
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19426  | https://doi.org/10.1038/s41598-021-98812-0

www.nature.com/scientificreports

COVIDrugNet: a network‑based 
web tool to investigate the drugs 
currently in clinical trial to contrast 
COVID‑19
Luca Menestrina , Chiara Cabrelle  & Maurizio Recanatini *

The COVID‑19 pandemic poses a huge problem of public health that requires the implementation of all 
available means to contrast it, and drugs are one of them. In this context, we observed an unmet need 
of depicting the continuously evolving scenario of the ongoing drug clinical trials through an easy‑to‑
use, freely accessible online tool. Starting from this consideration, we developed COVIDrugNet (http:// 
compm edchem. unibo. it/ covid rugnet), a web application that allows users to capture a holistic view 
and keep up to date on how the clinical drug research is responding to the SARS‑CoV‑2 infection. Here, 
we describe the web app and show through some examples how one can explore the whole landscape 
of medicines in clinical trial for the treatment of COVID‑19 and try to probe the consistency of the 
current approaches with the available biological and pharmacological evidence. We conclude that 
careful analyses of the COVID‑19 drug‑target system based on COVIDrugNet can help to understand 
the biological implications of the proposed drug options, and eventually improve the search for more 
effective therapies.

The outbreak of the COVID-19 pandemic caused by SARS-CoV-2 at the beginning of 2020 has shocked the 
population worldwide. A year and a half later (August 2021), about 200 million confirmed cases of COVID-19 
have been reported by WHO included more than 4.2 million deaths (https:// covid 19. who. int/). As expected, 
in such a mankind threatening situation, the scientific community put in place a great effort to help countering 
the spread of the virus, as evidenced among the other things by the huge number of papers dealing with various 
aspects of the disease appeared in the literature. For instance, the LitCovid literature  hub1 has collected around 
160,000 articles as of August 2021 covering arguments categorized as general, mechanism, transmission, diag-
nosis, treatment, prevention, case report and forecasting.

As regards the COVID-19 treatment, the race to the vaccine against SARS-CoV-2 started immediately after 
the isolation of the viral  genome2 and gave the first results as soon as December 2020. Moreover, despite the 
exploration of different approaches like, e.g., the infusion of plasma from human  survivors3, the pharmacological 
option, namely small molecule drugs and antibodies, is being actively pursued. However, the route to a new drug 
is long and costly, and the classical drug discovery pipeline is not compatible with the need of rapid interven-
tion on a population of millions of patients. At the moment, a viable alternative seems to be the repurposing 
of known  drugs4, i.e., the use for the treatment of COVID-19 of drugs currently on the market for different 
therapeutic purposes.

Known drugs that are currently in clinical or pre-clinical study for the treatment of COVID-19 are aimed 
either at inhibiting viral or human targets involved in some of the processes of viral entry and replication, or at 
treating inflammation and tissue injury consequent to the viral  infection5,6. Even though it might seem that a 
direct antiviral approach could lead to a straightforward solution, only few of the existing antivirals have per-
formed well in the clinic so far. On the other hand, a number of drugs used for the most disparate therapeutic 
indications and entered into clinical trials even with an uncertain  rationale7 are showing preliminary promising 
results. However, as it has been  observed8, a real “repurposing tsunami” has invested the biomedical community, 
so much so that today it is difficult not only to keep track of the results of the trials, but also to follow the new 
proposals.

With the aim of helping researchers navigate the sea of outcomes and reports coming from the studies on 
COVID-19, some institutions and companies have developed online platforms that collect and organize both 
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literature and data, eventually providing free access to the latter. For example, the already mentioned LitCovid 
 hub1 (https:// www. ncbi. nlm. nih. gov/ resea rch/ coron avirus/) is a daily updated source of relevant articles retrieved 
from PubMed. Other platforms dealing with data on drugs and chemicals, like, e.g.,  CHEMBL9 (https:// www. 
ebi. ac. uk/ chembl/),  PubChem10 (https:// pubch em. ncbi. nlm. nih. gov/), or  DrugBank11 (https:// www. drugb ank. 
ca/), have introduced special sections dedicated to COVID-19-related information. In addition, more special-
ized resources have appeared on the web to help accessing and analyzing COVID-19 data, mainly in the fields 
of epidemiology, genomics, interactomics, and, to a lesser extent, pharmacology. In this class of web tools, it is 
worth mentioning CORDITE (CORona Drug InTEractions database)12, a web interface that provides a database 
of potential drugs, targets, interactions, and relative publications obtained from a manually curated selection 
of literature sources. With the same purpose of facilitating the data analysis, the COVID-19 Drug and Gene 
Set Library was built as an online collection of COVID-19 related drugs and  genes13. A comprehensive critical 
review on this kind of web tools has recently been published by Mercatelli et al.14.

Considering the great amount of valuable scientific information that has already been produced and pub-
lished, and that will be presumably produced for some time more on COVID-19 related topics, it could be 
useful to look at the whole scenario of results, to foster the acquisition of that knowledge that can only emerge 
from consideration of both the totality and the complexity of data. In other words, and limiting ourselves to the 
pharmacological treatment issue, one might think of presenting and analyzing the information on proposed 
drugs in a way that takes into account not only the different types of data (chemical, biological, genomic, etc.), 
but also the relationships among them, that is on a network basis. The context is that of network  medicine15. 
An attempt in this direction has recently been proposed by Korn et al.16, who developed a knowledgebase and 
an online platform (COVID-KOP) to integrate the existing biomedical information with the newly acquired 
knowledge on COVID-19. By means of this web tool, one can easily produce an aggregate graph connecting, e.g., 
COVID-19 phenotypic features to a drug studied for treating the disease, through the genes known to be linked 
to both. Still in the context of network medicine, CoVex is another platform that offers the user the possibility 
to explore the SARS-CoV-2 virus–host–drug interactome for drug repurposing  aims17. In addition, we want to 
mention  CovMulNet1918 that at present looks like the most thorough network-based tool allowing to integrate 
the available genotypic and phenotypic information on COVID-19, like, SARS-CoV-2 proteins, their human 
partners, as well as symptoms, diseases, and drugs. Finally, Coronavirus  canSAR19 is a freely available resource 
that offers druggable interactomes of SARS-CoV-2 proteins and human proteins, as well as reports about 3D 
structures, drugs, and clinical trials.

