitor 361 (MYCi361), and the novel Peptomyc’s Omomyc-based therapy
(OMO-103) brought new hope for the fight against NB disease (Table 2) [88,101,222–224].
Remarkably, just in March 2021, OMO-103 was announced to have obtained approval from
the Spanish Agency of Medicines and Medical Devices for conducting a phase I/II clinical
trial, proving the efficacy of this innovative approach (NCT04808362).

6.1.2. Targeting N-Myc Stability

As for c-MYC, the N-Myc protein degradation is mainly induced by the ubiquitin–
proteasome system [225]. The discovery of new components affecting the N-Myc protein
stability aroused great interest concerning the possibility of developing novel treatments
against many MYC-driven tumours. In this framework, AURKA inhibition is making
inroads as a promising alternative approach in preclinical models of NB. N-Myc is usually
stabilised by direct interaction with AURKA, preventing proteasomal degradation depen-
dent on the SCF-FBXW7 E3 ubiquitin ligase (Figure 2) [83]. Confirming the importance
of this topic, the AURKA inhibitor MLN8237 (also known as alisertib) combined with
irinotecan and temozolomide chemotherapy is under clinical assessment for multiple-
cancer relapsed NB (NCT01601535) (Table 2) [182]. The characterisation of a new class
of conformation-disrupting inhibitors of AURKA that destabilise interactions between
AURKA and N-Myc is enjoying great popularity, proving to be another promising strategy
in the next future operations [226]. As for AURKA, WDR5 is emerging as a novel promising
MYC vulnerability in cancers [227]. Following this approach, many other drugs, such as
the PLK1 inhibitor BI 2356, the HAUSP inhibitor P22077, and the PA2G4 inhibitor WS6, are
providing the basis for drug design of small molecules targeting Myc and N-Myc binding
partners in malignancies driven by MYC family oncoproteins, representing new alternative
forms for the treatment of high-risk NB [203,228,229].

6.2. Targeting Polyamine Metabolism

MYCN-amplified NBs show deregulation of several enzymes involved in polyamine
metabolisms, such as ODC1, SRM, SMS, AMD1, OAZ2, and SMOX [230]. Polyamines are
essential polycations that sustain Myc functions through ionic and covalent activities. The
decreased levels of intracellular polyamines stimulate checkpoints that limit proliferation,
while enhanced polyamine synthesis supports oncogenic proliferation (Figure 2) [231]; this



Int. J. Mol. Sci. 2021, 22, 12883 17 of 33

pathway has aroused attention as a therapeutic target in cancers and other hyperprolif-
erative diseases. Moreover, polyamines are involved in several biological processes, and
one of the most crucial ones is spermidine. Spermidine is needed for hypusinilation of
the translation elongation factor eIF5A, engaged in translating genes containing specific
aminoacidic repeats. Hypusinilated eIF5A is essential for translation of genes encoding
for proteins involved in the cytoskeletal-associated process, RNA splicing and turnover,
DNA binding and transcription, and cell signalling [232]. Notably, ODC1, a key enzyme
in polyamine metabolism which converts ornithine to putrescine, is a direct transcription
target of N-Myc [230,233]. ODC1 is druggable by difluoromethylornithine (DFMO), which
recently completed a phase II clinical trial. DFMO treatment after completion of first-line
therapy was associated with improved event-free and overall survival compared to controls
treated at the same institutions of this clinical trial [233]. The importance of ODC1 was
recently underlined by Gamble et al., showing how a G316A promoter single nucleotide
polymorphism (SNP) differentially affects ODC1 expression, as well as MYCN-mediated
ODC1 transactivation of the E-box region and MYCN oncogenic processes in NB cells
in vitro. The underlying molecular mechanism revealed that the A allele had decreased
affinity for the N-Myc protein, indicating that the region surrounding the E-box is crit-
ical in modulating ODC1 transcriptional function and an influence on DMFO response
(Table 2) [234]. Chemoresistance to DFMO may be due to the upregulation of transporters
that drive polyamine uptake from the extracellular environment. SLC3A2 is a transporter
able to drive intake polyamines into NB cells, and its inhibition by AMXT 1501 in combina-
tion with DFMO was effective in treating NB in mouse models (Table 2) [196]. Combination
therapy of AMXT 1501 and DFMO treatment is currently in phase I trial for solid tumours
(NCT03536728).

6.3. Targeting CDK4/6 and PI3K/AKT/mTOR

On the other hand, N-Myc dysregulation can influence cell cycle progression by upregulating
several genes, such as cyclin D2, E2F proteins, CDK4/6, and CDC2, resulting in the inactivation
of genes involved in the G1 phase and DNA replication (Figure 2) [235,236]. These data assume
additional relevance in preclinical studies and clinics considering the promising effects of CDK4/6
inhibitors on NB and other paediatric cancers [137–139].

