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Abstract 

Grinding process modeling represents a great challenge due to its stochastic nature. The uncertainty 

factor of grinding technology is mainly attributable to the undefined grain morphology, with the 

influence of this aspect becoming more pronounced in a dry configuration. Even though grinding has 

always used lubricants, nowadays the reduction or complete elimination of this element could mean 

a significant reduction in environmental pollution. Many modeling approaches have been used in 

literature to investigate phenomena related to grinding but each exhibits some disadvantages. In this 

paper a hybrid FEM - ML approach is proposed to forecast forces generated by the action of a single 

grain in dry conditions, overcoming the main modeling limitations observed to date. Experiments and 

force measurements were performed on a CNC surface grinding machine using sintered aluminum 

oxide grains of size 60. FEM simulations were developed in DEFORM 3D to predict grinding forces 

and increase the data set. ML algorithms were proposed to increase model prediction productivity 

and optimize the control of process parameters. 
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1. Introduction 

 

Amongst the various finishing technologies, grinding is one of the most widely used 

processes, usually chosen to achieve high surface quality characteristics on hard materials. Obtaining 

such finishing levels requires grinding processes that are characterized by a very low removal rate. 

For this reason, grinding provides the highest specific energy of all cutting processes. Grinding is not 

only characterized by very low cutting depths, but also by the prevalence of negative rake angles, 

which amplifies this phenomenon. Heat generated by grinding often leads to thermal burns and 

product rejection, especially in a dry configuration. Dry processes, however, could lead to a cleaner 

manufacturing route with substantial reductions in environmental pollution and production costs. 

Therefore, more in-depth investigation is needed to predict material behavior under dry abrasive 

process configurations. Grinding forces and temperatures are generally considered to exhibit a 

threshold value below which the process can be performed with nominal operating values without 

generating thermal defects [1]. Heat-related problems require the ability to predict the process energy 

while varying materials and process parameters. Many researchers have dealt with this challenge 

using different modeling approaches. To date, models can be grouped into two different categories: 

- Physical models (fundamental analytical, finite element, kinematic, molecular dynamics, and 

regression models) 

- Empirical and heuristic models (regression, artificial neural net, and rule-based models) 

At the simplest level, physical models focus on microscopic grinding phenomena and are 

generally implemented to design the process and avoid manufacturing defects. Empirical and 

heuristic models instead analyze the macroscopic behavior of the grinding system and are much more 

likely to be used to control the process [2]. Empirical and semi-empirical models have seen 

widespread uptake, providing a lot of information in relation to a given application; however, they 

generally only work for a specific parameter and material set. Experiments are therefore usually 

required to determine calibration coefficients, which are often difficult to obtain [3]–[5]. Meanwhile, 

physical models require previous knowledge for analysis of results, as well as long computational 

times, but allow microscopic phenomena behind the process to be identified. Amongst the various 

physical approaches, grinding FEM models have been implemented following two different 

approaches, which can be classified as micro- and macro-scale models [6]. Macro-scale models 

consider the interaction between the whole grinding wheel and the material from a thermal point of 

view [7]–[9]. They are focused on forecasting thermal burns by considering a threshold value of 

temperature starting from process power measurements and assuming a certain value of energy 

partition, which represents the heat absorbed by the workpiece. Micro-scale approaches instead focus 



on the action of a single grain on the workpiece, analyzing mechanical behavior during ploughing 

and cutting mechanism to provide information about the forces generated during the process due to 

the material and kinematics [10]–[12]. To deal with the stochastic nature of abrasive grains in micro-

scale approaches, grinding force and power prediction modeling are often based on the probabilistic 

distribution of the undeformed chip thickness as a function of the kinematic conditions, material 

properties and wheel microstructure [13], [14]. Force modeling at each grain is then developed, 

deducing the dynamic grain density from the static grain density, and considering kinematic effects 

such as shadows generated by active grains and dynamic effects due to local grain deflection. In the 

kinematic modeling approach, statistical analysis of the grain shape is generally performed 

considering the apex, rake, wedge and opening angles, followed by the creation of a database of 

abrasive grains that is mathematically designed by considering the grains, bond and pore volumetric 

fraction [15], [16].  

