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SOLVING NONLINEAR SYSTEMS OF EQUATIONS VIA SPECTRAL
RESIDUAL METHODS: STEPSIZE SELECTION AND APPLICATIONS

ENRICO MELI} BENEDETTA MORINIT¥ MARGHERITA PORCELLI} Yl CRISTINA SGATTONISY

Abstract. Spectral residual methods are derivative-free and low-cost per iteration procedures for solving
nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare
well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual
vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In
this work we address both theoretically and experimentally the steplength selection and provide results on a real
application such as a rolling contact problem.

Keywords. Nonlinear systems of equations, spectral gradient methods, steplength selection, approximate

norm descent methods

1. Introduction. This work addresses the use of spectral residual methods for solving sys-
tems of nonlinear equations

F(z) =0, (1.1)

where F' : R™ — R™ is continuously differentiable. The original proposal of spectral residual
methods given in [25] was elaborated in [26] and gave rise to derivative-free iterative procedures
for solving (1.1). In fact, given the iterate xj, the residual vectors +F(xy) are used as search
directions in a systematic way and a scalar i, inspired by the Barzilai and Borwein method for
unconstrained optimization, is used as the first trial stepsize. Similarly to the Barzilai and Borwein
method for unconstrained optimization, || F|| does not decrease monotonically along iterations and
the effectiveness of spectral residual methods heavily relies on the steplengths 5 used.

Spectral residual methods belong to the class of Quasi-Newton methods which are particu-
larly attractive when the Jacobian matrix of F' is not available analytically or its computation is
not relatively easy. Quasi-Newton methods showed to be effective both in the solution of large
nonlinear systems and in the solution of sequences of medium-size nonlinear systems generated by
model refinement procedures, see e.g., [5,21,25,26,31,41]. Specifically, spectral residual methods
have received a large attention since they are low-cost per iteration and require a low memory
storage, being matrix-free, see e.g., [21,25-27,31, 34, 35,41].

It is well known that the performance of the Barzilai and Borwein method for the uncon-
strained optimization problem min,egn f(x) does not depend on the decrease of f at each it-
eration but relies on the relationship between the steplengths used and the eigenvalues of the
average Hessian matrix of f [3,15,36], and consequently on the stepsize selection employed, see
e.g., [8-10,12,15,16]. On the other hand, to our knowledge, an analogous study has not been car-
ried out for spectral residual methods. The aim of this paper is to analyze both the relationship
between the steplengths S and the eigenvalues of average matrices associated to the Jacobian of
F, and the impact of the stepsizes on the convergence history. This analysis is addressed from
both a theoretical and an experimental point of view.

The main contributions of this work are: the theoretical analysis of the stepsizes proposed in
the literature; the impact of the stepsizes on the norm of F' when a nonmonotone globalization
strategy is used; the analysis of the performance of spectral residual methods coupled with various
rules for choosing the steplengths. Inspired by the steplength rules proposed in the literature
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for unconstrained minimization problems, we propose and extensively test adaptive strategies on
sequences of nonlinear systems arising from rolling contact models. These models play a central
role in applications, such as rolling bearings and wheel-rail interaction [23,24], and their solution
gives rise to a relevant benchmark test set of nonlinear systems. We show that adaptive rules
combining small and large stepsizes are by far more effective than rules based on static choices of
Br-

The paper is organized as follows. Section 2 introduces spectral residual methods. In Section
3 and 4 we provide a theoretical analysis of the steplengths and of the fulfillment of a general
nonmonotone linesearch. In Section 5 we introduce the spectral residual method used in our tests
and provide a theoretical investigation. The experimental part is developed in Section 6 where we
describe several steplength selection strategies, introduce our test set and discuss the numerical
results obtained. Some conclusions are presented in Section 7.

1.1. Notations. The symbol |- || denotes the Euclidean norm, I denotes the identity matrix,
J denotes the Jacobian matrix of F. Given a symmetric matrix M, {\;(M)}?"_; denotes the set
of eigenvalues of M, Apin (M) and Apax (M) denote the minimum and maximum eigenvalue of M
respectively, and {v;}I; denotes a set of associated orthonormal eigenvectors. Given a sequence
of vectors {z}, for any function f we let fr = f(xx).

2. Preliminaries. In the seminal paper [2] Barzilai and Borwein proposed a gradient method
for the unconstrained minimization

min f(z), (2.1)

where f : R™ — R is a differentiable function. Given an initial guess zy € R™, the Barzilai-Borwein
(BB) iteration is defined by

Tyl = T — arV [, (2.2)

where «y, is a positive steplength inspired by Quasi-Newton methods for unconstrained optimiza-
tion [11]. In Quasi-Newton methods, the step pr = 241 — 2 solves the linear system

Bipr = =V [k, (2.3)
and By, k > 1, satisfies the secant equation, i.e.,
Bipr—1 =211, DPrk-1=Tk —Tk—1, 2k-1=Vfe—Vfr_1. (2.4)

Letting By, = a~' I and imposing condition (2.4), Barzilai and Borwein derived two steplengths
which are the least-square solutions of the following problems:

pg 1PE—-1
1= argmin ||o ' pp_1 — 213 = (2.5)
a P _1”k—-1
. 2 pg_lzkfl
Q2= argmin [|py_1 — azp_1|z = . (2.6)
« 2 _1”k—1

The second least-squares formulation is obtained from the first by symmetry. The steplength oy, in
(2.2) is supposed to be positive, bounded away from zero and not too large, i.e., ax € [min, Qmax)
for some positive amin, Gumax; to this end, one of the two scalars a1, ax 2 is selected and projected
onto [min, Omax| if necessary, see e.g., [3,12,15].

Choosing By, = a~ ! I yields a low-cost iteration while the use of the steplengths g1, O 2
yields a considerable improvement in the performance with respect to the classical steepest descent
method [2,15]. Specifically, the performance of the BB method depends on the relationship
between oy 1, a2 and the eigenvalues of the average Hessian matrix fol V2f(zp_1 + tpp_1)dt,
and an extensive investigation in stepsize selection was made in [8-10,12,15,16]. The BB method
is also denoted as spectral method and is commonly employed in the solution of large unconstrained
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optimization problems (2.1). The behaviour of the sequence { f(zx)} is typically nonmonotone and
ruled by linesearch strategies, [15,17, 38].

The extension of this approach to the solution of nonlinear systems of equations (1.1) was
firstly proposed by La Cruz and Raydan in [25]. Here we summarize such a proposal and the issues
that were inherited by subsequent procedures for general nonlinear systems [21,25-27, 31, 34, 41|
and for monotone nonlinear systems [1,29,30,32,40,44]. Instead of applying the spectral method
to the merit function

f@) = F (@), (2.7)

the BB approach is specialized to the Newton equation yielding the so-called spectral residual
method. Thus, let p_ satisfy the linear system

kaf = _Fk7 (28)
and let B, = 871 satisfy the secant equation
Bkpk—1 = Yk—-1, DPr-1 =Tk — Tk—1, Yk—1=Fp— F_1.

Reasoning as in BB method, two steplengths are derived:
T
5]@,1 = 7*777 (29)
T
Bra=—F—". (2.10)

These scalars may be positive, negative or even null; moreover Sy, 1 is not well defined if pf_,yr—1 =
0 and B2 is not well defined if y,_; = 0. In practice, the steplength £ is chosen equal to B 1
or to fi2 as long as it results to be bounded away from zero and || is not too large, i.e.,
|ﬂk| € [Bmina Bmax] for some pOSitiVG Bmin; 6max~

The step resulting from (2.8) turns out to be of the form p_ = —f; F), but the kth iteration of
the spectral residual method employs the residual directions +F}, in a systematic way and tests
both the steps

p— = —PBpF, and py = +BrFL,

for acceptance using a suitable linesearch strategy. The use of both directions +F}, is motivated
by the fact that, contrary to (—aV fi), a > 0, in (2.2), (=B F}) may not be a descent direction
for (2.7) at xg. Letting J be the Jacobian of F', the value Vfg(—Bka) = —2BkF,;:TJka could
be positive, negative or null but, as long as FkTJka # 0, either (—pkFy) or BpF) is a descent
direction for f.

Analogously to the spectral method, the spectral residual method is implemented using non-
monotone linesearch strategies. The adaptation of the spectral method to nonlinear systems is
low-cost per iteration since the computation of 551 and B o is inexpensive and quite effective in
the solution of medium and large nonlinear systems, see e.g., [21,25-27,34,41].

Unlike the case of spectral method, to our knowledge a systematic analysis of the stepsizes
Br,1 and By 2 has not been performed. In a large number of papers, the steplength 3 1 is used,
[25-27,31,34]. On the other hand, in [21] it was observed experimentally that alternating 5y 1 and
Bk,2 along iterations was beneficial for the performance and in [41] it was observed experimentally
that using fj 2 performed better with respect fj,1 in terms of robustness. Therefore, in the next
two sections we provide: the expression of B 1 and B2 in terms of the spectrum of average
matrices associated to the Jacobian matrix of F', their mutual relationship, the analysis of their
impact on the behaviour of || F]|.

The matrices involved in our analysis are the following. Given a square matrix A, we let
Ag = %(A + AT) be the symmetric part of A, Gj_; be the average matrix associated to the



4

Jacobian J of F' around xj_1

1
Gr-1 déf/ J(xp—1 + tpr—1)dt, (2.11)
0

and (Gg)k—1 be the average matrix associated to the symmetric part Jg of J around xj_;

1
(Gs)k—1 déf/ Js(xp—1 + t pr—1) dt. (2.12)
0

Moreover, given a symmetric matrix M and a nonzero vector p, we employ the Rayleigh quotient
defined as

T
p’ Mp
q(M,p) = ; 2.13
(M, p) pan (2.13)
and the following property [18, Theorem 8.1-2]
)\min(M) S Q(M, p) é Amax(M) (214)

3. Analysis of the steplengths ;. ; and ;2. We analyze the stepsizes 3,1 and S 2 given
in (2.9) and (2.10) making the following assumptions.