In a specifically drug-focused context, the network medicine approach assumes the overcoming of the old 
“one drug, one target, one disease” concept in favor of a more outright “multi-drug, multi-target, multi-disease” 
 approach20. The exploration of a such complex system of interactions can be aided by the construction of a drug-
target  network21. In reference to the COVID-19 case, drug-target networks based on host–virus protein–protein 
interactions (PPIs) have already been built and  examined22–24 with the aim of repurposing already approved 
drugs.

Here, we present the COVID-19 Drugs Networker (COVIDrugNet: http:// compm edchem. unibo. it/ covid 
rugnet), a web application that offers a different point of view on anti-COVID-19 drugs by allowing a network-
based analysis of the DrugBank dataset of potential repurposed drugs currently in clinical trial. The freely acces-
sible application automatically retrieves the data from DrugBank, builds the drug-target network, and allows 
the user to carry out some basic network analysis. Moreover, we show how, using COVIDrugNet, some peculiar 
aspects of the proposed pharmacological options against COVID-19, in terms of substances, targets, and their 
interrelationships can be revealed. Although what is reported here is an instant analysis based on current data, 
the continuous updating of COVIDrugNet will allow us to follow the future development of the drugs proposed 
for the treatment of the disease, thus providing an always updated view of the COVID-19 system pharmacology.

Results and discussion
COVID‑19 Drugs Networker. The COVID-19 Drugs Networker (COVIDrugNet, Fig.  1) is a web tool 
designed for the exploration of the landscape of the drugs currently in clinical trials to combat the SARS-CoV-2 
infection. The web app is based on a network approach that supports both visualization and analysis of the 
complex scenario of repurposed drugs for the COVID-19 and related conditions. The core of the web tool are 
the interactive graphs and the additional features that allow one to explore drug and target data, as well as 
networks properties. The main graph represents a bipartite Drug-Target network (DT network, Fig. 2a), where 
the nodes are drugs and targets that are connected if a relation between them is reported in DrugBank. Since 
bipartite networks are usually investigated by compressing their information into two monopartite networks 
called  projections25, COVIDrugNet provides two of such networks only having drugs or targets as nodes: in the 
following, we refer to them as Drug and Target projections (DP and TP, respectively; Fig. 2b, c). 

As regards the user interface, it is basically divided into the main and the Advanced Tools blocks. The first 
one allows users to immediately access the main body of information, capturing the holistic view of the current 
drug repurposing status for COVID-19. However, a more in-depth examination of the data is possible, by taking 
advantage of some more specialized graph analysis tools provided in Advanced Tools.

In detail, the main block includes the graph, and the Charts and Plots and Graph Properties sections (Fig. 1). 
As mentioned before, the heart of each web page is the interactive graph with its related information box (Node 
Info) that provides a summary documentation of single drug/target nodes hovered over or individually selected. 
The box contains links to some databases providing the available information related to individual properties of 
both drugs and targets. In addition, a multiple node selection brings up the Inspected Data hidden section that 
displays detailed information of the selected nodes in a tabular format. By the way, networks and tables can be 
downloaded in different formats to allow an external analysis of the data.

https://www.ncbi.nlm.nih.gov/research/coronavirus/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://pubchem.ncbi.nlm.nih.gov/
https://www.drugbank.ca/
https://www.drugbank.ca/
http://compmedchem.unibo.it/covidrugnet
http://compmedchem.unibo.it/covidrugnet
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Figure 1.  The COVIDrugNet web tool. A screenshot of the main block of the Drug-Target Network page. It 
displays the fundamental features accessible in the web tool that allow the user to inspect the network and its 
properties.
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Figure 2.  COVIDrugNet Networks. The three networks generated and available for inspection in 
COVIDrugNet. (a) Drug-Target Bipartite Network. It is the main network, and it is built connecting drugs 
currently in clinical trial present in the COVID-19 Dashboard of  DrugBank11 and their reported targets. The 
red nodes are drugs, and the light blue ones are targets. (b) Drug Projection. It is built from the Drug-Target 
network and contains only drugs. The nodes are color coded on the basis of their first level ATC codes (retrieved 
from  DrugBank11). (c) Target Projection. It is built from the Drug-Target network and contains only targets. The 
nodes are color coded according to their protein class (retrieved from  ChEMBL9). The networks were generated 
by means of the Python package  NetworkX26.
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Node coloring options are provided, useful to visualize some node attributes related to therapeutic, biologi-
cal, or network-based features. For instance, in the DP graph (Fig. 2b) the user can decide to color the nodes 
according to the Anatomical Therapeutic Chemical (ATC) code or the clinical trial phase, while in the TP graph 
(Fig. 2c) the color coding allows one to spot protein family, protein class or cellular location. Moreover, in the DT 
network and in both projections, it is possible to color the nodes based on some network attributes—i.e., degree, 
centrality measures or node grouping—considering the entire graph or the major component. To examine all 
these properties at a glance, the web tool also provides the Charts and Plots section, in which the pie charts—or 
bar chart in the case of the ATC code coloring option—are updated accordingly to the node coloring option 
to show the relative proportions between the values of that property. In this area of the projection web pages, 
the web tool also provides the plot of the nodes degree distribution. Among the graph interactive features, the 
Highlight a node dropdown menu is useful to find nodes by name, and the button HIGHLIGHT BY PROPERTY  
allows a customized filtering on node properties to highlight and/or download a specific nodes selection. In the 
Graph Properties section, some centrality measures useful to analyze the network topology are displayed in a 
downloadable table. A short explanation of each computed property is provided in a Glossary in the Help page.

