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Numerical solvers using adaptive meshes can focus computational power on

important regions of a model domain capturing important or unresolved physics.

The adaptation can be informed by the model state, external information, or

made to depend on the model physics. In this latter case, one can think of

the mesh configuration as part of the model state. If observational data is to

be assimilated into the model, the question of updating the mesh configuration

with the physical values arises. Adaptive meshes present significant challenges

when using popular ensemble Data Assimilation (DA) methods. We develop a

novel strategy for ensemble-based DA for which the adaptive mesh is updated

along with the physical values. This involves including the node locations as

a part of the model state itself allowing them to be updated automatically at

the analysis step. This poses a number of challenges which we resolve to pro-

duce an effective approach that promises to apply with some generality. We

evaluate our strategy with two testbed models in 1-d comparing to a strategy

that we previously developed that does not update the mesh configuration. We

find updating the mesh improves the fidelity and convergence of the filter. An

extensive analysis on the performance of our scheme beyond just the RMSE

error is also presented.

K E Y W O R D S

Data Assimilation, Adaptive Meshes, Ensemble Kalman Filter,

Lagrangian Solvers

Abbreviations: EnKF, Ensemble Kalman Filter; BGM, Burger’s Model; KSM, Kuromoto-Shivashinsky Model; RMSE, Root Mean Squared
Error; HR, High Resolution; HRA, High Resolution Augmented; LR, Low Resolution
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1 | INTRODUCTION

Modern adaptive moving mesh schemes present significant advantages over traditional fixed mesh schemes in many geophysical

applications. Adaptive meshes can focus resolution in places of interest in order to make better use of available computational

power (Huang and Russell, 2010), or can be designed to optimise computational cost and accuracy based on external factors,

an example being ship and acoustic receiver locations in the prediction of underwater noise pollution from oceanic shipping

activity (Trigg et al., 2018). In some applications one may require the mesh to change as the system evolves to better represent

the underlying physics (Weller et al., 2010). Adaptive meshes are typically governed by a set of rules suitable to the specific

problem being solved.

There are many reasons why solving a geophysical problem in a Lagrangian frame may be appropriate, see e.g. Asch et al.

(2016); Jablonowski et al. (2004). The associated numerical solver will inevitably be based on a moving mesh, and some of the

advantages described above of a moving mesh are delivered a fortiori by the use of such a scheme that advects the nodes with the

flow. For instance, this may have the effect of naturally concentrating nodes in locations of increased activity, or better resolving

coherent structures. More specifically, if the nodes are advected with the flow, node clusters can provide information where

gradients are large and sinks or eddies exist, likewise node deserts can indicate where gradients are small. When the nodes are

advected by the flow in this way, it is almost inevitable that they will have to change in both number and location in order to

maintain solution accuracy for the numerical solver. When using an adaptive mesh that is governed by the model physics like

this, the node locations and physical quantities are inexorably coupled. As a consequence the node locations can be considered

part of the model state and of the model’s solution history.

The key point to note is that for computational models based on such Lagrangian solvers, the node locations encode the

underlying physics and therefore provide information about the overall model state. As such, they are all updated together under

the model evolution. In addition, the observational data also reflect underlying physics and we would therefore expect that the

optimal incorporation of such data should update the node locations as well as the values of the physical state variables. We

develop here a data assimilation scheme for achieving exactly this impact of data on the mesh itself.

The process of incorporating data into physical models is called Data Assimilation (DA). A survey of DA methods can be

found in Budhiraja et al. (2018). Data assimilation has become an integral tool in the geosciences and meteorology improving

numerical weather prediction and as a method for parameter estimation. A review of DA in the geosciences can be found in

Carrassi et al. (2018). We will focus here on ensemble methods Evensen (2009); Houtekamer and Zhang (2016) which make use

of estimated statistics from an ensemble of model runs at an analysis time step. These methods are attractive when attempting to

leverage the information that node locations carry through covariances estimated from the ensemble members. That information

is specifically brought in through the cross covariances between the physical values and the node locations driven by those

values. In the case where the nodes are advected with the flow, these cross covariances mimic the spatial gradient of the fluid

velocities across the model domain. This encodes extra and important physical information into the DA update step. We will use

observations of the physical state to update both the physical values and node locations in our approach which, in this work, will

come from a twin model experiment using the models outlined in Section 2.

Adapting existing ensemble methods to adaptive moving mesh models involves tackling some significant challenges.

Ensemble DA methods rely on estimated statistics from the ensemble members and for success they must be statistically

consistent. The main challenge is the fact that each ensemble member may have nodes in different locations, in different

numbers, or both. Previous work along these lines has been carried out in Bonan et al. (2017) for an adaptive mesh 1-d ice

sheet model. In that work the adaptive mesh was conservative, in that each ensemble member has the same number of points.

Observations of the ice sheet edge were also directly assimilated. In this work we consider updating node locations for a

non-conservative adaptive mesh model using Eulerian (fixed in space) observations of the physical quantities of the “truth run”. A

non-conservative mesh means that each ensemble member will have a different number of nodes in different locations requiring
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us to develop methodologies to obtain consistent and meaningful error covariance estimates. Any methodology we develop

will necessarily have some disruptive effect on the individual ensemble members themselves in order to achieve a measure of

statistical consistency between them. This may come through the addition or removal of nodes or the interpolation of values

to specific locations. With this in mind, we define a successful method as one which improves the estimate of the truth over a

“control run” with no DA and take special care to study the effects the method has on the ensemble members themselves. We

discuss these effects in Section 4 and recommend considerations to minimise any negative effects depending on the application at

hand and the desired prediction goal.

Other ensemble approaches aimed at adaptive meshes have been developed. Jain et al. (2018) study a tsunami model which

uses an adaptively refined mesh taking the union of all meshes as reference mesh to which each ensemble member is interpolated

to before the update step. In Du et al. (2016) a model which uses 3D unstructured adaptive mesh model for geophysical flows,

see also Maddison et al. (2011); Davies et al. (2011), was considered and an EnKF developed which uses the idea of a reference

mesh to carry out the analysis step. The reference mesh is chosen using the idea of super-meshing, see Farrell et al. (2009), and

each ensemble member is interpolated to that fixed reference mesh before the analysis step. These previous studies all concern

conservative adaptive meshes.

In Aydoğdu et al. (2019), a fixed reference mesh is used in two 1-d models for which the mesh evolves with the flow and

undergoes a “remeshing” step which injects new nodes should two be too far apart or removes nodes should two be too close

together. This remeshing means that each ensemble member will likely have different numbers of points in different locations.

In that work two reference meshes are used and are chosen based on the rules of the remeshing scheme. Ensemble members

are mapped to the reference mesh before the update and mapped back to their previous meshes after. Our work goes further

extending the update to the node locations themselves. We use the reference mesh only as a guide to match components of the

state vector and augment our state vector with the node locations. A reasonable supposition is that avoiding the mapping scheme

will help to lessen disruption of individual ensemble members providing for better estimates of the error covariances needed for

the update step.

