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Abstract

Maximal minors of Kasteleyn sign matrices on planar bipartite graphs in the disk
count dimer configurations with prescribed boundary conditions, and the weighted
version of such matrices provides a natural parametrization of the totally non—
negative part of real Grassmannians (Postnikov et al. J. Algebr. Combin. 30(2),
173-191, 2009; Lam J. Lond. Math. Soc. (2) 92(3), 633-656, 2015; Lam 2016;
Speyer 2016; Affolter et al. 2019). In this paper we provide a geometric interpreta-
tion of such variant of Kasteleyn theorem: a signature is Kasteleyn if and only if it
is geometric in the sense of Abenda and Grinevich (2019). We apply this geometric
characterization to explicitly solve the associated system of relations and provide a
new proof that the parametrization of positroid cells induced by Kasteleyn weighted
matrices coincides with that of Postnikov boundary measurement map. Finally we
use Kasteleyn system of relations to associate algebraic geometric data to KP multi-
soliton solutions. Indeed the KP wave function solves such system of relations at
the nodes of the spectral curve if the dual graph of the latter represents the soliton
data. Therefore the construction of the divisor is automatically invariant, and finally
it coincides with that in Abenda and Grinevich (Sel. Math. New Ser. 25(3), 43, 2019;
Abenda and Grinevich 2020) for the present class of graphs.

Keywords Totally non-negative Grassmannians - Positroid cells - Planar bipartite
networks in the disk - Duality - Almost perfect matching - Kasteleyn signatures -
M-—curves - KP hierarchy - Real soliton and finite-gap solutions

Mathematics Subject Classification (2010) 05C90 - 14H70 - 14M15 - 37K40

Communicated by: Michael Gekhtman
This research has been partially supported by GNFM-INDAM and RFO University of Bologna.

< Simonetta Abenda
simonetta.abenda@unibo.it

1" Dipartimento di Matematica and Alma Mater Research Center on Applied Mathematics,

Universita di Bologna, Bologna, Italy

2 INFN, Sezione di Bologna, Bologna, Italy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11040-021-09405-2&domain=pdf
http://orcid.org/0000-0003-0144-9072
mailto: simonetta.abenda@unibo.it

35 Page 2 of 64 Math Phys Anal Geom (2021) 24: 35

1 Introduction

Kasteleyn [32] and Temperley—Fisher [62] started the study of the dimer model by
computing the number of dimer configurations on a rectangular grid. This result was
then generalized by Kasteleyn [33] who related the number of perfect matchings on
a finite planar graph to the square root of the determinant of a matrix. More recently
dimer models on planar bipartite periodic graphs have appeared in mathematical lit-
erature because of their relation to combinatorics, algebraic geometry and quantum
integrable systems [16, 17, 22, 29, 35, 36].

Also dimer models on planar bipartite graphs in the disk present interesting
features because of their connection to total positivity, toric geometry, theoretical
physics and integrable systems [8, 44, 45, 55, 59]. A dimer configuration on such a
graph G is an almost perfect matching, i.e. a subset of edges such that each internal
vertex is used exactly once whereas the boundary vertices may or may not be used. In
[55] it was pointed out the existence of a bijection between almost perfect matchings
and perfect orientations of G, and toric geometry was used to investigate the topol-
ogy of totally non—negative Grassmannians. The connection between dimer models
on planar bipartite graphs in the disk and totally non-negative Grassmannians was
then studied in [44, 45].

The variant of Kasteleyn theorem relevant in such setting is the following one [59]:
for a planar bipartite graph in the disk with boundary vertices of the same color, there
exists a sign matrix such that its maximal minors give the number of almost perfect
matchings with prescribed boundary conditions. Moreover, if one assigns positive
weights to the edges of the graph, the maximal minors of the weighted version of
the sign matrix are the Pliicker coordinates of the point in the totally non-negative
Grassmannian obtained from Postnikov boundary measurement map [59].

