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A B S T R A C T   

In the context of Alzheimer’s disease (AD), in silico research aims at giving complementary and better insight into 
the complex mechanisms which determine the development of AD. One of its important aspects is the con-
struction of macroscopic mathematical models which are the basis for numerical simulations. In this paper we 
discuss some of the general and fundamental difficulties of macroscopic modelling of AD. In addition we 
formulate a mathematical model in the case of a specific problem in an early stage of AD, namely the propagation 
of pathological τ protein from the entorhinal cortex to the hippocampal region. The main feature of this model 
consists in the representation of the brain through two superposed finite graphs, which have the same vertices 
(that, roughly speaking, can be thought as parcels of a brain atlas), but different edges. We call these graphs 
“proximity graph” and “connectivity graph”, respectively. The edges of the first graph take into account the 
distances of the vertices and the heterogeneity of the cerebral parenchyma, whereas the edges of the second 
graph represent the connections by white-matter fiber pathways between different structures. The diffusion of 
the proteins Aβ and τ are described through the Laplace operators on the graphs, whereas the phenomenon of 
aggregation of the proteins leading ultimately to senile plaques and neuro-fibrillar tangles (as already observed 
by A. Alzheimer in 1907) is modelled by means of the classical Smoluchowski aggregation system. 

S T A T E M E N T  O F  S I G N I F I C A N C E   

Alzheimer’s disease is a neurodegenerative disease leading to dementia with huge economic and social costs. 
Despite a fast growing amount of clinical data, there is no widely accepted medical treatment to stop or slow 
down AD. It is generally accepted that two proteins, beta amyloid and tau, play a key role in the progression of 
the disease, and the edge of the current biomedical research focuses on the interactions of the two proteins also in 
the perspective of the production of new effective drugs. In this context, flexible mathematical models may give 
better and deeper insight by testing different clinical hypotheses.   

1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease leading to 
dementia, through a progressive decline in memory and other cognitive 
functions. Presently there are more than 50 million people suffering of 
AD and related disorders and by 2050 this figure is expected to increase 
to 150 million. 

Despite a fast growing amount of clinical data, there is no medical 
treatment to stop or slow down AD and many questions on the causes of 
AD remain unanswered. In this context macroscopic mathematical 

modelling and numerical simulation (so-called in silico research) are 
natural tools to provide additional insight, for example by simulating 
specific therapies or modelling hypotheses. Recently several such 
models were proposed. An exhaustive review of existing mathematical 
models for AD up to 2018 can be found in [12], and among more recent 
contributions to macroscopic modeling we mention [3,4,21,23,29,38, 
57,58,65,66,70] and references therein. Some of these models were 
successfully implemented to provide realistic simulations about the 
temporal and spatial evolution of AD. 

AD is one of the neurodegenerative diseases involving more than one 
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neurotoxic protein: beta-amyloid (Aβ) and pathological tau (τ). In his 
famous experimental post-mortem observations in 1907, Alois Alz-
heimer discovered extracellular plaques and intracellular neurofibrillary 
tangles (NFTs). By now we know that plaques contain Aβ and NFTs 
consist of pathological τ. There has been (and there still is) a lot of sci-
entific debate on the role of the two proteins in AD and up to date Aβ and 
τ remain the major therapeutic targets for the treatment of the disease. 
Recent literature suggests that the interplay between the two proteins, as 
well as its timing, might be crucial for the development of the disease 
and should be taken into account when developing new therapies (see e. 
g. [11,22,35,37,43,55] and also the current debate on the perspectives 
of the use of aducanumab [56]). 

In Section 2 we provide a brief review of the most significant prop-
erties of Aβ and τ. In Section 3 we discuss general but crucial difficulties 
when aiming to produce a macroscopic mathematical model of AD. 
Whenever feasible, we indicate possible strategies to overcome these 
difficulties. 

Then, the core of the paper consists of Sections 4 and 5, where we 
discuss the propagation of τ from the entorhinal cortex to different areas 
of the brain and present a flexible mathematical model, taking into ac-
count the recent biomedical literature on the subject. 

2. Beta amyloid and tau protein 

Microscopically, monomeric Aβ peptides originate from the proteo-
lytic cleavage of a transmembrane glycoprotein, the amyloid precursor 
protein, at the neuronal membrane. In healthy brains monomeric pro-
duction and clearance yield an equilibrium state, while in AD, for un-
known reasons, there is an imbalance between produced and cleared Aβ. 
In addition, the level of the neural activity plays a role in the Aβ pro-
duction (see, e.g., [11,13,17]). 

Monomeric Aβ diffuses within the cerebral parenchyma. In addition, 
aggregation and fragmentation processes lead to the formation of toxic 
soluble oligomers and, eventually, long, insoluble amyloid fibrils which 
accumulate in senile plaques (those observed by Alzheimer). Plaques are 
initially deposited in the neocortex, particularly in medial prefrontal and 
medial parietal regions. Cortical plaques are widespread many years 
before clinical symptoms emerge, and both autopsies and Aβ positron 
emission tomography (PET) suggest that up to 40% of cognitively 
normal individuals have profuse plaque deposition in the brain [11]. 