This paper is structured as follows, in Section 2 we describe the model and adaptive mesh scheme we use in our twin model

experiments. In Section 3 we outline the necessary ingredients for an EnKF on non conservative adaptive mesh models and

describe the two implementations of such that we will compare. Numerical results are presented in Section 4 along with the

optimised parameters needed for the methods. We follow the results with a discussion in Section 4 on the cross covariances

of the physical variables and node locations as well as the effect the adapted EnKF schemes have on the ensemble members

themselves. We also present considerations on choosing the inflation parameters depending on the application and finally in

Section 5 we present some concluding remarks and summary.

2 | MODEL AND MESH

2.1 | Adaptive Mesh

In this work we are interested in adaptive meshes that evolve with the flow of a physical system and which are non-conservative.

We will make use of the same 1-d adaptive mesh scheme developed in Aydoğdu et al. (2019) as a prototype of 2-d, or 3-d,

non-conservative adaptive mesh used in some modern numerical models, including the Lagrangian sea ice model neXtSIM

(Rampal et al., 2016; Rabatel et al., 2018; Cheng et al., 2020).

The mesh itself is a 1-d mesh defined on the domain D = [0, L) with nodes {z1, z2, . . . , zN } ∈ D . It is assumed that

0 ≤ zi < zi+1 < L and that the positions of the nodes satisfy criteria which define a valid mesh through two tolerance parameters
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δ1, δ2. A valid mesh is one for which,

δ1 ≤ |zi+1 − zi | ≤ δ2 [i ∈ Î : 1 ≤ i ≤ N − 1 (1)

and δ1 ≤ |z1 + L − zN | ≤ δ2 . (2)

This criteria ensures that the mesh is periodic and that no two nodes are closer than δ1 or further apart than δ2. Moreover, δ1 and

δ2 are chosen so that δ2/δ1 ≥ 2 and are both divisors of L (see Aydoğdu et al., 2019, for an extensive explanation and details on

the assumptions).

The mesh points themselves evolve directly with the velocity u as,

dzi
dt = u(t , zi ) . (3)

Equation (3) together with the physical model updating the velocity (along with any other model state variables) represents a

coupled system of equations which can be solved alternately or simultaneously (Huang and Russell, 2010).

Given that the node locations are a function of time zi = zi (t ) , it is clear that there will be instances when the criteria for a

valid mesh given in Eqs. (1) and (2) are violated. In such cases we need a suitable remeshing scheme to enforce our criteria

which is given as follows. For each i if |zi+1 − zi | < δ1, zi+1 is deleted. Alternately, if |zi+1 − zi | > δ2 a new point z ∗ is

inserted at the mid point between zi+1 and zi and the points are re-indexed according to their order from left to right. The most

relevant consequence of this is that the number of nodes in the mesh is not constant.

2.2 | Models and Observations

In this work we consider two models for use in our numerical experiments. The first is a diffusive form of Burgers’ equation

(BGM), Burgers (1948):

BGM : ∂u

∂t
+ u

∂u

∂z
= ν

∂2u

∂z 2
, z ∈ [0, 1), (4)

with viscosity, ν = 0.08 and periodic boundary and initial conditions:

u (0, t ) = u (1, t ), (5)

u (z , 0) = sin(2πz ) + 1

2
sin(πz ) . (6)

The Burgers equation has been used in several DA studies (Cohn, 1993; Verlaan and Heemink, 2001; Pannekoucke et al., 2018).

This model is of particular interest because of the steep gradients near the shock, a motivating reason to use an adaptive mesh.

The second model is a version of the Kuramoto-Sivashinsky (KSM) equation (Papageorgiou and Smyrlis, 1991) given by

KSM : ∂u

∂t
+ ν

∂u4

∂z 4
+
∂u2

∂z 2
+ u

∂u

∂z
= 0 z ∈ [0, 2π) . (7)
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The periodic boundary and initial condition are defined as:

BC : u (0, t ) = u (2π, t ), (8)

I C : u (z , 0) = − sin(2πz ) . (9)

Here the viscosity, ν = 0.027, is chosen so that we see chaotic behaviour in the model. KSM, exhibits spatially extended chaos, a

situation different than that of BGM but also one for which adaptive meshes can be beneficial. For this reason we study this

model in addition to Burgers equation.

Both models are solved using central differences and an Eulerian time stepping scheme with time steps of 10−3 for BGM

and 10−5 for KSM. The tolerances used in the remeshing scheme outlined in Section 2.1 are δ1 = 0.01, δ2 = 0.02 for BGM and

δ1 = 0.02π, δ2 = 0.04π for KSM.

Observations of the physical values are generated from high resolution “nature” runs for both models. For KSM, there is an

initial spin up toT = 20 before observations are taken and the model state at that time is used to initialise the ensemble members

in the DA experiments described in Section 4. Mean zero, Gaussian distributed, white noise is added to the observations for both

models and experiments carried out with differing observation error standard deviation, σo. The observations are Eulerian, i.e.,

they are taken on a fixed-in-time regularly spaced grid on the underlying spatial interval and at regular time intervals. The choice

of regular spatial and temporal distributions for the data is done for the sake of simplicity and it can be relaxed without impact on

the algorithm setup.

3 | ENKF FOR AN ADAPTIVE MOVING MESH MODEL - AMMENKF

The ensemble Kalman filter (EnKF) relies on estimates of error statistics using an ensemble of model runs assumed to be

Gaussian distributed. The error estimates themselves are calculated using the state vector formed from each ensemble member.

In the case of an Eulerian solver with a fixed mesh, this calculation is easily carried out as the number of nodes and their locations

are the same for each ensemble member and thus the dimension of the state vector is also the same for each ensemble member.

In contrast, for an adaptive moving mesh (AMM), the mesh node locations for each ensemble member will almost certainly be in

different locations at an assimilation time. Further, due to the remeshing outlined in Section 2.1, will have different numbers

of nodes as well. This makes estimation of the error statistics less direct and lends to a need for the development of modified

versions of the EnKF suited to models with solvers like those we consider here.

For a non-conservative AMM solver we see two additional steps to be necessary each with their own important considerations.

We refer to the first key step needed before applying the EnKF as dimension matching; this is needed to provide consistent

estimations of ensemble statistics. One would need to decide whether to add or remove points from the meshes associated with

individual ensemble members to achieve the same number of components among state vectors. In addition a sub-step is that of

component paring, that is, how to assign which points, possibly in different locations, are to be compared in the state vectors. The

second key step comes after applying the update, which we refer to as dimension return. This involves deciding whether or not to

remove points that had been added or, if points were removed, whether or not to add points back into the ensemble members’

meshes. Both of these steps have the potential to disrupt the ensemble statistics and need to be tailored to the model and meshing

schemes. Another important consideration is that of mesh coarseness. If a mesh is so coarse that components being compared are

not statistically correlated, errors in the EnKF may result and should be considered when designing a suitable EnKF scheme.

