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Effects of water stress on spectral 
reflectance of bermudagrass
Lisa Caturegli1*, Stefania Matteoli2, Monica Gaetani1, Nicola Grossi1, Simone Magni1, 
Alberto Minelli3, Giovanni Corsini4, Damiano Remorini1 & Marco Volterrani1

In the south-central Italy, during summer rainfall does not supply a sufficient amount of water. 
Therefore, irrigation management during dry periods is important for maintaining turf quality. The 
hybrid bermudagrass (Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt–Davy) is known to 
represent the dominant warm-season turfgrass in warm to temperate climatic regions and its drought 
tolerance make bermudagrass a competitive turfgrass. A greenhouse experiment was conducted 
using uniform cores of hybrid bermudagrass, which were secured in a polyvinyl chloride cylinders 
and watered by constant sub-irrigation. The objectives of the present research were to measure the 
spectral reflectance with a new generation handheld spectroradiometer on hybrid bermudagrass 
and to explore various vegetation indices to be used as future detecting tool to study water stress in 
bermudagrass. Moreover, the potential uses of multivariate processing techniques for discriminating 
different water stress conditions in turfgrass has been investigated. Besides spectral indices, 
multivariate methods, although performed on a data set limited in terms of sample size, have shown 
a great potential for water stress monitoring in turfgrass and surely deserve further investigations. 
There are different indices that use distinct water absorption features independent of chlorophyll 
concentration, such as water index (WI = R900/R970) that has been reported to be a robust index of 
canopy water content and is used as an active indicator of changes in Leaf Relative Water Content 
(LRWC). Also, the ratio of WI with NDVI (WI/NDVI = (R900/R970)/((R800 − R680)/(R800 + R680)]) was found 
to be an effective indicator of water stress. Another vegetation index to detect water features is 
normalized difference water index (NDWI), designed to maximize reflectance of water by using green 
wavelengths. In our trial in bermudagrass the relationships studied, suggest that WI (900/970) and 
WI/NDVI, among the indices studied, are the more effective indicators of water stress. In fact, lower 
values of WI indicate higher water stress, while higher values of WI/NDVI indicate higher water stress 
levels.

Climate change and the sustainability on the use of resources is at the heart of international topics and discus-
sions. The trend is heading towards an optimization of inputs, such as irrigation and fertilization, also in the 
management and maintenance of turfgrasses.

In Italy, especially in the south-central areas, during summer rainfall does not supply a sufficient amount of 
water. Therefore, irrigation management during dry periods is important for maintaining turf quality1, in addi-
tion to an optimal turfgrass mowing management2. Thus, water conservation and availability are important and 
critical priorities for the turfgrass management3.

In the last two decades, several research works conducted in Southern Europe have investigated the adapt-
ability of warm-season turfgrass species, including bermudagrass, to the Mediterranean environment4–8. 
Bermudagrass is known to represent the dominant warm-season turfgrass in warm to temperate climatic 
regions of the world and its drought tolerance makes bermudagrass an ideal and competitive turfgrass in many 
environments9–13.

In the past years several studies have been carried out to provide different methods for estimating the veg-
etation water content at different scales: ground-based or remotely sensed measurements14,15. For example, 
the analysis of the radiation reflected from the canopies can provide information about the water status of 
the vegetation that generated it and can be used in remote sensing to determine a possible water deficiency16. 
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Thus, precision turfgrass water management, which combined the use of time-domain reflectometry (TDR) and 
spectral reflectance mapping has been proposed as an alternative method to improve irrigation efficiency3,17.

Several indices proposed in literature can quantify chlorophyll concentration18 and then allow remote detec-
tion methods to identify and map vegetation stress through the influence of chlorophyll content variation. In 
these studies and other articles1,17,19,20 the normalized difference vegetation index (NDVI)