Endogenous τ protein is mainly found within axons where it stabi-
lizes microtubules, but is also present in smaller amounts in dendrites 
and in the extracellular space [77]. In AD and other tauopathies the τ 
protein becomes pathological due to two transformations, hyper-
phosphorylation and misfolding (see e.g. [28]). In the disease state, the 
amount of hyperphosphorylated τ is at least three times higher than that 
in normal brains [34]. Hyperphosphorylation of τ negatively regulates 
the binding of τ to microtubules, compromises microtubule stabilization 
and axonal transport, and enhances the capacity of τ to self-assemble 
and form aggregates from oligomers to fibrils, eventually leading to its 
deposition as NFTs [27]. After 60 years of age, tau aggregates are 
commonly found in the entorhinal cortex (EC). From there it may 
propagate first to the hippocampus (HC) and then to limbic and asso-
ciation areas. During this process AD changes from an asymptomatic and 
preclinical phase to that of a devastating dementia. It is known that 
excess intracellular τ aggregates can be released into the extracellular 
space and uptaken by surrounding neurons. They induce the fibrilliza-
tion of endogenous τ, which suggests a role for τ-seeding in neuro-
degeneration [30]. In the sequel we shall ignore that pathological τ 
appears in several isoforms, with different molecular structures, since 
this would pertain to a space scale that is not the one we are interested 
in. 

In AD both soluble Aβ oligomers and pathological τ oligomers are 
neurotoxic and cause synaptic dysfunction, NFT mediated neuron loss 
and behavioral deficits. The precise role of Aβ and τ in this process is still 
not well understood, but in the literature various synergetic actions of 

Aβ and τ were suggested. For example, it is well-known that Aβ drives 
tau-pathology by causing hyperphosphorylation of endogenous τ [35], 
but in general there are many other possible interactions between Aβ 
and τ (for a recent and exhaustive review we refer to [11]). 

3. Modelling: a first list of difficulties and challenges 

Let Ω⊂R3 represent a part of gray matter of the brain. The natural 
variables to build a mathematical model are the molar concentrations of 
the several monomers and oligomers, which are functions of the position 
x ∈ Ω and time t. In particular we introduce  

• u1,⋯,uM : Ω× (0,T]→R, the molar concentrations of Aβ oligomers; 
u1 refers to monomers, u2,⋯, uN to soluble oligomers, and uN+1,⋯uM 
to insoluble Aβ oligomers, often contained in amyloid plaques 
(subscripts refer to the “length” of the oligomer);  

• w1, ⋯, wM̃ : Ω× (0, T]→R, the molar concentrations of extracellular 
pathological τ oligomers; w1 refers to monomers, w2,⋯,wÑ to solu-
ble oligomers, and wÑ+1

,⋯,wM̃ to insoluble pathological τ 
aggregates;  

• W1,⋯,WM̃ : Ω× (0, T]→R, the molar concentrations of intracellular 
pathological τ oligomers; W1 refers to monomers, W2,⋯,WÑ to 
soluble oligomers, and WÑ+1

,⋯,WM̃ to the insoluble oligomers, 
often contained in NFTs. 

The idea of a macroscopic model is to write a system of reaction 
diffusion equations for the concentrations, where diffusion refers to 
spatial spreading of the proteins in the brain and the reaction terms 
represent specific processes such as aggregation, fragmentation, protein 
production, clearance etc. If necessary, equations for additional vari-
ables may be added to the system, such as the concentrations of intra-
cellular Aβ [61] and endogenous tau. 

In the present section we describe some of the major difficulties 
encountered in AD modelling. 

3.1. Parameter identification 

Reaction diffusion equations with many equations contain many 
parameters. On one hand, it is necessary to identify them in order to 
have reliable numerical simulations. On the other hand, too many pa-
rameters enhance the danger of overfitting. 

For instance, in a future paper dedicated to numerical simulations of 
the mathematical model presented in Section 5, we shall deal with the 
problem of parameter identification. Here we limit ourselves to some 
preliminary remarks. 

The maximal length of soluble Aβ oligomers (N) is an example of a 
parameter for which an approximate value is known: N is usually taken 
between 50 and 60 [49]. As for Ñ, the number maximal length of soluble 
pathological τ oligomers, the approximate value is under debate: using 
atomic force microscopy Maeda et al. report that filamentous τ is typi-
cally constituted of about 40 monomer weights [44], but the identifi-
cation of Ñ is not straightforward (see,e.g. [31]). 

The choice of the values of M and M̃ is less critical: we simply assume 
that plaques and NFTs do not contain Aβ and τ oligomers longer than 
some finite number (M, M̃). 

Once we have established approximate values of N, Ñ, M and M̃, we 
should model nucleation-elongation-fragmentation mechanisms for 
both Aβ and τ (here nucleation means that the concentration of mono-
mers must be large enough to trigger the aggregation from monomers 
into oligomers, the so-called elongation phase). These are quite 
complicated processes since they involve a variety of chemical protein 
structures, but even if we simplify them and use the so-called Smo-
luchovski equations to model aggregation and fragmentation, we end up 
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with a system which contains lots of parameters, namely all aggregation 
and fragmentation rates which express the probability that oligomers of 
length k and m combine to form an oligomer of length k +m or viceversa. 
They can be estimated from experimental data (see for example [41,48, 
52,57,66,67,74]). It remains unclear whether experimental data from in 
vitro studies can be readily applied to in vivo scenarios, where the ki-
netic rates might plausibly be functions of the brain’s cerebral milieu, 
neural activity and other physiological neural processes. 