ASSUMPTION 3.1. The scalars .1 and Bi,2 are well defined and nonzero.

ASSUMPTION 3.2. Given x and p, F is continuously differentiable in an open convex set
D C R™ containing x + tp with t € [0,1].

We note that Assumption 3.1 holds whenever pf  yx_1 # 0.

In the following lemma we analyze the mutual relationship between the stepsizes §j,1 and 3 2
and give their characterization in terms of suitable Rayleigh quotients for the average matrices in
(2.11) and (2.12). We use repeatedly the property

p" Ap = p" Agp, (3.1)

which holds for any square matrices A, Ag = %(A + A7), and any vector p of suitable dimension.

LeEMMA 3.3. Let Assumption 3.1 hold and Assumption 3.2 hold with x = Tp_1, p = pr_1 =
+Br—1Fi—1. The steplengths Bj 1, Br,2 are such that:
P1) they have the same sign and |Br2| < |Br1l;
P2) either it holds Br1 < Br2 <0 or0< B2 < Br1;
P3) they take the form

1 1
Bl = q((Gs)i-1.p6-1)  q((Gs)h-1,Fu-1)’ 3.2)

and

By = ¢((Gs)k-1,p6-1)  q((Gs)k—1, Fr—1)
k,2 — - )
q(GE_1Gr-1,p6-1)  @(Gi_1Gr—1,Fy_1)

with Gx—1, (Gs)k—1 and q(-,-) given in (2.11), (2.12) and (2.13), respectively.
Proof. By (2.9) and (2.10), we can write

- pgfﬂ)k—l (pgfﬂJk—l)z

B P;;F_1yk—1 (y,f_lyk_l)(p{_lpk_l)

— Bis k-1l lye—1]*cos® or—1

’ [Pk—1 11 ly—1lI?

= Br,1 cos® pp_1, (3.4)

Br,2




where @1 is the angle between py_1 and yx_1, and P1) follows.
Property P2) follows as well since 8.2 # 0 by Assumption 3.1.
As for property P3), by the Mean Value Theorem [11, Lemma 4.1.9] and (2.11) we have

1
R e / J(@k—1 + tpr—1)pr—1 dt = Gr_1p—1.
0
Then using (3.1) and (2.13), Bj1 takes the form

pf_ﬂ?kﬂ Pf_lpkq 1

Pl Growpk—1 ph_1(Gs)i—1pe—1 a((Gs)k—1,pr—1)’

Br1

while S, 2 takes the form

P Groapk Pk q((Gs)r—1,pr-1)
i (GE_ Gr—1)pr—1 pE_1pe—1 a(Gi_Gr—1,Pk—1)

Br2 =

The rightmost equalities in (3.2) and (3.3) easily follow using the form of the step pr_1 =
+B,—1F)-1- O

The above characterization P3) yields bounds on the stepsizes i1, B2 in terms of the
extreme eigenvalues of the average matrices in (2.11) and (2.12). A relationship between S 1 and
the eigenvalues of (Gg)r—1 was observed in [25,26,34] but the following results are not contained
in such references.

LEMMA 3.4. Let Assumption 3.1 hold and Assumption 3.2 hold with © = xi_1, p = Pr—1-
Then, the steplengths 1 and By 2 are such that:
(i) If the Jacobian J is symmetric and positive definite on the line segment in between xy_1 and
T—1 + Dr—1 then Br1 and B2 are positive and

1 1
- < < _ 3.5
Amax(Gk—l) o 6]6’2 o Bk P Amln(Gk—l) ( )
(ii) if (Gg)k—1 in (2.12) is positive definite, then By 1 and By 2 are positive and
a { 1 3 }< By < L (3.6)
maxy ——— 5+ - s = A =7 /A4 N .
Amax((GS)k—l) w2 ol )\min((GS)k—l)
/\min((GS)k—l) . /\max((GS)k—l)

< < ; 3.7
)‘maX(G%—lefl) - ﬂk,Q = { )\min(Gglelyﬂk’l} ( )

(iil) if (Gs)g—1 in (2.12) is indefinite and Gi—1 in (2.11) is nonsingular, then

(iii.1) Br satisfies either
6 <m’n{ 1 B } or fr1 > ma { 1 I6; } (3.8)
n{ ————, >maxq —————, (3.
= Amin (Gs)e—1)"" o Amas (Gs)e—1)” "
(iil.2) By,2 satisfies either
. )\max((GS)k—l)
< < 3.9
0 < Br,2 < min { o (CT G’ 5k,1}, (3.9)
or
)\min((GS)k—h)

< < 0. 3.10
max { e Gm,ﬂk,l} < s (3.10)



Proof. Consider properties P1), P2) and P3) from Lemma 3.3.
(1) Steplengths Sk 1 and By 2 are positive due to (3.2), (3.3). The rightmost inequality of (3.5)
follows from (3.2) and (2.14). The remaining part of (3.5) is proved observing that (3.3)
yields

1/2 ~1/2
By = p{qu/AGk/ 1Pe-1 1 (3.11)
k.2 = T 1/2 - 1/2 ’ ’
pkflefle—leflpk—l ¢(Gr—1,Gpp—1)

and using P2) and (2.14).

(ii) Using (3.2), (2.14) and P2) we get positivity of 81 and (3.6). Consequently, Sk 2 is positive
by property P1), and bounds (3.7) can be derived using (3.3), (2.14) and item P2) of
Lemma 3.3.

(iil) If (Gg)k—1 is indefinite then its extreme eigenvalues have opposite sign, i.e., Amin ((Gs)k,l) <
0 and )\max((GS)k_l) > 0. Hence, (3.2), (2.14) and P2) give (3.8). Moreover, since

G,,_1Gk—1 is symmetric and positive definite, we can use, as before, P1) and (2.14) and
get (3.9) and (3.10).

O

REMARK 3.5. Lemma 3.4 easily extends to the case where matrices are negative definite.
Item (ii) of Lemma 3.4 includes the case where F is strictly monotone, i.c., (F(x)—F(y))T (z—
y) > 0 for any x,y € R™ with x # y, see e.g. [14].

4. On the impact of the steplength S; on || Fii1||. In this section we investigate how
the choice of the steplength /; may affect ||Fj11]|. Results are derived using a generic 5 and
specialized thereafter for B 1 and By 2.

The first result concerns the case where J is symmetric and analyzes the residual vector Fy 1
componentwise. It heavily relies on the existence of a set of orthonormal eigenvectors for the
average matrix Gy.

LEMMA 4.1. Suppose that Assumption 3.2 holds with x = xp, andp = Dk and that the Jacobian
J is symmetric. Let p, = p— = —BrFir # 0, Tpy1 = x) + pi, {)\ (Gk)} be the eigenvalues of
matric Gy in (2.11) and {v;}7_, be a set of associated orthonormal ezgem)ectors Let Fy, and Fy41
be expressed as

n n
Fy = ZMZ% Fip1 = E M1 Vi
i=1 =1

where ,ufc,,u};ﬂ, i=1,...,n, are scalars. Then
Fip1 = (I = BuGr) Fi, (4.1)

Moreover, it holds: 4
(a) if BeAi(Gr) =1, then |y | =0; ' _
(b) if 0 < BiAi(Gr) < 2. then || < |ih; otherwise || > |,

Proof. The Mean Value Theorem [11, Lemma 4.1.9] gives

1
Fry = Iy +/ J(zr + tpr)pk dt,
0

and py = — B, Fy, and (2.11) yield (4.1). Since {v;}, are orthonormal we have for i =1,...,n

Hk+1 (111) Fri1
(Uz> (I — BrGr)Fy
= i (1 = Bri(Gr)),



7

e., equation (4.2). Consequently, Item (a) follows trivially; Item (b) follows noting that |1 —
ﬁk)\z(Gk)‘ < 1if and only if 0 < ﬁk)\z(Gk) < 2. O

REMARK 4.2. Lemma 4.1 trivially extends to the case where pp = py = B F}.

If the nonlinear system (1.1) represents the first-order optimality condition of the quadratic
optimization problem (2.1) with f(z) = 127 Az —b"x, A symmetric and positive definite, then the
previous lemma reduces to well known results on the behaviour of the gradient method in terms
of the spectrum of the Hessian matrix A, see [36]. In fact, the nonlinear residual is F(z) = Az —b
and its Jacobian is constant J(x) = A, Vx. Then, (4.2) becomes

k
fisr = Hip(1 = BeAi(A H (1= B\

As a consequence, a small steplength Sy, i.e., close to 1/Apax(A), can significantly reduce the values
| u}; +1| corresponding to large eigenvalues \;(A) while a small reduction is expected for the scalars
|11} +1] corresponding to small eigenvalues A;(A). On the contrary, a large steplength Sy, i.e., close
to 1/Amin(A), can significantly reduce the values |uj ;| corresponding to small eigenvalues A;(A)
while tends to increase the scalar |uj ;| corresponding to large eigenvalues A;(A). This offers some
intuition for choosing the steplengths by alternating in a balanced way small and large steplengths
in order to reduce the eigencomponents, see e.g., [12, p. 178].