Apart from the nondeterministic nature of the grinding wheel geometry, other aspects such as 

machine tool vibration, abrasive tool wear, chip formation and undefined contacts make theoretical 

modeling of abrasive processes difficult [17]. Hence, finishing processes often involve a large gap 

between process conditions and human understanding, for which it is worth investigating grinding 

through machine learning (ML) and deep learning (DL), together with FEM analysis. In this case, 

modeling is assisted by real-time monitoring of the process through specific and accurate sensors 

capable of consistently revealing the physical phenomena taking place. There are, however, some key 

technologies to be improved. Restricted data volume and difficulties in data unification and collection 

in grinding, with a lack of advanced integrated multi-sensor online monitoring equipment, still limit 

ML application to grinding [18]. In order to overcome the limits of each approach and thus combine 

the reliability of FEM analysis with the productivity of ML techniques, a hybrid model was developed 

in which the advantages of FEM and ML were combined within cutting [19], [20] and grinding [21] 

force prediction models. In some cases, the ML database made up of experimental data can be 

enlarged by introducing data calculated through FEM simulations, with the possibility of forecasting 

process outcomes that are difficult to measure experimentally [22]. The hybrid method can overcome 

the limits of single approaches adopted for modeling grinding, handling problems relating to lack of 

experimental data by introducing FEM model outcomes into the data set, making the strategy faster 

by avoiding time-consuming simulations and taking advantage of validation based on experimental 

data. Once the manufacturing process is optimized, it is also possible to develop digital twin models 

for grinding that include the machine tool and cutting process [23].  

In this paper, a FEM simulation was developed in DEFORM 3D to forecast grinding forces 

generated by the interaction between a single grain and workpiece material in dry conditions. FEM 



simulations were carried out while varying the cut depth, feed rate and cutting speed, with statistical 

analysis performed based on the geometry of real sintered aluminum oxide grains to improve model 

precision. A combined database deriving from experimental outcomes and FEM simulations was 

processed with Artificial Neural Networks (ANN) and Decision Trees (a Random Forest in this 

specific case) to increase prediction productivity and verify the accuracy and applicability of different 

algorithms to the cutting operation. Moreover, the present work applied the Synthetic Minority Over-

sampling Techniques (SMOTE) function, which can repopulate database balancing data with 

inhomogeneous entities and fill in gaps due to missing values. Observed data were compared with 

predicted data and the accuracy of grinding force forecasting was evaluated through performance 

index calculation. A concise explanation of the concept and the procedure is shown schematically in 

Fig. 1. 

 

 

 

Fig. 1. Combined FEM and ML approach concept. 



2. Materials and methods 

2.1. Experimental and numerical data sources 

 

Experiments were performed in dry conditions on a CNC tangential grinding machine, 

applying the grain on a support as shown in Fig. 2. Cutting force components were measured using a 

Kistler 9255C dynamometer. Sintered aluminum oxide abrasive grains with a FEPA size of 60 were 

used for experiments. Case-hardened 27MnCr5 steel was employed as the workpiece material, 

characterized by a hardness of 62 HRC to a depth of at least 1 mm after heat treatment. Single grain 

grinding tests were performed using the process parameters reported in Table 1. Force signals 

acquired by the dynamometer were then processed in MATLAB® to extract the maximum cutting 

load during the interaction between grain and material. 

 

Table 1. Experimental parameters. 

Depth of cut p [µm] 5 – 10 – 15  

Cutting speed w [m/s] 45 – 60  

Feed rate f [mm/s] 25 – 35.8 – 50  

 

 

Fig. 2. Experimental test set up. 