One of the principal pathways accountable for pushing the malignant transformation
and drug resistance in solid tumours is the phosphatidylinositol 3-kinase (PI3K)/AKT/
mTOR pathway. PI3K is a class of molecules divided into three categories based on struc-
ture, regulation, and function [237]. This pathway is taking particular attention after the
pioneering work of Opel et al., which showed, in 2007, how the activation of the PI3K–
AKT–mTOR pathway is a common event in NB tumour samples. This pathway drives the
phosphorylation of AKT at threonine 308 (T308) and/or serine 473 (S473), an event that
correlates with less overall survival in NB patients with MYCN amplification, 1p36 chromo-
somal alterations, which drives general decrease in event-free survival [238]. The specific
mechanisms by which the PI3K/AKT/mTOR pathway is activated in NB are still not fully
understood. Accordingly, the actual hypothesis is that PI3K/AKT/mTOR pathway activa-
tion in NB occurs through various mechanisms. Indeed, some scientists advised that the
reduced expression of the tumour suppressor PTEN may diminish PI3K signalling through
reducing negative regulation on the p110 subunit encoded by the PIK3CA gene [239]. This
is supported by several pieces of evidence of reduced PTEN protein levels evaluated in
immunohistochemistry, together with an increase in downstream targets of the PI3K path-
way in NB [240]. Recent investigations have also underscored mutations in the ALK gene,
such as ALK F1174L, capable of increasing, together with N-Myc, the PI3K/AKT/mTOR
pathway in a subset of NB [241]. Hence, this phenomenon seems to also be related to
TrkB/brain-derived neurotrophic, IGF, EGF, PDGF, and VEGF receptor signalling path-
ways [242–246]. To date, the PI3K/AKT/mTOR pathway is arousing interest as a novel
target for potential novel therapeutic approaches. For example, the selective insulin-like
growth factor 1 (IGF-1) receptor inhibitor picropodophyllin (PPP) has been shown to pre-
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vent AKT activation and, consequently, suppress cell proliferation in NB cells. In addition
to that, the dual mTORC1–mTORC2 inhibitor AZD8055, the phase I trial SF1126, the phase
I/II trial copanlisib (PI3K inhibitor), the phase I/Ib trial perifosine (AKT inhibitor), and
many other compounds are emerging as great opportunities to fight this overly aggressive
disease, marking the significant importance of this molecular pathway (Table 2).

6.4. Targeting ALK

Nowadays, mutated ALK is one of the few directly targetable main oncogenes in
NB [247]. As discussed previously, the most common ALK mutations found in NB are
amplification and point mutation, driving its hyperactivation through autophosphorylation
of the tyrosine kinase domain [108]. Several ALK inhibitors have been developed for
cancer therapy, and they have been classified as first-, second-, and third-generation ALK
inhibitors. Here, we report three representative examples of drugs belonging to each of
these categories (Figure 2).

First-generation ALK inhibitor crizotinib is a small-molecule adenosine triphosphate
(ATP)—a competitive inhibitor of ALK kinase activity. Crizotinib showed satisfactory
results in some paediatric cancers carrying gain-of-function ALK mutation. However,
in a phase I clinical trial involving 11 NB patients with known ALK mutation, only one
patient with Arg1275Gln mutation experienced complete regression and two patients with
Arg1275Gln and Phe1174Leu mutation experienced stable disease [248]. This is consistent
with further in vitro data showing enhanced growth inhibition of crizotinib in NB cell lines
with Arg1275 mutation than cell lines carrying other mutations [108]. Indeed, crizotinib
showed minimal effects on ALK Phe1174 mutations, one of the most common ALK muta-
tions seen in NB. The second-generation ALK inhibitor alectinib induces apoptosis in both
ALK wild-type and ALK mutant NB cells, and it is even more effective when combined
with HDAC inhibitor vorinostat (Table 2) [113]. However, to our knowledge, there are no
clinical studies on NB with this drug. Third-generation ALK inhibitor lorlatinib is one of
the most promising molecules for the treatment of ALK-mutated NB. It showed good effi-
ciency in vitro and in vivo in NB cells carrying Arg1275Gln, Phe1174Leu, and Phe1245Cys
mutations, and it is currently in phase I study [109] (NCT03107988 NCT04753658). Notably,
a recent case report of a patient carrying ALK Phe1174Leu mutation showed a complete
response to lorlatinib but, unfortunately, relapsed after 13 months from the treatment
(Table 2) [117].