On the other hand, if F is a general nonlinear mapping then G changes at each iteration and
Lemma 4.1 suggests the following guidelines. The first guideline concerns the case where J is posi-
tive definite. A nonmonotone behaviour of the sequence {|| Fy| } is expected By Item (i ) of Lemma

3.4, both t d B (Gg) 1 the int 1 ,
oth Bi.1 or B2 are positive and Sr\;(G) lies in the interva /\max(Gk—1) /\min(Gk—l)
for i = 1,...,n. Assuming without loss of generality that the eigenvalues are numbered in nonde-

creasing order, by standard arguments on perturbation theory for the eigenvalues it holds
IAi(Gr) = Ai(Gr-1)| < |Gk — Gr-1lls

t=1,...,n, [18, Theorem 8.1-6]. Thus, if the Jacobian is Lipschitz continuous in an open convex
set containing xx_1 + tpr_1 and xy + tpr with constant L; > 0, it follows

Ly
1Gh — G <<||pk 1||+||pk||)

Consequently, if ||px—1|| and/or ||px| are large, by Item (b) no decrease of pj ,, may occur. On
the contrary, for small values of ||pr_1]|| and ||pxl|, as occurs if {z}} is convergent, G} undergoes
small changes with respect to Gj—_1 and the behaviour of u} 41 shows similarities with the case
above where J is constant and positive definite.

The second guideline concerns the case where J is indefinite and A\pin(Gr) < 0 < Apax(Gg). If
Br > 0, from Item (b) it follows that |/¢§€+1| corresponding to positive \;(Gy) are smaller than |ui|
if BrAi(Gr) is small enough while all |uj_ | corresponding to negative eigenvalues increase with
respect to |ut| and the amplification depends on the magnitude of Br\;(G). If B < 0 similar
conclusions hold. In general, a nonmonotone behaviour of the sequence {||Fy||} is expected but a
possibly large increase of || Fi41]| with respect to || F|| does not occur if {|BxAi(Gr)|}i=1,....n are
small or of moderate size. Since a small value of {|8x\;(Gr)|}i=1,....» might be induced by a small
value of |B|, the use of Bi 2 might be advisable taking into account that |8 2| < |8k 1| and Bk 1
can arbitrarily grow in the indefinite case (see Lemma 3.4).

4.1. On the impact of the steplength §; in the approximate norm descent line-
search. In this section we embed the spectral residual method in a general globalization scheme
based on the so-called approximate norm descent condition [28]

[Erall < (14 ) [ F ], (4.3)
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where {n} is a positive sequence satisfying

an < n < oo. (4.4)
k=0

Intuitively, large values of 7 allow a highly nonmonotone behaviour of ||F|| while small values
of nm promote the decrease of |F||. Several linesearch strategies in the literature fall in this
scheme [19,28,31,34]. The main idea is that, given xy, the trial steps take the form

p— = —VBpFr or pp = +yfrlEy (4.5)

where v € (0,1] and (4.3) is enforced using a backtracking process. The sequence generated is
such that {||F||} is convergent [28, Lemma 2.4].

We now analyse the properties of ||Fjy1]| as a function of the stepsize v, and determine
conditions on 7B which enforce (4.3). First of all we observe that by the Mean Value Theorem [11,
Lemma 4.1.9] and (4.5) we have

Fry1 = (I £8kGr) . (4.6)
Using this equation we can write
[Finl® = 1Bl + 281 F (G )i Fy + v BiFy G Gr.Fr, (4.7)

and analyze when either ||Fj41]| < ||Fx|| or (4.3) holds.

THEOREM 4.3. Suppose that Assumption 8.1 holds and Assumption 3.2 holds with x = xy, and
p = pi. Suppose FL J.Fy, # 0 and FL G Fy, # 0 with Gy, given in (2.11). Let A = q((Gs)k,Fk)2+
(i + 2n)a(GY Gy, F), then
(1) If x40 = T + P, P = P— = —VePrFk, T& € (0,1], we have that ||Fiy1| < || Fk|| when

la((Gs)k, Fr)|

F; d 2 . 4.
Bra((Gs)k, Fr) >0 and ~i|Bk| < «(GT Gy, F) (4.8)
Condition (4.3) is satisfied when
(G F) = VE L al(GshFi) + VA o)
oGy Gy, Fy)  — = 4Gy Gk, F) -
(2) If xj41 = i + Dk, Pk = P+ = VePBeEFk, vk € (0,1], we have that ||Fry1]| < || Fx|| when
la((Gs)k, Fr)|
G F) 0 d 21— 4.10
Bra((Gs)k, Fr) <0 and ~i|Be| < «(CT Gy, F) (4.10)
Condition (4.3) is satisfied when
—q((Gs)k, Fr) — VA —q¢((Gs), F A
q((Gs)k, Fr) — VA < b < q((Gs)k, Fi) + \F- (4.11)

a(GF Gy, Fy) q(GL G, Fy)

Proof. Concerning Item (1), using (4.6) we get

[Fisall? = [1(1 = mBuGr) Fi1?
F(Gs)pFy B G GREy 2

= (1= 20Ba((Gs)r Fi) +282a(GL G, F) )1 Fil 1.

+ 7B



Noting that by assumption ¢((Gs), Fi) # 0 and q(Gf Gk, Fy;) > 0, ||Frq1| < || Fy|| holds if

Bra((Gs)k, Fx) >0 and  — 2vBuq((Gs)k, Fi) + 72 Bra(GL Gk, Fi,) < 0,

and these conditions can be rewritten as in (4.8). Condition (4.9) follows trivially.
Item (2) follows analogously. From (4.6) and imposing ||Fi+1|| < ||Fkll, we get the condition

ﬂkq((Gs)k,Fk) <0 and Z’ykﬂkq((Gs)k,Fk) +’y,§ﬂ,3q(G£Gk,Fk) <0

which is equivalent to (4.10). Condition (4.11) follows trivially. O

We remark that, due to the form of G, and (Gg), conditions (4.8)—(4.11) are implicit in x By.
The above theorem supports testing the two steps (4.5) systematically because at k-th iteration,
Bk, q(Jk, Fk) and q(JI Jy, Fy;) are given and by continuity of the Jacobian, the Rayleigh quotients
q((GS)k, Fk) and q(GL Gy, Fy) tend to q(Jk, Fk) and q(JI Jy., Fy;) respectively as 7y, tends to zero.
Hence, if v; is sufficiently small it holds

q(Ji, Fr) — € < a((Gs)i» Fr) q(Jk, Fr) + €
Q(JEJe, Fr) +€ ~ q(GEGr, Fr) = q(JT i, Fr) — €
a((@s)n. )

(Gs)lka) Q(JIka)
(GTGK Fk) Q(JEJkyFk) .
Consequently, for 7, sufficiently small, either condition (4.8) or (4.10) is fulfilled. Analogous
considerations can be made for conditions (4.9) and (4.11).

As a final comment, the previous theorem suggests that a small |Sj| promotes the fulfillment
of conditions (4.8), (4.10) or (4.9), (4.11). Again, by Lemma 3.4, the use of ;2 may be advisable
taking into account that |Bx2| < |Bk1| and that 851 can arbitrarily grow in the indefinite case;
taking the steplength equal to ) ; may cause a large number of backtracks and an erratic behaviour
of {||Fx||} as long as ny is sufficiently large.

with 0 < e < 3 min{|q(Jk, Fi)|, ¢(JF Ji, Fr)}, and has the same sign as

5. A spectral residual approximate norm descent method. In this section we describe
a spectral residual algorithm which implements a line-search along +F}, and enforces the approxi-
mate norm descent condition (4.3). We also discuss the convergence properties of the method and
provide sufficient conditions for the convergence of the sequence {||Fy||} to zero.

The Projected Approximate Norm Descent (PAND) algorithm was developed in [34] for solving
nonlinear systems with convex constraints. In [31, 34], several variants based on Quasi-Newton
methods have been proposed. Here we consider the spectral residual implementation for un-
constrained nonlinear systems and denote it as Spectral Residual Approximate Norm Descent
(SRAND) method.

Given the current iterate xy, a new iterate xy41 is computed as xx4+1 = ) + pr with pg given
by either (—yiBkFk) or (+vkBxFk), vk € (0,1]. The main phases of SRAND are as follows. First,
the scalar 8 is chosen so that |8k| € [Bmin, Bmax].- Second, the scalar v, € (0, 1] is fixed using a
backtracking strategy so that either the linesearch condition

1F (@ + p)ll < (1= p(1+ %)) [ Fxl, (5.1)

holds or the linesearch condition

IE (@r + pr)ll < (140 — pyi) %], (5.2)

holds where p € (0,1) is quite small [11,34] and {n;} is a positive sequence satisfying (4.4).
The linesearch conditions (5.1) and (5.2) are derivative-free; at each iteration, the first condition
imposes a sufficient decrease in ||F’|| while the second condition allows for an increase of || F||
depending on the magnitude of 7. The sufficient decrease condition (5.1) is crucial for establishing
results on the convergence of {||Fy||} to zero and can be accomplished for suitable values of
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+75,8cF), as long as Fil JpFy, # 0. Trivially, (5.1) implies (5.2) and both imply the approximate
norm descent condition (4.3).

The formal description of the SRAND method is reported in Algorithm 5.1 where we deliber-
ately do not specify the form of the stepsize ;. Termination of Step 2 is guaranteed by Theorem
4.3. The theoretical properties of SRAND are described in [34, Theorem 4.2 and Theorem 4.3] and
are summarized in the following theorem.

THEOREM 5.1. Let the positive sequence {ng} satisfy (4.4) and let {xx} be the sequence
generated by the SRAND algorithm. Then

1. the sequence {xy} is convergent and consequently the sequence {||Fx||} is convergent;
2. the sequence {Vi||Fx|} is convergent and such that limy_ oo vk || Frk|| = 0;
3. if (5.1) is satisfied for infinitely many k, then limy_,o || Fy|| = 0.