(where RNIR = reflectance in the near infrared region, and Rred = reflectance in the red region), was considered as 
the most commonly used reflectance index of relative plant health and stress indicator19,21–25. Thus, Jiang et al.26 
and Johnsen et al.22 studied the relationship between NDVI and soil moisture. Although NDVI is able to evalu-
ate water stress and uses narrow bands that overlap with chlorophyll features27, there are several indices that use 
distinct water absorption features regardless of the chlorophyll concentration. In fact, these indices are based on 
spectra bands located in the near-infrared region (NIR 750–1,300 nm) and short-wavelength infrared (SWIR 
1,300–2,500 nm)14,16,28–31 with centers around 970, 1,240, 1,450, 1,950, 2,130 nm. Water index (WI)

has been reported to be a robust index of canopy water content28,29 and is used as an active indicator of changes in 
Leaf Relative Water Content (LRWC), especially when there are no important differences in canopy architecture14. 
To improve WI as LRWC indicator32 successfully tried to test the ratio of WI with NDVI

with the aim of minimizing structural effects and then maximizing sensitivity to water content. Another veg-
etation index to detect water features is normalized difference water index (NDWI), designed to maximize 
reflectance of water by using green wavelengths, minimize the low reflectance of NIR by water features, and 
take advantage of the high reflectance of NIR by vegetation and soil features30,33–36. NDWI proposed by Gao30 
considered two NIR bands, one centered at around 860 nm and the other at 1,240 nm

and is mostly used for remote sensing of vegetation liquid water from space37. Moreover, several studies by Wu 
et al.38 and Zhang et al.39 have demonstrated the ability of this index to assess vegetation water content, not only 
from space as proposed by Gao30, but also from ground measurements. Also, Chen et al.31 studied NDWI to 
estimate vegetation water content in different crops, selecting bands centered in the NIR at around 860 nm and 
in the SWIR at 2,130 nm

Besides spectral indices, multivariate methods have also been explored to monitor various kind of stress in 
vegetation40–42. Among the different methods, Principal Component Analysis (PCA)43 has been employed as an 
unsupervised analysis of the data40,42, Linear Discriminant Analysis (LDA)43 has been employed as a supervised 
classification method42, and Principal Component Regression (PCR) and Partial Least Square (PLS) regression44 
have been employed for multivariate regression in retrieval applications45. Supervised techniques such as LDA 
and PLS require a set of “training data” characterized by known stress conditions and are generally applicable 
when a statistically significant high number of spectral measurements is available.

The objectives of this work were (i) to measure the spectral reflectance with a new generation handheld 
spectroradiometer on a turfgrass species; (ii) to explore various narrowband vegetation indices that could be 
useful to detect water stress in bermudagrass; (iii) to study the relationship between selected indices and turfgrass 
water stress to be used as a future detecting tool, (iv) to investigate the potential of using multivariate processing 
techniques for discriminating different water stress conditions in turfgrass.

Materials and methods
A greenhouse experiment was conducted at the Department of Agriculture, Food, and Environment of Pisa Uni-
versity, Pisa, Italy (lat. 43_40′N, long. 10_19′E, 6 m elevation), in May 2018, using uniform cores (9.6 cm diam. 
by 15 cm deep) of hybrid bermudagrass (Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt–Davy 
‘Patriot’) collected on May 15, 2018 with undisturbed soil profile. In the glass greenhouse (the size of 16 × 6 m, 
oriented east west) the temperature, measured with a maximum–minimum thermometer, ranged from 34 to 
19 °C (respectively day and night) with daily maximum photosynthetically active radiation (PAR) levels (meas-
ured with a LICOR 190R Quantum Sensor) ranging from 950 to 1,425 µmol m−2 s−1, provided by sunlight. For 
the research, the turfgrass cores were collected from a hybrid bermudagrass mature stand (> 5 years) that was 
selected at the Center for Research on Turfgrass for Environment and Sports (CeRTES) in S. Piero a Grado, 
(43°40′ N, 10°19′ E, 6 m. a.s.l.), at the Department of Agriculture, Food, and Environment of Pisa University, 
Pisa, Italy. The characteristics of the soil were the following: calcaric fluvisoil (coarse–silty, mixed, thermic, Typic 
Xerofluvents, pH 7.8, 18 g kg—a organic matter); Sand 32%; Silt 51%; Clay 17%; Wilting point 12.4 g/100 g; Field 
capacity 26.3 g/100 g; Available water 13.9 g/100 g. On May 7, 2018 on the selected trial area fertilization with 
200 kg ha–1 N (ammonium sulfate 21N–0P–0K) was carried out. Turfgrass cores were secured in a polyvinyl 
chloride (pvc) cylinders having coarse screen bottoms and placed in the greenhouse. Cylinders were arranged 
in a completely randomized design with six replicates, with 7 levels of water stress (total of 42 cylinders).

