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The squashed entanglement of the noiseless quantum Gaussian attenuator and

amplifier

Giacomo De Palma1, a)

QMATH, Department of Mathematical Sciences, University of Copenhagen,

Universitetsparken 5, 2100 Copenhagen, Denmark

(Dated: 5 November 2019)

We determine the maximum squashed entanglement achievable between sender and re-

ceiver of the noiseless quantum Gaussian attenuators and amplifiers, and prove that it is

achieved sending half of an infinitely squeezed two-mode vacuum state. The key ingredi-

ent of the proof is a lower bound to the squashed entanglement of the quantum Gaussian

states obtained applying a two-mode squeezing operation to a quantum thermal Gaussian

state tensored with the vacuum state. This is the first lower bound to the squashed en-

tanglement of a quantum Gaussian state, and opens the way to determine the squashed

entanglement of all quantum Gaussian channels. Moreover, we determine the classical

squashed entanglement of the quantum Gaussian states above, and show that it is strictly

larger than their squashed entanglement. This is the first time that the classical squashed

entanglement of a mixed quantum Gaussian state is determined.

a)Electronic mail: giacomo.depalma@math.ku.dk
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I. INTRODUCTION

The squashed entanglement of a bipartite quantum state ρAB is the infimum over all its possible

extensions ρABR of half of the quantum mutual information between the quantum systems A and B

conditioned on the quantum system R1–9:

Esq(ρAB) =
1
2 inf

{
I(A;B|R)ρABR : TrRρABR = ρAB

}
. (1)

Here the quantum conditional mutual information is defined as10

I(A;B|R) = S(A|R)+S(B|R)−S(AB|R) , (2)

where S(X |Y ) is the quantum conditional entropy10–12.

The squashed entanglement is one of the two main entanglement measures in quantum commu-

nication theory: together with the relative entropy of entanglement13,14, it provides the best known

upper bound to the length of a shared secret key that can be generated by two parties holding many

copies of the quantum state7,15–17. Moreover, it has applications in recoverability theory18,19 and

multiparty information theory20–22.

Any entanglement measure for quantum states can be extended to quantum channels defining

it as the maximum entanglement achievable between sender and receiver. The relative entropy of

entanglement of several quantum channels has been determined in 23. The squashed entanglement

of a quantum channel Φ24 is the maximum squashed entanglement achievable between sender and

receiver:

Esq(Φ) = sup
ρAB

Esq ((IA⊗Φ)(ρAB)) , (3)

where the sender generates the bipartite quantum state ρAB, keeps the quantum system A and sends

the quantum system B to the receiver through Φ. In the same way as the squashed entanglement of

a quantum state is an upper bound to the distillable key of the state, the squashed entanglement of

a quantum channel is an upper bound to the capacity of the channel to generate a secret key shared

between sender and receiver24,25.

We prove a lower bound on the squashed entanglement of the quantum Gaussian states obtained

applying a two-mode squeezing operation to a thermal quantum Gaussian state tensored with

the vacuum state (Theorem 1; see (21) for the definition of the states). This is the first lower

bound to the squashed entanglement of a quantum Gaussian state. Previous results restrict the

optimization in (1) to Gaussian extensions and consider the 2-Rényi entropy instead of the von
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Neumann entropy26. Our bound is optimal in the limit of infinite energy and extremely tight

already from one average photon (Figure 1). Lower bounds to the squashed entanglement are

notoriously difficult to prove, since the optimization in (1) over all the possible extensions of the

quantum state is almost never analytically treatable. We overcome this difficulty with the quantum

conditional Entropy Power Inequality27–30, which holds for any conditioning quantum system.

We apply Theorem 1 to prove our main result: a new lower bound to the squashed entangle-

ment of the noiseless quantum Gaussian attenuators and amplifiers (Theorem 2). This lower bound

matches the upper bound proven in 24, 31–33. Therefore, Theorem 2 determines the maximum

squashed entanglement achievable between sender and receiver for the noiseless quantum Gaus-

sian attenuators and amplifiers, and proves that it is achieved sending half of an infinitely squeezed

two-mode vacuum state. The maximum achievable squashed entanglement is proved to be ln 1+η

1−η

for the attenuator with attenuation parameter 0≤ η ≤ 1 and ln κ+1
κ−1 for the amplifier with amplifi-

cation parameter κ ≥ 1. The noiseless quantum Gaussian attenuator and amplifier play a key role

in quantum communication theory. The amplifier provides the mathematical model for the am-

plification of electromagnetic signals, and the attenuator provides the mathematical model for the

propagation of electromagnetic signals through optical fibers34–38, which are the main platform

for quantum key distribution and for the transmission of quantum states in the forthcoming quan-

tum internet37,39–55. A proof based on the relative entropy of entanglement and on the teleportation

stretching technique has determined the capacity of the noiseless quantum Gaussian attenuator and

amplifier to generate a shared secret to be ln 1
1−η

and ln κ

κ−1 nats per channel use, respectively23,56

(later a generalization to repeaters47,54 was proved, and strong converse bounds57–59 were also

considered). Theorem 2 proves that these channels can generate a squashed entanglement between

sender and receiver strictly larger than their secret key capacity.