Of course the problem of parameters identification is far more gen-
eral than the few examples given above, and below we shall encounter 
many other parameters. If it is not possible to obtain precise values or 
reliable approximations, it will be of great importance to estimate at 
least their order of magnitude. and consider the robustness of numerical 
simulations inside the given parameter range. 

3.2. The health state of neurons 

Certain processes in AD depend on the local health state of the 
neurons. For example, the imbalance between production and clearance 
of Aβ monomers increases when the neurons are damaged. In most 
existing models this problem is not addressed. In [4] a mathematical 
artifact was introduced to deal with it: let a ∈ [0,1] be the degree of 
malfunctioning of a neuron and let, roughly speaking, f(x, a, t) be the 
probability density of the degree of malfunctioning a ∈ [0, 1] of neurons 
located at a point x at time t, i.e. f(x, a, t)da represents the fraction 
density of neurons at a point x and time t with degree of malfunctioning 
between a and a + da (see [5] for a precise formulation in terms of 
probability measures). We assume that a close to 0 stands for “the 
neuron is healthy” whereas a close to 1 stands for “the neuron is dead”. 
The parameter a, although introduced as an abstract mathematical 
artifact, can be directly compared with and related to medical images 
from Fluorodeoxyglucose PET [47]. 

The introduction of f leads to an additional equation in the system, a 
first order conservation law in a and t: 

∂tf + ∂a(vf ) = 0.

Here v = v(x, a, t) ≥ 0 is the deterioration rate, which, as we shall see 
below, is used to model the effect of neurotoxic processes (needless to 
say that this will lead to new parameters......). 

3.3. Temporal multiscales 

There are at least two different time scales in AD:  

• a short time scale (hours) for protein agglomeration (e.g. amyloid 
plaques are formed within 48 h, see e.g., [46]), spatial protein 
spreading in the extracellular space, and many other physical 
processes;  

• a long time scale (months) for the evolution of the disease. 

Dealing correctly with this problem is a fundamental questions in AD 
modelling. For instance, on one hand the spatial spreading of Aβ in the 
extracellular space occurs in the fast time scale (the cerebral liquid in the 
extracellular space is renewed several times a day) while, on the other 
hand, the deposition of amyloid plaques is known to be strongly local-
ized in the brain. So it seems that toxic Aβ oligomers, despite the short 
time scale of their spreading, do not rapidly reach other parts of the 
brain. What is the explanation of this apparent contradiction? 

It would be possible to use parameter fitting to impose a slow 
spreading of oligomers. However, we are interested in “answers from 
first principles”, hoping that they give more insight in some of the 
fundamental processes in AD and their interaction. One possibility is the 
introduction of a threshold phenomenon: it could very well be that 
soluble Aβ oligomers become toxic when their molar concentration ex-
ceeds a positive threshold value. So if the Aβ concentration exceeds in a 

small region the threshold value, after a little spatial spreading its value 
will go below threshold again. In addition clearance phenomena could 
enhance the tendency to turn below threshold. One could also assume 
that the aggregation of monomers requires a critical monomer concen-
tration (the so-called nucleation phenomenon, see e.g. [49], [13]). 

Of course these are only possible explanations, and we believe that a 
better understanding and correct treatment of the temporal multiscales 
is an important challenge in AD modelling. 

3.4. Spatial multiscales 

Aβ usually first appears in frontal regions and subsequently spreads 
to allocortical, diencephalic, brainstem, striatal and basal forebrain re-
gions [72]. Neurofibrillary tangles appear first in locus coeruleus, then 
entorhinal cortex, then spreads into hippocampus, amygdala, temporal 
lobe, basal forebrain and association areas, in order [9,10,72]. Disease 
factors can directly propagate along neural connections, underpinned by 
prion-like protein aggregation followed by their trans-synaptic trans-
mission [14,25,36]. After initial seeding and local aggregation, mis-
folded τ might then propagate through neuronal pathways, transmit 
trans-synaptically and thus spread throughout the brain [79]. Based 
on emerging bench science, it is clear that spatial diffusion alone might 
not be the most appropriate means of capturing protein spread along 
fibers, since active axonal transport is commonly expected to be the 
dominant manner for the intra-axonal movement of tau and amyloid 
prior to their transsynaptic transmission [16,53]. Under this mode, the 
process of spread will most likely involve the strength of interregional 
connectivity rather than its distance along fiber projections. A recent 
study mathematically modeled these processes in a closed axonal system 
and found that the microscope processes of aggregation, diffusion and 
axonal transport occur at relatively faster timescales (days) compared to 
overall disease progression [73]. 

Thus there are at least two different spatial scales: the typical scale of 
the extracellular space where Aβ and extracellular τ spread, and a much 
smaller scale corresponding to the typical thickness of neurons where 
the intracellular τ spreads. Since extra- and intracellular proteins 
interact, we must decide how to combine these different spatial scales. 