The cylinders were watered by constant sub-irrigation with a water sub-irrigation level of about 3 cm, and 
leaves were clipped manually with scissors every 7 days to 1.5 cm. From May 15 to May 30, 2018 six experimental 

NDVI = (RNIR − Rred)/(RNIR + Rred)

WI = R900/R970

WI/NDVI = (R900/R970)/((R800 − R680)/(R800 + R680))

NDWI1240 = (R860−R1240)/(R860 + R1240)

(NDWI2130 = (R860−R2130)/(R860 + R2130).
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pvc cylinders were removed from water every three days, in order to create seven levels of water stress (16, 13, 
10, 7, 4, 1, and 0 days without watering). For the last six turfgrass cylinders removed, which serve as a control 
(i.e., 0 days without watering), sub-irrigation was suspended the same day of the turfgrass spectral reflectance 
measurements, on May 31, 2018.

Data collection.  On May 31, 2018 spectral reflectance measurements of the turfgrass in each cylinder were 
collected indoor to prevent the multiple scattering due to canopy architecture (distortion of the biochemical 
signal), with the hand-held FieldSpec 4 New Generation high-resolution spectroradiometer (Analytical Spectral 
Devices Inc., Boulder, Co, USA), operated by the Department of Agriculture, Food, and Environment and the 
Department of Information Engineering, University of Pisa, Pisa, Italy. The spectroradiometer collects spectra 
in the 350–2,500 nm range with sampling interval of 2 nm. The nominal spectral resolution is 3 nm in the visible 
range and 6 nm in both the near and the short-wave infrared ranges.

The fiber optic with 25° of field of view was pointed at nadir towards the turfgrass so that the entire field of 
view was filled by the turfgrass itself and measurements were performed with a 50 W halogen lamp as artificial 
light source. Data collection using an indoor artificial light source enabled acquisition of a useful reflection 
signal even in those spectral ranges where major atmospheric water absorption occurs (i.e., around 1,450 nm 
and 1,950 nm). A standard white calibration board was employed as white reference for radiance-to-reflectance 
conversion and was measured every other six turfgrass measurements.

On the same day, after collection of the spectroradiometric measurements, the estimation of the following 
parameters was carried out:

•	 Volumetric Soil Water Content (SWC) (%) was measured using a Time Domain Reflectometry (TDR 350, 
FieldScout, soil moisture meter, Spectrum Technologies, Inc., Plainfield, USA). To determine SWC by TDR, 
two 12-cm-long stainless-steel rods were inserted vertically in each turfgrass core.

•	 Leaf Relative Water Content (LRWC) (%) was calculated on the clippings using the formula: 
100 × ((FW − DW)/(TW − DW)], where FW is leaf fresh weight, TW is leaf turgid weight, and DW is leaf 
dry weight after oven-drying leaf samples for 72 h at 100 °C. Turgid weight was determined as weight of fully 
turgid leaves after soaking leaves in distilled water in the refrigerator for 24 h.

•	 Soil moisture (SM) (%): soil samples were collected for each core of turfgrass, weighted, put in a stove at 105–
110 °C and dried to constant weight. Soil moisture (%) was calculated as follow: ((FW − DW)/FW) × 100].

Spectral indices evaluation.  The spectral reflectance collected over each turfgrass sample was processed 
by evaluating the spectral indices reported in Table 1, which have been shown to be the most studied and effec-
tive indices for the estimation of vegetation water content28–31,46. The selected indices basically involve ratios of 
reflectance values evaluated at two different wavelengths or normalized differences between reflectance values 
evaluated at two different wavelengths.

Statistical analysis.  The relationship among the indices selected for the evaluation of water content and 
Leaf Relative Water Content (LRWC), Soil Water Content (SWC) and Soil Moisture (SM) were studied using 
CoStat software (CoHort, Monterey, CA, USA) and Pearson’s correlation coefficients (r) were calculated.