One avenue toward an AMMEnKF involves the use of a reference mesh to which each ensemble member can be mapped

and on which error statistics can be estimated. This has been explored originally in Du et al. (2016) and Aydoğdu et al. (2019)

in case of conservative and non-conservative meshes respectively. In Aydoğdu et al. (2019) the use of a reference mesh was
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explored in 1-d where the reference mesh itself is chosen based on the properties of the mesh adaptation scheme. In particular,

two meshes were explored. The first is a high resolution (HR) mesh defined by the node proximity tolerance, δ1, which ensures

at most one point from each ensemble member can be in any given interval of the partitioned domain. The second is a low

resolution mesh (LR) defined by the node separation tolerance, δ2, which ensures each ensemble member has at least one point

in any given interval of the partitioned domain. In both cases each ensemble member is mapped to the reference mesh before

error statistics are calculated and then mapped back to their original meshes after the physical velocity values are updated in the

analysis step. The mesh locations were not updated during analysis.

However, the node positions themselves are driven by the physical flow and as such can be considered time dependent state

variables. In this work we consider updating the node locations making use of the HR partitioning of the interval domain for the

same models considered in Aydoğdu et al. (2019). The key difference between the previous and the current work is that we

now augment our state vector with the node locations and update them in the analysis step. We are interested in exploring the

use of the augmented state vector to leverage extra statistical information implied by the different meshes among the ensemble

members. This is because, in this case, the mesh is connected to the physics and cross covariances between the physical values

and the node locations say something about the system and how statistically correlated component matched values are. Previous

work for a conservative moving mesh was carried out in Bonan et al. (2017), there they also augment their state vector but with

the mesh dimension being conserved avoid the need for the dimension matching step.

We will, when needed, describe the methods in Aydoğdu et al. (2019) so that the reader may understand the relevant

differences. In particular we focus on the HR method and refer to the augmented state vector as the HRA method. In both cases,

HR and HRA, the analysis update is preceded and followed by two additional steps: (1) dimension matching, when the individual

ensemble members (each on its own mesh) are projected onto the uniform, fixed-in-time, reference mesh (HR), or component

paired using the subintervals defined by the reference mesh (HRA), and, (2) dimension return, when the ensemble members are

given each a mesh after their physical values (for HR) and their physical values and node locations (for HRA) have been updated.

The full AMMEnKF procedure is detailed in the following subsection for both HR and HRA.

3.1 | Dimension matching

HR Scheme
In order to avoid the statistical consistency issues presented by having ensemble members with differing numbers of nodes at

different locations, one can map each ensemble member to a reference mesh. We name the length of the physical domain as L,

noting this is 1 or 2π in our examples. The reference mesh is defined on the physical domain [0, L) into M intervals of equal

length ∆γ,

[0, L) = L1
⋃

L2
⋃
· · ·

⋃
LM (10)

where Li = [γi , γi+1) . In this case γ1 = 0, γi = (i − 1)∆γ for each i. Further γM = L − ∆γ as 0 and L are identified on the

periodic domain. The points γi form the nodes of the reference grid.

The reference grid is chosen in one of two ways: (i) to ensure that each ensemble member has at most one point in each

interval, ∆γ = δ1, or (ii) that each ensemble member has at least one point in each interval, ∆γ = δ2. The former is referred to

as the high resolution mesh (HR) and the latter as the low resolution mesh (LR).

Here we focus on the HR mesh since we partition our physical domain in the same way. The mapping from an ensemble

member to the HR mesh will take the j t h ensemble member’s state vector xj = (u1 . . . uN , z1 . . . zN )j ∈ Ò2N to the vector,

xj = (ũ,γ)Tj = (ũ1 . . . ũM , γ1 . . . γM )
T
j ∈ Ò

2M with M ≥ N . (11)
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F I G U R E 1 Illustration of the two dimension matching schemes. In the HR scheme, points are shifted to a fixed reference
mesh with empty nodes interpolated to. In the HRA scheme, points are added to empty intervals and interpolated to.

Here ũi will be the physical value assigned to γi through the introduction of a shifted mesh where Li → L̃i = [γi −δ1/2, γi +δ1/2)
for i = 2, . . .M . The first interval is taken to be L̃1 = [L − δ1/2, L ]

⋃[0, δ1/2) since we identify 0 and L. If there is a zk ∈ L̃i ,
then set ũi = uk . If there is no such zk but zk ≤ γi find k such that zk ≤ γi ≤ zk+1 and set

ũi =
uk + uk+1

2
, (12)

if there is no such zk , then set

ũi =
u1 + uN

2
. (13)

This mapping is illustrated in the right branch of Fig. 1. Once each ensemble member has been mapped to the fixed reference

grid, the standard EnKF can be applied.

HRA Scheme

In the HRA setting the reference mesh is also used to choose which nodes will be compared, but without changing their locations.

We partition the domain D = [0, L) into M subintervals (Li ) each of length δ1 so that D =
⋃
i Li . Since δ1 is the node proximity

tolerance we are guaranteed that each subinterval will have at most one point in it. We can then component-match nodes that fall

in the same subintervals. If an ensemble member does not have a point in a given subinterval we will insert one, a ghost point,

based on the nearest neighbours.

In this approach, the state vector of the j t h ensemble member on the reference mesh will have the form

xj = (u, z)Tj = (u1,u2, . . . , ũi , . . . ,uM , z1, z2, . . . , z̃i , . . . , zM )
T
j ∈ Ò

2M with M ≥ N . (14)

where ui or ũi would be the value of the velocity in the i t h sub interval of the reference mesh. A value with no tilde means that

the ensemble member had a point in that interval while a tilde implies the member did not have a point in the i t h interval and

one was inserted with a physical value interpolated to that location. The location of an interpolated point is drawn from the

Gaussian distribution, N
(
γi +γi+1

2 , δ1/2
)
, with a check that the point drawn actually resides in the interval Li , if not, we draw

again until it does. This is illustrated in the left branch of Fig. 1. The choice of randomly sampling the node location is done to

avoid biasing node locations in intervals that are empty amongst a large proportion of the ensemble members, which can happen,

since the nodes are driven by the flow, in areas of divergent flow. It is possible that we end up having an invalid mesh in this

process. Nevertheless, we do not enforce validity at this step as there will be many cases where no location in an empty interval
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can be chosen for which there is not a point within a distance of δ1. This is because the intervals themselves are of size δ1; we

do, however, return to a valid mesh after the update step.

The physical value assigned to a ghost point z̃i is calculated by linear interpolation as:

ũi =
b

a + b
u l +

a

a + b
ur a = z̃i − z l , b = zr − z̃i (15)

where (z l ,u l ) and (zr ,ur ) are the closest nodes to z̃i to the left and right respectively and u l ,ur the corresponding physical

values at those nodes. This is done from left to right which does allow for the possibility that a nearest left neighbour might

have been a ghost point. This is however excluded in our current experimental case where δ2 = 2δ1, which guarantees that each

empty interval will be surrounded by a non-empty interval to its left and right.

3.2 | Observation Operator

HR scheme

For the HR method the observation operator applied to the j t h ensemble member takes the form

h
(
xj

)
= ũi +

z o
k
− γi

γi+1 − γi
(ũi+1 − ũi ), (16)

where z o
k

is the observation location with γi ≤ z ok ≤ γi+1.