There are two ways to proceed. The first one is to use the concen-
trations uk, wk and Wk as functions of the continuous variable x ∈ Ω, and 
work with the resulting system of reaction diffusion equations. There are 
at least two contraindications to do so. The first one is the way in which 
intracellular τ spreads through the neural network, characterised by the 
connectivity of different regions by neural bundles rather than their 
physical distance. In the context of a continuous spatial variable this 
requires the use of nonlocal operators. The second (and more important) 
one is the well-known fact that numerical simulations of PDE systems 
with many equations in 3D is computationally very expensive. 

The second way to proceed is adopted in most computational models. 
As the starting point we consider the neural network in which intra-
cellular τ spreads [1] and we introduce a parcellation of the brain, i.e. a 
subdivision {Ωi, i = 1,⋯n} of the human cerebral cortex into a patch-
work of anatomically and functionally distinct areas, known as cortical 
areas. Following the approach proposed in [59], we associate with the 
parcellation a network of white-matter fiber pathways connecting the 
cortical areas. As in [24,29,57,59] we identify this network with a finite 
weighted graph G = {V,E}. Here V is a set of vertices, {x1,⋯,xn}, where 
xi ∈ Ωi represents the ith cortical or subcortical gray matter structure (i. 
e. the ith parcel). The edges eij ∈ E represent the connections by 
white-matter fiber pathways between the ith and the jth structure. 
Coherently, we introduce a family of coefficients πij that measure how 
much the ith cortical area is connected with the jth cortical area. The 
coefficients πij are called the connectivity weights of the graph G. In this 
way we build a brain network in which the vertices xi come from the 
parcellation of brain MRI and the connectivities πij are measured by fiber 
tractography. We call G the connectivity graph, which will be used to 
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describe the spreading of intracellular τ hrough the neural network. 
Considering xi as a discretization of the continuous variable x, the 

next step is natural: we use xi to discretize the PDEs for uk and wk. In this 
way we obtain discretized equations for uk and wk on a second graph, Γ 
= {V,F}, with the same vertices as G but with a new family F of edges 
that take into account the distances of the vertices and the heterogeneity 
of the cerebral parenchyma. We assume that, roughly speaking, two 
vertices are adjacent if they are “close enough” and call Γ the proximity 
graph, and we associate to Γ a family of proximity weights, π̃ij. 

As in [21,57,59], the map of “connectomes” can be extracted from a 
dataset of the MRI of a cohort of healthy subjects and diffusion-weighted 
MRI (dMRI) scans acquired previously and processed with a custom 
pre-processing connectomics pipeline. The proximity graph Γ too can be 
readily inferred from structural MR images of the brain, followed by 
simple morphological operations that yield the distance between par-
cels, whether in terms of Euclidean distance, or distance along the 
cortical ribbon. For the sake of simplicity, we assume that both G and Γ 
are simple graphs, i.e. there are no loops or multiple edges connecting 
two nodes. We say that two vertices xm, xj are adjacent in G (in Γ) if they 
are connected by one edge in E (in F, respectively), and write xj∼Exm 
(xj∼Fxm, respectively). 

Finally, we observe that the discretization in x eliminates from the 
system almost all PDEs: only the conservation law for f(xi,a,t), where xi 
is simply a parameter, remains. Here f(xi, a, t)da represents the fraction 
of neurons in the ith parcel which at time t have a degree of malfunc-
tioning between a and a+ da. 

4. A specific modelling problem 

The difficulties described in the previous section are very general and 
must be dealt with before considering more specific problems. In this 
section we give an example of a specific macroscopic model and grad-
ually discuss the additional questions and difficulties which arise. 

The specific problem we have in mind is the following. According to 
Braak’s staging system I–VI [8], the entorhinal cortex (EC) is the first 
region in the human brain where tau aggregates appear. This commonly 
occurs after the age of 60, and if tau remains confined to the EC and does 
not spread to other regions, the disease does not develop. However, in 
AD misfolded tau propagates slowly (i.e. in the long timescale) from the 
EC to the hippocampal region (HC). Microglia are positively correlated 
with tau pathology, but their involvement in tau propagation is un-
known [11]. On the basis of an experiment on mice, Asai et al. [2] 
suggested that depleting microglia dramatically suppresses the propa-
gation of tau from EC to HC. They also showed that microglia spread tau 
via exosome secretion, and that inhibiting exosome synthesis signifi-
cantly reduces tau propagation in vitro and in vivo. 

Summarizing, the specific problem is to see if mathematical model-
ling and numerical simulation can shed some light on the question 
concerning which processes drive tau propagation from the entorhinal 
cortex to the hippocampal region. 

In the following subsections we introduce the major modelling 
questions of the problem. In Section 5 we present and briefly discuss a 
mathematical system to describe the model. In Section 6 we draw some 
first conclusions and discuss possible future computational studies. 

4.1. Microglia 

The first thing to be done is including microglia in the model. Glial 
cells (astrocytes, microglia etc.) are the primary phagocytes in the brain 
and play a fundamental role in clearance processes. They phagocytose 
dying cells, debris and protein aggregates, but also living neurons or 

synapses. They move in the extracellular space towards sites containing 
soluble or aggregated oligomers of Aβ or tau, thereby causing inflam-
mation. 