In particular, the correlations between LRWC and the indices interesting for detecting water stress were 
studied in order to verify whether some index could be useful to detect water stress in bermudagrass and, if any, 
to identify which are the best water stress indicators. Regression equations were studied for all the vegetation 
indices.

Potential of hyperspectral multivariate analysis.  An example of multivariate analysis applied to the 
spectral reflectance was performed to investigate the potential, within this framework, of methods accounting 
for the whole shape of the spectra rather than restricting the analysis to a limited number of wavelengths. Given 
the low number of measurements (6 for each water stress condition), more refined supervised methods such as 
multivariate regression or multivariate classification could not be employed. Rather, unsupervised multivariate 
methods were employed.

A PCA43 was first carried out. PCA performs a linear transformation to the data so that the variables in new 
coordinate system are uncorrelated. Specifically, the mean-centered reflectance spectra collected into the b × n 

Table 1.   Reflectance-based vegetation indices used in this study.

Vegetation index Equation Sensitivity Reference

Normalized difference vegetation index (NDVI) NDVI = (R800 − R680)/(R800 + R680) Chlorophyll 46

Water index (WI) WI = R900/R970 Relative water content 28

Ratio WI normalized difference vegetation index 
(WI/NDVI)

WI/NDVI = (R900/R970)/((R800 − R680)/
(R800 + R680)] Vegetation water content 29

Normalized difference water index at 1,240 nm 
(NDWI1240)

NDWI1240 = (R860 − R1240)/(R860 + R1240) Vegetation water content 30

Normalized difference water index at 2,130 nm 
(NDWI2130)

NDWI2130 = (R860 − R2130)/(R860 + R2130) Vegetation water content 31
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matrix R0, where b is the spectral dimension (#wavelengths) and n is the number of spectra, can be expressed 
as R0 = LS + ε

(k) , with L the b × k matrix of loadings (the PCs), S the k × n matrix of scores (the data projected 
into the new coordinate system), and ε(k) the residual error due to having retained k PCs. There may be retained 
up to k = min(n− 1, b) PCs and, when k < b, the PCA acts as a dimensionality reduction technique. The PCs are 
orthogonal one to each other and are sorted according to a descending order of each PC contribution to the total 
data variance, i.e. they account for decreasing percentages of data variability. The specific PCA implementation 
used was the Singular Value Decomposition (SVD)43. Visual inspection of the loadings enabled assessment of the 
contribution of each wavelength to each of the PCs, whereas three-dimensional scatterplot of the scores over the 
first three PCs provided a visual representation of the data point cloud in the new coordinate system. In order to 
further investigate the potential of multivariate analysis for water stress discrimination in turfgrass, we retained 
three out of seven sets of turfgrass, namely those removed from sub-irrigation with a weekly frequency (i.e. 
those at 16, 7, and 0 days without watering, whose spectra and a representative photo are shown in Fig. 1) and 
performed the k-means spectral clustering method43 in the PCA-reduced three-dimensional space. The k-means 
algorithm aims at separating the data in N different clusters (subset of data with similar characteristics) without 
using any a priori information and trying to provide compact and separate clusters. The aim was discriminat-
ing, in a totally unsupervised fashion, among the three different water stress conditions. The spectral clustering 
outcome was then combined with the information brought by the spectral indices in order to label each cluster 
according to increasing water stress (e.g. ‘absent’, ‘medium’, ‘strong’).

Results and discussion
Figure 1 shows the reflectance spectra collected over turfgrass at three different levels of water stress, specifi-
cally turfgrass at 16 days without watering, the intermediate situation at 7 days and at the end of the trial with 
the saturated cores (0 days without water), which serves as control. The differences across the curves are well 
evident. The major difference is the increase of reflectance at all wavelengths at 16 days without watering, where 
LRWC was at about 18% (Fig. 2), with respect to the other two spectral reflectance curves. It is so evident from 
the three different curves that in the Near-infrared (NIR 750–1,300 nm) and Short-wavelength infrared (SWIR 
1,300–2,500 nm) four major absorption troughs are present. These strong reflectance troughs, located approxi-
mately in the NIR at 970 and 1,175, in the SWIR at 1,450 and 1,950 nm, are due to the absorption by water11. 
The troughs around 1,450 and 1,950 nm are less accentuated in the turf with high degree of desiccation (16 days 
without watering). Also González-Fernández et al.47 recommend calculating the band area for 1,450 nm and 
for 1,950 nm because of its link to equivalent water thickness, thus to estimate vine water status. Rallo et al.48 
observed typical spectral responses in the SWIR region, where at leaf scale, absorbance bands near 1,450 and 
1,900 nm could be related to the leaf water content of an olive grove.