Algorithm 5.1: The SRAND algorithm

Given 29 € R™, 0 < Bmin < Bmax;> B0 € [Bmin, Bmax), p» ¢ € (0,1), a positive sequence {n}
satisfying (4.4).
If || Fp|| = O stop.
For k=0,1,2,... do
1. Set v =1.
2. Repeat
2.1 Set p_ = —vBrF) and py = vBiF}.
2.2 If p_ satisfies (5.1), set pr = p— and go to Step 3.
2.3 If p satisfies (5.1), set pr = p4+ and go to Step 3.
2.4 If p_ satisfies (5.2), set pr = p— and go to Step 3.
2.5 If py satisfies (5.2), set pr = p4 and go to Step 3.
2.6 Otherwise set v = o .
3. Set v, =7, Tipy1 = Tk + Pk
4. If || Fi41]| = O stop.
5. Choose Bi11 such that |Bky1| € [Bmin, Bmax] -

The above result holds for any choice of the steplength 8; and Item 3. identifies one occurrence
where the SRAND algorithm solves problem (1.1), i.e., {||Fx||} converges to zero. We now complete
the theoretical analysis of the SRAND algorithm by providing sufficient conditions that ensure that
the sequence {||F||} converges to zero.

We start by recalling a simple result.

LEMMA 5.2. Suppose that Assumption 3.2 holds. Then for pr, = +v0kFk, the following
equality holds

1
B |2 = (1:&2’ykﬂkq((Gs)k,Fk) 12%/ (F(z + pr) — F(an)" T (ze + tpr) Fe dt) 1EIP. (5.3)
0

Proof. Assume that pp = —~x Bk Fx. Then,

IFuall? = 1Fll? +2 fy Far +tpn)TJ (@x + tpe)pe dt

1Fl1? = 27k B fy Flan + tpr)T T (zx + tpy) Fr dt

1Fel|? = 298k fy F@r + tpe) T (wp + tpr) Fi, dt

£29i B [y Flan) ™ (wr + tpr) Fi dt

| Fxll? — 27k Bk FE G Fr — 2Bk fol(F(l‘k +pi) — F(xp))T J(zg + tpr) Fr dt,
that gives (5.3) using (3.1) and (2.13). The case py = +7, S, F) is analogous. O

Under specific assumptions on the Jacobian J, the following two theorems give conditions that
ensure F'(z*) = 0 where z* is the limit point of {z}: Theorem 5.3 concerns the cases when Jg(z*)
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is positive definite and when J is symmetric too, Theorem 5.4 regards the case when Jg(z*) is
indefinite.

THEOREM 5.3. Suppose that F is continuously differentiable on IR"™. Let the positive sequence
{ni} satisfy (4.4) and let {xi} be the sequence generated by the SRAND algorithm. Moreover
assume that Jg(x*) is positive definite at the limit point x* of {xk}. Letting omax(J(x*)) be the
largest singular value of J(x*), if eventually the following conditions

p

v> B> (11 )omm (T () (5.4a) and Brq((Gs)k, Fr) > gp7 (5.4b)

hold with p € (0,1) as in (5.1)-(5.2) and for some € € (0,1) and v > 0, then F(z*) = 0. If By is
either Br1 or Bi2, only condition (5.4b) has to be satisfied to get F(xz*) = 0. Moreover, for some
w1, ws € (0,1), sufficient conditions for (5.4b) to hold are

1. if Br = Br for k large enough:

2. if B = Br 2 for k large enough:

R(Js(@") < mg; (5.:6)

3. if J is symmetric and By, is either 1 or Pio for k large enough:

2W1 .

K(J(x")) < 3 (5.7)

where k() is the 2-norm condition number.

Proof. Since Jg(z*) is assumed to be positive definite, continuity implies that there exists a
scalar £ > 0 sufficiently small such that, for all y € B(z*,&) = {z € R" : ||z —z*| <&}, Js(y) is
positive definite and

Amin (S5 (y)) > (1 — €)Amin(Js(2")), and Apax(Js(y)) < (14 €)Amax(Js(x™)), (5.8)

with € € (0,1). Moreover, the convergence of the sequence {zj} implies that z;_1 + tpr—; and
xy, + tpr both belong to B(z*, &) for large enough & and all ¢ € [0,1]. As a consequence, reducing
& if necessary, we deduce that, for k sufficiently large,

min Amin((Gs)k); Amin ((Gs)k—1)]

(1~ Dhain(T5(z"))
max [)\max((GS)k);/\max((GS)k—l)] "

>
< (1 + €)>\max(JS(x )

)
and by (2.14),

1((Gs)k Fr) € Pmin((Gs)k)s Amax((Gs)r)] S [(1 = €)Amin (Js(27)), (1 + ) Amax(Js(z7))] . (5.9)
Finally, again by continuity, reducing £ > 0 if necessary, for all y € B(z*,¢&) it holds

Omax(J () < (14 €)omax(J (")), Omax(Gr) < (1 4 €)omax(J(x¥)). (5.10)

Now, we consider (5.3) and py, = —y, i Fk. From the Mean Value Theorem [11, Lemma 4.1.9],
we have that

1
/ (F(l‘k + tpk-) — Fk)TJ(Ik + tpk)Fk dt‘ =
0

1 1
/ ( / J(xwapk)tpkdc) J(an + tp)Fy dt| |
0 0
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¢ €[0,1]. Again, for k sufficiently large, z +  tpr € B(x*,€) for t,¢ € [0,1]. Thus, pr, = —yi Bk Fk
and (5.10) imply

1 1
/ (F(.Tk + tpk> — Fk)TJ(.%‘k + tpk)Fk dt’ < / tvp Bk  max ) ||J(Z)||2||Fk‘|2dt
0 0

z€B(x*,€
1
== max  omax(J(2)2]| Fyll?
5 Lmax (J(2)) [ Fll

1 *
< SBE(1 4 €)% omax (T (7)) | Fi||*.
Combining this expression with (5.3), we have that for k sufficiently large

1
|Fn? < (1mﬂkq<<as>k,Fk>+2H’;’ijf2 / <F<xk+pk>F(zk»TJ(thpk)detD e

< (L= 2%Bra((Gs)rs Fio) + 7B (1 + €)*0max(J (7)) | E|*. (5.11)

Thus, for k sufficiently large, the linesearch condition (5.2) is satisfied if
1= 298ua((Gs)r: Fi) + 78R (1 + € 0max(J (27))* < (1 = p7)?,

which is equivalent to

527° + 2607 (14 €20max (J(@))287 — p2) 7* + 2 (p — Bra((Gs)x, Fr)) v < 0. (5.12)

Clearly (5.4a) implies that (1 + €)%2omax(J(z*))?v? > 82 > 0. Moreover, if eventually (5.4b) holds
then §; < 0 and (5.12) is satisfied whenever v < ~* = —26;/d2. Now, 7, is uniformly bounded
below since —d1 > 3p, i.e., v* > £ > 7 /(1 + €)20max(J(z*))202). Then, the mechanism
of Step 3.6 of the SRAND algorithm guarantees that, for k£ sufficiently large, the loop in Step 2
terminates with ~; > min{l, 07}, and 4 independent of k. As a consequence, liminfy_, v > 0
and by Item 2. in Theorem 5.1 we have that F'(z*) = 0.

We now show that when jj, is either 8y 1 or S o for k sufficiently large, only condition (5.4b)
has to be satisfied to get F(z*) = 0.

Let B = B,1. Using Item (ii) in Lemma 3.4 and (3.6), we have that Sy is positive and satisfies

1 <8< 1
L+ O)Amax(Js(@)) =7 = (1= A (Js (@)

By definition of Jg, ||Js(z*)|| < ||J(z*)||, hence Amax(Js(2*)) < omax(J(2*)). Therefore (5.4a) is
satisfied being p € (0,1) and setting v = 1/((1 — €)A\min(Js(z*))).
Let B = Br.2. Since Si2 < Bk.1, the upper bound in (5.4a) is guaranteed from the discussion

above. Moreover from (5.11) and again from Sy 2 < fB.1, the linesearch condition (5.2) is satisfied
if

(5.13)

0v? 42017 (14 ©20max(J ()82, — p?) 7* + 2 (p — Bora((Gs)i, Fi) ¥ 0. (5.14)

Following the previous considerations on . 1, d2 is positive. Further, using (5.4b) and repeating
the arguments above on the scalar « satisfying (5.14), the loop in Step 2 terminates with 5 >
min{l, 07}, and 4 independent of k.

To conclude, as for Item 1., if B, 1 is used eventually then (3.6) and (5.9) give Brq((Gs)k, Fi) >
Fetry With wy = %;: and trivially (5.5) implies (5.4b) for all k sufficiently large.

As for Ttem 2., if By 2 is used eventually then (3.7), (5.10) and (5.9) give Brq((Gs)k, Fr) >

ﬁi*))z with we = %, and (5.6) implies (5.4b) for all k sufficiently large.
Concerning Ttem 3., (5.4b) reads SBrq(Gg, Fi) > %p, and by Lemma 3.4 ;1 and o are

positive and

1 1

5k’1 = Bk,Z 2 O'max(Gk—l) = (1 + E)Omax(J(x*)).
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Thus, by (5.9) it follows Brq(Gk, F) > =7ty and trivially (5.7) implies (5.4b) for all & sufficiently
large. O

We remark that analogous conditions to (5.4) can be derived for the case when Jg(z*) is
negative definite.

THEOREM 5.4. Suppose that F is continuously differentiable on IR™. Let the positive sequence
{nk} satisfy (4.4) and let {xy} be the sequence generated by the SRAND algorithm. Moreover as-
sume that Jg(x*) is indefinite and J(x*) is nonsingular at the limit point ©* of {xx}. If eventually
the following conditions

02> gy O (@) Pl > 5. (15

hold with p € (0,1) as in (5.1)-(5.2) and for some € € (0,1) and v > 0, then F(z*) = 0.