A fundamental question about the squashed entanglement of a quantum state is whether the

minimization in (1) can be restricted to classical extensions6. The answer is known to be negative

in general60, and this has led to the definition to the classical squashed entanglement16,22,61–64,

which has later found an operational interpretation as the minimum cost of classical communica-

tion required for assisted entanglement dilution65. We determine the classical squashed entangle-

ment of the quantum Gaussian states (21) and prove that it is achieved by a Gaussian extension

and strictly larger than their squashed entanglement, with equality only when the state is pure or

separable (Theorem 3, Figure 1). This is the first time that the classical squashed entanglement

of a mixed quantum Gaussian state is determined. The proof is based on the one-mode version of
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the constrained minimum output entropy conjecture for the noiseless quantum Gaussian amplifier

and for its complementary channel66–83. Theorem 3 also proves that the multi-mode version of the

conjecture implies that the classical squashed entanglement of the quantum Gaussian states (21)

does not decrease regularizing over many copies of the state. Therefore, assuming the multi-mode

conjecture, the asymptotic classical squashed entanglement of the states (21) coincides with their

classical squashed entanglement and is strictly larger than their squashed entanglement.

The paper is structured as follows. In section II we introduce quantum Gaussian systems,

states and channels. In section III we prove the lower bound to the squashed entanglement of the

quantum Gaussian states (21) (Theorem 1) and we determine the squashed entanglement of the

noiseless quantum Gaussian attenuator and amplifier (Theorem 2). In section IV we determine

the classical squashed entanglement of the quantum Gaussian state (21). Conclusions and open

problems are presented in section V. In section A, we present the entropic inequalities employed

in the proofs.

II. QUANTUM GAUSSIAN SYSTEMS

A one-mode quantum Gaussian system is the mathematical model for a harmonic oscillator or

for a mode of the electromagnetic radiation. The Hilbert space of a one-mode quantum Gaussian

system is the irreducible representation of the canonical commutation relation37,38, [11, Chapter

12]

[Q, P] = I , (4)

where Q and P are the quadrature operators, which for the harmonic oscillator represent position

and momentum. The Hamiltonian that counts the number of excitations or photons is

H = a†a , (5)

where

a =
Q+ iP√

2
(6)

is the ladder operator. The vector annihilated by a is the vacuum and is denoted by |0〉. A quantum

Gaussian state is a quantum state proportional to the exponential of a quadratic polynomial in Q

and P. The most important quantum Gaussian states are the thermal Gaussian states, where the
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polynomial is proportional to the Hamiltonian (5):

ω(E) =
1

(E +1)

(
E

E +1

)a†a

, (7)

and E ≥ 0 is the average energy:

Tr
[
ω(E)a†a

]
= E . (8)

We notice that ω(0) = |0〉〈0| is the vacuum state. The von Neumann entropy of ω(E) is

S(ω(E)) = (E +1) ln(E +1)−E lnE =: g(E) . (9)

An n-mode Gaussian quantum system is the union of n one-mode Gaussian quantum systems, and

its Hilbert space is the n-th tensor power of the Hilbert space of a one-mode Gaussian quantum

system. Let R1 = Q1, R2 = P1, . . . , R2n−1 = Qn, R2n = Pn be the quadrature operators of the n

modes, satisfying the canonical commutation relations[
Ri, R j

]
= i∆i j I , i, j = 1, . . . , 2n , (10)

where

∆ =
n⊕

k=1

 0 1

−1 0

 (11)

is the symplectic form. The covariance matrix of a quantum state ρ is the 2n× 2n positive real

matrix given by

σ(ρ)i j =
1
2Tr
[
ρ
{

Ri−Tr [ρ Ri] , R j−Tr
[
ρ R j

]}]
, i, j = 1, . . . , 2n , (12)

where

{X , Y}= X Y +Y X (13)

is the anti-commutator. The eigenvalues of the matrix ∆−1σ are pure imaginary and pairwise op-

posite. Their absolute values are the symplectic eigenvalues of σ11. An n-mode quantum Gaussian

state is a state proportional to the exponential of a quadratic polynomial in the quadratures. Its von

Neumann entropy is84

S =
n

∑
k=1

g
(
νk− 1

2

)
, (14)

where ν1, . . . , νn are the symplectic eigenvalues of its covariance matrix, and g is defined in (9).

Quantum Gaussian channels are the quantum channels that preserve the set of quantum Gaus-

sian states. The most important families of quantum Gaussian channels are the beam-splitter,
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the squeezing and the quantum Gaussian attenuators and amplifiers. The beam-splitter and the

squeezing are the quantum counterparts of the classical linear mixing of random variables, and

are the main transformations in quantum optics. Let A and B be one-mode quantum Gaussian

systems with ladder operators a and b, respectively. The beam-splitter of transmissivity 0≤ η ≤ 1

is implemented by the unitary operator

Uη = exp
((

a†b−b†a
)

arccos
√

η

)
, (15)

and performs a linear rotation of the ladder operators [85, Section 1.4.2]:

U†
η aUη =

√
η a+

√
1−η b ,

U†
η bUη =−

√
1−η a+

√
η b . (16)