 



Real grain geometries were acquired through computed tomography, with a group of reference 

grains imported into STL editor software Magics Materialize to measure and statistically analyze 

their geometric characteristics (Fig. 3a-b). A defined equivalent geometry, representative of the class 

of grain material and size, was designed with a rake angle of 68°, tip radius of 0.1 mm and total length 

and width of 0.55 mm and 0.6 mm, respectively. The defined equivalent grain geometry was then 

imported as a tool into a thermomechanical FEM simulation implemented in DEFORM 3D, adopting 

a Lagrangian incremental formulation. The grain was modeled as a rigid body, while the workpiece 

was instead represented as a deformable body due to the very high difference in hardness between 

the grain and workpiece. The workpiece was discretized with tetrahedral elements distributed with 

smallest dimensions in the interaction zone to model the depth of cut with at least three elements. The 

workpiece mesh was set as an absolute mesh, while the grain mesh was set as a relative mesh with a 

size ratio of 20. Dry contact conditions were considered with a constant Coulomb friction coefficient 

of 0.2. Movement was assigned to the grain. Zero velocity boundary conditions were applied to the 

lower workpiece surface to maintain its position fixed in space. 

 

The Johnson-Cook (J&C) model was employed to describe material flow according to Eq. 

(1). 

 σ = ( 𝐴 + 𝐵 ∙  𝜀𝑛) ∙ (1 + C ∙ ln 
�̇�

𝜀�̇�
) ∙ [1 – (

𝑇 − 𝑇𝑟

𝑇𝑚 − 𝑇𝑟
)𝑚]          (1) 

 

A hardened steel based on split Hopkinson pressure bar (SHPB) technology [24], with the same 

hardness as case-hardened 27MnCr5 (62 HRC), was employed as the reference material. The 

Cockroft-Latham model was used to predict the fracture criterion for chip formation with the material 

critical value set to 0.22.  

 



 

 

Fig. 3. Geometric analysis of sintered aluminum oxide grain of size 60: a) grains geometry acquisition; b) grains 

geometry statistical analysis 

Simulations were implemented using the process parameters shown in Table 2. 

Table 2. Simulation process parameters. 

Depth of cut p [µm] 10 – 25 – 50  

Cutting speed w [m/s] 10 – 15 – 20 

Feed rate f [mm/s] 10 – 20 – 40  

 



2.2. ML structure for prediction of grinding forces  

2.2.1. Theoretical background of ML algorithms 

 

Artificial neural networks (ANNs) are popular statistical methods that can explore the 

relationships between variables with high accuracy. ANNs are one of the most famous groups of ML 

algorithms and are the basis of the main Deep Learning architectures.  Essentially, the structure of an 

ANN is computer-based and consists of several simple processing elements operating in parallel.  

ANNs are formed by layer nodes, each node connecting an initial layer called the input layer, one or 

more hidden layers and a final layer called the output layer (see Fig. 4). 

 

Fig. 4. Artificial neural network. 

 

The fundamental component of ANNs is the node or neuron. Many neurons, arranged in an 

interconnected structure, form a neural network; each neuron is connected to the inputs and outputs 

of the others. The connections are represented by a matrix of weights w. Neurons receive weighted 

values as input, add them together and use an activation function to process the result. The data 

summed up in this way, to which a bias b has also been added, exceeds a certain threshold and, as a 

result, the activation function transforms by increasing the values stored in the node; otherwise, it 

extinguishes the signal by reducing it or even cancelling it. The temporary result is ready to be sent 

to the next connection, until each level is completed, and a result called output is obtained. This 

process is called feedforward network. Eqs (2) and (3) define the mathematical model for the 

regression formula in each node: 

 
∑ 𝑤𝑖𝑥𝑖 + 𝑏 =  𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏

𝑚

𝑖=1

 (2) 



 

𝑓(𝑥) = {
1 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 + 𝑏 ≥ 0

0 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 + 𝑏 < 0
 

(3) 
 

 

In the equation below, Eq. 4 defines the error function J (cost or loss function, or more 

commonly, mean square error MSE function), where: 

- i represents the index of the sample 

- θ0, θ1 are the parameters 

- hθ(x) is the hypothesis or predicted output, with ℎ𝜃(𝑥) = 𝜃0 + 𝜃1(𝑥) 