Proof. We observe that for k sufficiently large, the inequalities (5.8)-(5.9) hold for some
e € (0,1). Moreover, considering pr, = v ;. Fi and proceeding as in the proof of Theorem 5.3,
we get that for k sufficiently large the following inequality holds

[Frr1ll® < (14 29kBkq((G$)ks Fi) + Vi Be (L + €)*0max(J (27))?) || Fel|*.

Therefore the linesearch condition (5.2) is satisfied if

527 + 2617 (14 2 0ma(T(@))?B2 — 92) ¥ +2 (0 £ Bra((Cs)i, F))y < 0. (5.16)

Clearly (5.15a) implies that (1 + €)2omax(J(2*))?v% > 62 > 0.

We now show that (5.15b) implies F'(z*) = 0 as in the proof of Theorem 5.3. Let us analyse the
case Brq((Gs)k, Fr) < 0 and consider the step py = x0rFk. Then condition (5.15b) means that
—Beq((Gs)k, Fi) > 2p, that is 61 = p+ Brq((Gs)k, Fi) < —2p < 0. The case Brq((Gs)k, Fi) >0
is analogous considering the step pr = —7iBrFx. Now, repeating the arguments in Theorem 5.3

we conclude that liminfy ., v > 0.
]

6. Numerical experiments. In view of our theoretical analysis and guidelines on the
steplength selection, we attempt to tailor Barzilai and Borwein rules for unconstrained optimiza-
tion to the framework of spectral residual methods for nonlinear systems. In this section we
discuss several steplength rules for spectral residual methods and analyze their practical perfor-
mance using the SRAND algorithm described in Algorithm 5.1. Our test set consists of sequences
of nonlinear systems arising in the solution of rail-wheel contact models and is described in details
in Section 6.2.

SRAND was implemented in Matlab (MATLAB R2019b) and the experiments were carried out
on a Intel Core i7-9700K CPU @ 3.60GHz x 8, 16 GB RAM, 64-bit.

6.1. Steplength rules. We now present six rules for the choice of the steplength in spectral
residual methods that will be used in our experiments. Besides the straightforward choice of
one of the two steplengths By 1, Bk2, along all iterations, we consider adaptive strategies that

suitably combine them and parallel those used for quadratic and nonlinear optimization problems.

Below, given a scalar 8, T'(f) is the thresholding rule which projects |5| onto the interval Ig def

[ﬁmin» Bmax]a i~e~v
T(8) = min { B, max { B,

ﬁ\}}. (6.1)
BB1 rule. By [21,25,27,34], at each iteration let

B, = B if ‘ﬁk,l.| €lg (6.2)
T(Bk,1) otherwise
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BB2 rule. At each iteration let

B = Bre,2 if [Bkzl € 1Is
g T(Bk2) otherwise

ALT rule. Following [8,21], at each iteration let us alternate between Sj 1 and By 2:

ALt ) Brka for kodd
F Br,2 otherwise

B?LT if |5£LT| clg

B, = Br,1 if k even, |Bra1| € Ig, |Bre2| ¢ I3
Br,2 if k odd, |Brz2| € Ip, [Bral ¢ Ip
T(BALT) otherwise

(6.3)

ABB rule. Following [45] and ABB rule in [16], we define the Adaptive Barzilai-Borwein (ABB)

rule as follows. Given 7 € (0,1), let

L &
SBB(g),6) = & i 571<T

& otherwise

for some given &1, £2. Then

BEBB(By1, Br,2) if |Bral, |Bre2| € 15
B = Br1 if |Br,il| € 1g, |Br2| & I
Br,2 if |Brol| € Is, Bl & I

SBB(T(Bra), T(Br,2)) otherwise

Observe that a large value of 7 promotes the use of B; 2 with respect to By 1.

(6.6)

(6.7)

The

rule allows to switch between the steplengths 85 1 and i and was originally motivated
by the behaviour of the Barziali and Borwein method applied to convex and quadratic

minimization problem (see [16,45] and our discussion below Lemma 4.1).

ABBm rule. This rule elaborates the ABBminmin rule given in [16], taking into account that

Bk,2 may be negative along iterations. Let m be a nonnegative integer, and

~ B if Bl €lp
Br,2 = :
T(Br2) otherwise

j* = argmin{|§j72| cj=max{1l,k —m},... . k}.

Given 7 € (0,1), we fix 8y as follows

~ . &2
. if =<7
BaBB™(&y,&5) = P2 &1
& otherwise
BRBBM(3) 1, Br2) if |Bral, |Br2| € Ip
By = Br,1 if  [Br1l € Ig, |Br2l & I
B2 if |Br2l € Ip, [Bral ¢ Ip

B}?BBm (T(Br1), T (Br2)) otherwise

(6.8)

(6.10)
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Again, a large value of 7 promotes the use of a step from BB2 rule instead of ;. In

Br,2

s

iterations is selected; taking into account that Ej,g for j = max{1l,k —m},...,k can be

case |Bi1|, |Bk,2| € Ip and < 7, the smallest absolute value Ej*’g over the last m + 1

negative, the rationale for selecting Bj*72 in (6.9) is to mitigate the nonmonotone behavior
of the objective function [16]. Consequently, smaller steplengths are expected using the
ABBm rule than using the ABB rule.

DABBm rule. Following [4, 6], a dynamic threshold 7, € (0,1) can be used in place of the
prefixed threshold 7 in (6.9). Given Sk 2 and j* in (6.8), we propose the rule defined as

gj*,g if @<’Tk

RAPBI (g1, 65) = & (6.11)
& otherwise
BPABBm (3, 1 By o) it |Bral, [Br2l € Ip
ﬂk _ /Bk,l lf |ﬁk‘,1| € Iﬁ? |ﬁk‘,2| ¢ Iﬁ (612)
B2 if |Brzl € Ip, [Bral & Is

BDABEm (T (8 1), T(By.2)) otherwise

with the dynamic threshold set as

75 = min {T, ||Fk||1/(2+bt2)}, (6.13)
by = max{b; : j = max{1l,k —w},..., k}. (6.14)

Here 7 € (0,1) is an upper bound on the value of 7%, w is a nonnegative integer and
b; denotes the number of backtracks performed at iteration j (see Step 2 of Algorithm
5.1). If || Fi|| is getting small and the number of performed backtracks in the last w + 1
iterations is small, then (6.13) promotes the use of steplength from BB1 rule, i.e., larger
steplengths which can speed convergence to a zero of F. On the other hand, when the
number of backtracks performed along previous iterations is large and 7 is large, the use
of the smaller steplength from BB2 rule is encouraged.

We conclude the discussion on steplength selection, noting that conditions (5.4) and (5.15) for the

convergence of {z} to a solution of problem (1.1) apply to all our rules.

The rules and parameters used in our experiments are summarized in Table 6.1.

Rule ‘ B
BB1 Be in (6.2)
BB2 Br in (6.3)
ALT Br in (6.4), (6.5)
ABBO1 | S in (6.6), (6.7) with 7 = 0.1
ABBO8 | Bk in (6.6), (6.7) with 7 = 0.8
ABBmO1 | f in (6.8)-(6.10) with 7 = 0.1, m = 5
ABBmO8 | f in (6.8)-(6.10) with 7 = 0.8, m = 5
DABBm | B in (6.8), (6.11)-(6.14) with 7 = 0.8, m =5, w = 20

TABLE 6.1
Steplength’s rules in SRAND implementation.

6.2. Problem set: nonlinear systems arising from rolling contact models. Rolling
contact is a fundamental issue in mechanical engineering and plays a central role in many impor-
tant applications such as rolling bearings and wheel-rail interaction [23,24]. In order to perform
simulations of complex mechanical systems with a good tradeoff between accuracy and efficiency,
three working hypotheses are usually made in modelling rolling contact: non-conformal contact,
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i.e., the typical dimensions of the contact area are negligible if compared to the curvature radii of
the contact body surfaces; planar contact, i.e., the contact area is contained in a plane; half-space
contact, i.e., locally, the contact bodies are viewed as three-dimensional half-spaces [23,24]. In
this framework, we focus on the Kalker’s rolling contact model which represents a relevant and
general model in contact mechanics.

The solution of Kalker’s rolling contact model can be performed using different approaches.
The approach in [42,43] calls for the solution of constrained optimization problems while the
so-called CONTACT algorithm [24] gives rise to sequences of nonlinear systems. Our problem
set derives from the application of CONTACT algorithm; here we describe in which phase of the
Kalker’s model solution they arise and give some of their features. We refer to Appendix A for a
sketch of Kalker’s model, its discretization, and the Kalker’s CONTACT algorithm.

Kalker’s CONTACT algorithm determines the normal pressure, the tangential pressure, the
contact area, the adhesion area and the sliding area in the contact between two elastic bodies and
relies on the elastic decoupling between the normal contact problem and the tangential contact
problem. Such problems are solved separately; first the normal problem is solved via the the so-
called NORM algorithm, second the tangential problem is solved via the so-called TANG algorithm.
Algorithms NORM and TANG are expected to identify the elements in the contact area and in
the adhesion-sliding areas, respectively. These algorithms are applied sequentially and repeatedly
until the values of the computed pressures undergo a sufficiently small change that suggests their
reliable approximation; in general, a few repetitions of NORM and TANG algorithms are required.
Each repetition of NORM algorithm calls for the solution of a sequence of linear systems while
each repetition of TANG algorithm calls for the solution of a sequence of linear and nonlinear
systems. Computationally, the major bottleneck is the numerical solution of the sequence of
nonlinear systems generated in the TANG phase. Importantly, each CONTACT iteration requires
few repetitions of TANG algorithm but the CONTACT algorithm is performed for several time
instances®.