The squeezing86 of parameter κ ≥ 1 is implemented by the unitary operator

Uκ = exp
((

a†b†−ab
)

arccosh
√

κ

)
, (17)

and acts on the ladder operators as

U†
κ aUκ =

√
κ a+

√
κ−1b† ,

U†
κ bUκ =

√
κ−1a† +

√
κ b . (18)

The noiseless quantum Gaussian attenuators model the attenuation affecting electromagnetic

signals traveling through optical fibers or free space. The one-mode noiseless quantum Gaussian

attenuator Eη [36, case (C) with k =
√

η and N = 0] can be implemented mixing the input state ρ

with the one-mode vacuum state through a beam-splitter of transmissivity 0≤ η ≤ 1:

Eη(ρ) = TrB

[
Uη (ρ⊗|0〉〈0|)U†

η

]
. (19)

The noiseless quantum Gaussian amplifiers model the amplification of electromagnetic signals.

The one-mode noiseless quantum Gaussian amplifier Aκ [36, case (C) with k =
√

κ and N = 0]

can be implemented performing a squeezing of parameter κ ≥ 1 on the input state ρ and the

one-mode vacuum state:

Aκ(ρ) = TrB

[
Uκ (ρ⊗|0〉〈0|)U†

κ

]
. (20)
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III. SQUASHED ENTANGLEMENT

Let A and B be one-mode quantum Gaussian systems. For any κ ≥ 1 and any E ≥ 0 we consider

the quantum Gaussian state

ρ
κ,E
AB =Uκ (ωA(E)⊗|0〉B〈0|)U†

κ , (21)

where ωA(E) is the thermal quantum Gaussian state on A with average energy E defined in (7),

|0〉B is the vacuum state of B and Uκ is the two-mode squeezing operator on AB with squeezing

parameter κ defined in (17).

Theorem 1. For any κ ≥ 1 and any E ≥ 0, the squashed entanglement of the quantum Gaussian

state ρ
κ,E
AB defined in (21) satisfies

ln(2κ−1)≤ Esq

(
ρ

κ,E
AB

)
≤ g

((
κ− 1

2

)
E +κ−1

)
−g
(E

2

)
. (22)

Moreover, the gap between the upper and lower bound of (22) is at most ln e
2 ' 0.31, and tends

to zero in the limit E → ∞. We conjecture that the upper bound of (22) is the actual value of the

squashed entanglement of ρ
κ,E
AB .

Proof. Let ρABR be an extension of ρ
κ,E
AB . The quantum state U†

κ ρABRUκ is an extension of

ωA(E)⊗ |0〉B〈0|, therefore it has the form ωAR⊗ |0〉B〈0| for some quantum state ωAR that is an

extension of ωA(E). The quantum state ρABR has then the form

ρABR =Uκ (ωAR⊗|0〉B〈0|)U†
κ , TrRωAR = ωA(E) . (23)

Conversely, any state of the form (23) is an extension of ρ
κ,E
AB .

a. Lower bound The quantum conditional Entropy Power Inequality (Theorem 6) implies

I(A;B|R)ρABR = S(A|R)ρABR +S(B|R)ρABR−S(AB|R)ρABR

= S(A|R)ρABR +S(B|R)ρABR−S(A|R)ωAR

≥ ln
(

2κ (κ−1)coshS(A|R)ωAR +κ
2 +(κ−1)2

)
≥ 2ln(2κ−1) , (24)

where the last inequality is saturated when S(A|R)ωAR = 0. The lower bound in (22) follows taking

the infimum of the left-hand side of (24) over the extensions ρABR.
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b. Upper bound We consider the one-parameter family of extensions {ρABR(η)}0≤η≤1 of

ρ
κ,E
AB of the form (23) where R is a one-mode quantum Gaussian system and

ωAR(η) = (IA⊗Eη)(|φE〉AR〈φE |) (25)

is the quantum Gaussian state obtained applying the noiseless quantum Gaussian attenuator with

attenuation parameter η to half of the two-mode squeezed vacuum state |φE〉AR with average en-

ergy per mode E. We leave η as a free parameter over which we will optimize in the end. The

covariance matrix of ωAR(η) is

σ(ωAR(η)) =

 (
E + 1

2

)
I2

√
η E (E +1)σZ√

η E (E +1)σZ
(
η E + 1

2

)
I2

 , (26)

where

σZ =

 1 0

0 −1

 . (27)

The symplectic eigenvalues of σ(ωAR(η)) are

ν+(σ(ωAR(η))) = (1−η)E + 1
2 , ν−(σ(ωAR(η))) = 1

2 , (28)

hence

S(ABR)ρABR(η) = S(AR)ωAR(η) = g
(
ν+(σ(ωAR(η)))− 1

2

)
+g
(
ν−(σ(ωAR(η)))− 1

2

)
= g((1−η)E) ,

S(R)ρABR(η) = S(R)ωAR(η) = g(η E) . (29)

