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The minimum error probability of quantum illumination

Giacomo De Palma1 and Johannes Borregaard1

1QMATH, Department of Mathematical Sciences, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen, Denmark

Quantum illumination is a technique for detecting the presence of a target in a noisy environment
by means of a quantum probe. We prove that the two-mode squeezed vacuum state is the optimal
probe for quantum illumination in the scenario of asymmetric discrimination, where the goal is to
minimize the decay rate of the probability of a false positive with a given probability of a false
negative. Quantum illumination with two-mode squeezed vacuum states offers a 6 dB advantage
in the error probability exponent compared to illumination with coherent states. Whether more
advanced quantum illumination strategies may offer further improvements had been a longstanding
open question. Our fundamental result proves that nothing can be gained by considering more exotic
quantum states, such as e.g. multi-mode entangled states. Our proof is based on a new fundamental
entropic inequality for the noisy quantum Gaussian attenuators. We also prove that without access
to a quantum memory, the optimal probes for quantum illumination are the coherent states.

I. INTRODUCTION

Quantum entanglement can increase both resolution
and sensitivity in a number of metrological tasks [1–
4]. By using highly entangled states such as NOON
states [5], the sensitivity can in principle reach the
Heisenberg limit yielding an improvement scaling with
the square root of the number of probes compared to the
standard quantum limit [6–8]. However, in most of these
metrological tasks the improvement quickly vanishes in
the presence of noise. One remarkable exception is quan-
tum illumination.

Quantum illumination was introduced in the setting
of detecting the presence of a low-reflective target in a
noisy environment using single photons as probes [9]. By
entangling the signal photons with a quantum memory
kept at the measurement station, it was shown that the
initially strong quantum correlations between the signal
photons and the memory resulted in a suppressed error
probability compared to non-entangled signals. Quan-
tum Gaussian states [10–12] emerged as the prominent
probes for quantum illumination. Indeed, the coherent
states perform better than the entangled single-photon
states [13, 14], and the two-mode squeezed vacuum states
exhibit a further 6 dB decrease in the error probability
exponent compared to the coherent states [13, 15–17].
The advantage of the two-mode squeezed vacuum states
was experimentally verified in the optical regime [18–20]
and methods for extending this to the microwave regime
have been proposed [21]. However, despite numerous the-
oretical studies [22–32] (see also the review [33]), deter-
mining whether the two-mode squeezed vacuum states
are optimal or more advanced strategies may offer fur-
ther improvements is still a longstanding open question.

In this paper, we answer this question by proving that
the tensor products of identical two-mode squeezed vac-
uum states constitute the optimal probes among all the
possible multi-mode probes in the scenario of asymmetric
discrimination, where the goal is to minimize the decay
rate of the probability of a false positive with a given
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FIG. 1. The setup of quantum illumination. Alice wishes to
determine whether a low-reflective target is present in a noisy
environment. We model the setup as illustrated in the bottom
of the figure, where Alice creates an arbitrary quantum state
storing one part in a noise free memory and sending the other
part as a signal. The presence of the target can be modeled as
a low transmission (η � 1) beam-splitter with the signal and a
strong thermal state as input while the absence of the target
corresponds to replacing the signal input with the vacuum.
Upon discarding the non-detected modes, the beam-splitter
with thermal noise corresponds to a noisy quantum Gaussian
attenuator.

probability of a false negative (Theorem 1). We also
prove that coherent states constitute the optimal probe
when a quantum memory is not available. These two
fundamental results completely solve the problem of the
optimal probe for quantum illumination for asymmetric
discrimination. The striking and surprising consequence
is that nothing can be gained with arbitrary many-mode
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entangled states compared to the two-mode squeezed vac-
uum state.

The proof of Theorem 1 is based on a new fundamental
entropic inequality (Theorem 3), stating that the tensor
powers of the two-mode squeezed vacuum states mini-
mize the quantum conditional entropy of the output of
the noisy quantum Gaussian attenuators among all the
input states with a bounded average number of photons.