- y(x) is the actual value 

- m is the number of the sample 

 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1

 (4) 

 

Using this equation, the accuracy of the neural network's prediction process can be 

determined. The aim of the computational architecture of the feedforward neural network is to 

minimise the MSE by ensuring that the function J, through gradient descent, reaches the convergence 

point or a local minimum.  In this paper, the application of a feedforward neural network with 

backpropagation algorithm was considered. Hence, the neural network will be applied here to forecast 

the grinding process. In this study, the experimental and simulation data will be utilized to train the 

neural network. Then, the implemented neural network algorithm of the force model will be adopted 

to predict tangential and normal components of the grinding force [20], [25], [26]. 

 

Decision Trees are a very common set of supervised ML algorithms. They are very famous 

because they can: handle mixed types of features and predictors, with very little pre-processing of the 

former; ignore redundant features and select only the relevant ones; operate without having to make 

complex changes to hyper-parameters; visualise the predictive process as a set of recursive rules 

arranged in a tree with branches and leaves (see Fig. 5.a), thus offering ease of interpretation. Using 

a sample of observations as a starting point, the algorithm goes back to the rules that generated the 

output classes (or numerical values, in the case of a regression problem) by dividing the input matrix 

into smaller and smaller partitions, until the process triggers a stopping rule. To determine how to 

perform the splits in a decision tree, various statistical measurements are used: Gini heterogeneity 

index, information gain and variance reduction. 

Along with Decision Trees, one has to consider their extended evolution: the Random Forest 

RF (see Fig. 5.b). These ML algorithms are an ensemble of decision trees and allow numerous 



calculations to be replicated between the various decision trees.  The availability of this ensemble of 

decision trees, trained individually and then merged together, allows for more stable, accurate and 

robust predictions than the single decision tree. 

 

 

(a) 

 

(b) 

Fig. 5. a) Decision Tree, b) Random Forest 

 

Random Forests have been applied to experimental and simulation data to forecast grinding 

forces [25]. One of the most significant advantages of ANN and RF models is that they can capture 

the non-linear interaction between the features and target in the forecasting of grinding processes. 

The results obtained by the two models have been assessed and compared. 

The ML model architecture considered in this paper involves the following steps:   

1. Data pre-processing. 

2. Data oversampling using the Synthetic Minority Over-sampling Technique (SMOTE). 

3. Train-test splitting of dataset. 

Application of ML models for prediction of grinding forces was performed with: 



4. The Neural Network and Bayesian – Regularization algorithm to find the best and most robust 

solution. 

5. The Random Forest and Least Squares Boosting methods to fit the regression ensemble. 

In data science, the performance of an algorithm is affected by data pre-processing and 

handling. The performance of an algorithm can be increased and made more robust through the use 

of feature engineering. This process provides global analysis of a dataset, feature selection, handling 

missing values, handling outliers and feature scaling. Table 3 summarizes the main statistical values 

for the considered dataset: 

Table 3. Dataset analysis. 

 Mean 

value 

Minimum 

value 

Maximum 

value 

Range 

value 

Perch25th 

value 

Perch50th 

value 

Perch75th 

value 

Standard 

deviation 

Wheel speed [rpm] 29.526 10 63 53 15 20 45 21.192 

Feed rate [mm/s] 27.45 10 50 40 20 25 40 13.816 

Depth of cut [mm] 19.868 5 50 45 10 10 25 14.727 

Tangential force [N] 9.0956 2 40 38 4 6.36 10.73 7.7863 

Normal force [N] 37.744 6 90 84 21.81 37.875 51.13 20.704 

 

Analysis of the main statistical values is useful to correctly select the features for training of 

the ML algorithms and to ensure that oversampling of the data through SMOTE does not lead to the 

presence of values outside the range of application of process parameters, considering both parts 

relating to experiments and FEM simulation. Amongst the various methods for feature selection, use 

of the correlation matrix was considered with Heatmap in the present work. This gives the relationship 

between dependent and independent features by Spearman's rank correlation coefficient, as shown in 

Eq. 5: 

 
𝑟𝑠 =  𝜌𝑟𝑔𝑋,𝑟𝑔𝑌

=
𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋
𝜎𝑟𝑔𝑌

 (5) 

where 

- 𝑟𝑠 denotes the usual Pearson correlation coefficient, but applied to the rank variables, 

- 𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌) is the covariance of the rank variables, 

- 𝜎𝑟𝑔𝑋
𝜎𝑟𝑔𝑌

 are the standard deviations of the rank variables. 