Let ρAR(η) and ρBR(η) be the marginals of ρABR(η) on AR and BR, respectively. They are the

quantum Gaussian states with covariance matrices

σ(ρAR(η)) =

 (
κ (E +1)− 1

2

)
I2
√

κ η E (E +1)σZ√
κ η E (E +1)σZ

(
η E + 1

2

)
I2

 ,

σ(ρBR(η)) =

 ((κ−1)
(
E + 1

2

)
+ κ

2

)
I2
√

(κ−1)η E (E +1) I2√
(κ−1)η E (E +1) I2

(
η E + 1

2

)
I2

 . (30)

Their symplectic eigenvalues are

ν+(σ(ρAR(η))) = κ (E +1)−η E− 1
2 ,

ν+(σ(ρBR(η))) = κ (E +1)− (1−η)E− 1
2 ,

ν−(σ(ρAR(η))) = ν−(σ(ρBR(η))) = 1
2 , (31)
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hence

S(AR)ρABR(η) = g(κ (E +1)−η E−1) ,

S(BR)ρABR(η) = g(κ (E +1)− (1−η)E−1) . (32)

Therefore, for any 0≤ η ≤ 1 we have

Esq(ρAB)≤ 1
2 I(A;B|R)ρABR(η)

= 1
2

(
S(AR)ρABR(η)+S(BR)ρABR(η)−S(R)ρABR(η)−S(ABR)ρABR(η)

)
= 1

2 (ψE,κ(η)+ψE,κ(1−η)) , (33)

where

ψE,κ(η) = g(κ E +κ−η E−1)−g((1−η)E) . (34)

From Lemma 1 of section B, ψE,κ is convex, hence from Jensen’s inequality the minimum over

0≤ η ≤ 1 of the right-hand side of (33) is achieved by η = 1
2 . Therefore,

Esq(ρAB)≤ ψE,κ
(1

2

)
, (35)

and the claim follows. We notice that S(A|R)
ωAR(

1
2 )
= 0, which is the same condition that saturates

the last inequality of (24).

c. Gap Let

f (κ,E) = g
((

κ− 1
2

)
E +κ−1

)
−g
(E

2

)
− ln(2κ−1) (36)

be the difference between the upper and lower bound of (22). Since E 7→ f (κ,E) is decreasing,

f (κ,E)≤ f (κ,0) = g(κ−1)− ln(2κ−1) . (37)

We have
∂ f
∂κ

(κ,0) = ln
κ

κ−1
− 2

2κ−1
≥ 0 , (38)

hence κ 7→ f (κ,0) is increasing and

f (κ,0)≤ lim
κ→∞

f (κ,0) = ln
e
2
. (39)
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FIG. 1. Thick and dashed: the upper and lower bounds of Theorem 1 to the squashed entanglement of the

quantum Gaussian state ρ
κ,E
AB of (21) for κ = 1.5, 2, 3 and 0 ≤ E ≤ 1. The bounds coincide in the limit of

infinite average energy, but they are extremely close already from E ' 1. Dotted: the classical squashed

entanglement of ρ
κ,E
AB determined in Theorem 3 for the same values of κ and E.

Figure 1 shows the difference between the upper and lower bounds of (22), which is extremely

small already from E ' 1.

Corollary 1 below provides the link between Theorem 1 and the noiseless quantum Gaussian

attenuators and amplifiers. For any E ≥ 0, let |φE〉AB be the two-mode squeezed vacuum state on

AB with average energy per mode E, which coincides with the quantum Gaussian state ρ
κ ′,E ′
AB of

(21) with κ ′ = E +1 and E ′ = 0.

Let γ
η ,E
AB be the quantum Gaussian state obtained sending the B system of |φE〉AB through a

noiseless quantum Gaussian attenuator with attenuation parameter 0≤ η ≤ 1, and let γ
κ,E
AB be the

quantum Gaussian state obtained sending the A system of |φE〉AB through a noiseless quantum

Gaussian amplifier with amplification parameter κ ≥ 1:

γ
η ,E
AB = (IA⊗Eη)(|φE〉AB〈φE |) , γ

κ,E
AB = (Aκ ⊗ IB)(|φE〉AB〈φE |) . (40)
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Corollary 1. The squashed entanglement of the quantum Gaussian states γ
η ,E
AB and γ

κ,E
AB defined

in (40) satisfies

ln
(1+η)E +1
(1−η)E +1

≤ Esq

(
γ

η ,E
AB

)
≤ g

(
1+η

2 E
)
−g
(

1−η

2 E
)
,

ln
(κ +1)E +κ

(κ−1)E +κ
≤ Esq

(
γ

κ,E
AB

)
≤ g

(
(κ +1)E +κ−1

2

)
−g
(

κ−1
2 (E +1)

)
. (41)

Moreover, the gap between the upper bounds and the respective lower bounds in (41) is at most

ln e
2 ' 0.31. We conjecture that the actual value of the squashed entanglement of γ

η ,E
AB and γ

κ,E
AB

coincides with the upper bounds in (41).

Proof. We will prove that both the lower and the upper bounds of (41) follow from Theorem 1.

While the lower bounds appear in this paper for the first time, the upper bounds have been proved

also in 24, 31–33.