HRA scheme

In a similar way, we define the observation operator for the HRA method as

h (xj ) = ui +
z 0
k
− zi

zi+1 − zi
(ui+1 − ui ), (17)

where either zi , zi+1, ui or ui+1 could have a tilde if they were inserted due to the ensemble member having no value in the i t h

interval (see Section 3.1).

This form of the observation operator means that we are not considering the location of the observation in the update, just

the physical value. This is done since most geophysical measurements will not directly relate to a node position, since the nodes

are not physical objects. Yet the physics does fundamentally drive node motion and the covariances between physical values

and the node locations are non-zero in the error covariance matrix. This property is an integral part of our approach which is

described below and illustrated in Fig. 9.

3.3 | Analysis using the EnKF

Once the dimensions of the state vectors of each ensemble member have been matched, the EnKF can be applied in the usual way.

As in Aydoğdu et al. (2019) we will use the stochastic version of the EnKF (Evensen, 2009). This choice does not influence how

we design our schemes for AMMs. Our methods will apply to deterministic versions of the EnKFs (Asch et al., 2016) as well.

We define the forecast ensemble matrix Ef as

Ef =
[
xf1, . . . , x

f
N e

]
∈ Ò2M×N e

, (18)
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where the forecast state vectors xf
j

takes the form as in Eq. (11) for the fixed reference mesh case and Eq. (14) for the augmented

case where we also update node locations. In Eq. (18), M is the number of subintervals, Li , that partition the domain D into

subintervals of size δ1 and N e is the number of ensemble members. The vectors xf
j

are the dimension matched state vectors and

are taken to be the columns of Ef.

The forecast anomaly matrix Xf takes the form

Xf =
1

√
N e − 1

[
xf1 − x̄

f, . . . , xfN e − x̄f
]
, (19)

where x̄f is the forecast ensemble mean defined as,

x̄f = 1

N e

N e∑
j=1

xfj . (20)

In the stochastic EnKF, the observations are treated as random variables so that each ensemble member is compared to a

slightly differently perturbed realisation of the observation vector (Burgers et al., 1998). That is, given an observation vector y
we generate N e observations according to,

yj = y + εj 1 ≤ j ≤ N e εj ∼ N(0,R), (21)

where R is the covariance of the assumed zero mean, white-in-time observation noise ε. We can then calculate the normalised

anomaly ensemble of observations,

Yo =
1

√
N e − 1

[y1 − y, . . . , yN e − y] (22)

=
1

√
N e − 1

[ε1, . . . εN e ] , (23)

which in turn defines the ensemble-based observation error covariance matrix,

Re = Yo (Yo)T . (24)

We then define the observed ensemble-anomaly matrix using our observation operator h as,

Y = h (Ef) − h (Ēf), (25)

where the operator h is applied at each column of the matrix Ef. The Kalman gain matrix, K, is then calculated as,

K = XfYT
[

1

N e − 1YY
T + Re

]−1
(26)

which is used, in the stochastic EnKF formulation, to individually update each ensemble member according to,

xai = xfi + K
[
yi − h (xfi )

]
1 ≤ i ≤ N e . (27)

With the HRA method, however, there is the possibility that an ensemble member will have an invalid mesh after the update step.
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For this reason the remeshing algorithm is applied to each ensemble member after updating. The remeshing is also tasked with

handling points that have moved out of the domain at the analysis update; although not common, it can happen.

We also make use of covariance multiplicative scalar inflation, see Anderson and Anderson (1999), in which the ensemble

forecast anomaly matrix is inflated as

Xf → αXf, (28)

with α ≥ 1, before Xf is used in the analysis update. This parameter is one that can be tuned through numerical experimentation,

although approaches exist to make this task automatic and adaptive along the experiments (see e.g., Raanes et al., 2019, and

references therein). After updating each ensemble member, the mean of each updated member can be used to obtain an “optimal”

estimate of the physical state of the system. A significant difference between the analysis mean coming from the HR and HRA

methods are the meshes associated with each. The HR method analysis mean is on the equally spaced reference mesh while the

analysis mean mesh for the HRA scheme is calculated by averaging the positions of the nodes in each of the subintervals defined

by the reference mesh which is then passed to the remeshing algorithm to ensure a valid mesh.

3.4 | Dimension Return

After the update is complete, each ensemble analysis vector has its dimension returned to its pre-analysis value. For the

AMMEnKF-HR scheme this is a needed (mandatory) step as the structure of the adaptive mesh is removed during the update

step and some kind of map back to the previous mesh state before the next forecast is necessary. For reasons explained below, we

include a dimension return step in the AMMEnKF-HRA scheme too, although it is not absolutely necessary in this case. In the

AMMEnKF-HRA scheme the mesh itself is updated and the remeshing scheme is applied to ensure a valid mesh and enforce the

periodic boundary conditions if needed. When updating the mesh locations, there is the possibility the boundary conditions are

violated, as with any scheme. The remeshing scheme, when present, naturally incorporates the enforcement of the boundary

conditions: its application is likely to be sufficient for this purpose.

HR scheme
Following Aydoğdu et al. (2019), in the HR case a backward map is used to return the updated ensemble members to their

original meshes before forecasting again. In the forward mapping step, the mapping indices associating the nodes in the adaptive

moving mesh with nodes in the reference mesh are stored in an array. These are the indices resulting from the projections onto

the HR reference mesh. This allows us to map the updated physical values ũa back to the mesh that the ensemble member came

with into the update step. In other words, the values updated at γi are shifted back to their previous node locations. This shift can

have the effect of introducing some noise in each ensemble member as physical values determined at one location are moved to

another. From there, the forecast is run until the next assimilation time step. The entire process is illustrated in the right branch

of Fig. 2.

HRA scheme
In the HRA case, after the update and remeshing, nodes that are in intervals which were previously unoccupied by a point

before the update step are deleted for each ensemble member using the stored indices as in the HR case. This is not specifically

necessary to the scheme and performance with and without this step is essentially equivalent. However, we include this step in

our analysis as there may be some applications where keeping the dimension of the ensemble members low is desirable during

the forecast step. The process is diagrammed in left branch of Fig. 2.

A beneficial by-product of the mapping to and from the reference mesh in the HR scheme is that it induces additional
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F I G U R E 2 The dimension return steps. In the HRA scheme points that occupy previously empty intervals are simply
deleted. In the HR scheme points which came in from the forecast step are shifted back to their original mesh locations and
points inserted at the dimension matching step are deleted.

F I G U R E 3 Examples of the spread in the forecast ensembles and an example of an forecast ensemble member for the HR
(left) and HRA (right) schemes. The forward and backward mapping of the HR scheme induces some inherent jitter increasing
the spread. For the HRA case this does not happen and the ensemble members can collapse quickly. Also notable is the reduced
smoothness in the ensemble member shown for the HR case caused by the mapping procedure. For these experiments
αj = 0, α = 1,σo = 0.01,N

e = 30 and Im = 70.

variability among the physical values. This occurs when a value at one location is moved to another in the shift to and from the

reference mesh. The net effect is that the ensemble spread stays reasonably large, leading to the healthy functioning of the EnKF.