II. QUANTUM ILLUMINATION

In the standard setup of quantum illumination (see
Figure 1), Alice wants to determine the presence of a
low-reflective target in a noisy environment by sending an
electromagnetic signal towards it. If the target is present,
Alice receives the reflected fraction of the signal plus the
environmental noise. If the target is not present, Alice
receives just the noise. Alice has then to distinguish be-
tween two quantum states: the received state with the
reflected signal plus the noise and the received state with
just the noise [34].

Let us suppose that Alice wants to distinguish between
the quantum state ρ⊗n0 associated to the null hypothesis
and the quantum state ρ⊗n1 associated to the alternative
hypothesis. Let the POVM used for the discrimination
have elements {Mn, In −Mn}, where 0 ≤ Mn ≤ In. A
type-I error or “false positive” occurs when Alice con-
cludes that the state is ρ⊗n1 when it actually is ρ⊗n0 , and

has probability p
(n)
1|0 = Tr[ρ⊗n0 Mn]. Conversely, a type-

II error or “false negative” occurs when Alice concludes
that the state is ρ⊗n0 when it actually is ρ⊗n1 , and has

probability p
(n)
0|1 = Tr[ρ⊗n1 (In−Mn)]. From the quantum

Stein’s lemma [35, 36], the quantum relative entropy

S(ρ1‖ρ0) = Tr [ρ1 (ln ρ1 − ln ρ0)] (1)

governs the exponent of the asymptotic optimal decay of
the probability of a false positive with a given probability
of a false negative: for any ε > 0,

lim
n→∞

1

n
ln inf

0≤Mn≤In

{
p
(n)
1|0 : p

(n)
0|1 < ε

}
= −S(ρ1‖ρ0), (2)

such that for n→∞

inf
0≤Mn≤In

{
p
(n)
1|0 : p

(n)
0|1 < ε

}
' exp (−nS(ρ1‖ρ0)) . (3)

In the quantum illumination scenario, the natural
choice of null hypothesis is “target not present”, and
the consequent choice of alternative hypothesis is “target
present”. This setup has been analyzed in [22, 28, 37] in
the particular case of Gaussian probes. An n-mode Gaus-
sian quantum system [10–12, 38] is the quantum system
of n harmonic oscillators, or n modes of the electromag-
netic radiation. Let Alice hold the quantum state ρAM ,
where A is the n-mode Gaussian quantum system of the
signal sent towards the target, and M is the memory

quantum system that Alice keeps. We stress that our
analysis is not restricted to Gaussian quantum states,
and ρAM can be any state of the joint quantum sys-
tem AM . If the target is present, Alice gets back an
attenuated signal with some thermal noise, and her final
state is ρBM = (Φ⊗ IM )(ρAM ), where Φ is the quantum
channel that models the noise. Thermal Gaussian noise
is the most common assumption and provides a faithful
model in most practical scenarios [13, 22]. Therefore, we
assume Φ to be an n-mode noisy quantum Gaussian at-
tenuator with thermal noise [11, 12, 38]. Let ai and ei,
i = 1, . . . , n, be the ladder operators of the system A and
the noise, respectively. Alice then receives the system B
with ladder operators

bi =
√
η ai +

√
1− η ei, i = 1, . . . , n, (4)

where 0 < η � 1 is the fraction of the signal that is re-
flected (see Figure 1). Alice’s goal is performing a mea-
surement on her final state ρBM to detect whether the
target is there. If the target is not present, Alice gets
back only the noise, and her final state is ωB⊗ρM , where
ωB = Φ(|0〉〈0|) is an n-mode thermal quantum Gaussian
state, |0〉 is the n-mode vacuum and ρM is the marginal
on M of ρAM . This enforces that Alice cannot get any
information on the presence of the target if she does not
send any signal, i.e., if ρAM = |0〉A〈0| ⊗ ρM .