Let ρ
κ ′,E ′
AB be as in (21) with κ ′ ≥ 1 and E ′ ≥ 0. The covariance matrices of ρ

κ ′,E ′
AB , γ

η ,E
AB and

γ
κ,E
AB are

σ

(
ρ

κ ′,E ′
AB

)
=

 (
κ ′ (E ′+1)− 1

2

)
I2 (E ′+1)

√
κ ′ (κ ′−1)σZ

(E ′+1)
√

κ ′ (κ ′−1)σZ
(
(κ ′−1)(E ′+1)+ 1

2

)
I2

 ,

σ

(
γ

η ,E
AB

)
=

 (
E + 1

2

)
I2

√
η E (E +1)σZ√

η E (E +1)σZ
(
η E + 1

2

)
I2

 ,

σ

(
γ

κ,E
AB

)
=

 (
κ E +κ− 1

2

)
I2
√

κ E (E +1)σZ√
κ E (E +1)σZ

(
E + 1

2

)
I2

 . (42)

For

κ
′ =

E +1
(1−η)E +1

, E ′ = (1−η)E (43)

we have σ

(
ρ

κ ′,E ′
AB

)
= σ

(
γ

η ,E
AB

)
, and therefore ρ

κ ′,E ′
AB = γ

η ,E
AB . Analogously, for

κ
′ =

κ (E +1)
(κ−1)E +κ

, E ′ = (κ−1)(E +1) (44)

we have σ

(
ρ

κ ′,E ′
AB

)
= σ

(
γ

κ,E
AB

)
, and therefore ρ

κ ′,E ′
AB = γ

κ,E
AB . The claim then follows from Theo-

rem 1.

Remark 1. Since the squashed entanglement of any bipartite quantum state is lower than the

squashed entanglement of the quantum Gaussian state with the same covariance matrix87, the
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upper bounds of (22) and (41) apply to any bipartite quantum state with covariance matrix as in

(42).

We can now prove the main result of the paper.

Theorem 2. The squashed entanglement of the noiseless quantum Gaussian attenuator with atten-

uation parameter 0 ≤ η ≤ 1 and of the noiseless quantum Gaussian amplifier with amplification

parameter κ ≥ 1 is

Esq(Eη) = ln
1+η

1−η
, Esq(Aκ) = ln

κ +1
κ−1

, (45)

and is asymptotically achieved sending half of a two-mode squeezed vacuum state |φE〉AB in the

limit E→ ∞ of infinite average energy or infinite squeezing.

Proof. The upper bounds

Esq(Eη)≤ ln
1+η

1−η
, Esq(Aκ)≤ ln

κ +1
κ−1

(46)

have been proved in 24, 31–33.

Given E ≥ 0, let γ
η ,E
AB and γ

κ,E
AB be as in (40). We have from Corollary 1

Esq(Eη)≥ Esq

(
γ

η ,E
AB

)
≥ ln

(1+η)E +1
(1−η)E +1

,

Esq(Aκ)≥ Esq

(
γ

κ,E
AB

)
≥ ln

(κ +1)E +κ

(κ−1)E +κ
. (47)

Taking the limit E→ ∞ we get

Esq(Eη)≥ ln
1+η

1−η
, Esq(Aκ)≥ ln

κ +1
κ−1

, (48)

and the claim follows.

IV. CLASSICAL SQUASHED ENTANGLEMENT

The classical squashed entanglement16,22,61,63,64 has the same definition as the squashed entan-

glement with the minimization in (1) restricted to the classical extensions of the quantum state.

A classical extension ρABR of the quantum state ρAB is given by a probability measure ρR on a

measure space R and a set {ρAB|R=r}r∈R of the states of the quantum system AB conditioned on

R = r, such that the function r 7→ ρAB|R=r is measurable and∫
R

ρAB|R=r dρR(r) = ρAB . (49)

12



The classical squashed entanglement of the bipartite quantum state ρAB is half of the infimum over

all the classical extension ρABR of the mutual information between the quantum systems A and B

conditioned on the classical system R:

Esq,c(ρAB) =
1
2 inf

{
I(A;B|R)ρABR :

∫
R

ρAB|R=r dρR(r) = ρAB

}
, (50)

where the conditional mutual information is defined as

I(A;B|R)ρABR =
∫
R

I(A;B)ρAB|R=r dρR(r) . (51)

The classical squashed entanglement is always not lower than the squashed entanglement, and can

be strictly larger60. A fundamental property of the squashed entanglement is its additivity with

respect to the tensor product7: for any two bipartite quantum states ρA1B1 and ρA2B2 ,

Esq(ρA1B1⊗ρA2B2) = Esq(ρA1B1)+Esq(ρA2B2) . (52)

The classical squashed entanglement is subadditive with respect to the tensor product:

Esq,c(ρA1B1⊗ρA2B2)≤ Esq,c(ρA1B1)+Esq,c(ρA2B2) , (53)

but it is not known whether it is additive. This has led to the definition of the asymptotic classical

squashed entanglement as the regularization of the classical squashed entanglement over many

copies of the quantum state16,22,61:

E∞
sq,c(ρAB) = lim

n→∞

Esq,c
(
ρ
⊗n
AB

)
n

. (54)

Thanks to the additivity of the squashed entanglement, the asymptotic classical squashed entan-

glement is still an upper bound to the squashed entanglement.