Regarding the Advanced Tools block, it contains three sections: Clustering, Advanced Degree Distribution and 
Current Virus–Host–Drug Interactome. The Clustering section is dedicated to the node grouping analysis carried 
out through different methods (see Nodes Grouping section in “Methods” section). In particular, we thought it 
could be of interest to examine the grouping of the nodes in the projection graphs, as, e.g., in perspective it might 
reveal possible trends in the selection of drugs to be repurposed or privileged areas of intervention in the biology 
of the infected cells. To this aim, the web app allows for three different techniques of investigation of the networks 
partitioning: spectral analysis combined with K-means  clustering27, Girvan–Newman28 and greedy modularity 
community  detection29 methods. The plot in this Clustering section reports either the eigenvalues distribution 
used in the application of the spectral clustering method, or the modularity trend in the Girvan–Newman com-
munity detection method. Both plots are interactive and allow the user to choose the level (number) of grouping.

The Advanced Degree Distribution section presents an interactive chart of the degree distribution and some of 
its possible distribution fittings compared to those of an Erdős–Rényi equivalent graph (see Degree Distribution 
Fitting section in “Methods” section).

Finally, the Current Virus–Host–Drug Interactome section displays a bipartite network built on the basis of 
experimental studies and checked for protein targets present in the DT network (see below for details). As men-
tioned before, the network table is downloadable, to provide interested users with the possibility of rebuilding 
and manipulating the graph.

Graphs analysis. In Fig. 2, the graphs representing the networks generated by COVIDrugNet are displayed. 
The DT network is a disconnected network with a large connected component accounting for 85.1% of nodes 
(1248 out of 1466). This structure reminds that of the general drug-target network reported  elsewhere21, where 
most drugs have more than one target and several drugs can share the same target(s). However, from inspection 
of the graph, it immediately appears that there are two drug nodes that heavily affect the network topology by 
showing an exceedingly high degree compared to all other nodes: Fostamatinib and Artenimol, having 305 and 
186 direct neighbors, respectively. For both drugs, this reflects a number of reported targets that is considerably 
higher than the average (< 7), being 6.9 and 4.2 times higher, respectively, than that of Cannabidiol that, with 
44 targets, is the third in rank for the highest number of neighbors in the DT network. Indeed, these two drugs 
show a peculiar behavior strongly affecting the network structure not only in the DT, but consequently also 
in the TP graph where they cause the formation of two highly intra-connected clumps of nodes. To take this 
aspect under consideration and possibly clarify its role in respect to the topology of both the whole drug-target 
network and the projections, in the following, we compared the results of the network analyses carried out on 
the entire networks and on the graphs containing all nodes except Artenimol, Fostamatinib and their exclusive 
direct neighbors.

As a first step in the analysis, we tried to assess the character of the monopartite projection networks DP 
(290 nodes) and TP (1176 nodes), i.e., whether they belong to the random network category or are scale-free. 
Scale-free networks have a characteristic organization, in which there is a limited number of nodes with a high 
number of neighbors (called hubs) and an abundance of nodes having a low  degree30. This arrangement can be 
found in plenty of real-world networks, from the World Wide Web to citations in science, from social interactions 
to metabolic  maps30,31. Both DP and TP show a significant difference from an equivalent (same number of nodes 
and probability of edge creation) Erdős–Rényi  graph32 (Figure S1). To further investigate on the scale-freeness of 
the networks, we considered three properties for each graph: the degree distribution, the relationship between 
clustering coefficient and degree, and the ability to withstand targeted attacks compared to random failures.

In order to address the scale-free character of both networks by evaluating the fitness of the degree distribu-
tion to a power-law, we employed the approach reported by Broido et al.33, which applied a previously defined 
rigorous  method34. This analysis was carried out on both the entire DP and TP networks and also in cases where 
Artenimol and Fostamatinib as well as their exclusive direct neighbors were removed.

In the DP network, the degree distribution could be described by a power-law, suggesting that these networks 
are plausibly scale-free (Figure S2a, b). However, other heavy-tailed distributions cannot be ruled out. The situ-
ation for the TP network is less clear-cut (Figure S2c, d), at least in the case of the entire network. To advance an 
explanation for these results, we observe that, these networks are small, such that they would probably not provide 
enough data for clearly electing a distribution form. Still, they are unequivocally dissimilar to random networks.

The inspection of both the clustering coefficient and the robustness evaluation is best illustrated considering 
the two projections one at a time.
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Looking at the DP network and specifically at its clustering coefficient, it shows a tendency to decrease as the 
degree increases (Figure S3a, b), implicating the existence of a few hubs connecting peripheral nodes of high 
degree. Also, there is an evident distinction between the response to a targeted attack and to a random  failure35 
(Figure S4a). In the first case, nodes with the highest degree are progressively removed from the network, causing 
it to break apart quickly. On the other hand, if the nodes to be dismissed are chosen randomly, the connected-
ness of the network is almost unaffected. Notably, these findings are strengthened by the fact that carrying out 
the same investigation on a network from which Artenimol and Fostamatinib are excluded, leads to almost 
identical results (Figure S4b).

The same examination carried out on the TP network does not yield equally unambiguous conclusions. As 
stated above, the targets linked to Artenimol and Fostamatinib compose two almost-clique aggregations, which 
distort the morphology of the network. The relationship between clustering coefficient and degree is strongly 
dependent on the presence of these two exceptionally connected drugs (Figure S3c, d). When they are not taken 
into account, the inverse proportionality is fairly visible. Nevertheless, if they are considered, the scatterplot 
displaying this relationship is warped, due to the formation of two separate but remarkably dense groups rep-
resenting the targets connected to Artenimol and Fostamatinib. The check of the robustness of the network by 
comparing the responses to targeted attacks or random failures gives a result that agrees with that obtained from 
the DP network. The communities related to the two “super-spreaders” simply introduce a delay in the fragmenta-
tion of the network, since they are made of a multitude of nodes with equally high degree (Figure S4c, d). Any-
how, this shift does not alter the network robustness to random failures and the susceptibility to targeted attacks.