6.5. Epigenetic Therapies

In compliance with the low frequency of recurrent somatic mutations, NB is mainly
characterised by the dysregulation of a multitude of genetic and epigenetic mechanisms,
leading patients to poor outcomes [249]. This cancer model is an outstanding candidate for
discovering new epigenetic therapies to overcome drug resistance. As previously discussed,
the perturbation of the histone acetylome plays a key role during the whole process of
tumorigenesis; indeed, various active molecules targeting histone acetylation regulatory
enzymes, such as bromodomains (BRDs), histone deacetylases (HDACs), and histone
acetyltransferase (HATs), have been developed to recover abnormal histone acetylation
levels due to the dysregulation of these regulatory networks, and some of them were
already positively evaluated in clinical trials also (Figure 2) [60].

Based on the vast heterogeneity of the HDAC classes, many studies on different
pathologies describe a full-blown uneven cellular response to both the specific and nonspe-
cific HDAC inhibition [196,250]. Consistent with transcriptional addiction, the selective
disruption of CRC was accomplished by targeting the acetylation in cancer. Concerning NB,
various investigations confirmed the therapeutic potential of HDACi in terms of efficacy,
toxicity, and pharmacokinetics (Table 2). One of the key examples is valproic acid, capable
of taking the cells to a marked inhibition of cell proliferation, induction of differentiation,
suppression of the Warburg effect, and apoptosis [176,251,252]. Consistent with the idea
of combinatory drug treatments, valproic acid showed increased therapeutic potential
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in combination with other drugs, such as the DNA-damaging molecule ellipticine [253]
(PMID: 29304031), the COX-2 inhibitor celecoxib, the clusterin inhibitor OGX-01170, the
angiogenic inhibitor ABT-510, or the more commonly used etoposide and cisplatin, thus
proving synergistic effects leading to tumour growth impairment (Table 2) [177,253–256]. A
synthetic lethal screening against MYCN-amplified NB revealed that the HDACi vorinostat
(also known as SAHA) induces dramatic cell death combined with the proteasome inhibitor
bortezomib (BTZ) in part through synergistic activation of BAX. This high-throughput
screening was performed using a library containing 938 FDA-approved drugs for candi-
dates that elicit synthetic lethal effects in MYC-driven NB cells. The combination resulted
in marked tumour suppression in vivo, supporting dual proteasome/HDAC inhibition as
a potential therapeutic approach for MYC-driven cancers [183]. Vorinostat is a selective
class I and II HDAC inhibitor in a clinical trial for NB and various cancer treatments.
Several studies suggested that vorinostat administration results in G2/M phase arrest,
which activates the intrinsic apoptotic pathway [257]. It was also advertised to reduce
VEGF secretion, suggesting a potential antiangiogenic effect [258]. Recent scientific articles
strongly suggested that vorinostat administration, combined with GD2 immunotherapy, is
even more effective in suppressing NB growth in the aggressive orthotopic model, resulting
in higher animal survival rates, thus supplying a solid rationale for clinical testing in NB
patients [184,259]. Moreover, vorinostat can also boost up the antitumour effect of other
molecules, such as fenretinide, the pan-CDK inhibitor flavopiridol, and the ALK inhibitor
alectinib (Table 2) [260–262].

Finally, recent studies suggested how HDAC inhibition can drive the enhancer remod-
elling and suppression of oncogenic super-enhancers by disrupting the three-dimensional
structure of the chromatin looping and by depleting transcription factors on the same DNA
sites [100,263].

6.6. Immuno Cell Therapy: Targeting GD2

Immuno-targeting MYCN-amplified NBs are challenging, since N-Myc is involved
in downregulation of the major histocompatibility complex (MHC) class I antigen ex-
pression, leading to escape from cytotoxic T cells and interferon-mediated immune re-
sponse [264,265]. The relationship of MYCN with the tumour immune microenvironment
has only begun to be explored [264]. The tumour microenvironment of MYCN-amplified
NBs contains a significantly lower number of immune cells compared to the MYCN-
nonamplified counterpart [266]. For these reasons, the authors of the above-mentioned
review describe MYCN-amplified NBs as “cold” and immune exclusive, while MYCN-
nonamplified are referred to as significantly inflamed or “hot” [264]. Based on this evidence,
a more profound comprehension of the microenvironment’s role in NB disease could drive
novel strategies for the cure of this childhood malignancy (please refer to PMID: 32722460).
In fact, the lack of antigen presentation due to MYCN overexpression has been successfully
circumvented by developing antibodies against the targetable ganglioside GD2 [267].