Here we determine the classical squashed entanglement of the Gaussian quantum states defined

in (21) and show that it is achieved by a Gaussian extension and strictly larger than their squashed

entanglement (see Figure 1 for the comparison). The proof exploits the constrained minimum

output entropy conjecture for the one-mode noiseless quantum Gaussian amplifier and its comple-

mentary channel. We also show that the multi-mode generalization of the conjecture determines

the asymptotic classical squashed entanglement of the Gaussian quantum states (21) and implies

that it is equal to the classical squashed entanglement of one copy of the state, and therefore still

strictly larger than the squashed entanglement.

13



Theorem 3. The classical squashed entanglement of the Gaussian quantum state (21) is achieved

by a Gaussian extension and is equal to

Esq,c

(
ρ

κ,E
AB

)
=

1
2

min
x∈[0,E]

hκ(x) , (55)

where for any x≥ 0,

hκ(x) = g(κ x+κ−1)+g((κ−1)(x+1))−g(x) . (56)

For any E > 0 and any κ > 1, the classical squashed entanglement of ρ
κ,E
AB is strictly larger than

its squashed entanglement:

Esq,c

(
ρ

κ,E
AB

)
> Esq

(
ρ

κ,E
AB

)
. (57)

Moreover, assuming Conjecture 1, the asymptotic classical squashed entanglement of ρ
κ,E
AB coin-

cides with its classical squashed entanglement:

E∞
sq,c

(
ρ

κ,E
AB

)
= Esq,c

(
ρ

κ,E
AB

)
. (58)

Remark 2. Since the function s 7→ hκ(g−1(s)) is strictly convex [79, Lemma 15] and

d
ds

hκ(g−1(s))
∣∣∣∣
s=0

=−1
2
, lim

s→∞

d
ds

hκ(g−1(s)) =
1
2
, (59)

s 7→ hκ(g−1(s)) has a unique local minimum, which is also the global minimum. If sκ is the

minimizer, hκ(g−1(s)) is strictly decreasing for 0≤ s≤ sκ and strictly increasing for s≥ sκ . Since

g is strictly increasing, hκ(x) attains its global minimum in x=Eκ = g−1(sκ), is strictly decreasing

for 0≤ x≤ Eκ and strictly increasing for x≥ Eκ . Therefore,

min
x∈[0,E]

hκ(x) =

 hκ(E) , 0≤ E ≤ Eκ

hκ(Eκ) , E ≥ Eκ

. (60)

Proof. Let ρAn
1Bn

1R be a classical extension of
(

ρ
κ,E
AB

)⊗n
, where An

1 = A1 . . .An and analogously for

Bn
1. The quantum state U†⊗n

κ ρAn
1Bn

1RU⊗n
κ is a classical extension of ωA(E)

⊗n⊗|0〉B〈0|⊗n, therefore

it has the form ωAn
1R⊗|0〉B〈0|⊗n for some quantum-classical state ωAn

1R that is a classical extension

of ωA(E)
⊗n. The quantum-classical state ρAn

1Bn
1R has then the form

ρAn
1Bn

1R =U⊗n
κ

(
ωAn

1R⊗|0〉B〈0|⊗n
)

U†⊗n
κ ,

∫
R

ωAn
1|R=r dρR(r) = ωA(E)

⊗n . (61)
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Conversely, any state of the form (61) is a classical extension of ρ
κ,E
AB . We have for any r ∈R

ρAn
1Bn

1|R=r =U⊗n
κ

(
ωAn

1|R=r⊗|0〉B〈0|⊗n
)

U†⊗n
κ ,

TrBn
1
ρAn

1Bn
1|R=r = A ⊗n

κ (ωAn
1|R=r) ,

TrAn
1
ρAn

1Bn
1|R=r = ˜A ⊗n

κ (ωAn
1|R=r) , (62)

where ˜Aκ is the complementary channel of Aκ
11. Then,

I(An
1;Bn

1|R)ρAn
1Bn

1R
=
∫
R

I(An
1;Bn

1)ρAn
1Bn

1|R=r
dρR(r)

=
∫
R

(
S
(
A ⊗n

κ (ωAn
1|R=r)

)
+S
(

˜A ⊗n
κ (ωAn

1|R=r)
)
−S(ωAn

1|R=r)
)

dρR(r) . (63)

a. Upper bound Let n = 1 and let E ′ ∈ [0,E]. Choosing R = C, we have

ω(E) =
∫
C

Dr ω(E ′)D†
r e−

|r|2
E−E′

dr
π
, (64)

where for any r ∈ C, Dr is the unitary operator that displaces by r the ladder operator11:

D†
r aDr = a+ r I . (65)

We can then choose ωA|R=r = ω(E ′) for any r ∈ C. Since

Aκ(ω(E ′)) = ω(κ E ′+κ−1) , ˜Aκ(ω(E ′)) = ω((κ−1)(E ′+1)) , (66)

we have from (63)

E∞
sq,c

(
ρ

κ,E
AB

)
≤ Esq,c

(
ρ

κ,E
AB

)
≤ 1

2 I(A;B|R)ρABR = 1
2hκ(E ′) , (67)

and the claim follows taking the minimum of the right-hand side of (67) over E ′ ∈ [0,E].