If Alice could send an arbitrarily bright signal, she
could always detect whether the target is present. There-
fore, we impose that the marginal state of the signal ρA
must have average number of photons at most E > 0, i.e.

TrA [HA ρA] ≤ nE, (5)

where HA is the standard Hamiltonian of A that counts
the total number of photons. We do not consider the
energy of the memory system.

III. THE OPTIMAL PROBES

We consider the asymmetric discrimination in quan-
tum illumination with ρ1 = ρBM and ρ0 = ωB ⊗ ρM .
The optimal asymptotic error exponent is governed by
the following quantum relative entropy:

S(ρBM‖ωB⊗ρM ) = −S(B|M)ρBM−TrB [ρB lnωB ] , (6)

where

S(X|Y ) = S(XY )− S(Y ) (7)

is the quantum conditional entropy [38–41] (see [42, 43]
for the definition in the case where S(XY ) = S(Y ) =∞
and [44] for a simple formula for Gaussian states). If M
is not there, the relevant quantum relative entropy is

S(ρB‖ωB) = −S(Φ(ρA))− TrB [ρB lnωB ] . (8)

Our main result states that Alice’s best probes for the
asymmetric discrimination problem are the tensor pow-
ers of the two-mode squeezed vacuum states if she has
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a quantum memory, and the coherent states otherwise.
The coherent states of a one-mode Gaussian quantum
system are the states of the form

|α〉 = e−
|α|2
2

∞∑
k=0

αk√
k!
|k〉, α ∈ C, (9)

where {|k〉}k∈N is the Fock basis. The coherent states
of an n-mode Gaussian quantum system are the tensor
products of the coherent states of each mode. The two-
mode squeezed vacuum states of a two-mode Gaussian
quantum system are the states of the form

|ψ(z)〉 =
√

1− z2
∞∑
k=0

zk |k〉 ⊗ |k〉, 0 ≤ z < 1. (10)

They can be obtained applying a two-mode squeezing to
the two-mode vacuum state.

In most experimental setups we haveNB � 1 and E �
1, where NB and E are the average number of photons
per mode of the noise and of the probe, respectively [13,
20, 33]. In this regime, the approximation (3) for the
error probability is valid when the number of modes of
the probe n satisfies [22]

n� NB
η E

. (11)

Condition (11) is fulfilled by most experimental setups,
e.g., in [20] we have n ≈ 1011 with NB

η E ≈ 107. Therefore,

the limit of infinite modes in (2) does not restrict the
applicability of our results to actual experiments.

Theorem 1. Let A be an n-mode Gaussian quantum
system and M a generic quantum system. Then, for any
joint quantum state ρAM such that TrA[ρAHA] ≤ nE,

S(ρBM‖ωB ⊗ ρM ) ≤ S(σBA′‖ωB ⊗ σA′), (12)

where A′ is an n-mode Gaussian quantum system, σAA′

is the n-th tensor power of the two-mode squeezed vacuum
state (10) such that its marginal σA on A has average
number of photons per mode E, ρBM = (Φ ⊗ IM )(ρAM )
and σBA′ = (Φ ⊗ IM )(σAA′). Therefore, the squeezed
vacuum state σAA′ constitutes Alice’s optimal strategy in
the asymmetric discrimination scenario.

Theorem 2. Let A be an n-mode Gaussian quantum
system. Then, for any quantum state ρA of A such that
TrA[ρAHA] ≤ nE,

S(Φ(ρA)‖ωB) ≤ S(Φ(|α〉〈α|)‖ωB), (13)

where |α〉, α ∈ Cn is an n-mode coherent state of A
with average number of photons per mode E (i.e., with
|α|2 = nE). Therefore, the coherent state |α〉 constitutes
Alice’s optimal strategy in the asymmetric discrimination
scenario when a quantum memory is not available.