Our tests were made on wheel-rail contact in railway systems. The benchmark vehicle is a
driverless subway vehicle, designed by Hitachi Rail on MLA platform (Light Automatic Metro).
The vehicle is a fixed-length train composed of four carbodies and five bogies (four motorized and
one, the third, trailer), see Figure 6.1. The multibody model has been realized in the Simpack
Rail environment [39]. We considered a train route of length 400m including a typical railway
curved track characterized by three significant parts: two straight lines (from Om to 70m and from
233m to 400m), the curve (from 116m to 186m) and two cycloids (from 70m to 116m and from
186m to 233m) which smoothly connect the straight lines and the curve in terms of curvature
radius. The radius of the curve is 500m. In this analysis, we focused on the contact between
the first vehicle wheel and the rail; since the vehicle length is equal to 45.7m, at the beginning
of the dynamic simulation the considered wheel starts in the position 45.7m along the track. We
performed a simulation in an interval of 10 seconds using 500 time steps, which amounts to 500
calls to CONTACT algorithm, for train speeds with magnitude v taking the values: v = 10 m/s
and v = 16 m/s. Accordingly, during the whole simulation the considered wheel travels along the
track a distance equal to 100m and 160m, respectively. The traveling velocities considered give
a realistic lateral acceleration along the curve according to the current regulation in force in the
railway field.

YAy [ : ] \ )\

[_,x
Fic. 6.1. Multibody model of the benchmark vehicle.

*In Appendix A see: (A.1) for the form of normal contact problem and tangential contact problem, (A.5) for
the form of the nonlinear systems to be solved, Figure A.2 for the flow of Kalker’s CONTACT algorithm.
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Two sets of experiments were performedt. First, we numerically investigated eight variants of
SRAND obtained varying the rules in Table 6.1 on a large number of sequences of nonlinear systems
arising from wheel-rail contact in railway systems. Second, we compared the best performing
SRAND variant with a standard Newton trust-region method when they are embedded in the
CONTACT algorithm.

The set of test problems used in the first part of the experiments was generated implementing
the CONTACT algorithm in Matlab and using a standard trust-region Newton method?* for solving
the arising nonlinear systems. Afterwards, a representative subset of the nonlinear systems was
selected to form our problem set. Specifically, six sequences of nonlinear systems generated by the
CONTACT algorithm and corresponding to six consecutive time instances for each track section
(straight line, cycloid and curve) and for each velocity were selected. Such sequences are represen-
tative of the systems arising throughout the whole simulation and allow a fair analysis of SRAND
on nonlinear systems from a real application. Table 6.2 summarizes the features of the sequences:
magnitude of the train velocity v, section of the route, time instances, number of nonlinear systems
in the sequence, dimension n of the systems (proportional to the number of mesh nodes in the
potential contact area). A typical feature of the contact model is that n increases as the velocity
increases and when the train curves along the route (i.e., the track curvature increases). The total
number of systems associated to v = 10 m/s and v = 16 m/s is 121 and 153 respectively.

v(m/s) Track Section Time Instances Number of Systems  n

Straight line 100-105 10 156
10 Cycloid 300-305 56 897
Curve 450-455 55 1394
Straight line 50-55 8 156
16 Cycloid 150-155 63 1120
Curve 350-355 82 1394

TABLE 6.2

Sequences of nonlinear systems forming the first problem set.

6.3. Numerical results. In this section first we discuss the solution of the sequences of
nonlinear systems in Table 6.2 using different stepsize rules within the SRAND algorithm, second
we analyze the use of SRAND in the CONTACT algorithm instead of a standard Newton trust-region
approach.

SRAND algorithm was implemented as described in Section 6.1 and with parameters

Brmin = 10719 Brax =101, p=10"% 6 =0.5, n = 0.99%(100 + ||Fy||?) Vk > 0,

see [34]. The null vector xg = 0 was chosen as initial guess. A maximum number of iterations and
F-evaluations equal to 10° was imposed and a maximum number of backtracks equal to 40 was
allowed at each iteration. The procedure was declared successful when

| Fxll < 1075, (6.15)

A failure was declared either because the assigned maximum number of iterations or F-evaluations
or backtracks is reached, or because || F|| was not reduced for 50 consecutive iterations.

We now compare the performance of eight variants of the SRAND method in the solution of the
sequences of nonlinear systems in Table 6.2. Each variant is obtained selecting one of the stepsize
updating rules reported in Table 6.1. Further, in light of the theoretical investigation presented
in this work, we analyze in details the results obtained with BB1 and BB2 rule and support the
use of rules that switch between the two steplengths.

TThe data that support the findings of this study are available from the corresponding author upon reasonable
request.
fThe code in [33] was applied using the default setting and dropping bound constraints on the unknown.
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F1G. 6.2. F-evaluation performance profiles of SRAND method. Upper: v =10m/s, Lower: v =16 m/s.

Figure 6.2 shows the performance profiles [13] in terms of F-evaluations employed by the
SRAND variants for solving the sequence of systems generated both with v = 10m/s (121 systems)
(upper) and with v = 16m/s (153 systems) (lower) and highlights that the choice of the steplength
is crucial for both efficiency and robustness. The complete results are reported in Appendix B. We
start observing that BB2 rule outperformed BB1 rule; in fact the latter shows the worst behaviour
both in terms of efficiency and in terms of number of systems solved. Alternating 851 and S 2
in ALT rule without taking into account the magnitude of the two scalars improves performance
over BB1 rule but is not competitive with BB2 rule. On the other hand, the variants of SRAND
using adaptive strategies are the most robust, i.e., they solve the largest number of problems, and
efficient. Specifically, comparing ABB, ABBm and DABBm rules, the most effective steplength
selections are ABBm and DABBm. Using ABBmO1 rule, 98.3% (2 failures) and 96.1% (6 failures)
out of the total number of systems were solved successfully for v = 10 m/s and v = 16 m/s
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respectively; using ABBm08 rule, 98.3% (2 failures) and 96.7% (5 failures) of the total number of
systems were solved successfully with v = 10m/s and v = 16 m/s respectively; using the dynamic
selection DABBm, the largest number of systems was solved successfully, i.e., 99.2% (1 failure) and
98% (3 failures) out the total number of systems with v = 10 m/s and v = 16 m/s respectively.
Overall, ABBm08 rule gives rise to the most efficient algorithm for both velocity values and the
profile related to BB2 rule is within a factor 2 of it in roughly the 80% and the 70% of the runs
for v =10m/s and v = 16 m/s, respectively.

Let us now focus on the performance SRAND coupled with BB1 and BB2 rules. As a represen-
tative run of our numerical experience reported in Appendix B, we consider the nonlinear system
arising with v = 16 m/s, at time ¢t = 150, iteration 2 of the CONTACT algorithm and iteration 2
of the TANG algorithm (system 150-2_2 in Table B.5). In the upper part of Figure 6.3 we display

||F|| convergence history (semilog scale) Number of function evaluations

—BB1

50 100 150 200 250 50 100 150 200 250
Iterations lterations

Number of backtracks Number of backtracks

o - M w & O O N ®
*

o - M w A O o N ®
*

50 100 150 200 250 20 40 60 80 100 120 140 160
Iterations Iterations

FiG. 6.3. SRAND with BB1 rule vs SRAND with BB2 rule on a single nonlinear system.

||F|| along iterations and the number of F-evaluations performed. We note that using the step-
size fk,1 causes a highly nonmonotone behavior of ||F'|| and such behaviour is not productive for
convergence; using BB1 rule 276 iterations and 476 F-evaluations are performed while using BB2
rule 163 iterations and 228 F-evaluations are required. The distinguishing feature of these runs is
the high number of backtracks performed using fj 1 at some iterations, as reported at the bottom
part of the figure where the number of backtracks versus iterations is reported for both SRAND
variants. This behaviour is in accordance with the analysis in Section 4.1. We know that 3 1 can
be arbitrarily larger than 8 o in the indefinite case, hence if By 1 is taken as the initial steplength,
a large number of backtracks may be necessary to enforce (5.1)-(5.2). Such observation supports
the use of B 2; the benefit from using shorter steps is further shown by the performance of ABBm
over ABB, the former tends to take shorter steps than the latter by exploiting the iteration history
and results to be more effective.

We conclude our experimental analysis using a spectral residual method in the CONTACT
algorithm. To this purpose, we compare two implementations of CONTACT algorithm which differ
only in the nonlinear solver for the nonlinear systems arising in the TANG algorithm. The first
implementation (CONTACT-NTR) uses a standard Newton trust-region method and the second
one (CONTACT-DABBm) uses SRAND with DABBm which turned out to be the more robust SRAND
version in the analysis above (see Figure 6.2). As a standard Newton trust-region method, we
used the Matlab code proposed in [33]; default parameters were used and bound constraints on
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the unknown were dropped using the setting indicated in the code. The Jacobian matrix of F' was
approximated by finite differences.

As a preliminary issue, we observe that the Jacobian matrices of F' are dense through the
iterations; thus they cannot be formed at a low computational cost by finite difference procedures
for sparse matrices [7]. We have also observed in the experiments that the Jacobian matrices are
nonsymmetric, do not have dominant diagonals and they are not close to diagonal matrices. For
example, let us consider the Jacobian matrix of the system corresponding to speed v = 16 m/s,
curve track section, instant ¢ = 355, iteration 2 of the CONTACT and iteration 4 of the TANG
algorithm (355.2_4 in Table B.6). It has dimension 292 x 292 and, evaluated at the final iterate
computed using ABBmOS rule, 96.18% of its elements are nonzero. The structure of the Jacobian
can be observed in Figure 6.4 where the absolute values of its elements are plotted in a logarithmic
scale (the surface of the full matrix on the left and a plot of the row 146 on the right). This structure
is observed along all the iterations of the nonlinear system solvers and is common to all sequences
generated by the CONTACT algorithm.

surface of the jacobian plot of the central row of the jacobian

10?

Fi1G. 6.4. Jacobian matriz: surface of the full matriz and plot of the central row (base 10 logarithm of the
absolute values).