b. Lower bound Esq,c : Let n = 1. Theorem 4 and Theorem 5 imply for any r ∈R

S
(
Aκ(ωA|R=r)

)
+S
( ˜Aκ(ωA|R=r)

)
−S(ωA|R=r)≥ hκ(g−1(S(ωA|R=r))) . (68)

From [79, Lemma 15], the function s 7→ hκ(g−1(s)) is convex. We then have from (63), (68) and

Jensen’s inequality

I(A;B|R)ρABR ≥
∫
R

hκ(g−1(S(ωA|R=r)))dρR(r)≥ hκ(g−1(S(A|R)ωAR))

≥ inf
E ′∈[0,E]

hκ(E ′) , (69)
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where we have used that 0≤ g−1(S(A|R)ωAR)≤ E since g−1 is increasing and

0≤
∫
R

S(ωA|R=r)dρR(r) = S(A|R)ωAR ≤ S(A)ωAR = g(E) . (70)

Finally, taking the infimum of the left-hand side of (69) over all the classical extensions ρABR of

ρ
κ,E
AB we get

Esq,c

(
ρ

κ,E
AB

)
≥ 1

2 inf
E ′∈[0,E]

hκ(E ′) . (71)

E∞
sq,c : The proof with generic n is analogous to the proof for n= 1: Conjecture 1 and Theorem 5

imply for any r ∈R

S
(
A ⊗n

κ (ωAn
1|R=r)

)
+S
(

˜A ⊗n
κ (ωAn

1|R=r)
)
−S(ωAn

1|R=r)

≥ nhκ

(
g−1

(
1
nS(ωAn

1|R=r)
))

. (72)

We then have from (63), (72) and Jensen’s inequality

I(An
1;Bn

1|R)ρAn
1Bn

1R
≥ n

∫
R

hκ

(
g−1

(
1
nS(ωAn

1|R=r)
))

dρR(r)

≥ nhκ

(
g−1

(
1
nS(An

1|R)ωAn
1R

))
≥ n inf

E ′∈[0,E]
hκ(E ′) , (73)

where we have used that 0≤ g−1
(

1
nS(An

1|R)ωAn
1R

)
≤ E since g−1 is increasing and

0≤
∫
R

S(ωAn
1|R=r)dρR(r) = S(An

1|R)ωAn
1R
≤ S(An

1)ωAn
1R
= ng(E) . (74)

Taking the infimum of the left-hand side of (73) over all the classical extensions ρAn
1Bn

1R of ρ
κ,E
An

1Bn
1

we get

Esq,c

(
ρ

κ,E
AB
⊗n)
≥ n

2
inf

E ′∈[0,E]
hκ(E ′) , (75)

and finally

E∞
sq,c

(
ρ

κ,E
AB

)
= lim

n→∞

1
n

Esq,c

(
ρ

κ,E
AB
⊗n)
≥ 1

2 inf
E ′∈[0,E]

hκ(E ′) . (76)

c. Separation between squashed entanglement and classical squashed entanglement From

the upper bound of (22) and Remark 2, it is sufficient to prove that for any κ > 1,

g
((

κ− 1
2

)
E +κ−1

)
−g
(E

2

)
< 1

2

 hκ(E) , 0 < E ≤ Eκ

hκ(Eκ) , E ≥ Eκ

. (77)

Let us consider the case 0 < E ≤ Eκ . The claim is equivalent to

2g((κ− 1
2)E +κ−1)−g(κ E +κ−1)−g((κ−1)(E +1))< 2g(E

2 )−g(E) . (78)
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For κ = 1, equality holds in (78). The derivative with respect to κ of the left-hand side of (78) is

2(E +1)
(

g′((κ− 1
2)E +κ−1)− g′(κ E +κ−1)+g′((κ−1)(E +1))

2

)
,

and is strictly negative since g′ is strictly convex, hence the claim follows.

For E ≥ Eκ , the claim follows since

g
((

κ− 1
2

)
E +κ−1

)
−g
(E

2

)
≤ g

((
κ− 1

2

)
Eκ +κ−1

)
−g
(Eκ

2

)
< 1

2hκ(Eκ) . (79)

V. CONCLUSIONS AND OPEN PROBLEMS

We have determined the maximum squashed entanglement achievable between sender and re-

ceiver of the noiseless quantum Gaussian attenuator and amplifier (Theorem 2), and proved that it

is strictly larger than the corresponding secret key capacity. This result opens the way to determine

the squashed entanglement of the noisy quantum Gaussian attenuators and amplifiers, for which

only upper bounds are known24,31–33.

Our proof is based on a new lower bound to the squashed entanglement of the quantum Gaus-

sian state (21) obtained applying a two-mode squeezing operation to a quantum thermal Gaussian

state tensored with the vacuum state (Theorem 1). Despite being extremely tight, the lower bound

is optimal only in the limit of infinite average energy. Therefore, determining the exact value of the

squashed entanglement of the quantum Gaussian state (21) for finite average energy is still an open

problem. We conjecture that this squashed entanglement coincides with the upper bound of The-

orem 1, which is achieved by a Gaussian extension of the state. Furthermore, we conjecture that

the squashed entanglement of any quantum Gaussian state is achieved by a Gaussian extension.