We denote by ω(x, t) the density of activated microglia. It would be 
possible to construct a differential equation for ω, but for the sake of 
simplicity we assume that ω depends instantaneously on the molar 
concentrations of Aβ and tau oligomers: 

ω = ω
(
u2,⋯, uM ,w2,⋯,w

M̃
,W2,⋯,W

M̃

)

The simplest choice is a linear dependence ω on these quantities, 

ω =
∑M

i=2λiui +
∑M̃

i=2(μiwi +μ̃iWi), where the coefficients λi, μi and ̃μi are 
parameters which need to be identified. To fix the ideas we could take 
μ = μ̃ = 0 and assume that glial cells are mainly activated by soluble 
neurotoxic Aβ oligomers and, indirectly, by Aβ aggregates through the 
release of cytokines by senescent oligodendrocytes near plaques [80]: 

ω =
∑M

i=2
λiui. (1) 

The phagocytic activity of microglia is represented by a clearance 
term in the equations for soluble oligomers, proportional to the molar 
density of the oligomer with a proportionality factor depending on ω. 

The paper by Asai et al. suggests that microglia might enhance tau 
propagation. Citing [2], “the evolution of Braak staging, which shows 
lateral propagation of tau pathology in neurons that are not connected 
by synapses, such as those from the transentorhinal cortex to higher 
order sensory association areas of the occipitotemporal gyrus in Braak III 
stage Alzheimer’s disease.” This means that tau spreading does not occur 
only along the connectivity graph, but also along the proximity graph. 
This leads to another question: how does extracellular tau contribute to 
tau propagation? A key role could be played by the so-called processes of 
“seeding, release and uptake”, combined with glial activity. 

4.2. Seeding, release and uptake 

Pathological tau proteins, in particular short fibrils, are seed 
competent, i.e. able to induce misfolding to endogenous tau monomers. 
This so-called seeding process is known to occur inside neurons, and is 
often referred to as prion-like propagation of tau pathology [27]. 
Prion-like does not only concern synaptic transmission of tau pathology. 
Indeed, experimental evidence suggests that excess pathological tau 
protein is released from neurons into extracellular space, spreads be-
tween cells, and is uptaken by neighbouring neurons where it recruits 
and misfolds endogenous tau monomers [19]. Since we are interested in 
lateral propagation of tau pathology in neurons which are not connected 
by synapses, we are particularly interested in this second type of prop-
agation which involves extracellular tau, i.e. propagation based on a 
combination of seeding, release and uptake. Observe that we did not 
include endogenous tau in the model (although this would be possible). 
For the sake of simplicity we assume that endogenous tau is relatively 
abundant with respect to pathological tau, whence we may neglect the 
dependence of the seeding process on the amount of available endoge-
nous tau. It is challenging to understand if seeding also occurs in the 
extracellular space, but the mathematical model is flexible enough to 
include this possibility. 

Before proposing a precise mathematical model, we discuss some 
possible mechanisms which play a potential role in the problem we have 
posed in this section. The list of mechanisms is certainly not exhaustive. 
For example, it could very well be that individual and partially genetic 
factors decide whether tau propagation from EC to HC occurs or does 
not. 
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As we have already discussed in Section 4.1, the experiments on mice 
by Asai and his collaborators suggest that microglia mediate tau- 
propagation in the extracellular space [2,11]. Following Bushe and 
Hyman [11], microglia migrate toward tau-positive neurons and cluster 
around tangles. They can uptake seed-competent tau [7], but are not 
always able to decompose it effectively [32] and therefore they may 
release tau in a more bioactive form Busche and Hyman [11]. Activated 
microglia may also package tau into exosomes, and, when near to 
tau-containing neurons, may form somatic junctions with neurons 
through which tau might be transmitted between cells [15]. In addition, 
microglia enhance tau phosphorylation through cytokine signaling [6, 
45]. 

Another potentially important mechanism for enhanced tau- 
propagation is the fragmentation of tau aggregates combined with 
seeding. Since relatively short soluble tau oligomers are the most toxic 
ones, this process causes an important amplification of seed-competent 
tau and strongly enhances toxicity [26,41,63,74–76]. Even a moderate 
increase in fragmentation rate can have important consequences for the 
amount of seed-competent tau [39]. 

The flow of cerebral fluid plays an important role in the clearance of 
toxic substances from the brain, in addition to the glial cells discussed 
before. The cerebral fluid is constantly refreshed, and therefore toxic 
proteins contained in the liquid are eliminated from the brain. It is 
generally accepted that clearance is age-dependent, which at least 
partially explains why sporadic AD occurs more frequently in elder 
people. Not all proteins are eliminated in the same way. For instance, it 
was observed [18] that tau is more stable in the presence of Aβ and 
therefore extracellular soluble toxic τ-oligomers have a substantially 
longer half-life time than toxic Aβ oligomers. In addition, the cerebral 
fluid cannot clear everything. For example, amyloid plaques are not 
soluble and cannot be removed by it. The easiest way to model clearance 
by cerebral fluid is the introduction of a sink term in the equations. 
Otherwise one should face the challenge to model the fluid flow itself, a 
far from trivial issue. We refer for instance to [69] and the references 
therein, as well as [40]. In particular there is a lot of debate, in the 
context of the so-called glymphatic system [33,71], about the character of 
the flow: is it mainly diffusive or convective? 