This is not the case in the HRA method given that physical values and their locations are updated together. As a result, the spread

of the ensemble when using the HRA scheme tends to be smaller than the HR case. This behaviour is shown in Fig. 3.

While little spread could also be reflecting the desired analysis convergence to the truth, in practice it is a dangerous situation

as it often induces the filter to underestimate the actual error, leading to filter divergence. We counteract this effect by adding

white noise to the physical values, but leave the node locations unaltered. We shall refer to this process as jitter and it can be

applied to each ensemble member after the update step. For a given ensemble member analysis vector xa
j

the jitter is applied to

its first M components (i.e., to the physical values) according to,

uaj = uaj + N(0,σJ )
T with σJ , 0 ∈ ÒM and σJ = αJ max

ui ,uk ∈ua
|ui − uk |, (29)
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F I G U R E 4 Illustration of the AMMEnKF-HR (Left) and AMMEnKF-HRA (Right) schemes. The details of the dimension
matching, update and dimension return as well as the addition of α and αJ can be found in section 3

.

where the j t h ensemble member index is omitted in part of Eq. (29) to simplify the notation. The scalar parameter αJ regulates

the amount of jitter, and the suffix J in αJ and σJ stands for jitter. We take 0 ≤ αJ ≤ 1 so that we add a percentage of the

maximum difference between the physical values of the ensemble members. By having αJ dependent on the analysis field, the

jitter is adaptive and is similar to an adaptive form of additive inflation, see Anderson and Anderson (1999). For the consistency

across comparisons, we also experimented applying jitter in the HR method and found improvements in time averaged RMSE

values for both schemes.The HR and HRA algorithms are diagrammed in Fig. 4.

4 | RESULTS AND DISCUSSION

ν δ1, δ2 N T ∆t Nobs

BGM 0.008 0.01, 0.02 100 2 0.05 10

KSM 0.027 0.02π, 0.04π 100 5 0.05 20

TA B L E 1 The model parameter settings used in each of the DA experiments for the models described in section 2.2. Here ν
is the viscosity, δ1 and δ2 the node proximity and distance tolerances, N the size of the reference mesh,T the duration of the
experiment, ∆t the integration time step, and Nobs number of observations.

In this section we present the results of numerical experiments designed to measure the performance of the two schemes

with different parameter settings. We experiment with the models we named BGM and KSM that were described in Section 2.2.

For BGM, we run for a short time from t = 0 to t = 2 because of the rapid dissipation in fluid velocity with our chosen viscosity

parameter. The time averaged statistics in the DA experiments are taken for t > 1. The ensemble members are initialised by

perturbing the initial condition of the nature run. For KSM, an initial spin up untilT = 20 is done and the system’s state at t = T

is used as the initial condition for the DA experiments that follow. With the initial condition provided by spin-up the model is

then run until t = T + 5 and observations are collected forT < t < T + 5. For both models, observations are taken at fixed times

and on fixed evenly spaced intervals equally dividing the spatial domain. In addition, random white noise with standard deviation
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σo is added to each observation and we vary these values in our experiments described below. The dimension of the reference

mesh for both schemes is M = 100, however the dimension of the state vector in the AMMEnKF-HRA scheme is twice that of

the AMMEnKF-HR scheme since it has been augmented with the node locations. The parameters used for BGM and KSM in

these experiments are summarised in Table 1.

4.1 | Comparison between AMMEnKF-HR and AMMEnKF-HRA

We compare the performance of the AMMEnKF-HR introduced by Aydoğdu et al. (2019) (and recalled in Section 3), with

that of the novel augmented formulation AMMEnKF-HRA also presented in Section 3. We will use two metrics to evaluate

the performance. Together with the more standard RMSE of the analysis mean, we consider the time averaged RMSE for the

first spatial derivative of the analysis mean, ∂x ũa. The gradient of the analysis field allows us to assess how well each of the

methodologies preserve derivative information. This is relevant for three reasons, the first is to evaluate if and how much applying

jitter to the analysed ensemble members distorts their curve smoothness. The second is that the mapping scheme in the HR case

can create artificially sharp changes in function values. This will happen when mapping to the reference mesh and when the

analysis vector is mapped back to the original ensemble member mesh if the original node location is sufficiently far away from a

reference mesh location. These sharp changes over the domain, due to the jitter, HR mapping, or both, can disrupt local rates of

change with the risk of violating conservation rules, such as incompressibility (+ · u = 0), for example. While we make no direct

study of conservation laws in this work, we do evaluate the fidelity of the first derivative after the update step for each of these

methods as a proxy for the potential violation of conservation laws in more realistic scenarios. The third reason is to gain a sense

of how the methods affect the adaptive mesh. We think of a good mesh as being one which distributes available nodes in such a

way that the derivatives needed to time step the model forward are well represented by the mesh. We can see from Fig. 5 that the

first spatial gradients are comparable between the two methods for BGM, but see a clear improvement in the spatial gradients

from the HRA method with KSM in Fig. 6. In these results the time averaged RMSE’s for the derivatives are obtained using the

inflation parameters (α , αJ ) that optimise the time averaged RMSE of the solution analysis mean. Depending on the situation,

one may run similar experiments and choose a jitter and inflation that best preserve the first derivative if high fidelity of it is

needed. For these models, there is not a great deal of difference in time averaged RMSE when using parameters that optimise the

RMSE for the first derivative instead of solution itself.

The comparison is carried out over ranges of the three key experimental parameters: the ensemble size, N e, the initial mesh

size, Im , and the observation error, σo. We study the performance of the methods by running experiments with two of them kept

fixed while varying the other. For each parameter setting, the optimal jitter and inflation for each scheme are determined by

running tuning experiments that identify the pair of values giving the lowest time averaged RMSE. In this way we will compare

the best possible configuration of each scheme. The values used in the experiments are given in Table 2. Results are shown in

Fig. 5 and 6 for BGM and KSM respectively.

BGM KSM

Experiment Type N e Im σo N e Im σo

Varying N e [20-90] 70 0.01 [20-90] 70 0.798

Varying Im 30 [50-90] 0.01 40 [50-90] 0.798

Varying σ0 30 70 [0.01-0.07] 40 70 [0.60-2.0]

TA B L E 2 The settings used for the three sensitivity experiments for BGM and KSM. For all three experiment types the
ranges of α and αJ optimised over remained the same. The range of αJ differed between the model types with a range of
[0 − 0.1] for BGM and [0 − 0.5] for KSM. The range of α was [0 − 1.6] for both models.



14 SAMPSON, CARRASSI, AYDOGDU, JONES

F I G U R E 5 Results of the tuning experiments for the HR and HRA schemes with BGM. For each parameter shown along the
x-axis, the optimal jitter and inflation are used to obtain a time averaged RMSE for the analysis (top panels). The time averaged
RMSE values for the spatial derivatives (bottom panels) correspond to the parameter which optimise analysis RMSE (see text for
details).

First note that Fig. 5 and 6 immediately reveal how the ensemble spread in the HR scheme is typically much larger than

that of the HRA scheme even when performance is comparable, such as in the initial mesh size experiments. This is due to the

inherent stochasticity of the HR scheme discussed in Section 3.4.