Proof. The term −TrB [ρB lnωB ] in (6) and (8) is a func-
tion of TrA[ρAHA] alone. Indeed, since ωB is a thermal
Gaussian state, − lnωB = aHB + b IB with a, b > 0.
Hence, −TrB [ρB lnωB ] = aTrB [ρBHB ]+b, and the claim
follows since TrB [ρBHB ] is a linear increasing function of
TrA[ρAHA] [38].

Since coherent states minimize the output entropy
of the noisy quantum attenuators [45, 46], Alice’s best
choice in (8) is choosing ρA to be a n-mode coherent state
with the maximum allowed average number of photons.
The best choice is not unique, since the average number
of photons can be distributed in an arbitrary way among
the n modes.

The optimality of the two-mode squeezed vacuum
states in (6) follows from Theorem 3 below, a new funda-
mental entropic inequality for the noisy quantum Gaus-
sian attenuators.

Theorem 3. Let A and B be n-mode Gaussian quan-
tum systems and M a generic quantum system, and let
Φ : A → B be a noisy quantum Gaussian attenuator
with thermal noise. Let E ≥ 0, and let ρAM be a joint
quantum state of AM such that TrA[ρAHA] ≤ nE and
S(ρM ) <∞, where HA is the Hamiltonian of A, and ρA
and ρM are the marginals of ρAM on A and M , respec-
tively. Then,

S(B|M)ρBM ≥ S(B|A′)σBA′ , (14)

where A′ is an n-mode Gaussian quantum system, σAA′

is the n-th tensor power of the two-mode squeezed vac-
uum state such that its marginal σA on A has average
number of photons per mode E, ρBM = (Φ ⊗ IM )(ρAM )
and σBA′ = (Φ⊗ IA′)(σAA′).

Proof. We can assume ρAM pure. Indeed, let ρAMR be
a purification of ρAM . Since the marginals on A of ρAM
and ρAMR coincide, they have the same average num-
ber of photons. The claim then follows from the strong
subadditivity [38–41]:

S(B|M)ρBM ≥ S(B|MR)ρBMR , (15)

where ρBMR = (Φ⊗ IMR)(ρAMR).
Let then ρAM be a pure state. We have

S(B|M)ρBM = S(ρBM )− S(ρM ) = S(Φ̃(ρA))− S(ρA),

S(B|A′)σBA′ = S(Φ̃(σA))− S(σA), (16)

where Φ̃ is the complementary channel of Φ [38–41], and
S(ρBM ) <∞ since S(ρM ) <∞ and ρB has finite average
number of photons [38]. Let N : A→ A be the quantum
additive noise channel such that TrA[HAN (ρA)] = nE,

and let ρ′AM ′ be a purification of ρ′A = N (ρA). Since Φ̃ is
a quantum Gaussian channel, we have from [47, Lemma
10]

S(Φ̃(ρA))− S(ρA) ≥ S(Φ̃(ρ′A))− S(ρ′A), (17)
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hence

S(B|M)ρBM ≥ S(B|M ′)ρ′
BM′

, (18)

where ρ′BM ′ = (Φ ⊗ IM ′)(ρ′AM ′). We can then assume
TrA[HAρA] = nE.

Now σA is the thermal Gaussian state with the same
average number of photons as ρA, and [38]

S(ρA‖σA) = S(σA)− S(ρA),

S(Φ̃(ρA)‖Φ̃(σA)) = S(Φ̃(σA))− S(Φ̃(ρA)), (19)

where the second line follows from Lemma 1. The claim
then follows from the data processing inequality for the
relative entropy [38–41]:

S(B|M)ρBM − S(B|A′)σBA′

= S(ρA‖σA)− S(Φ̃(ρA)‖Φ̃(σA)) ≥ 0. (20)

Lemma 1. Let Φ̃ be the complementary channel of the
n-mode noisy quantum Gaussian attenuator with thermal
noise. Then, for any n-mode quantum state ρA

S(Φ̃(ρA)‖Φ̃(σA)) = S(Φ̃(σA))− S(Φ̃(ρA)), (21)

where σA is the n-mode thermal Gaussian state with the
same average number of photons as ρA.