Finally, we discuss possible synergistic actions of Aβ in tau propa-
gation, which seem to be particularly important in the early phase of AD 
[11]. Soluble Aβ causes neuronal hyperexcitability, which increases the 
steady-state levels of extracellular tau in vivo [50], in particular the 
attenuation of entorhinal cortex hyperactivity reduces Aβ and tau pa-
thology, and chronic chemogenetic attenuation of Aβ-associated hy-
peractivity reduces pathological tau spread into downstream 
hippocampus [60]. Indeed tau can be secreted into the extracellular 
space from neurons independently from cell death and the elevation of 
tau in cerebrospinal fluid is associated with AD and is linked to Aβ 
deposition [78]. Tau release occurs within hours in response to neuronal 
activity, but the elimination rate of tau from the extracellular 
compartment and the brain is slow (half-life of about 11 days). This slow 
turnover will delay the elimination of extracellular tau and, as a 
consequence, it may affect its aggregation and synaptic transmission of 
tau pathology. Finally, we note that Aβ can also directly seed tau [42, 
68]. 

5. The mathematical system 

In this section we transform the problem described in the previous 
section in a system of equations. We recall that we have introduced the 
weighted connectivity graph G and weighted proximity graph Γ with 
vertices V = {xi ∈ Ω; i = 1, ⋯, n}. Their edges are characterized by a 
family of coefficients πij (respectively π̃ij) which determine a weighted 

Laplacian on the graph, ΔG (respectively ΔΓ) (see [57,59,65]). 
More precisely, If xm is a vertex of V, we set 

πm = π(xm) :=
∑

xj∼Exm

πm,j > 0 and π̃m = π̃(xm) :=
∑

xj∼F xm

π̃m,j > 0.

We define the so-called graph Laplacian operator, ΔG as follows. Let g(x)
be any function defined over the vertices of the graph. Then, for any m,

j with 1 ≤ m, j ≤ n : 

ΔGg(xm) =
1

πm

∑

xj∼Exm

(
g(xm)− g

(
xj
))

πm,j . (2)  

The graph Laplacian ΔΓ is defined analogously. 
The progression of AD is determined by the deterioration rate v (see 

(6) below), which is contained in the differential equation for f : 

∂t f + ∂a(vf ) = 0 in V × [0, 1] × (0,T]. (3)  

With the notations of Section 3, below we shall discuss the following two 
coupled systems in V × (0,T] for Aβ and τ concencention: the first system 
deals with extracellular protein concentrations (here H is the Heaviside 
function and δu, is the nucleation threshold for extracellular Aβ). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∂tu1−d1,AβΔΓu1=−a1,1u2
1H(u1−δu)−u1

∑M−1

j=2
α1,juj−σ1,Aβu1+F (f )(4a)

ε∂tu2−d2,AβΔΓu2=
1
2a1,1u2

1H(u1−δu)−u2
∑M−2

j=1
α2,juj−

1
2b1,1u2

+
∑M−2

j=1
b2,ju2+j−σ2,Aβu2(4b)

ε∂tum−dm,AβΔΓum=
1
2
∑m−1

j=1
αj,m−jujum−j−um

∑M−m

j=1
αm,juj−

1
2
∑m−1

j=1
bm−j,jum

+
∑M−m

j=1
bm,jum+j−σm,Aβum(2≤m≤N)(4c)

ε∂tum=
1
2

∑m−1

j=1

min{j,m−j}≤N

αj,m−jujum−j−um
∑min{N,M−m}

j=1
αm,juj−

1
2
∑m−1

j=1
bm−j,jum

+
∑M−m

j=1
bm,jum+j(N<m≤M)(4d)

ε∂tw1−d1,τextΔΓw1=−σ1,τextw1+κ1,rW1−κ1,uw1+
∑̃N

j=2
νj,ext(ω)wj(4e)

ε∂twm−dm,τextΔΓwm=−σm,τextwm+κm,rWm−κm,uwm

(
2≤m≤Ñ

)
(4f)

ε∂twm=−σm,τextwm+κm,rWm

(
Ñ<m≤M̃

)
(4g)

The second system deals with the concentration of the intracellular 
τ-protein (here δW is the nucleation threshold for intracellular τ). 

M. Bertsch et al.                                                                                                                                                                                                                                 



%UDLQ 0XOWLSK\VLFV � ������ ������

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∂tW1 − εd1,τΔGW1 = −α̃1,1W2
1 H(W1 − δW) −

∑̃M−1

j=2
α̃1,jWj

+
∑̃M−1

j=1
b̃1,jW1+j − σ1,τ intW1 − κ1,rW1 + κ1,uw1 +

∑̃N

j=2
νj,intWj

+CW
∑N

j=2

∑

dG(xk ,xi)<R

(
uj(xk, t) − Uj

)+

(5a)

ε∂tW2 − εd2,τΔGW2 = 1
2α̃1,1W2

1 H(W1 − δW) − W2
∑̃M−2

j=1
α̃2,jWj −

1
2b̃1,1W2

+
∑̃M−2

j=1
b̃2,jW2+j − σ2,τ intW2 − κ2,rW2 + κ2,uw2 (5b)

ε∂tWm − εdm,τΔGWm = 1
2
∑m−1

j=1
α̃j,m−jWjWm−j − Wm

∑̃M−m

j=1
α̃m,jWj

−1
2
∑m−1

j=1
b̃m−j,jWm +

∑̃M−m

j=1
b̃m,jWm+j

−σm,τ intWm − κm,rWm + κm,uwm

(
2 ≤ m ≤ Ñ

)
(5c)