However, in the regions of 1,350–1,480, 1,800–2,000 and 2,350–2,500 nm measurements of spectral reflec-
tance of crop leaves are not possible in nature, also with fully sun-light conditions, because of the strong atmos-
pheric absorption of light due to water vapor14,32,49 and are generally not exploited for landscape level studies. 
Consequently, to correctly measure these regions of wavelengths, a portable spectroradiometer system with an 
artificial light source must be chosen49. In fact, in our experiment an artificial light source was used, thus 1,430 
and 1,950 can be considered key wavelengths for the measurements under artificial light source.

In the NIR spectral region there is a more commonly exploited troughs around 970 nm and in the region 
of 1,150–1,260, which are the most studied spectral ranges for estimation of vegetation water content14. It was 
interesting to note that the troughs of reflectance spectra underwent a gradual reduction in depth as the turf-
grass desiccation increased, up to almost disappear in most cases, as showed in the 16 days without water curve. 

Figure 1.   Spectral reflectance curves of bermudagrass under different levels of water deprivation: 16, 7, 0 days 
without watering. Each curve is the spectral reflectance averaged over the six replicates, whereas the shading 
shows the confidence bounds of one standard deviation around the mean. The arrows highlight the major water 
absorption troughs.
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Some of the wavelengths associated with these troughs are, in fact, exploited by the spectral indices used in this 
study (see Table 1).

Figure 2 shows SWC and LRWC values, averaged over each set of six replicates with one standard deviation 
error bars, plotted with respect to the number of days without watering. Volumetric SWC declined as the days 
without watering increased. Starting from a value of 43.78% for the control cores with 0 days without water-
ing, it decreased reaching a much lower value of 5.19% after two weeks without watering. Similarly, also LRWC 
declined as the number of days without watering increased. LRWC rate of decline was smaller than SWC as the 
days without watering were 4 or less (LRWC equal to 98.7%, 94.3% and 94.2% for 0, 1 and 4 days without water-
ing, respectively). Then LRWC steeply decreased as the number of days without watering increased above 4. 
Observing the two parameters it is interesting to note that, with the exception of data collected in cores at 4 days 
without water, the trend of SWC and LRWC is similar (Fig. 2). In fact, from 1 to 4 days without water, turfgrass 
leaves try to preserve more water even if the soil water content decreases.

Figure 3 plots bar graphs of the selected indices in Table 1, where the indices are averaged over each set of 
six replicates of turfgrass at same water stress condition. One standard deviation error bars are also plotted. As 
is evident, all selected indices correlate with water stress level (Fig. 3).

A quantitative analysis of these correlations, and specifically with respect to SWC, LRWC and SM, is reported 
in Table 2, which reports the Pearson product-moment correlation coefficients evaluated among the various 
parameters and indexes studied in this work.

Volumetric soil water content (SWC).  As expected, SWC was found to be highly correlated with SM 
(r = 0.98, p < 0.001), and among the calculated indices the strongest relationship was with WI/NDVI studied by 
Peñuelas et al.29 (r = 0.94). For this relationship the exponential function proved to be the most suitable math-
ematical representation of the correlation. Thus, this index presented an exponential decrease when SWC values 
progressively increased (Fig. 4b). Relating SWC with WI, as also demonstrated by McCall et al.3 the correlation 
coefficient is still high (r = 0.89, p < 0.001) (Table 2; Fig. 4a). As the SWC increased to more stressed levels, also 
the WI and SM increased (Table 2). The range of values is between 4.75% and 47.05% of SWC corresponding 
respectively to a minimum WI value of 0.94 to a maximum of 1.05 (Fig. 3a). The relationships with NDWI1240 
(r = 0.87) and NDWI2130 (r = 0.88) also show high coefficients (Fig. 4c,d).