As a final remark on the networks organization, we stress that all results and conclusions presented here are 
just a snapshot of the continuously evolving COVID-19 drug repurposing scene, and that it will be worthwhile 
to follow the time progression of this system. For instance, in the future, the growth of the network could smooth 
out or even hide the effects of Artenimol and Fostamatinib that now we observe so evidently. In respect of this, 
we recognize a different response of the DP and TP networks to the influence of these nodes. The former is 
less affected, since the vast majority of the targets related to both drugs are not shared by others, such that the 
information related to these proteins vanishes in the projection process. On the contrary, the latter suffers a huge 
impact, showing a situation that is antithetical to the previous one. Here, the proteins amass together constituting 
two highly intra-connected jumbles, which are poorly linked to the rest of the network. A continuous growth 
and the ability of self-organizing are two key features of scale-free networks, which frequently describe real 
complex  systems30. These characteristics are shown by both projections, and indeed their scale-freeness is sup-
ported by their degree distribution, the relation of clustering coefficient to degree, and their robustness. Mainly 
due to the influence of Artenimol and Fostamatinib, these properties are manifest in the DP network, but not 
so neat in the TP one.

Applications to COVID‑19 repurposed drugs: network‑based inferences. To illustrate the capa-
bilities of COVIDrugNet, in the following we report some example considerations that can be derived from the 
analysis of the DT network, and of the projection graphs relating to drugs (DP) and targets (TP).

Drugs. Examining the DP network with nodes colored by ATC code (https:// www. whocc. no/ atc/ struc ture_ 
and_ princ iples/) (Fig. 2b) can reveal at a glance which therapeutic areas are mostly covered by the repurposed 
drugs presently in clinical trials. In the Charts and Plots section of the COVIDrugNet Drug Projection page, the 
nodes categories distribution is shown, from which it appears that all the 14 main anatomical/pharmacological 
groups (1st level codes) are represented, even though with different numbers of drugs. Not taking into consid-
eration the 50 substances for which an ATC code is not yet reported, the remaining 240 drugs are distributed 
in three top ranked groups: C (Cardiovascular system), A (Alimentary tract and metabolism), and J (Antiinfec-
tives for systemic use) comprising 49, 39, and 38 active substances, respectively (Fig. 3). Then, two other highly 
populated ATC groups follow: B (Blood and blood forming organs), and L (Antineoplastic and immunomodu-
lating agents) both counting 31 drugs. By considering the composition of the bars that reports the distribution of 
drugs in the 3rd level groups for each 1st level ATC code (visible in the web tool), one can have a more detailed 
picture of the actual pharmacological approaches to COVID-19 treatment. First, it is worth noting that the drugs 
belonging to the J group are located mostly out of the main connected component of the graph, accordingly to 
the fact that they share a target with a very small number of other drugs. Conversely, substances of the A and C 
groups mostly populate the main connected component, indicating a high level of promiscuity among them as 
regards the targets. Also, we observe that most drugs classified in the C, A, J, B, L, N, and P groups show just one 
ATC code, while drugs in D, G, R, S, M, and H belong to more than one ATC group.

Even though the ATC system is not aimed at providing direct therapeutic indications and considering also 
that more than one code can be assigned to individual medicines, the landscape of pharmacological interventions 
against the SARS-CoV-2 infection emerging from the DP network appears rather intricate. Overall, it mostly 
confirms that the drugs in clinical trials are aimed at contrasting both the viral infection process (antivirals in J 
group, agents acting on the renin-angiotensin system in C group), and its pathological consequences at systemic 
level (substances in A, B, L, and other groups). These approaches are in line with evidence recognizing that, as the 
severity of the COVID-19 increases—apparently in consequence of a dysregulated host immune response—vari-
ous pathophysiological mechanisms are activated leading to hematological (mainly thromboembolic) manifesta-
tions and, eventually, multi-organ  dysfunctions36,37. In addition, bacterial superinfections have been reported in 
COVID-19 patients, and even though the issue is still  debated38, antibiotics belonging to the J group are actually 
in the current treatment  guidelines39.

Indeed, even this brief analysis of the ATC codes distribution among the substances currently in clinical trials 
highlights a complex and multifaceted drug repurposing scenario consequent to the fact that the COVID-19 is 

https://www.whocc.no/atc/structure_and_principles/
https://www.whocc.no/atc/structure_and_principles/
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a multi-systemic disease requiring a well-equipped therapeutic armamentarium and possibly a combined poly-
pharmacological  intervention40.

To provide an example of using COVIDrugNet focused on a group of drugs, we could take into considera-
tion the inhibition of the virus attachment and entry into the host cell. It is believed that SARS-CoV-2 enters 
the target cell mainly through an endocytic pathway that exploits the ability of its Spike (S) protein to bind the 
human Angiotensin-converting enzyme 2 (ACE2) receptor. Subsequently, S is cleaved by the Transmembrane 
protease serine 2 (TMPRSS2) to provide the S2 subunit necessary for the membrane  fusion41,42. The drug repur-
posing activity aimed at preventing this step of the viral infection points to blocking the protein targets ACE2 
and TMPRSS2, or to raising the endosomal pH in order to prevent the S  processing6. To retrieve information on 
drugs in clinical trial for this purpose, we can highlight the target nodes Angiotensin-converting enzyme 2 and 
Transmembrane protease serine 2 in the DT network of COVIDrugNet and check the “Inspected targets” table 
below for drugs reported to bind those targets. Here, we can find among others Chloroquine (CQ), Hydroxychlo-
roquine (HCQ), and Bromhexine that are reported as ACE2 binders, and Camostat and Bromhexine reported as 
TMPRSS2 inhibitors. Notably, it is known that CQ and HCQ are also able to raise the endo-lysosomal pH thus 
inhibiting the protease activities and preventing the cleavage of S  protein43. In addition, recent evidence sug-
gests the combined use of Camostat and CQ (together with another drug, arbidol, an inhibitor of the virus–host 
cell membrane fusion with no known targets) to contrast the entry routes of SARS-CoV-244. Finally, in the DP 
graph, one can select all the mentioned drugs and check the status of the clinical trials in which they are involved 
in the “Node Info” box on the right.