By looking at the RMSE of the analysis mean, it is evident that the HRA scheme tends to out perform the HR scheme in

general and particularly for smaller ensemble sizes. This is due to the extra information carried in the cross covariances between

the physical values and the node locations. The RMSE of the spatial derivatives is also generally lower in the HRA scheme,

except at ensemble size 50 for the BGM case. It is worth reiterating that we are using here parameters optimised for the solution

itself and not the first derivatives. We will discuss this behaviour more extensively later in this section together with other metrics

used to understand this particular issue. Figures 5 and 6 also highlight that only marginal improvements in time averaged RMSE

are obtained after an ensemble size of 30 for BGM and 50 for KSM (see mid column panels). This kind of behaviour can be

observed when the ensemble size is larger than or equal to the dimension of the unstable, neutral subspace of the dynamics

Bocquet and Carrassi (2017). For both BGM and KSM we do not see much dependence on the initial mesh size but with HRA

performing comparably to or better than the HR scheme in the BGM case and out performing HR in the KSM case.

We also make a comparison to the performance of each scheme with respect to increasing observation error (last column

in Fig. 5 and 6). For the BGM case both schemes perform comparably but we see better results from the HRA scheme in the

KSM case particularly with regard to the first spatial derivative of the solution. We would also like to remark that the clearer

trends in the KSM experiments is likely a result of a longer time average of the RMSE available as the BGM solution damps

quickly limiting the experimental time window. When the observation error is large enough both models perform about the same

suggesting that one might choose to accept the extra computational cost of the HRA scheme when the observations are good

enough to warrant doing so.
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F I G U R E 6 Same as Fig. 5 for KSM.

In Fig. 7 and 8, respectively for KSM and BGM, we show examples of the time averaged RMSE surfaces from the

experiments described above as a function of inflation and jitter with the optimal pair of values marked by a red star. The

difference in the smoothness of the contour plots arises from the aforementioned fact that we run KSM for a longer time than

BGM which dissipates quickly due to the chosen viscosity term. The longer run provides a larger sample of RMSE values to

average over producing a smoother surface.

The need for some jitter in the HRA method (bottom panels) is highlighted by the fact that the time averaged RMSE error is

higher near the x -axis (αJ = 0) for both models, but particularly with BGM). While this is also the case for the HR scheme with

BGM the effect is less pronounced. For the HR method with KSM there is a region with αJ = 0 that the time averaged RMSE

remains close to the one obtained using optimal jitter and inflation, this is likely achievable due to the chaos in KSM naturally

increasing the spread.

4.2 | Error Covariance Structures

We study here the ensemble-based forecast error covariance matrices, XfXfT , with Xf defined in Eq. (18). The structure of the

matrices is shown in Fig. 9 and 10. The size of XfXfT for the HRA method in this case is 200 × 200 while that for the HR case

is 100 × 100. With the HR method we only have covariances between physical values themselves in contrast to HRA where

we have covariances between physical values, physical values and node locations and the node locations themselves. In Fig. 9

we show the forecast covariances between the physical values and node locations for the HRA method with both BGM and

KSM just before the 10th and 20th assimilation steps respectively. These error covariance matrices correspond to no jitter or

inflation in an effort to understand the intrinsic differences between the methods. Also shown is the gradient of the corresponding

forecast mean and the associated covariance between the physical values ui and their node location zi , i.e. the diagonal of the

matrix. This is done to highlight that the largest covariances occur at sharp gradients and have the same sign. This is natural
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F I G U R E 7 Contour plots for the jitter and inflation calibrations for BGM for the HR (top row) and HRA (bottom row)
schemes for the experimental parameters. The points in the plot represent the sample points used while the red star represents the
jitter and inflation with the lowest time averaged RMSE. Of particular note is that the HRA scheme has its valley of low RMSE
well away from the x-axis implying that some jitter is beneficial while this is not as strong a feature with the HR method due to
the inherent stochasticity added during the dimension matching step.

F I G U R E 8 Same as Fig. 7 but for KSM.
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F I G U R E 9 Top row: Examples showing the forecast covariances between the physical values and the node locations in the
HRA method for BGM and KSM right before the 10th and 20th assimilation steps respectively. Bottom row: The spatial gradient
of the forecast mean and covariance between ui and zi corresponding to the covariance matrices above, this highlights the extra
information encoded into the Kalman gain when using the HRA scheme.

since a negative gradient would imply a negative correlation between a physical value and its independent variable, likewise for a

positive gradient. In fact, the shape of the diagonal closely matches that of the gradient demonstrating that including the node

locations in the state vector encodes a deeper level of information into the Kalmain gain matrix.

In Fig. 10 we show the covariances for the physical values for HR and HRA (i.e. the top left 100 × 100 block) as well as

the HRA covariances of the node locations (i.e., the bottom right 100 × 100 block) for both BGM and KSM. Typically the HR

covariances are higher in magnitude than that of the HRA scheme, this is because the ensemble members are compared on the

same mesh in conjunction with the effect of the intrinsic stochasticity caused by the mapping to and from the reference mesh.

The shock is immediately identifiable in the physical value covariances for BGM as a bright spot near the sharp gradient (cf

Fig. 9). The sharp gradients of KSM are also apparent in the physical error covariances. For KSM, there is a strong, albeit regular

structure in the matrix for the HR method resulting form the fixed mesh with some long distance cross-correlations. Those long

distance correlations are greatly reduced with the HRA method. The correlations between the node locations themselves in

the HRA scheme (rightmost panels) are very small due to the fact that they are not very far from each other since the intervals

themselves are very small. This means that the extra contribution to the innovation in the HRA scheme is mainly coming from

the correlations between the physical values and the node locations as opposed to the node locations themselves. This is indeed

desirable since we need to inject new nodes in the embedding process and would prefer to avoid incidental biases.

4.3 | Ensemble Member Fidelity

As discussed earlier, the addition of jitter can disrupt the shape of the ensemble members while still improving the analysis mean.

This may be problematic if the ensemble members are used to feed information to another model component.

As an example where ensemble member fidelity may be important, we consider the Heterogeneous Multiscale Method

(HMM) described for various applications in E (2011). In a general setting, the HMM method connects a macro scale model

with parameters dependent on micro scale variables to a model of this micro variables in order to simulate a physical process.
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BGM

KSM

F I G U R E 1 0 Examples of the error covariance matrix before the update step for the HR and HRA methods. The top row
corresponds to BGM while the bottom row corresponds to KSM. Each row shows σui uj (left and middle columns) for the HR
and HRA schemes respectively while the right column shows σzi zj which only exists for the HRA scheme.
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Typically one has a macro scale model F (U ,D ) where U is the physical macro scale variable and D the data needed in order

for the macro scale model to be complete, a stress tensor for example. Paired with the macro scale model we have a micro

scale model f (u, d ) = 0 and d = d (U ) where d is the data needed to set up the micro scale model and is dependent on the

macro scale state. Typically the HMM process proceeds as follows. (1) Given the current state of the macro variables, initialise

the micro variables using the needed micro model data d = d (U ) . (2) Evolve the micro variables for some micro model time

steps. (3) Through the appropriate method, calculate D , needed for the macro model. (4) Evolve the macro variables using the

macro-solver. If an ensemble member is a solution of either the macro or micro models, disruption in their fidelity will naturally

cause a problem with steps 1 and 3 through an inaccurate calculation of d or D and would then likely propagate such errors in

the evolution steps. An example of a system like this can be found in Cloud-Resolving Convection Parameterization (CRCP), see

Grabowski (2001). There, a macro model solving inviscid moist equations is coupled with a micro model representing sub grid

scale cloud physics.