Leaf relative water content (LRWC).  For correlations (r) among LRWC and the indices selected for the 
evaluation of water content, significantly high r values were found for NDVI (r = 0.96), WI (900/970) (r = 0.98, 
p < 0.001), WI/NDVI (r = 0.95, p < 0.001), NDWI1240 (r = 0.94, p < 0.001) and NDWI2130 (r = 0.95, p < 0.001) 
(Table 2).

Figure 2.   Decline in volumetric soil water content (SWC) (%) and leaf relative water content (LRWC) (%) after 
watering ceased. Each point is the mean of six replications. Bars indicate one standard deviation error.
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Figure 3.   Bar graphs of spectral indices averaged over each set of six replicates at same water stress condition, 
with one standard deviation error bar. (a) NDVI, (b) WI, (c) NDWI2130, (d) NDWI1240, (e) WI/NDVI.

Table 2.   Pearson product-moment correlation coefficients (r) among volumetric soil water content (%) (SWC) 
measured using a time domain reflectometry (TDR); leaf relative water content (%) (LRWC); soil moisture 
(%) (SM) and vegetation indices selected for the study. Correlation coefficients are calculated across all entries. 
***Significant at 0.001 level. A r derived from an exponential regressive model.

r SWC (%) LRWC (%) SM (%) NDVI WI (900/970) WI/NDVI NDWI1240 NDWI2130

SWC (%) – 0.88*** 0.98*** 0.86*** 0.89*** A 0.94*** 0.87*** 0.88***

LRWC (%) – – 0.85*** 0.96*** 0.98*** A 0.95*** 0.94*** 0.95***

SM (%) – – – 0.82*** 0.87*** A 0.92*** 0.87*** 0.87***
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As also studied by Jiang et al.26 and Johnsen et al.22, NDVI presents a significant correlation coefficient with 
LRWC (r = 0.96), indicating that factors beyond water availability can impact in turfgrass quality.

As demonstrated by Peñuelas and Inoue32, when evaluating reflectance indices associated with water and 
pigment contents of peanut and wheat leaves, WI closely track changes in LRWC, but it is frequently influenced 
by architectural canopy parameters. Similar results were obtained by Steidle Neto et al.50, when assessing water 
and chlorophyll contents from spectral indices in sunflower plants under drought conditions. WI is effective to 
represent changes also in sunflower water content.

To minimize these effects, thus maximizing the effect of vegetation water content, Peñuelas and Inoue32 
also studied the ratio of WI with NDVI, as NDVI is an index that follows color changes in the drying leaves. 
Moreover, also NDWI1240 has registered high r value (r = 0.94, p < 0.001) (Fig. 4c), Gao30 and Serrano et al.37 
demonstrated that NDWI together with WI showed high sensitivity to changes in canopy LRWC, better than 
those formulated using SWIR bands. In our research, also NDWI calculated using R2130, as suggested by Chen 
et al.31, showed a high correlation coefficient with LRWC (r = 0.95, p < 0.001) (Fig. 4d). In fact, in the SWIR, the 
region of 2,130–2,200 nm is one of the most suitable for measuring optical remote sensing of vegetation water 
content, together with the NIR wavelengths of 900, 970, and 1,150–1,260 nm band, as we can notice also in the 
high correlation coefficient between LRWC and NDWI1240 (r = 0.94, p < 0.001) (Table 2). Regression equations 
between LRWC (%) and (a) water index (R900/R970); (b) ratio WI normalized difference vegetation index (WI/
NDVI); (c) normalized difference water index (NDWI1240) and Normalized difference water index (NDWI2130) 
in Bermudagrass cores are reported in Fig. 5.