In our implementation, CONTACT algorithm terminated when the relative error between two
successive values of the computed pressures dropped below 10™* or a maximum of 20 alternating
cycles between NORM and TANG was reached. Both nonlinear solvers were run until the stopping
rule (6.15) is met. We ran CONTACT-NTR and CONTACT-DABBm over the whole track for both
velocities, that is we considered the whole sequence of 500 time steps. CONTACT-NTR generated
3759 and 5353 nonlinear systems for v = 10 m/s and v = 16 m/s, respectively and CONTACT-
DABBm generated 4496 and 5494 nonlinear systems for the two velocities.

As a first remark, both procedures successfully solved the contact model described above and
were reliable and accurate in the numerical simulation of wheel-rail interaction. Secondly, the
use of the spectral residual method yields a gain in terms of time with respect to the use of a
standard Newton method where finite difference approximation of Jacobian matrices is employed;
this feature derives from the fact that spectral residual method is derivative-free and does not ask
for the solution of linear systems. Figures 6.5 and 6.6 show the comparison of the two CONTACT
implementations in terms of number of F-evaluations (excluding those needed to approximate
the Jacobian matrices) and execution elapsed time. From the plots we observe that CONTACT-
DABBm takes a larger number of F-evaluations than CONTACT-NTR but it is faster. Over the
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whole time interval, CONTACT-DABBm employs 1 hour, 19 mins and 2 hours, 28 mins to solve
the generated nonlinear systems with v = 10 m/s and v = 16 m/s, while CONTACT-NTR takes 7

hours and

Fic. 6.
evaluations

FiG. 6.

49 mins and 12 hours and 41 mins, respectively.
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7. Conclusions. The numerical behaviour of spectral residual methods for nonlinear systems
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is heavily affected by the choice of the steplengths. Although most of the works on this subject
make use of the stepsize (1, known results on spectral gradient methods for unconstrained
optimization suggest that a suitable combination of the stepsizes )1 and B 2 could be beneficial.
In this work we analyzed the stepsizes i1 and Bi 2 with respect to the spectrum of average
matrices depending on the Jacobian of F' and discuss guidelines for their selection. Moreover,
we present several practical rules for choosing the steplengths and show the performance of the
resulting procedures on sequences of nonlinear systems arising in the solution of a contact wheel-
rail model.
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Appendix A. Kalker’s contact model and CONTACT algorithm.

We give an overview of the model and algorithm used to generate our set of nonlinear sys-
tems. Let bold letters represent vectors, the subscript 1" denote a vector with components in the
tangential z-y contact place, the subscript N denote the component of a vector in the normal z
contact direction. The contact problem between two elastic bodies [23,24] determines the contact
region C inside the potential contact area A, (usually the interpenetration area between the wheel
and rail contact surfaces), its subdivision into adhesion area H and slip area S, and the tangential
pr and normal py pressures such that the following contact conditions are satisfied:

normal problem in contact C : e=0, pnv=>0
in exterior £: py =0, e>0
CUE = A, CNnE=10 (A1)
tangential problem in adhesion H : |st|| =0, |pT/ <y '
in slip S : [sTll #0, pr=—gst/|sr|
SUH =C, SNH=0

Above, e is the deformed distance between the two bodies and, by definition, it holds e = 0 and
py > 0in C. Referring to Figure A.1, the region E where e > 0 is called the exterior area and
py = 0 therein. The potential contact area is such that A. = C U E. The contact area C is
divided into the area of adhesion H where the tangential component s of the slip vanishes, and
the area S of slip where s7 is nonzero. The slip s is the difference between the velocities of two
homologous points belonging to deformed wheel and rail surfaces inside the contact area and is a
function of the pressures pr and py, g is the traction bound (Coulomb friction model [23,24]).
Overall, the first three equations in (A.1) model the normal contact problem (computation of py
and of the shapes of the regions C' and E), whereas the last three equations describe the tangential
contact problem (computation of pr, of local slidings st and of the shapes of the regions H and
S).

Let us consider the discretization of (A.1). Assuming that the contact patch is entirely con-
tained in a plane, the region within which the potential contact area A. can be located is easily
discretized through a planar quadrilateral mesh, see Figure A.1. The coordinates of the center of
each quadrilateral element are denoted x; = (z1,z2,0) where the capital index I identifies the
specific element, say I = 1,..., Ng. Also, the standard indices ¢ = 1, 2,3, will indicate the vector
components. For any element I and any generic vector w; = (w1, wre,wr3) associated to such
mesh element, wyi,wyro are the components in the z-y contact plane and wys is the component in
the normal contact direction z. Namely, w; r = (wy1, wy2) and wys are the discrete counterparts
of wr and wy, respectively.
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Fic. A.1. Local representation of the discretized contact area.

The discrete values of the elastic deformation u on the mesh nodes (i.e. the deformation of
the elastic bodies in the contact area [23,24]) are defined both at the current time instance ¢ and
at the previous time instance t':

u; = (up) at (x7,t), ujp=@p) at (xp+v(t—t),t), (A.2)

where v is the rolling velocity (i.e. the longitudinal velocity of the wheel) and I is an arbitrary
mesh element). Analogously, for the contact pressures p it holds

ps = (ps;) at (xs.t), pi=(p)) at xs+v(E—t),1), (A.3)

where J is an arbitrary mesh element. According to the Boundary Element Method Theory [23,24],
the discretized displacements u; can now be written as a function of the discretized contact
pressures py through the discretized version of the problem shape functions, that is

Ne 3
wri =Y Y Anigpsy, with Arigj = Big; (x1),

J=1j=1

and B, s;(xr) are the discrete shape functions of the problem describing the effect of a contact
pressure py applied to the element J on displacement u; of the node I (see [23,24]). The shape
function B;;; usually depends on the problem geometry and the characteristics of the materials.
An analogous expression can be derived for u7;. The elastic penetration e can be calculated at
each node x; as

er=hr+ Y Arzssps,
7

where hy is the discretization of the (known) undeformed distance between the two bodies, see
[23,24]. Similarly, the slip sp can be discretized by setting

s;,T=crT+ (uI,T - u’LT)/(t — t/), (A4)

where c¢;p is the discretization of the (given) rigid creep, that is the difference between the
velocities of two homologous points belonging to the undeformed wheel and rail surfaces inside
the contact area and thought of as rigidly connected to the bodies.

We observe that both u and sp depend linearly on the pressures p and p’. Therefore, the
discretization of equation e = 0 in the norm problem (A.1) yields a linear system in the discretized
normal pressures (pr3) while the discretization of the nonlinear equation

pr = —gsr/llsrl|,
in the tangential problem yields the nonlinear system

si,r = —||srrllpr,r/or, (A.5)
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with pr.r = (pr1, pr2) being the unknown$. When using the Coulomb-like friction model [23,24],
the friction limit function takes the form g; = f;pr3, where f; is a given constant friction value.
The flow of Kalker’'s CONTACT algorithm is displayed in Figure A.2 [23,24]. At each time
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Fic. A.2. The architecture of the Kalker’s CONTACT algorithm.

step of time integration, the inputs of the CONTACT algorithm are the potential contact area A.
(usually the interpenetration area between wheel and rail surfaces), the rigid penetration h and
the rigid local sliding c¢r (inputs calculated, on turn, from the kinematic variables of the body:
position and velocities of the gravity centers Gi, G2, Va1, Ve, rotation matrices Ry, Ry and
angular velocities wy, wo) [23,24]. All these kinematic quantities are calculated at each time step
by the ODE solver of the Simpack Rail multibody environment [39]. NORM algorithm solves
the normal contact problem and returns the contact area C, the non-contact area F, the normal
contact pressures py. Then, TANG algorithm returns the sliding area S, adhesion area H, the
tangential contact pressures pr and local sliding s7. Repetitions of NORM and TANG algorithms
are then performed to approximate accurately normal and tangential pressures pr, py. At the
end of CONTACT algorithm, forces and torques exchanged by the contact bodies (F!, F? and M,
M?) are computed by numerical integration and returned to the time integrator for proceeding in
the dynamic simulation of the multibody system.

Appendix B. Complete results. In this section we collect the complete results which gave
rise to the performance profiles in Figure 6.2. Results concern two velocities (v = 10m/s in Tables
B.1-B.3 and v = 16m/s in Tables B.4-B.6) and the three different track sections (straight line
in Tables B.1 and B.4, cycloid in Tables B.2 and B.5 and curve in Tables B.3 and B.6). Given
a sequence of nonlinear systems, we label a single system from the sequence as Time_Citer_Titer
specifying the instant time (Time), the CONTACT iteration (Citer) and the TANG iteration (Titer).
For each SRAND variant applied to a system, we report the number of F-evaluations performed in
case of convergence, or, in case of failure, the corresponding flag. We recall from Section 6.3 that
a run is successful when || Fi|| < 107¢. A failure is declared either because the assigned maximum
number of iterations or F-evaluations or backtracks is reached, or because ||F'|| was not reduced
for 50 consecutive iterations. Such occurrences are denoted as Fi¢ Fge, Fot, Fin, respectively.