Targets. The TP network of Fig. 2c is a targetome that shows the relationships among the known targets of the 
proposed COVID-19 drugs. Here, two nodes (proteins) are linked if they are reported as targets of at least one 
of the drugs in the DrugBank COVID-19 database, and in this sense it is different from a typical interactome 
based on PPIs. The network is made by 1176 nodes and 70,873 edges and shows a main connected component 
comprising 1037 nodes (88.2%). Human targets are 1008 (909 in the main connected component).

Looking at this graph provides another point of view on the pharmacological approaches taken to contrast 
the COVID-19. The network of the targets involved in the action of the drugs in clinical trials helps one to obtain 
a comprehensive view of the biological processes affected by the action of drugs. Actually, from the analysis of 
the target proteins and their interactions it could be possible to trace the cellular pathways influenced by drugs. 
A study in this regard is currently underway. Instead, starting from the TP network, we carried out a different 
analysis that took into consideration both the data here presented on repurposed drugs now in clinical tri-
als (a top-down view), and the molecular data on SARS-CoV-2 infection obtained from recent experimental 
studies and exploited to propose drugs to be repurposed (a bottom-up view). As regards the latter, we refer to 
the human-virus interactomes developed by Gordon et al.23 and more recently by Chen et al.45. These interac-
tomes are PPI networks that show which human proteins are bound directly by SARS-CoV-2 proteins to allow 
the virus to enter into the human cells, replicate, assemble and be released. Both research groups followed an 
experimental approach to identify the human proteins, using affinity purification (AP), and AP together with 
proximity labeling-based techniques, respectively, coupled with mass spectrometry. Merging the Gordon and 
Chen results, we obtained an extended list of 732 human proteins experimentally identified as interactors of the 
29 viral proteins. Comparing this list with that of the human drug targets of the TP network (1008), we found 
that only 45 out of the 732 human proteins able to bind the viral ones are present in the TP as reported targets of 

Figure 3.  First Level ATC Code Distribution. A bar chart displaying the count of nodes for every first level 
ATC code (anatomical/pharmacological main group). The total count is higher than the number of nodes in the 
DP, because more than one ATC code can be assigned to a single drug.
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drugs in clinical trials. In Fig. 4, we show the integrated host–virus interactome (also available in the Advanced 
Tools block of COVIDrugNet), where the 45 proteins common to both lists are highlighted (yellow circles). We 
also checked the DT network of Fig. 2a for drugs associated with these 45 targets and found 29 substances acting 
on them (Table 1) shown in the interactome of Fig. 4 (green squares) linked to their targets. This is an example 
of how the information provided by the COVIDrugNet DT interactome can complement the one contained in 
human-virus PPI networks like those of Gordon and Chen. Note that the 29 substances hit direct neighbors 
of the viral proteins, thus interfering with the related viral processes. We see from Fig. 4 that Artenimol and 
Fostamatinib, seemingly by virtue of their high target promiscuity, are able to hit simultaneously several targets, 
thus affecting various viral processes and allowing to foresee a better therapeutic efficacy. If confirmed by clinical 
results, these would be clear cases of poly-pharmacological multi-target actions exerted by single substances, a 
nice fit into the paradigm of network pharmacology.

Another interesting aspect emerging from inspection of the interactome of Fig. 4 is that 20 human proteins 
(blue circles with pink contour) bind to two viral targets, thus acting as bridges between two node communities 
and playing a key role in the formation of the large connected component of the graph (Table 2). From a drug 

Figure 4.  Virus–Host–Drug Interactome. The Virus–Host–Drug Interactome built on the basis of the merged 
datasets from Gordon et al.23 and Chen et al.45. Proteins (circles) are displayed in red if viral and in blue if 
human. The human proteins present in the TP network are shown as yellow circles, and the corresponding 
drugs currently in clinical trials against COVID-19 as green squares. The human proteins binding more than 
one viral target are highlighted as blue circles with pink contour. The network visualization was generated 
through Cytoscape 3.8.246.
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discovery perspective, such proteins would be ideal targets to fight the virus, as neutralizing them would help to 
disrupt the network of PPIs necessary to carry on the viral infection and replication processes. Unfortunately, 
none of these proteins appear in the TP network, implying that there is no substance targeting them among 
those listed in the DrugBank database of repurposed drugs presently in clinical trial. However, we browsed some 
databases  (DrugBank11,  DrugCentral47 and  ChEMBL9) in the search for bioactive substances reported to bind 
these 20 proteins and found that 4 of them are reported as targets of known drugs (Table 3). As can be seen from 
Table 3, many of the drugs listed therein have not yet been considered for therapy, while some of them (bold in 
the table) are already in clinical trial for COVID-19 treatment even though their action on the proteins in the 

Table 1.  Protein-drug associations for common targets between the virus–host interactome and the drug-
target network.

Gene name Protein name Associated drugs

GSK3B Glycogen synthase kinase-3 beta Fostamatinib

PRKACA cAMP-dependent protein kinase catalytic subunit alpha Fostamatinib

DHFR Dihydrofolate reductase Methotrexate, trimethoprim

ACTG1 Actin, cytoplasmic 2 Artenimol

DDR1 Epithelial discoidin domain-containing receptor 1 Imatinib, fostamatinib

RIPK1 Receptor-interacting serine/threonine-protein kinase 1 Fostamatinib

RDH12 Retinol dehydrogenase 12 Vitamin A

COQ8B Atypical kinase COQ8B, mitochondrial Fostamatinib

IMPDH2 Inosine-5’-monophosphate dehydrogenase 2 Ribavirin

ERBB4 Receptor tyrosine-protein kinase erbB-4 Zanubrutinib, fostamatinib

NEK9 Serine/threonine-protein kinase Nek9 Fostamatinib

CIT Citron Rho-interacting kinase Fostamatinib

HSPA8 Heat shock cognate 71 kDa protein Artenimol

TBK1 Serine/threonine-protein kinase TBK1 Fostamatinib

HDAC2 Histone deacetylase 2 Valproic acid, simvastatin, atorvastatin

RPS9 40S ribosomal protein S9 Artenimol

MARK2 Serine/threonine-protein kinase MARK2 Fostamatinib

DNMT1 DNA (cytosine-5)-methyltransferase 1 Decitabine

GGCX Vitamin K-dependent gamma-carboxylase Menadione

SIRT5 NAD-dependent protein deacylase sirtuin-5, mitochondrial Nicotinamide, suramin