Regarding the relationship between LRWC and WI (R900/R970) the determination coefficient was r = 0.98. Rela-
tive water content increases linearly with increasing WI with valued ranging from 0.94 to 1.05, corresponding 
to LRWC values ranging from 12.18% to 100% (Fig. 5a). For the relationship between LRWC and WI/NDVI the 
exponential function proved to be the most suitable mathematical representation of the correlation (r = 0.95). 
Thus, this index presented an exponential decrease when LRWC values progressively increase (Fig. 5b). In 
Fig. 5c, d linear regressions between LRWC and NDWI centered at different wavelengths are reported, where in 
both cases NDWI values increases linearly with increasing relative water content (NDWI1240 r = 0.94; NDWI2130 
r = 0.95). Thus, although Serrano et al.37 showed that NIR-based NDWI was more sensitive to changes in canopy 
LRWC than those SWIR-based, in the present research the results showed that in the relationships studied 
between LRWC and the two NDWI, in the NIR and in the SWIR regions, the determination coefficients are 
significantly similar (Fig. 5c, d). Thus, they can both detect turfgrass relative water content.

Figure 4.   Relationship between volumetric soil water content (SWC) and (a) water index (R900/R970); (b) ratio 
WI normalized difference vegetation index (WI/NDVI); (c) normalized difference water index (NDWI1240); (d) 
normalized difference water index (NDWI2130) in Bermudagrass cores. Values represented the 6 replications.
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Soil moisture (SM).  Regarding the relationship between soil moisture and the vegetation indices studied 
in the present research, the highest correlation coefficient was found with WI/NDVI (r = 0.92). In this case the 
exponential function proved to be the most suitable mathematical representation of the correlation. Thus, this 
index presented an exponential decrease when SM values progressively increase (r = 0.92) (Fig. 6).

Potential of multivariate analysis.  Figure 7 shows the outcomes of the PCA, specifically as regards the 
first three PCs. Figure 7a displays spectral plots of the PCA loadings for each of the first three PCs (shown in 
different colors), plotted with respect to the wavelengths. The closer the loading at a given wavelength is to ± 1, 
the stronger is that specific wavelength contribution to the given PC. In order to have a better visualization of 
the impact of each wavelength over the PCs, Fig. 7b, c display the spectral ranges that contributed most to each 
of the three PCs, plotted as horizontal bars and obtained by thresholding (with two different thresholds) the 
corresponding loadings. To make the interpretation easier, an example of turfgrass spectral reflectance (and, 

Figure 5.   Relationship between leaf relative water content (LRWC) and (a) water index (R900/R970); (b) ratio 
WI normalized difference vegetation index (WI/NDVI); (c) normalized difference water index (NDWI1240); (d) 
normalized difference water index (NDWI2130) in Bermudagrass cores. Values represented the 6 replications.

Figure 6.   Relationship between soil moisture (SM) and ratio WI normalized difference vegetation index (WI/
NDVI) in Bermudagrass cores. Values represented the 6 replications.
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specifically, the average reflectance for the 7 days without watering condition) is plotted on the same graphs. The 
figures clearly show that the ranges contributing most to the first PC (in red) are most of the short-wave infrared, 
with the water absorption bands around 1,450 and 1900 nm providing the strongest contributions. The near 
infrared band is the range contributing most to the second PC (in green), where the visible range and part of the 
short-wave infrared provide the strongest contributions to the third PC (in blue). As is evident, the wavelengths 
used by the spectral indices employed in this study and highlighted with orange arrows in Fig. 7b, c, are included 
within these spectral ranges. However, there are several other wavelengths that, according to PCA, are strongly 
“informative” and are worth being exploited for water stress monitoring. For completeness, Fig. 7d plots a bar 
graph of the cumulative percentage of explained variance by the first three PCs. The first PC by itself explains 
about 89% of spectra variability and the three PCs together explain more than 99% of it.

Figure 8 plots a scatterplot of the turfgrass reflectance spectra in the three-dimensional space spanned by 
the first three PCs. Although the reflectance data place themselves in the space following a rather complex data 
structure, the data are mostly arranged in a sort of ordered fashion with respect to water stress, i.e. data related 
to similar stress conditions are closer to each other within the data structure, whereas data related to different 
stress conditions are placed apart to each other.