We saw in Fig. 7 and 8 that there are regions of low analysis mean RMSE for relatively high values of αJ , suggesting

that the mean is smoothing out the added noise from jitter. In Fig. 11 we show examples of the analysis mean, truth, and a

typical ensemble member of BGM for a fixed inflation and three values of αJ . The inflation chosen corresponds to the optimal

value found for an ensemble size of 50. We show αJ = 0, the optimal αJ (in terms of lowest time averaged RMSE), and a

larger αJ for which the ensemble mean still has low time averaged RMSE. The figure clearly shows that applying jitter to

the ensemble members has the potential to disrupt them (see the waving profile of the displayed arbitrarily chosen ensemble

member), especially if your scheme requires you to act on each ensemble member as we do here with dimension matching and

return. Depending on the application, such as a model using the HMM framework, it may be better to sacrifice a small amount of

analysis accuracy to preserve the fidelity of each ensemble member in terms of representing a valid solution to the underlying

PDE. In other applications, that may not matter quite so much.

To better quantify the effect that adding jitter and inflation may have on the PDE fidelity of the ensemble members we look

at three different metrics. The average of the time averaged variance of the difference between the ensemble members and the

truth at each node (σens), the kurtosis of the same difference (kens), and the average of the time averaged RMSE errors of the

ensemble members (RMSEens). If dτj
i
=

(
uτj
i
− uτj

T

)
∈ ÒM is the difference between the i t h ensemble member and the truth at

assimilation time τj then we can define these quantities as,
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where Nan is the number of assimilation steps completed. If the ensemble members have a low σens this would suggest they

don’t deviate from the mean error along the domain axis which can suggest that the shape of the curve is consistent with the true

solution to the PDE and had not been overly distorted by the inflation or jitter.

The kurtosis can give us a measure of how much the errors are concentrated around the mean error. A low value for the

kurtosis suggests a more uniform distribution with the normal distribution having a kurtosis of 3. Kurtosis above 3 would suggest

either that the probability mass is concentrated around the mean and values far from the mean are rare, or that the probability
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HR Scheme

HRA Scheme

F I G U R E 1 1 Examples of BGM analysis and an ensemble member for different inflation and jitter choices. Top HR and
bottom HRA. The RMSE of the analysis mean can be low even when the ensemble members themselves represent unrealistic
solutions to the PDE.



SAMPSON, CARRASSI, AYDOGDU, JONES 21

Kurtosis Examples

F I G U R E 1 2 Examples of the three statistical measures we use to measure curve distortion.

mass is concentrated in the tails. In this particular case, a high kens likely implies the ensemble members are not overly distorted

by jitter and inflation with large error occurring infrequently along the domain. A low kens signals that the ensemble members

are distorted by jitter and inflation with larger deviations from the mean occurring more uniformly. However, one may have

a large kens with ensemble members that have high PDE fidelity but are far apart from each other and or far from the truth.

Nevertheless, in this analysis we are looking at a long time average and expect the ensemble to converge around the true solution

in time. Examples of ensemble members with low and high kurtosis at a specific time are shown in Fig. 12. Ideally one would

hope for each ensemble member to have a low variance, low RMSE and high kurtosis calculated from dτj
i

. In Fig. 13, 14, 15

and 16 we show σens , kens and RMSEens as a function of α and αJ for ensemble members before and after the update step.

The lowest values for σens and RMSEens are denoted by a red star while the largest value of kens is denoted by a blue star. We

calculate these metrics for the both the forecast ensemble, right before the update step, and the analysis ensemble after.

When comparing the forecast and analysis metric surfaces for BGM there is a detectable change in structure for σens
and RMSEens before and after the update. Before the update, both metrics tend to increase with increasing αJ somewhat

independently of α and after the update the metrics are significantly reduced for lower values of α . This is evidenced by the

relatively horizontal contours in the forecast surfaces, which change after the update. However, the general structure of the

kurtosis remains similar before and after the update, implying that the update is reducing the size of the error, but that the

distortions remain among the ensemble members for larger values of αJ . The analysis mean is smoothed through averaging

still providing low RMSEens . Comparing the Kurtosis surfaces between the HR and HRA schemes also again shows that some

jitter is desirable in the HRA scheme as the larger kens values are away from the x-axis. This may be caused by the ensemble

members collapsing around a solution and then deviating from the truth in time due to model instability and over confidence in

the model solutions. It is notable that the lowest values for σens and RMSEens occur for almost the same value of αJ at which

we have our maximum kens for the analysis metric surfaces in the HRA case.

When making similar considerations between the forecast and analysis metric surfaces for KSM we see a similar change in

structure between the σens and RMSEens surfaces as that of the BGM case. However, the contours in the KSM forecast surfaces

are less horizontal implying that multiplicative inflation alone can increase the average errors. This does not necessariliy mean

that the solutions are of low fidelity given that the chaos exhibited by KSM can simply produce ensemble members that are

further from the truth but still viable solutions of the underlying PDE. In fact, they do seem to be corrected at the analysis step.
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Extra Metrics Forecast Members (BGM)

F I G U R E 1 3 Surfaces for σens , Kens and RMSEens as a function of jitter and inflation for BGM using the forecast
ensemble members, right before update, for HR (top row) and HRA (bottom row). It is notable that both σens and RMSEens
increase primarily as a function of jitter (αJ ) with less dependence on multiplicative inflation (α) while the same is true for
decreasing kurtosis evidenced by horizontal contours. This identifies the jitter as the primary source of ensemble member
distortion. The red stars represent lowest values and blue stars highest values.
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Extra Metrics Analysis Members (BGM)

F I G U R E 1 4 Surfaces for σens , Kens and RMSEens as a function of jitter and inflation for BGM using the analysis
ensemble members for HR (top row) and HRA (bottom row). It is notable that horizontal contours shown in the same analysis for
the forecast members are now slanted with improvements in σens and RMSEens for lower values of inflation (α ). This is due to
the update step, however the Kurtosis remains relatively unchanged implying that the members are still distorted for larger values
of αJ and only the scale of the errors has been reduced. The red stars represent lowest values and blue stars highest values.
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Extra Metrics Forecast Members (KSM)

F I G U R E 1 5 Surfaces for σens , Kens and RMSEens as a function of jitter and inflation for KSM using the forecast ensemble
members, right before update, for HR (top row) and HRA (bottom row). It is notable that both σens and RMSEens increase
primarily as a function of jitter (αJ ) with less dependence on multiplicative inflation (α) while the same is true for decreasing
kurtosis evidenced by horizontal contours. This identifies the jitter as the primary source of ensemble member distortion. The red
stars represent lowest values and blue stars highest values.
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Extra Metrics Analysis Members (KSM)

F I G U R E 1 6 Surfaces for σens , Kens and RMSEens as a function of jitter and inflation for KSM using the analysis
ensemble members for HR (top row) and HRA (bottom row). It is notable that horizontal contours shown in the same analysis
for the forecast members are now slanted with improvements in σens and RMSEens for lower values of inflation (α). The red
stars represent lowest values and blue stars highest values.
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Interestingly, the kurtosis surface structure changes more for the HR scheme than for HRA between forecast and analysis. It is

important to note that there is a significant difference in the range of kens between BGM (1-15) and KSM (3-5). This is likely due

to the presence of chaos in KSM naturally increasing the spread of the ensemble members causing some to have little distortion,

and thus a closer to normal distribution of errors. The small range in kens likely makes this a less informative measure for KSM.