RPS8 40S ribosomal protein S8 Artenimol

EGFR Epidermal growth factor receptor Fostamatinib, lidocaine, zanubrutinib, abivertinib

RPS13 40S ribosomal protein S13 Artenimol

SREBF1 Sterol regulatory element-binding protein 1 Omega-3 fatty acids

RPS6 40S ribosomal protein S6 Artenimol

MTHFR Methylenetetrahydrofolate reductase Cyanocobalamin

MARK3 MAP/microtubule affinity-regulating kinase 3 Fostamatinib

PLOD2 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 Ascorbic acid

VDAC1 Voltage-dependent anion-selective channel protein 1 Cannabidiol

RPS6KA6 Ribosomal protein S6 kinase alpha-6 Fostamatinib

RPS17 40S ribosomal protein S17 Artenimol

FLT4 Vascular endothelial growth factor receptor 3 Nintedanib, fostamatinib

PLAT Tissue-type plasminogen activator Iloprost

SIGMAR1 Sigma non-opioid intracellular receptor 1 Noscapine

GPX1 Glutathione peroxidase 1 Cannabidiol, glutathione

SLC5A2 Sodium/glucose cotransporter 2 Dapagliflozin

CSNK2A2 Casein kinase II subunit alpha’ Fostamatinib

ATP6V1A V-type proton ATPase catalytic subunit A Alendronic acid, artenimol

RPL23A 60S ribosomal protein L23a Artenimol

CSNK2B Casein kinase II subunit beta Quercetin

RPL10 60S ribosomal protein L10 Artenimol

NEU1 Sialidase-1 Oseltamivir

MARK1 Serine/threonine-protein kinase MARK1 Fostamatinib

MELK Maternal embryonic leucine zipper kinase Fostamatinib

ERBB2 Receptor tyrosine-protein kinase erbB-2 Zanubrutinib, fostamatinib
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Table 2.  Human proteins that interact with more than one viral protein in the virus–host interactome.

Viral proteins Human proteins Name

NSP13, NSP10 TUBA3E Tubulin alpha-3E chain

ORF9C, NSP6 NDUFAF1 Complex I intermediate-associated protein 30, mitochondrial

NSP3, ORF8 FKBP10 Peptidyl-prolyl cis–trans isomerase FKBP10

M, ORF3a ATF6 Cyclic AMP-dependent transcription factor ATF-6 alpha

M, ORF7b STX10 Syntaxin-10

ORF7b, ORF14 LRRC8E Volume-regulated anion channel subunit LRRC8E

M, ORF3a TUBGCP3 Gamma-tubulin complex component 3

NSP6, ORF14 SLC4A2 Anion exchange protein 2

ORF8, NSP3 HYOU1 Hypoxia up-regulated protein 1

M, ORF7b STX6 Syntaxin-6

M, ORF3a TUBGCP2 Gamma-tubulin complex component 2

ORF10, N MAP7D1 MAP7 domain-containing protein 1

N, NSP8 DDX10 Probable ATP-dependent RNA helicase DDX10

ORF9c, NSP6 WFS1 Wolframin

M, ORF3b PITRM1 Presequence protease, mitochondrial

ORF7b, M ANO6 Anoctamin-6

ORF7b, NSP7 LMAN2 Vesicular integral-membrane protein VIP36

M, NSP6 CAV1 Caveolin-1

ORF9c, ORF7b SCAP Sterol regulatory element-binding protein cleavage-activating protein

ORF3a, ORF7b ALG5 Dolichyl-phosphate beta-glucosyltransferase

Table 3.  Known drugs targeting human proteins that interact with more than one viral protein in the virus–
host interactome. *Drugs currently in clinical trial for COVID-19. a Retrieved from DrugCentral (https:// 
drugc entral. org/ target/ Q6PEY2/). b Retrieved from DrugBank (https:// go. drugb ank. com/ drugs/ DB051 47). 
c Retrieved from ChEMBL (https:// www. ebi. ac. uk/ chembl/ g/# browse/ mecha nisms_ of_ action/ filter/ target. 
target_ chembl_ id% 3ACHE MBL20 95182). d Retrieved from DrugCentral (https:// drugc entral. org/ target/ 
Q9Y375/). e Retrieved from ChEMBL (https:// www. ebi. ac. uk/ chembl/ g/# browse/ mecha nisms_ of_ action/ filter/ 
target. target_ chembl_ id% 3ACHE MBL23 63065). f Retrieved from DrugCentral (https:// drugc entral. org/ target/ 
Q96AY3/). g Retrieved from DrugBank (https:// go. drugb ank. com/ drugs/ DB008 52).

Human proteins Name Known drugs

TUBA3E Tubulin alpha-3E chain

Podophyllotoxina

CYT997b

Docetaxelc

Vincristinec

Verubulinc

Indibulinc

Trastuzumab-emtansinec

Ixabepilonec

Sagopilonec

Eribulinc

Fosbretabulinc

Mirvetuximab-soravtansinec

Paclitaxelc

Plinabulinc

Polatuzumab-vedotinc

Vinblastinec

Crolibulinc

Fosbretabulinc

Cabazitaxelc

Davunetidec

Paclitaxel-poliglumexc

Vinfluninec

Lexibulinc

Colchicine*c

Vinorelbinec

NDUFAF1 Complex I intermediate-associated protein 30, mitochondrial
Metformin*d

NV-128e

ME-344e

FKBP10 Peptidyl-prolyl cis–trans isomerase FKBP10 Tacrolimus*f

ATF6 Cyclic AMP-dependent transcription factor ATF-6 alpha Pseudoephedrineg

https://drugcentral.org/target/Q6PEY2/
https://drugcentral.org/target/Q6PEY2/
https://go.drugbank.com/drugs/DB05147
https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/filter/target.target_chembl_id%3ACHEMBL2095182
https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/filter/target.target_chembl_id%3ACHEMBL2095182
https://drugcentral.org/target/Q9Y375/
https://drugcentral.org/target/Q9Y375/
https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/filter/target.target_chembl_id%3ACHEMBL2363065
https://www.ebi.ac.uk/chembl/g/#browse/mechanisms_of_action/filter/target.target_chembl_id%3ACHEMBL2363065
https://drugcentral.org/target/Q96AY3/
https://drugcentral.org/target/Q96AY3/
https://go.drugbank.com/drugs/DB00852
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interactome is not reported in DrugBank. The former ones could be further possible candidates for COVID-19 
drug repurposing in light of their ability to interfere with more than one process critical for the virus. 