ε∂tWm = 1
2

∑m−1

j=1

min{j,m−j}≤Ñ

α̃j,m−jWjWm−j − Wm
∑min{Ñ,M̃−m}

j=1
α̃m,jWj

−1
2
∑m−1

j=1
b̃m−j,jWm

+
∑̃M−m

j=1
b̃m,jWm+j − σm,τ intWm − κm,rWm

(
Ñ < m ≤ M̃

)
(5d)

(here the transition rates αi,j, α̃i,j, bi,j, b̃i,j are symmetric in i and j). 
We associate with the system constitutive relations for the deterio-

ration rate v, the production of Aβ monomers F and the glial density ω 
at the vertices xi ∈ V, i = 1,⋯,n. Simple choices lead to  

where pj, p̃j > 0 are toxicity coefficients and U is a positive threshold 
value, 

F (f ) = F (xi, t) = CF

∫ 1

0
1− a)f (xi, a, t) da.( (7) 

In the remainder of this section we discuss the equations and the 
constitutive relations. 

The differential equations contain many coefficients. They are not 
necessarily constants and may depend nonlinearly on the various vari-
ables. Such dependencies should be motivated by biomedical observa-
tions and data, in addition they can be modified to test numerically 
different modelling hypotheses. In the discussion below we mention 
some examples of such dependencies.  

• The variable t describes the slow time scale. The equations which 
also describe processes occurring in the fast time scale contain a 
small coefficient ε, the proportion between the two time scales. So on 
the left hand side of the equations one find the variation of the con-
centrations with respect to time. The terms which contain the Lap-
lacian, on each of the graphs, describe the spatial spreading of soluble 
monomers and oligomers. Observe that within the neural network τ 
undergoes diffusion processes in the slow time scale ([62]), while 
extracellular τ diffuses quickly. The diffusion rates dm,Aβ dm,τ ext are 
assumed to be constant for m = 1, ⋯, N. The diffusion rates of 
intracellular τ need special attention: on one hand, the transport of 
misfolded τ inside single neurons is probably faster than the slow 
timescale corresponding to the evolution of AD; on the other hand, 
the transition from one neuron to another could be much slower and 
cause a sort of bottleneck effect yielding effective diffusion rates 
which are definitely smaller. Finally, since the transition velocities 
between neurons may be enhanced by the presence of microglia and 
toxic Aβ, and may also be influenced by the average health state of 
neurons, the effective diffusion rates of intracellular τ might strongly 
depend on f and the concentrations of microglia and toxic Aβ.  

• The Smoluchowski terms (with aggregation and fragmentation rates 
as coefficients) describe the polymerization and depolymerization of 
proteins. The role of fragmentation should not be underestimated in 
the propagation of the disease; for example, the fragmentation of a 
solid Aβ aggregate in two soluble oligomers strongly enhances 
toxicity [41,75]. In () and () the function H indicates the Heaviside 
function and the factors H(u1 − δu) and H(W1 − δW) describe the 
nucleation phenomenon, [49] where δu and δW are positive threshold 
values. Extracellular tau is assumed to be so diluted that we may 
neglect its (de)polymerization. It was observed in [41] that in case of 
the tau protein, fragmentation rates are much smaller than aggre-
gation rates.  

• The sink terms with coefficients σ describe clearance mechanisms. We 
assume that soluble Aβ and extracellular and intracellular τ undergo 
various clearance processes. Quoting Tang et al. [64]: “Overall, it is 
clear that tau is degraded by multiple mechanisms and that many 
factors determine which route is taken. In addition, pathological 
conditions such as AD, likely have altered degradative pathways and, 
hence, altered tau clearance. Decreased efficiency of any of these 
clearance pathways is likely to have detrimental effects on tau 

turnover, potentially enhancing tau accumulation and pathology.” 
We already mentioned the important role of microglia in clearance 
processes. 

In addition, cerebral flow contributes to clearance in the extra-
cellular space. The clearance occurs in the fast time scale, though the 
clearance of w2 seems to occur in a slightly slower time scale. 
Generically the coefficients σ will depend on the glial density ω. We 
recall [18] that, in the presence of Aβ, extracellular soluble toxic 
tau-oligomers have a substantially longer half-life time than toxic Aβ 
oligomers, whence their clearance coefficients are smaller and Aβ 
dependent.  

• The terms with coefficients κ describe release and uptake of tau, i.e. 
the exchange of extra and intracellular tau. The release coefficient κ 
depends on f , but does not vanish for f = 0. Indeed, Pilliod et al. [54] 

v = v(xi, a, t) = CG

∫ 1

0
(b − a)+f (xi, b, t) db + CS (1 − a)

{(
∑M

j=2
pjuj(xi, t) − U

)
+

+
∑̃N

j=2
p̃jWj(xi, t) +

(
∑M

j=2
pjuj − U

)
+
∑̃N

j=2
p̃jWj(xi, t)

}
,

(6)   
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write: “the presence of tau in the interstitial fluid in the absence of 
neurodegeneration was demonstrated by microdialysis in tau trans-
genic mouse brain showing that tau was released by neurons in vivo 
[...] Tau secretion seems to occur in both physiological and patho-
logical conditions. Indeed, tau is found in the CSF of control in-
dividuals but at lower levels than in AD indicating that extracellular 
tau could have a physiological role [...] On the other hand, secretion 
of aggregated proteins could act as a clearance mechanism to prevent 
their intracellular accumulation.” 