The heatmap of the correlation matrix is shown in the Fig. 6. Amongst the various process 

parameters, the depth of cut was the variable most closely related to the cutting forces (Spearman 



index in both cases greater than 0.5) and, consequently, the one with the greatest influence on the 

development of forces. 

Within the considered dataset, outliers were considered as points more than three standard 

deviations from the mean. Within the samples considered in the dataset, it was possible to identify 

only one outlier amongst the given values of tangential force, as highlighted in Fig. 7. 

 

Fig. 6. Heatmap of correlation matrix. 

 

 

Fig. 7. Search for possible outliers in the considered dataset. 

 

Feature scaling is a technique used to resize and standardise the field of features of data. This 

method through standardization or mean-normalization can be an important pre-processing step for 

many machine learning algorithms. This can be useful to ensure that the MSE function is able to 



reduce prediction errors more effectively and that the algorithm converges correctly and quickly. In 

this work the mean – normalization method was proposed for data features (depth of cut, cutting 

speed, and feed rate) scaling because the distribution of data does not follow a Gaussian distribution 

and the reference Eq. 6 was reported below, where x is an original value, x’ is the normalized value: 

 

 
𝑥′ =  

𝑥 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (6) 

 

2.2.2. Novel approach using the Synthetic Minority Over-Sampling Technique 

 

The Synthetic Minority Over-Sampling Technique (SMOTE) and its function developed in 

MATLAB® are based on [27], [28]. This function provides new samples based on input data and a 

k-nearest neighbor (KNN) approach. If multiple classes are given as input, only neighbours within 

the same class are considered. This function can be used to over-sample minority classes in a dataset 

to create a more balanced dataset, as was done for the dataset considered in this paper. SMOTE is an 

oversampling method where the synthetic observations are created for the minority class. The below-

given diagram represents the SMOTE procedure (see Fig. 8): 

 

 

Fig. 8. Diagram of SMOTE procedure. 

For this paper, the implementation of the SMOTE technique for all the dataset was carried 

out, after an optimisation process, considering an amount of oversampling N equal to 3 and a number 



of nearest neighbours k to consider equal to 8. An example of the application of the SMOTE technique 

to oversample tangential force values is shown in the Fig. 9. The possibility of locating outliers was 

also considered for the oversampled dataset. 

 

 

Fig. 9. Tangential force oversampled values by SMOTE application with N = 3 and k = 8. 

The train-test dataset separation is a method for assess the goodness of a ML algorithm. The 

technique initially considers a dataset and splitting it into two subsets. The first set is used to train the 

model and is referred to as the training dataset. The second set is used to validate the training ML 

model. The objective is to estimate the performance of the machine learning model on new data, 

which was not used to train the model. To avoid a result with an over-fitting prediction, we can 

perform something called cross-validation. In this paper, a K-Fold Cross Validation was used. In K-

Folds Cross Validation data were divide into k folds. K-1 folds were applied to fit the data and leave 

the last fold as a partition only for test data. Finally, the operations are concluded by averaging the 

model over the various subsets (see Fig. 10). 



 

Fig. 10. Visual representation of K-Folds. 

The Test Dataset part is necessary to validate the accuracy and robustness of the ML 

algorithms considered. 

2.3. Application of ML models 

The following section introduces the Neural Network with Bayesian – Regularization 

algorithm and Random Forest by the application of Least Square Boosting method, which were used 

as a technique to perform machine learning experiments. 