We have also determined the classical squashed entanglement of the quantum Gaussian state

(21), and proved that it is achieved by a classical Gaussian extension of the state. This is the first

time that the classical squashed entanglement of a quantum Gaussian state is determined. There-

fore, our result opens the way to determine the classical squashed entanglement of all quantum

Gaussian states, which we conjecture to be always achieved by a classical Gaussian extension.
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Appendix A: Entropic inequalities

A longstanding conjecture in quantum communication theory states that pairs of n-mode ther-

mal quantum Gaussian states minimize the output entropy of the beam-splitter and the squeez-

ing operation among all the pairs of n-mode input states with assigned entropies82. This con-

jecture was first formulated in 2007 to determine the maximum rates for classical communica-

tion to two receivers with the noiseless quantum Gaussian broadcast channel66–69. A fundamen-

tal step towards the proof of the conjecture has been the proof of the quantum Entropy Power

Inequality70–73,78, which provides an almost optimal lower bound to the output entropy of the

beam-splitter and the squeezing. The constrained minimum output entropy conjecture has then

been proved for n = 1 in the special case when one of the two input states of the beam-splitter or

of the squeezing operation is Gaussian, and therefore the quantum channel that maps the input to

the output is a quantum Gaussian attenuator, amplifier or phase-contravariant channel74–77,80,81. In

this paper we exploit the constrained minimum output entropy conjecture for the noiseless quan-

tum Gaussian amplifier:

Theorem 4 (one-mode constrained minimum output entropy conjecture77). Quantum thermal

Gaussian input states minimize the output entropy of the one-mode noiseless quantum Gaussian

amplifier among all the input states with a given entropy. In other words, for any one-mode quan-

tum state ρ , let

ωρ = ω
(
g−1(S(ρ))

)
(A1)

be the one-mode quantum thermal Gaussian state as in (7) with the same entropy as ρ . Then, for
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any κ ≥ 1

S (Aκ(ρ))≥ S
(
Aκ(ωρ)

)
= g

(
κ g−1(S(ρ))+κ−1

)
. (A2)

For n≥ 2, the constrained minimum output entropy conjecture is still open in general, and has

been proved only for the quantum Gaussian channels that are entanglement breaking79,83, which

include the complementary channel of the noiseless quantum Gaussian amplifier:

Conjecture 1 (minimum output entropy conjecture [82, Conjecture V.1]). For any n∈N, quantum

thermal Gaussian input states minimize the output entropy of the n-mode Gaussian quantum-

limited amplifier among all the input states with a given entropy. In other words, for any n-mode

quantum state ρ , let

ωρ = ω
(
g−1 (1

nS(ρ)
))⊗n

(A3)

be the n-mode quantum thermal Gaussian state with the same entropy as ρ . Then, for any κ ≥ 1

S
(
A ⊗n

κ (ρ)
)
≥ S

(
A ⊗n

κ (ωρ)
)
= ng

(
κ g−1 (1

nS(ρ)
)
+κ−1

)
. (A4)

Remark 3. Conjecture 1 has been proved in the particular case when the input state ρ is pure88–91.

Theorem 5 ([83, Corollary 5]). For any n ∈ N, quantum thermal Gaussian input states minimize

the output entropy of the complementary channel of the n-mode noiseless quantum Gaussian am-

plifier among all the input states with a given entropy. In other words, for any n-mode quantum

state ρ , let

ωρ = ω
(
g−1 (1

nS(ρ)
))⊗n

(A5)

be the n-mode quantum thermal Gaussian state with the same entropy as ρ . Then, for any κ ≥ 1

S
( ˜A ⊗n

κ (ρ)
)
≥ S

( ˜A ⊗n
κ (ωρ)

)
= ng

(
(κ−1)

(
g−1 (1

nS(ρ)
)
+1
))

. (A6)

A conditional version of the quantum Entropy Power Inequality has been proved, where all the

entropies are conditioned on an external quantum system27–29. In this paper, we exploit its version

for the two-mode squeezing operation:

Theorem 6 (quantum conditional Entropy Power Inequality28). Let A be a one-mode Gaussian

quantum system and let R be a generic quantum system. Let γAR be a joint quantum state on AR

such that its marginal γA on A has finite average energy and its marginal γR on R has finite entropy.

Let

ρABR =Uκ (γAR⊗|0〉B〈0|)U†
κ , (A7)
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where |0〉B is the vacuum state of B and Uκ is the two-mode squeezing operator defined in (17).

Then,

S(A|R)ρABR ≥ ln
(
κ expS(A|R)γAR +κ−1

)
,

S(B|R)ρABR ≥ ln
(
(κ−1)expS(A|R)γAR +κ

)
. (A8)

Appendix B

Lemma 1. For any E ≥ 0 and κ ≥ 1, the function ψE,κ is convex.

Proof. We have

ψ
′′
E,κ(η) =

E (E +1)(κ−1)((κ +1−2η)E +κ)

(1−η)((κ−η)E +κ−1)((κ−η)E +κ)((1−η)E +1)
≥ 0 . (B1)
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