Limitations
Our study is not exempt from some drawbacks that are common in data analysis, and regard mainly the data 
availability and quality. We based COVIDrugNet on the DrugBank Dashboard dedicated to COVID-19 pan-
demic, and although this public and free resource is known for the high reliability of the datasets, missing data 
or delayed updating can occur. This is evident for some drugs under clinical trial shown in Table 3 that have 
known targets yet not reported in their DrugBank file. Moreover, not all the drugs or proteins investigated here 
are completely characterized and classified, and this adds some uncertainty and noise to our results. Also, some 
bias could be incorporated in the knowledge we started from. For instance, the number of targets associated to a 
specific drug could considerably depend on the amount of research carried out on that medicine rather than on 
the actual biological interactions it has. This issue could be partially mitigated by a more extensive integration 
of data from a wider variety of databases. Very similar considerations can be drawn on the other databases that 
we exploited to retrieve auxiliary data:  STRING48,  DisGeNet49, SWISS-MODEL50, RCSB-PDB51,  UniProt52 and 
 ChEMBL9. Furthermore, as mentioned in the “Methods” section, the drug-target network was built consider-
ing only protein targets, hence nucleic acid targets were not included. However, biomolecular targets other than 
proteins are a  minority53 and this led us to not integrate them.

Despite the massive efforts of the scientific community, SARS-CoV-2 and COVID-19 continue to be largely 
puzzling. Experimental assays are the solid ground on which we all start to build our hypotheses, yet also these 
investigations may have bias and a moderate amount of uncertainty. We have to keep this into consideration, 
when examining the merged interactomes by Gordon et al.23 and Chen et al.45 given their considerable differ-
ence. Additionally, the identification of a PPI in vitro unfortunately does not guarantee that the same interaction 
occurs also in vivo.

Conclusions
The COVID-19 pandemic poses a huge problem of public health that requires the implementation of all available 
approaches to contrast it, and drugs are one of them. In this context, we observed an unmet need of depicting the 
continuous evolving scenario of the ongoing drug clinical trials through an easy-to-use freely accessible online 
tool. Starting from this consideration, we developed COVIDrugNet, a web app that allows one to watch and 
keep up to date on how the drug research is responding with its arsenal of known repurposed drugs to the health 
threat represented by the SARS-CoV-2 infection. We have shown some examples of how one could explore the 
whole landscape of medicines currently in clinical trial and try to probe the consistency of actual treatments with 
the biological evidence being accumulated on the virus infection and its systemic pathological consequences in 
humans. The complex network of protein targets affected by the repurposed drugs can be confronted with the 
host–virus interactome, and this may offer new hints on drugs currently in use or to be proposed for clinical 
investigation. From this comparison, we have been able to single out some human proteins that contact two 
viral counterparts, and that might be possible new targets for anti-COVID-19 drugs. Finally, given that, as 
already noticed by  others7, several treatments proposed for COVID-19 are still lacking a known mechanism of 
viral inhibition or even a pharmacological rationale, careful analyses of the drug-target data as those reported 
in the present work might help to understand the molecular implications of these pharmacological options, and 
eventually improve the search for more effective therapies.

Methods
Data acquisition. The set of drugs in clinical trial for the treatment of COVID-19 (731 on August 11, 2021) 
was retrieved from the dedicated web page of DrugBank (https:// www. drugb ank. ca/ covid- 19). Both experimen-
tal unapproved substances, and drugs in clinical trials were considered, and duplicates were removed (more 
than one trial is going on for some drugs). The set was also filtered for both the number of heavy atoms (to 
exclude inorganic compounds), and the availability of data (a drug was not added if it was not present in the 
PubChem database). This cleaning step reduced the number of drugs considered to 397. From the same site 
and from PubChem, we gathered some features related to structure, as well as pharmacological classification, 
pharmacodynamics, and pharmacokinetics of each drug (Table 4). Drugs for which no targets were reported 
in DrugBank were discarded (290 remaining). As regards the drug targets, they were retrieved from DrugBank, 
and in this case we collected some information on classification, biology, and pharmacology of each protein. A 
detailed description of the features and the data sources are reported in Table 5.

Networks construction. We chose to inspect the data in the form of a graph. All networks presented in the 
web app and in the paper were built by means of the NetworkX  software26.

Network analysis. Node attributes. Some suitable node attributes (Degree, Closeness Centrality, Be-
tweenness Centrality, Eigenvector Centrality, Clustering Coefficient, VoteRank) were calculated through Net-
workX. The only property we tweaked was the result of the VoteRank because its algorithm draws up a ranking 
of nodes based on an iterative voting  system54 without assigning a specific value to each one of them. Thus, we 
translated this ranking into a score for each node on the basis of its position and the total number of nodes with 
the following method:

https://www.drugbank.ca/covid-19
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Nodes grouping. Dividing a network into groups, clusters, or communities could be useful to unveil non-trivial 
patterns of interaction. It is accomplished by splitting the network into subgroups that have the fewest pos-
sible number of connections between  them55. In this work, we took advantage of (and provide access to in the 
web tool) three of the most common algorithms for this purpose: spectral  clustering27, Girvan–Newman com-
munity  detection28, and greedy modularity community  detection29.