How one would choose α and αJ would depend on the problem at hand, minimizing only the time averaged RMSE may

be the desired outcome. But if ensemble member fidelity is important considering other metrics, such as those presented for

the forecast ensemble, may also be important. For example, with BGM there is a drop in kens from 10 to 8 when going from

αJ = 0.01 to αJ = 0.02, the optimal value suggested when using 50 ensemble members (cf Fig. 7), for the forecast ensemble with

almost no trade-off in the time averaged RMSE between the two values. Depending on the sensitivity another model component

may have on the fidelity of the ensemble members, a more careful choice of inflationary parameters may be warranted.

5 | CONCLUSIONS

Adaptive mesh solvers have the potential to greatly improve model skill and predictions but present difficulties for traditional data

assimilation methods such as the EnKF. We consider here the case of a non-conservative, adaptive moving mesh for which each

member of an ensemble will potentially have different numbers of nodes in different locations. The key steps in an EnKF scheme

for models of this sort are dimension matching often involving interpolation with a sub-step of pairing state vector components

should they be in different locations, and dimension return. Dimension return involves removing points that were added in the

matching step, or potentially adding back in points that were removed.

Building on the work presented in Aydoğdu et al. (2019) we develop an EnKF scheme for a non-conservative, adaptive

moving mesh solver in 1-d using an augmented state vector that includes the locations of the nodes, locations that are also

updated in the analysis step. Dimension matching is done using the properties of the adaptive mesh scheme itself, via a partition

of the domain with intervals of the same size as the proximity tolerance δ1, thus guaranteeing that each interval will contain

at most one node. In the HR scheme developed in Aydoğdu et al. (2019) component pairing is done by shifting the nodes in

each interval to the their nearest interval boundaries and then interpolating new points to any empty interval boundaries. In this

way, the HR method compares ensemble members on the same mesh updating only the physical values of the nodes. Dimension

return is then done by deleting interpolated points and shifting the updated physical values back to the previous mesh. In contrast,

the HRA method leaves ensemble member points where they are and interpolates new points to empty intervals with the location

drawn from a normal distribution with variance δ1/2 and a check that the location resides within that interval. Component

pairing is then done using corresponding intervals. Next, the state vector is formed with the node locations appended and both

physical values and nodes are updated. After the update, the remeshing scheme is applied to enforce a valid mesh, and points in

previously empty intervals are deleted.

We find that when updating the node locations ensemble collapse becomes a problem and some additive or multiplicative

inflation can become necessary. This is less of an issue for the HR method due to some inherent stochasticity arising from the

mapping procedures, although jitter and multiplicative inflation can improve RMSE values in that case as well. Given an initial

mesh size, ensemble size, and observation error, the jitter and inflation is optimised with twin model experiments. When this

is done, we find that the HRA method typically provides better performance in terms of the time average RMSE for both the

analysis field and its gradient. When using additive inflation, such as the jitter as we have defined it, there is the potential to

distort ensemble members while still obtaining a good analysis mean. This could be problematic in some frameworks such as

the HMM framework discussed in Section 4. To quantify the severity of the distortions we calculate several metrics defined in

Eqs. 30, 31 and 32. From this analysis we can see that the addition of jitter is primarily responsible for distorting the ensemble

members while multiplicative inflation has less of an effect. Low RMSE of the analysis mean would need to be weighed against
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the preservation of ensemble member fidelity in each particular application.

There is a natural difference in computational efficiency between these two approaches. When using the augmented state

vector of the HRA scheme the size of the error covariance matrix is doubled compared to that of the HR scheme. For very

high-dimensional models this may be problematic, yet as can be seen in Fig. 6 when updating the node locations the first spatial

derivative RMSE is much improved and, if that information is important, the extra computational cost may be worth it. It

remains to be seen how a scheme like this plays out in models set on 2-d or 3-d adaptive meshes. We speculate that the utility in

the inclusion of the cross covariances between physical values and node locations may be far more significant in these higher

dimensional cases.

The complexity and range of types of patterns that can form in 2-d or 3-d is far greater than is possible in 1-d. This implies

that significantly more information may be carried in the cross-covariances between physical values and node locations. Further,

if the motivation for the use of an AMM scheme is to focus computational power in regions of strong gradients, updating those

node locations in accordance with where observations of those gradients are large may be very advantageous. If the remeshing

rules for the AMM model are based on strict considerations of node distances and mesh geometries a 2-d or 3-d analogue of the

HR reference mesh should be attainable enabling the application of both the HR and HRA schemes presented here. An example

of such a model is the novel Lagrangian sea ice model neXtSIM (Rampal et al., 2016; Cheng et al., 2020). neXtSIM uses a

finite element method based on a triangular non-conservative adaptive mesh with strict rules on the distance between nodes and

angles between edges and was the motivation behind our exploration in 1-d presented in this work. The authors are currently

working on implementing the precursor of the current method (Aydoğdu et al., 2019, i.e., without node updates) in neXtSIM.

Implementing the HR scheme in 2-d is more straightforward than for the HRA scheme as in HR all ensemble members are

mapped to exactly the same grid and only the physical values are updated. Significant new challenges arise for HRA in 2-d.

The key to implementing HRA is the configuration of an augmented vector that includes variables characterising the underlying

numerical mesh. In 1-d there is little ambiguity as the natural approach is to just add the grid points of the underlying mesh.

But in 2-d, the characterisation of the “grid” in terms of such vector is not as straightforward when, for instance, using a finite

element method. In that case Physical values may be stored at the centres of the elements, where as the elements themselves are

determined by their vertices. Considerations of the mesh type, triangular, hexagonal, square etc. also add complications. The

development of 2-d HRA schemes and their viability is the subject of ongoing work.
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GRAPHICAL ABSTRACT

Physically driven adaptive moving mesh solvers

offer many advantages over traditional fixed

grid solvers. However, they present signifi-

cant challenges when using ensemble Data

Assimilation techniques such as the Ensem-

ble Kalman Filter (EnKF). We develop an

EnKF scheme for non-conservative moving

meshes which updates both physical state

variables and node locations themselves. This

leverages the information carried in the mesh

structures of the ensemble members while also updating their locations through the assimilation of the physical variables that

drive their locations.
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