Proof. We will prove that

Φ̃†(ln Φ̃(σA)) = xHA + y IA, (22)

where x, y ∈ R, Φ̃† is the dual channel of Φ̃ [38] defined
by

Tr
[
X Φ̃(Y )

]
= Tr

[
Φ̃†(X)Y

]
(23)

for any bounded operator X and any trace class operator

Y , and HA =
∑n
i=1 a

†
iai is the Hamiltonian on A, where

the ai are the ladder operators associated to the n modes
of A. The claim (21) then follows since

S(Φ̃(ρA)‖Φ̃(σA)) = S(Φ̃(σA))− S(Φ̃(ρA))

+ TrA

[
(σA − ρA) Φ̃†(ln Φ̃(σA))

]
,

(24)

and ρA and σA have the same average number of photons.
Since both σA and Φ̃ are the n-th tensor power of the

corresponding one-mode versions, the left-hand side of
(22) is the sum of one term for each of the nmodes. Then,
it is sufficient to prove the claim (22) for n = 1, when

HA = a†a. Since Φ̃ is a Gaussian channel, Φ̃(σA) is still a

Gaussian state, ln Φ̃(σA) is a quadratic polynomial in the

quadratures, and Φ̃†(ln Φ̃(σA)) is a quadratic polynomial
in a and a† [38]. The claim (22) follows if we prove that

eiHAt Φ̃†(ln Φ̃(σA)) e−iHAt = Φ̃†(ln Φ̃(σA)) ∀ t ∈ R.
(25)

Indeed, a†a and I are the only invariant quadratic poly-
nomials since eiHAt a e−iHAt = e−it a.

Let us now prove (25). The complementary channel of
the one-mode noisy attenuator is [38]

Φ̃(ρA) = TrA

[
(UAE ⊗ IE′) (ρA ⊗ γEE′)

(
U†AE ⊗ IE′

)]
,

(26)
where γEE′ is a two-mode squeezed vacuum state of the
one-mode Gaussian quantum systems E and E′, and UAE
implements a beam-splitter on AE. We have for any
t ∈ R

e−i(HE−HE′ )t γEE′ ei(HE−HE′ )t = γEE′ ,

e−i(HA+HE)t UAE ei(HA+HE)t = UAE , (27)

where HE and HE′ are the Hamiltonians of E and E′, re-
spectively. Then, for any quantum state ρA, any bounded
operator X and any t ∈ R

Φ̃
(
e−iHAt ρA eiHAt

)
= e−i(HE−HE′ )t Φ̃(ρA) ei(HE−HE′ )t,

Φ̃†
(

ei(HE−HE′ )tX e−i(HE−HE′ )t
)

= eiHAt Φ̃†(X) e−iHAt,

(28)

and the claim (22) follows.

IV. DISCUSSION

We have proven that the tensor powers of the two-
mode squeezed vacuum states are Alice’s best probes in
the asymmetric discrimination problem of quantum il-
lumination, in the sense that they minimize the decay
rate of the probability of a false positive with a given
probability of a false negative. This fundamental strik-
ing result implies that nor correlations nor entanglement
among the modes of the signal that Alice sends can de-
crease the error probability. Alice’s best strategy is then
the simplest one, and nothing can be gained by using
any more exotic probe, such as states with multi-mode
entanglement.

Putting together our results with [26] (valid for finite-
dimensional systems), the optimality of the two-mode
squeezed vacuum states might be extended to the adap-
tive scenario with feedback [48]. One potential approach
is combining our results with the simulation and re-
duction techniques of [49]. Another potential approach
might be extending [26] to infinite dimension exploiting
the sandwiched Rényi divergences [50].

The main open question left is whether the optimal-
ity of the two-mode squeezed vacuum states is limited
to the asymmetric discrimination. We conjecture that
this is not the case, and the two-mode squeezed vacuum
states are optimal also in the symmetric discrimination
problem. Proving this conjecture will be the subject of
future work.
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