2.3.1. Neural Network and Bayesian – Regularization algorithm 

In general, a backpropagation algorithm trains a feedforward network. In ANNs, in order to 

optimise the MSE function and, consequently, achieve a low error and avoid also to overfit the 

forecasting, some regularisation procedures are used with the backpropagation training algorithm. In 

this article, among the various regularisation methods, Bayesian Regularisation BR has been chosen. 

[29]. The BR framework for neural networks is based on the probabilistic interpretation of network 

parameters. The network with trainbr function was trained in MATLAB®. In addition, an automated 

procedure was implemented which, by proceeding iteratively and evaluating the root-mean-square 

error in the training set and the test set, was able to identify the optimal number of neurons and hidden 

layers for the chosen neural network configuration. Using the proposed ML architecture, an ANN 

with five hidden layers and forwards neurons 23 / 23 / 21 / 21 / 19 for each layer learned with the 

hybrid data sources inclusive of train – test splitting with five k-folds was built. Instead of using the 

original data, the data was pre-processed with a mean-normalization feature scaling in the input layer. 

The ML model was trained with 1500 iterations for each fold (Table 4). 



Table 4. ANN training algorithm configuration parameters. 

Parameter Value 

Maximum number of epochs to train 1500 

Backpropagation method Bayesian Regularization 

Hidden layers 5 

Performance goal 

Initial µ 

0 

0.005 

 

2.3.2. Random Forest and Least Square Boosting 

Random Forest (RF) regression uses an ensemble of unpruned decision trees, each grown 

using a bootstrap sample of the training data, and randomly selected subsets of predictor variables as 

candidates for splitting tree nodes. The motivation is to combine several weak models to produce a 

powerful ensemble to optimise accuracy over a single tree. In MATLAB®, Least-squares boosting 

(LSBoost) fits regression ensembles to minimize mean-squared error. The development of the 

relationship between the grinding process parameters and cutting forces RF model was carried out 

using MATLAB®. Some parameters such as method, maximal number of decision splits and 

minimum number of leaf node observations were optimised in the random forest model upon the 

minimisation of the mean square error (MSE). In this paper, after optimisation, the tuning parameters 

used for developing the RF regression model is listed in Table 5: 

Table 5. Random forest training parameters 

Parameter Value 

Method LSBoost 

Max number of splits 1 

Min leaf size 1 

Number of ensembles learning cycles 5000 

 

3. Results and discussion 

The configuration parameters presented in Table 4 were used to determine the best network 

structure of the ANN prediction model. The ANN algorithm used all input data for model training 

and validation via the k-fold technique using Bayesian regularization backpropagation. The 

performance of an ANN model depends on the number of hidden layers in the ANN network 

structure. An increase in the number of hidden layers has a direct impact on modeling time 

requirements. Determining the number of hidden layers and nodes during training was based on a 

trial-and-error approach using the minimum number of iterations required to achieve the necessary 

performance goal, which in the present case was set to the minimum mean square error. Training was 

stopped once the error was reduced to below the performance goal. Upon completion of the training 

stage, the network was tested with the validation set.  



 
 

Fig. 11 shows a comparison between the actual grinding force values y and the predicted 

results yhat based on neural network analysis of the entire dataset. The black line represents perfect 

prediction, while the red dots indicate the observed error between the predicted and actual values. 

The smaller the error, the smaller the observations deviated from the black line. For both tangential 

and normal forces, predicted values tended to be very close to the actual values. The low deviation 

between actual and predicted values obtained with the ANN architecture is highlighted in 

 

 

Fig. 11 a, where the residuals are plotted (y – yhat). Most observations were close to the 

perfect prediction line (i.e., the black dotted line with a residual value of zero) or were within an 



acceptable prediction range (bounds with at least 95% accuracy). The predicted values calculated 

with the neural network regression model were found to be close to the measured values. The 

calculated value of R, the correlation between the predicted and observed values, was 0.97064, 

suggested a satisfactory fit of the model, as shown  

Fig. 12.b where the black dotted line represents perfect prediction, the blue line indicates the 

regression equation fitting the predicted values to the true values and the black dots represent the 

considered observations. 