The first one makes use of the spectrum of the graph Laplacian to convey the information about the graph 
 partition27. The division is then carried out on this data by a k-means clustering algorithm (see the Supplementary 
Information for more detail). In the second case, communities are recognized employing the Girvan–Newman 
 method28. It is a hierarchical method based on the progressive removal of the edges with the highest between-
ness centrality from the graph, causing it to break into sets of smaller constituents. The partition with the best 
modularity is shown, but the user can manually choose an arbitrary number of communities in the web tool. The 
greedy modularity community detection  method29 pursues the graph division through a bottom-up approach 
(opposite to the previous one), by exploiting a “greedy” algorithm that progressively associates the nodes into 
groups that maximize the modularity. It starts with all nodes separated into single communities and recursively 
merges the couple of them that brings to the highest modularity increasing, until the point that joining two 
communities would lead to a modularity reduction.

Table 4.  Drugs features.

Feature Description Source

ID DrugBank unique identification code DrugBank11

SMILES The chemical structure string notation for drugs. SMILES were recovered from PubChem if available, 
otherwise from DrugBank

PubChem10

DrugBank11

ATC code level 1 The broad-based level of the ATC classification system identifying the fourteen anatomical/pharmaco-
logical groups DrugBank11

ATC identifier ATC code DrugBank11

Targets Entities to which the drug binds or interacts with, resulting in an alteration of their normal function 
and thus in desirable therapeutic effects or unwanted adverse effects DrugBank11

Enzymes Proteins that facilitate a metabolic reaction that transforms the drug into one or more metabolites DrugBank11

Carriers Proteins that bind to the drug and modify its pharmacokinetics, e.g., facilitating its transport in the 
blood stream or across cell membranes DrugBank11

Transporters Proteins that move the drug across the cell membrane DrugBank11

Drug interactions Drugs that are known to interact, interfere or cause adverse reactions when taken with this drug DrugBank11

Trials Identifiers of clinical trials with the respective phase DrugBank11

Table 5.  Targets features.

Feature Description Source

Gene Short identifier of the unique gene name DrugBank11

Organism Organism where the protein comes from DrugBank11

Cellular location The protein cellular location DrugBank11

Drugs List of known drugs related with the protein (e.g., agonists, antagonists, inhibitors…) DrugBank11

ID UniProt unique identification code DrugBank11

STRING interaction partners Known and predicted protein–protein interactions (both physical and functional) only in Homo Sapiens and with a minimum 
score of 0.95 STRING48

Diseases Disease groups with an Evidence Index of 1 (see https:// www. disge net. org/ dbinfo# secti on44 for more information) DisGeNET49

PDBID Protein Data Bank identification code (the structure with the best resolution) SWISS-MODEL50

Protein classification The first and the second level of Protein Target Classification are named Protein Class and Protein Family respectively ChEMBL9

https://www.disgenet.org/dbinfo#section44
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These tasks were accomplished through in-house Python scripts, mainly making use of the packages Net-
workX and Scikit-learn56.

Degree distribution fitting. A network is commonly considered to be scale-free if the degree distribution of its 
nodes follows a power-law30, which has the form:

where the scaling exponent α is higher than 1 (usually between 2 and 3) and the degree value x is equal or greater 
than  xmin (which is always higher than 1). To the best of our knowledge, the most severe scale-freeness test is 
presented by Broido et al.33 that take advantage of a rigorous mathematical  procedure34 to assess the validity 
of a power-law distribution to describe the investigated degrees. Here, we followed their approach probing the 
fitting of a power-law to the degree distributions of both projected networks DP and TP (with and without the 
Artenimol and Fostamatinib nodes). As a first step, the parameters of the best fitting power-law are determined 
 (xmin with a standard Kolmogorov–Smirnov minimization approach, and then α with a discrete maximum 
likelihood estimation) employing the Python package  Powerlaw57. Then, the fitting is evaluated considering the 
p-value of the Kolmogorov–Smirnov distance (computed with a semi-parametric bootstrap), and of the  xmin 
and α (bootstrap). If p ≥ 0.1, the degree distribution is considered plausibly scale-free. Lastly, the chosen power-
law distribution is compared to four non-scale-free alternatives (using loglikelihood ratio tests), to evaluate if 
it is favored over the others. Such alternatives are the exponentially truncated power-law, the exponential, the 
stretched exponential (Weibull) and the lognormal. This entire procedure was carried out using an in-house 
Python script, with a large employment of the Python package Powerlaw. A more thorough explanation and 
method validation are provided in the Supplementary Information.

Robustness. Scale-free networks (contrary to random Erdős–Rényi graphs) have an exceptional tolerance 
against random failures, but at the same time they are very vulnerable to targeted  attacks35. We investigated the 
robustness of these networks evaluating their diameter (as a measure of interconnectivity) throughout a process 
of node removal. We took into account both targeted attacks and random failures and compared the results. In 
the first case, at every iteration the node with the highest degree was chosen and removed. In the other case, a 
node was selected randomly and eliminated. In this latter condition, the average of multiple 100 runs was con-
sidered in order to avoid misinterpretations induced by a single random choice. This procedure was carried out 
through an in-house Python script.

COVIDrugNet implementation and deployment. COVIDrugNet is mainly composed by the collec-
tor and the web tool itself. Both are written in Python, but the purpose of the former is to collect the data 
from web databases, build the graphs, compute some properties, and store everything in pickle format. The lat-
ter, instead, retrieves the data from the created database and sets up the front-end part of COVIDrugNet with 
Python  Dash58. The web tool deployment was carried out with  Apache59 through the mod_wsgi interface in an 
Ubuntu server.

Data availability
COVIDrugNet is a public web tool available at http:// compm edchem. unibo. it/ covid rugnet. All data generated or 
analyzed in this study is publicly available and is included in this article (and its supplementary information files) 
or on the GitHub repository (in which data will be updated every two weeks). Furthermore, some data is easily 
downloadable from the web tool itself: all tables in tab-separated values (tsv) format and the networks in various 
formats (adjacency list, pickle, cytoscape json, graphml, gexf, edges list, multiline adjacency list, tsv, png and jpg).

Code availability
The full code for the collection, building and analysis of the networks is available in the GitHub repository at 
https:// github. com/ LucaM enest rina/ COVID rugNet. It is entirely written in Python and makes use of the pack-
ages listed in the Supporting Information.
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