Gangliosides are modified sphingolipids highly expressed from cancer cells. Gen-
erally, gangliosides are not considered for target therapy because they are also found in
healthy tissues. Exceptionally, the ganglioside GD2 is highly expressed on the surface of
NB cells, and its expression in normal tissue is limited at a relatively low level to neurons,
skin melanocytes, and peripheral nerve fibres (Figure 2) [268]. Moreover, GD2 is virtually
expressed in all NBs, regardless of the grade and staging of the tumour [269–271]. These
characteristics make GD2 an exciting target for immunotherapy. Currently, dinutuximab is
the only monoclonal antibody approved by FDA and EMA for anti-GD2 immunotherapy
in NB. It is used in combination with granulocyte-macrophage colony-stimulating factor
(GM-CSF), interleukin-2 (IL-2), and 13-cis-retinoic acid (RA) for the treatment of high-risk
NB patients who achieve at least a partial response to prior first-line therapy [272]. Din-
utuximab is a chimeric antibody (mouse–human) based on the structure of the murine
monoclonal antibody 14G2a. The structural characterisation of the 14G2a antibody–antigen
complex led to the generation of a specific single-chain variable fragment (ScFv), a useful
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tool for developing new biotechnological therapies [273]. However, limiting factors in GD2
immunotherapy are probably due to the molecular mechanisms regulating GD2 expression
in NB that are not yet fully understood (Table 2) [165,166,274]. Recent evidence suggests
that the enzymes involved in GD2 biosynthesis are controlled by another druggable target
in NB: HDACs activity. Kroesen and colleagues demonstrated that expression of GD2 is
enhanced by HDACi vorinostat, pan HDACi givinostat, class-I inhibitor entinostat, and
an HDAC1,2-specific inhibitor. Their data highlighted that vorinostat induces higher GD2
expression, increasing GD2 synthase protein levels without altering its mRNA levels in
the NB cell line, suggesting that HDACs may act at the post-translational level of this
enzyme [184]. Moreover, the same research group found that cells that were treated with
vorinostat, together with the cell-permeable sialic acid Ac5Neu5Ac, increased the expres-
sion of sialyltransferases ST3GAL5 and ST8SIA1, generating GM3 and GD3 gangliosides,
the necessary precursors for GD2 synthesis [275]. The combined treatment with engineered
sialic acid and HDACi may further increase the efficacy of current and future GD2-targeted
immunotherapy in NB patients.

7. Conclusions

NB is one of the topmost common neurogenic extracranial solid cancers occurring
in childhood and infancy. The extreme heterogeneity of this pathology is still considered
a significant challenge to overcome and assumes a relevant aspect for developing novel
therapeutic strategies. Several new pieces of evidence show the critical level of plasticity
of this neoplasia, unveiling the role of numerous layers of regulation that drastically
influence patient outcomes. This review aims to provide a comprehensive blueprint
of the transcriptional regulation bearing NB initiation and progression, unravelling the
complexity of this pathology’s key oncogenic and tumour suppressive regulatory networks.
Some interesting points emerged from our analysis.

Firstly, while most familial NB cases are characterised by a “specific” subset of ge-
netic alterations, the same cannot be said regarding the sporadic ones. Hence, the vast
majority of NB patients are distinguished by multiple levels of epigenetic alterations. It
is important to underline how this sort of dichotomy between these two subgroups of
NBs is just apparent; indeed, the most severe NB cases are characterised by both genetic
and epigenetic aberrations, resulting in widespread deregulation of gene expression pro-
files and disruption of these signalling networks that control proliferation and cellular
response. These data lay the groundwork for evaluating the whole contribution of these
intricate networks of regulation, which influence the destiny of the patients like a sin-
gle far-reaching entity. Secondly, most NBs include tumour cells with diverging gene
expression profiles: the two main subgroups are the undifferentiated mesenchymal (MES)
cells and the committed adrenergic (ADRN) ones, which can interconvert and resemble
from different lineage differentiation stages. Once again, NB’s identities are not governed
by small groups of macromolecules, but by a set of core regulatory circuitries of lineage
transcription factors associated with super-enhancers and several protein complexes that
drastically influence the fate of the cell. This new evidence demonstrates that cancer cells’
diverging transcriptional states match with the normal lineage development stages. In
particular, lineage transcription factors can lead to transdifferentiation via remodelling the
epigenetic and transcriptional landscapes, mimicking the natural interconversion. All this
information assumes additional relevance considering the different response of ADRN
and MES cells to therapeutics, giving more strength to studying these complex grids of
regulation. Third, the more profound investigation of these new vulnerabilities paves the
way for developing novel therapeutic approaches, bypassing the difficulties in obtaining
compounds against molecules complex to target, such as several master TFs like the same
N-Myc protein. The significance of a network-based targeted therapy in neuroblastoma
could be of great importance considering the standard strategies’ weakening approach in
treating high-risk patients (general surgery, chemotherapy, radiotherapy), distinguished by
metastatic and aggressive tumours. Although the interplay between regulatory networks
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and oncogenesis has been unequivocally described, more in-depth research into their
role in modulating cancerous-unrelated signalling pathways still needs to be carried out.
According to the novel findings summarised above, discovering this intricate reticulum of
interactions represents invaluable predictive factors for early-onset disease detection.
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