§1n the unlikely event s;,7 = 0, the system in nonsmooth. We regularize (A.5) replacing the term 1/8%1 + 5%2

with ,/s%l + s§2 + ¢, for some small positive e.
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v =10 m/s - straight line

System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=028
10112 69 59 74 75 59 71 57 69
10122 382 148 248 295 205 174 198 220
10312 37 31 35 37 30 37 31 34
10322 37 31 35 37 30 37 31 34
10412 36 36 37 36 38 36 39 38
10422 36 36 37 36 38 36 39 38
10512 39 38 39 39 38 39 39 39
105.1_3 77 69 82 79 70 82 67 74
10522 40 37 39 40 38 40 39 39
10523 74 73 86 75 70 75 67 76
TABLE B.1

Number of function evaluations performed by SRAND variants in the solution of nonlinear systems arising from

time 100 to time 105 and corresponding to a straight line with velocity 10 m/s. In the first column we indicate

the time step, the CONTACT and the TANG iteration.
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velocity 10 m/s - cycloid

System BB1 BB2 ALT ABB ABBm DABBm  System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=038 7=01 7=08 7=01 7=0.8
300_1-2 178 128 137 145 149 174 133 163 30322 Fte Fin 2196 Fin Fin 1111 763 887
300_1_3 513 304 257 296 252 271 230 298 30323 Fre 1062 7400 1486 1413 911 722 798
300_14 569 402 290 464 350 460 278 299 30324 Fte 1713 10229 1780 1400 Fin 889 1054
300_2_2 343 203 266 229 194 209 168 204 30325 Fre 1424 23393 2053 1776 1201 1046 1358
30023 16421 388 398 406 686 410 330 408 30332 Fte 926 6424 1352 806 896 814 821
300-3-2 357 223 248 257 205 225 187 232 303-3-3 Fre 1318 6285 1508 886 1074 981 896
300_3-3 1650 385 368 432 530 462 339 499 30334 Fte 1279 14647 2295 1501 1244 959 1012
301-1-2 415 281 247 326 325 264 243 248  303.3.5 Fse Fin 17619 2353 Fin 1484 1311 1193
301_1.3 503 319 351 342 480 280 286 329 304.1.2 39075 962 815 643 504 714 447 491
301-14 582 442 281 380 376 344 291 305 304-1.3 Fte 711 2891 860 1242 710 607 562
30122 1127 286 298 271 430 310 284 297 304_14 Fre 1524 3611 966 1423 785 515 752
301-2_3 630 414 367 388 430 322 313 337 30422 725 366 381 393 416 300 311 317
30124 758 345 372 408 355 363 319 386 304.2.3 65775 558 648 753 734 577 453 548
301.3.2 918 357 299 315 350 294 288 326 30424 56953 709 1870 638 920 562 475 523
301.3.3 750 400 320 473 423 350 305 313 30432 415 421 370 470 431 357 339 325
30134 440 363 302 352 434 310 301 393 304.3.3 47176 533 2376 616 627 518 411 612
302_1_2 Fse 743 3727 993 1022 558 457 495 30434 86605 696 1180 709 603 557 468 488
302_1.3 Fse 844 4067 1183 972 1068 670 678 305.1.2 796 270 311 302 323 329 242 364
302_14 Fre 3546 25810 6171 2529 1735 1267 1342  305.1.3 339 293 270 271 294 288 243 310
302_2_2 634 444 417 552 539 431 332 376 30514 430 342 301 354 335 307 230 309
302.2.3 27285 610 508 890 544 502 398 548  305.2.2 Fte Fin 2434 1401 800 Fin 1282 1208
30224 Fse Fin 7325 1359 1951 927 853 693 305-2_3 Fre 1110 2222 1713 1030 950 717 684
302_3_2 743 426 373 455 438 402 332 361 30524 Fte Fin 842 1527 846 748 768 648
302.3.3 39825 739 502 869 616 459 401 463 30525 Fse Fin 3329 1516 850 1332 573 597
302_3.4 Fre 2245 7598 1141 938 1005 660 702 305.32 Fse 980 6755 1524 Fin 920 1036 1518
303-1-2 22687 554 679 502 Fin 609 405 460 30533 Fte Fin 5805 1829 756 694 634 579
303_.1.3 33798 468 684 571 578 461 411 562 305.3.4 Fse 871 2502 1363 997 857 716 648
303_14 Fte 965 1163 734 669 653 524 613 30535 Fte Fin 1786 1286 843 929 702 663
TABLE B.2

Results for each system of the sequences generated in the cycloid section of the train track with velocity v =10 m/s.
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velocity 16 m/s - straight line

System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=028
50.1_2 60 45 53 52 47 52 46 49
5022 53 44 51 54 48 54 48 53
5032 53 44 51 48 48 48 48 53
5222 75 78 53 76 75 101 61 91
5232 89 78 53 76 88 112 61 91
5512 65 66 66 83 66 80 62 72
5522 69 79 60 76 61 73 67 71
5532 69 79 60 80 61 73 67 71
TABLE B.4

Number of function evaluations performed by SRAND wvariants in the solution of nonlinear systems arising

from time 50 to time 55 and corresponding to a straight line with velocity 16 m/s. In the first column we indicate

the time step, the CONTACT and the TANG iteration.
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velocity 16 m/s - curve

System BB1 BB2 ALT ABB ABBm DABBm  System BB1 BB2 ALT ABB ABBm DABBm
7=01 7=08 7=01 7=038 7=01 7=08 7=01 7=038
350-1_2 424 320 308 359 366 297 284 286 35245 Fte 1132 7322 1252 Fin 921 Fin 724
350-1-3 Fte 825 5650 826 905 771 540 687 353.1.2 468 357 398 482 342 352 307 357
350-2_2 308 208 220 244 261 243 197 247 35313 887 640 588 557 441 508 446 456
350-2_3 Fte 1322 3384 572 Fin 501 433 497 353.14 Fte 695 4525 905 1369 781 625 656
35024 Ffe Fin 6845 1204 1523 746 790 718 35315 Fte 877 4670 793 1551 782 682 764
350-3_2 311 221 277 264 234 214 188 213 35322 589 357 365 461 398 426 370 386
350_3.3 76754 Fin 885 639 666 491 416 481 353.2.3 47619 755 572 913 812 529 459 528
35034 Fte Fin 6032 675 Fin 1141 761 647 35324 Fte 1143 3476 Fin 857 798 642 687
350-4_2 271 207 233 229 226 220 201 218 35325 Fte 1984 8598 1370 1700 Fin 867 1111
350.4.3 91233 764 3110 633 829 536 432 526 35332 711 381 394 481 380 408 368 361
35044 Fte 1593 6301 722 Fin 637 Fin 751 353.3.3 65122 672 600 710 996 604 511 457
351.1.2 Fte 1241 1625 920 913 772 597 538 353.34 Fte 837 1623 815 1111 759 588 633
35113 Fte 1596 11134 1807 Fin 1374 1199 1090 353.3.5 Fte 1250 6524 1233 1350 1110 915 855
35114 Fte 2272 20207 1862 Fin 1555 1217 1240 35342 575 448 505 425 360 350 341 372
35122 Fte 1088 Fin Fin 1207 1385 959 1050 35343 57903 732 725 644 469 517 492 533
351.2.3 Fte 2428 Fin Fin Fin 2185 1567 1825 35344 Ffe 1030 932 873 1055 679 630 669
351.2.4 Fte 5683 Fin Fin Fin 2421 2064 1636 35345 Fte Fin 8112 1276 1502 980 904 967
35125 Fte Fin Fin Fin Fin 3192 2052 2770 354.12 313 229 219 320 261 265 187 253
351.3.2 Ffe 1261 12388 3742 1566 992 1166 876 35413 502 323 369 398 337 318 267 342
35133 Fte 2029 Fin Fin Fin Fin Fin 1704 354.1.4 87446 710 4042 610 716 579 536 673
351.3.4 Fte 2397 Fin Fin 4270 2105 2074 1630 35422 445 321 348 373 292 289 230 296
351.3.5 Fte Fin Fin Fin Fin 2833 Fin 2635 35423 1771 462 359 434 473 355 345 372
351.4.2 Fte 1285 Fin 4846 1378 1262 1313 1028 35424 Ffe 1054 4522 1052 1159 757 649 701
35143 Fte 1778 Fin Fin 2581 2073 2144 1764  354.32 451 315 295 324 275 259 265 316
35144 Fte Fin Fin Fin Fin 2848 1794 1763  354.3.3 789 382 392 508 521 409 408 409
351.4.5 Fte Fin Fin Fin Fin Fin 3340 Fin 35434 Fte 913 3478 786 921 845 607 665
35212 Fte 1794 Fpt 5760 1636 1619 1933 1728 35442 405 323 289 350 308 317 256 295
35213 Fte 3141 Fot 3787 2872 1686 1495 1524 35443 1776 497 363 452 338 399 333 370
35214 Fte Fin Fin Fin Fin 2334 1657 1721 35444 Fte 991 4561 830 1141 704 553 634
35215 Fte Fin Fin Fin Fin 2318 2846 1623  355.1.2 638 226 262 264 292 268 258 266
352.2.2 72375 676 1359 708 586 643 459 501 355.1.3 527 339 509 348 348 348 286 331
352.2.3 74955 801 878 794 718 857 481 519 355.14 35134 489 1201 464 525 477 382 408
35224 Fte 866 5116 1209 1071 837 648 746 35522 346 222 252 246 243 221 194 242
35225 Fte Fin 12683 1209 Fin 921 803 909 355.2.3 2303 480 396 402 357 313 261 358
352.3.2 59157 701 1249 712 652 687 420 589  355.2.4 41075 671 542 511 401 376 355 433
352.3.3 87628 1116 682 804 611 639 517 517 35532 336 289 249 264 282 194 232 241
3523 4 Fte 808 6379 845 830 726 782 685 355.3.4 639 268 480 340 370 304 291 369
352_.3.5 Fte 1213 8333 1658 1133 863 697 781 355.3.5 24592 624 753 457 744 448 388 428
35242 48585 603 818 679 775 668 460 528 3554.2 363 214 268 226 261 261 203 221
352.4.3 79649 867 628 720 876 590 470 511 355.4.3 714 463 360 369 343 383 260 314
35244 Fte Fin 4570 1046 1200 858 708 804 35544 32137 404 700 411 532 562 367 451
TABLE B.6

Results for each system of the sequences generated in the curve section of the train track with velocity v =16 m/s.