 

 
 

Fig. 11. Comparison of observed and predicted grinding forces using ANN regression (y = actual grinding force, yhat = 

predicted grinding force). 
 

 



 
 

Fig. 12. Statistical analysis fit of the neural network regression model: a) residuals, b) regression. 

 

The RF model could rank the predictors (wheel speed, feed rate, and cut depth in the present 

case) based on their importance. Fig. 13 shows the importance of each predictor, where it can be seen 

that the cut depth had a higher correlation with material removal than the others, in line with the 

correlation matrix heatmap in Fig. 6.  

  

Fig. 13. Importance of variables in predicting grinding forces using RF: a) tangential force, b) normal force. 

 



The robustness of the developed random forest model was evaluated by identifying the 

deviation of observed values in the validation dataset from those predicted by the model. 

 

 

Fig. 14 shows a comparison of the actual grinding force values y and the predicted results yhat 

from RF analysis of the entire dataset. The low deviation between actual and predicted values 

obtained with the RF architecture is highlighted in Fig. 15.a, where the residuals are plotted. Most 

observations were again close to the perfect prediction line (i.e., the black dotted line with a residual 

value of zero) or were within an acceptable prediction range (bounds with at least 95% accuracy). 

The calculated value of R based on the fitted regression line was 0.9671, as shown in 

 

 

Fig. 15.b, which also showed that the fit of the RF model was good. 



 
 

Fig. 14. Comparison of observed and predicted grinding forces using RF regression (y = actual grinding force, yhat = 

predicted grinding force). 
 

 

 
 

Fig. 15. Statistical analysis fit of RF regression model: a) residuals, b) regression. 

 

Further improvements will focus on limiting overfitting and improving the performance and 

robustness of ML regression models for abrasive processes. A larger reference dataset, including 

different process parameters and configurations, will be developed. The possibility of evaluating 

other features available through FEM simulations, such as heat generation, will also be further 

pursued. Both the neural network and random forest algorithm can predict a new dataset with updated 



values of grinding forces. This would require a new input dataset, which would then be applied to the 

previously trained forecasting procedures. Only in this way can new performance values be achieved. 

 

4. Conclusions 

This paper illustrates a comprehensive procedure that merges data from experiments and 

simulations by applying two ML regression techniques to verify the applicability of different ML 

algorithms in predicting grinding forces. The achieved outcomes demonstrate the practicality of this 

approach in developing a model for the prediction of grinding forces in dry conditions. Based on the 

developed regression models, the following generalized conclusions can be drawn: 

• The predictions of the two ML models were in agreement with the data collected in 

experimental and FEM simulation phases with an accuracy of about 0.97. 

• Compared to experiments and FEM simulation, the two models proved to be significantly less 

costly and time-consuming. 

• A novel global approach for forecasting grinding forces was implemented by combining 

experimental and simulation data, a SMOTE function for resampling the original dataset and 

a comparative procedure with two ML techniques. 

• In order to reduce overfitting, it was important to take care during data pre-processing and 

oversampling phases, focusing attention on finding the optimal initial conditions for modeling 

the algorithm. 

• The two models achieved similar accuracies. In particular, the model using ANNs was easy 

to interpret and provided the possibility of automatically obtaining a wide variety of results, 

which were easy to manipulate. On the other hand, this model involved a very elaborate phase 

to find the optimal conditions in order to implement a robust and accurate model. The RF 

model proved to be faster than the neural networks and involved a less elaborate optimization 

phase. The programming interface did not, however, allow as wide and immediate access to 

the results as that of ANNs. 

• Both models proved to be accurate and robust, and therefore suitable for optimizing process 

parameters to predict cutting forces in a highly non-linear process such as grinding. They were 

flexible to variations in process and grinding wheel parameters and allowed excellent 

generalization and extension to a wide range of processes involving cutting and material 

removal. 
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