As for the diffusion coefficients for intraneural τ, the coefficients κ 
depend on f , ω and the concentration of toxic Aβ.  

• The terms with coefficients ν describe the seeding phenomenon of tau, 
i.e. the misfolding of intra and extracellular endogenous tau mono-
mers. We recall that the extracellular seeding is enhanced by 
microglia which are activated due to the inflammatory effect of 
extracellular τ and Aβ. These phenomena occur in the fast time scale. 
However, due to the low concentration of extracellular monomeric 
tau, the relevance of extracellular seeding is questionable. We will 
further comment on this in Section 6.  

• The term CW
∑N

j=2
∑

dG(xk ,xi)<R
(uj(xk, t) − Uj)+ in Eq. () describes the 

production of intracellular misfolded monomers, mediated by toxic 
Aβ oligomers.  

• (6), (7) and (1) are simple examples of constitutive relations. The 
expression (7) for ω was already discussed in the previous section, 
while (7) describes the production of Aβ monomers depending on the 
degree of malfunctioning of the neurons. Finally, we discuss the 
constitutive relations for the deterioration rate v. The first term on 
the right hand side of (6) describes the effect of the presence of other 
damaged neurons. The next three terms describe the toxic effect of, 
respectively, soluble Aβ oligomers, tau oligomers, and their neuro-
toxic interaction. The weights pj and p̃j express the toxicity of olig-
omers of length j. For example we could assume that pj = ϕ(j) and ̃pj 

= ϕ̃(j), where ϕ is an increasing function in [2,P] ([2, P̃]) and 
decreasing in [P,M], with ϕ(M) = 0. Analogously, ϕ̃ is an increasing 
function on [2, P̃], decreasing on [P̃,Ñ], with ϕ(Ñ) > 0. This expresses 
the fact that relatively small soluble oligomers are the most toxic 
ones and Aβ plaques are not toxic (see [26,41,51,63,74–76]). Finally, 
we assume that a minimal amount of Aβ toxicity, expressed by U, is 
needed to damage neurons. 

6. Discussion 

In the fist part of the paper we have discussed some general diffi-
culties concerning macroscopic mathematical modelling of Alzheimer’s 
disease. Among the most challenging ones we mention the existence of 
different timescales (hardly mentioned and coped with in the existing 
literature), the inclusion in the model of a quantification of the health 
state of damaged neurons, parameter identification and, more in gen-
eral, the containment of the number of parameters. The existence of 
multiple spatial scales is less challenging and can be solved rather easily 
by the use of graphs and spatial discretization, reducing considerably 
computational costs. 

In the second part, we focus on an important specific problem in 
Alzheimer’s disease, namely the question concerning which mechanisms 
regulate the propagation of toxic tau oligomers from the entorhinal 
cortex to the hippocampal region. The answer to this question is not 
known and we wonder whether in silico research can give some further 
insight in the problem. In this context we have discussed relevant clin-
ical data from in vitro and in vivo research which are the basis of several 
working hypotheses. Finally, we have transformed the biomedical input 
in a mathematical formulation of a model. 

What remains to be done is to carefully design and carry out suitable 
computational tests which give insight in the role of the various mech-
anisms we have discussed. This programme goes far beyond the scope of 

the present note and requires a substantial amount of work. Large 
amounts of parameters and their nonlinear dependance on relevant 
quantities need to be treated correctly, preferably in collaboration with 
a biomedical scientist. Various modelling hypotheses should be tested 
and compared. In addition it is of great importance the comparison of 
numerical simulations with biomedical data, possibly in the context of 
human brains, but at least with tests on mice as those by Asai et al. [2]. 

The choice of the parcellation is not a minor issue from the numerical 
point of view. Indeed, the upper bound for the number of parcels is 
determined by the available datasets, i.e. by the resolution of the med-
ical imaging. This may considerably limit the use of the connectome 
approach to specific problems in those parts of the brain which are “too 
small”, i.e. where the required datasets are finer than the existing ones 
(think for instance of the hippocampus). In human brains the typical 
values for the number of parcels range from 100 to 1000 (in order of 
magnitude). We refer for instance to [20,57,58,65] for a discussion of 
different facets of brain parcellation. 

All this is work in progress and will be the subject of a future 
computational paper. However, we stress that our model is, by its own 
structure, highly flexible and can implement with increasing success 
without modifications provided more refined parcellation atlases are 
available. It is also worth stressing that the flexibility of the system 
makes it possible to use it as a toy model, testing different hypotheses 
than are currently on the edge of clinical research, simply by removing 
or enhancing terms. 

Finally, we stress that the list of challenges presented in this paper is 
far from exhaustive. We have made a first choice, but various other 
phenomena could be important to deal with. For example we did not 
consider either the role of atrophy [29], which even in the early stages of 
AD could be important in localised parts of the brain, neither that of the 
vascular system [11]. In addition we did not address the question if, and 
by which mechanisms, Aβ arrives in the entorhinal cortex before tau 
starts to propagate towards the hippocampal region. 
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