Application of the k-means multivariate clustering method, applied with N = 3 clusters to the data subsets 
related to the aforementioned ‘strong’ (16 days without water), ‘medium’ (7 days without water), and ‘absent’ (just 
watered ) water stress conditions resulted in a correct identification of the three different groups, as shown in 
Fig. 9a where a scatterplot of the three data subset is shown and the different colors denote the different clusters 

Figure 7.   Outcomes of principal component analysis (PCA) for the first three principal components (PCs). 
(a) Spectral plots of PCA loadings. (b,c) Spectral ranges more involved in each of the first three PCs, obtained 
by thresholding the corresponding loadings—threshold equal to ± 0.1 for (b) and equal to ± 0.06 for (c). An 
example of turfgrass reflectance curve is superimposed in gray color to make result interpretation easier. The 
orange arrows indicate the wavelengths employed by the spectral indices used in this study. (d) Bar graph of the 
cumulative explained variance percentage.
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obtained with k-means. By comparing Fig. 9a with Fig. 8, it is evident that the clusters denoted in Fig. 9a with cA, 
cB, and cC, corresponds respectively to the ‘strong’, ‘absent’, and ‘medium’ stress conditions. However, although 
having separated correctly the three subsets of data, application of k-means by itself does not tell us anything 
about the water stress condition of each subset of data. Evaluation of the average of both WI (900/970) and WI/
NDVI indices (which have revealed to be, among the indices studied here, the more effective indicators of water 
stress) over the three clusters identified with k-means allowed the clusters to be sorted according to a descend-
ing order of water stress level (i.e., according to an ascending order of WI or descending order of WI/NDVI, 
respectively), as shown in Fig. 9b,c.

Although performed on a data set limited in terms of sample size, this analysis has shown that multivariate 
methods have great potential for water stress monitoring in turfgrass and surely deserve further investigations.

Conclusions
The sustainable use of resources and optimization of inputs, such as irrigation and fertilization, are basic also in 
the management and maintenance of turfgrasses. In fact, drought stress in turfgrass is one of the main abiotic 
stresses influencing turfgrass growth and quality.

Several studies have been carried out to provide different methods for estimating the vegetation water content 
at different scales: ground-based or remotely sensed measurements.

NDVI is the most commonly used vegetation index also to assess water stress but it uses narrow bands that 
overlap with chlorophyll features. This research demonstrates that there are different vegetation indices and in 
particular WI (900/970), WI/NDVI, NDWI1240, NDWI2130 that can be used as vegetation water stress indicator, 
in this case on bermudagrass grown in the Mediterranean area (central Italy). The relationships studied, suggest 

Figure 8.   Scatterplot of the spectra of turfgrass at different water stress levels over the three first PCs.

Figure 9.   (a) Scatterplot of the result of the k-means clustering method applied with N = 3 clusters. The method 
succeeded in correctly identifying the three groups of turfgrass. (b) Bar graph of WI index averaged over each 
identified cluster (with one standard deviation error bar). An ascending order of WI indicates a descending 
order of water stress level. (c) Bar graph of WI/NDV index averaged over each identified cluster (with one 
standard deviation error bar). A descending order of WI/NDVI indicates a descending order of water stress 
level.
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high correlations coefficients (r) among the studied indices and the selected parameters. WI (900/970) and WI/
NDVI indices have revealed to be, among the indices studied here, the more effective indicators of water stress. 
In fact, lower values of WI indicate higher water stress both in leaves and soil, while WI/NDVI at higher values 
correspond higher water stress levels.

In future it could be interesting to test the same new generation spectroradiometer on different turfgrasses to 
verify if the selected indices are similarly effective at detecting water stress across different species.

A simple example of hyperspectral multivariate analysis has also been shown that has revealed the great 
potential of multivariate methods for water stress monitoring in turfgrass.

Data showed in the present research refers to a trial conducted in a greenhouse with controlled conditions and 
the spectroradiometric measurements were carried out indoor with an artificial light source. Future researches 
could be conducted with the same spectroradiometer on turfgrass directly in the field under sunlight conditions, 
to test the new generation instrument but also to verify if the selected indices are valid and effective also when 
spectra are acquired outdoor. Even though the strong atmospheric water vapor absorption is likely to impair, in 
outdoor conditions, the proper calculation of some of the selected indices, an outdoor campaign will also allow 
the collection of a much higher number of spectra, thus enabling application of more sophisticated multivariate 
methods, such as supervised classification methods and multivariate regression approaches.
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