The proof in [59] is topological, whereas in this paper we focus on the explicit
representation and the geometric nature of Kasteleyn matrices, since we are inter-
ested in their application to integrable systems. We prove that the total signature of a
face depends only on the number of edges bounding it, and that they are realized by
the geometric signatures introduced in [5] on directed plabic graphs. This geomet-
ric representation of Kasteleyn signatures is relevant both to solve Kasteleyn system
of relations using the Talaska flows [60] and to provide an alternative proof that the
parametrization of positroid cells in terms of the maximal minors of Kasteleyn sign
matrices coincides with that of the image of Postnikov boundary measurement map.

Then, we use Kasteleyn system of relations to assign algebraic geometric data to
the family of real regular multi-line solutions of the Kadomtsev—Petviashvili (KP)
integrable hierarchy introduced in [25, 50] and studied in [1, 2, 4, 6, 12, 14, 15, 38,
48]. At this aim we use the approach to degenerate finite—gap spectral theory pro-
posed in [41] and applied to Toda and KP integrable systems in [1, 2, 4, 6, 11, 43,
53]. We remark that our final goal is the search of effective methods to detropicalize
spectral curves and obtain KP solutions fulfilling [21] as done in [3] for soliton data
in Gr™ (2, 4). Moreover, the inverse problem of constructing soliton KP solutions
from real regular spectral data on reducible nodal curves was solved in [1] in a spe-
cial case (see also [53]), but remains an open problem in general. In [9] they propose
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an algebraic method based on Dubrovin threefold for the KP equation to study trop-
icalization of algebraic curves and construct KP soliton solutions from spectral data
on reducible nodal curves: therefore it would be relevant to relate the two approaches
when reality and regularity conditions hold.

Finally, systems of relations have been introduced in [45] to provide a mathe-
matical framework for the construction of scattering amplitudes in N = 4 SYM
theory [10], since such systems explicitly realize the totally non—negative part of any
positroid cell via the amalgamation of the little positive Grassmannians, Gr1¥ (1, 3)
and Gr™(2, 3). We are convinced that a geometric approach to the problem may
give a new insight to this matter, and that systems of relations may be fruitfully
applied also for other problems in mathematical or theoretical physics related to
totally non—negative Grassmannians.

Outline of the Main Results Let G = (B U W, &) be a reduced planar bipartite graph
in the disk with boundary vertices of equal color, where B, W are the sets of black,
white vertices of the graph respectively, and £ is the set of edges. In this paper, we
call Kasteleyn an edge signature o : £ — {%1} such that the face signature o (£2)
fulfills Kasteleyn condition for any finite face €2:

s@=[]o@=D7, (1.1)

eco2

where |€2| denotes the number of edges bounding €2. Then, in Theorem 3.11 we show
that the |B] x |W| Kasteleyn sign matrix K¢ associated to such data fulfills Speyer
variant [59] of Kasteleyn theorem:

e The maximal minors of K¢ indexed by the boundary dimer configurations share
the same sign and their absolute value is the number of almost perfect matchings
for the given boundary conditions;

e [f one fixes a Kasteleyn signature as in (1.1) and assigns positive edge weights to
the graph, the maximal minors of the weighted Kasteleyn matrix K%’ defined
in (3.7) are the Pliicker coordinates of the point in the totally non—negative
Grassmannian given by the boundary measurement map introduced in [54].

Here we choose black boundary vertices on the reduced bipartite graph, and char-
acterize Kasteleyn system of relations associated to a signature fulfilling (1.1) (see
Section 4) motivated by Speyer representation of the Kasteleyn weighted matrix (see
Formula (3.13)). However, we remark that the equal color of the boundary vertices
is just a technical assumption which simplifies both the representation of Kasteleyn
matrices and the solutions to the induced system of relations.

For the systems of relations on bipartite graphs we use the representation intro-
duced in [8]. More precisely, for any signature fulfilling (1.1) and for an edge
weighting 7, : € > C* we call Kasteleyn the system w® = {v,(pk) :b € B}, Ry),
where:

o vlgk) is an element in some vector space V assigned to the black vertex b € B;
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® R, is the linear relation at the white vertex w € W represented by the w—th col-
umn of the weighted Kasteleyn matrix K%*': R,,(v®) = 3", g K" vl(jk) =0,
where K;*"" = o (bw)tyy, and bw denotes an edge.
Theorem 3.11 implies that the system has maximal rank equal to the number of white
vertices, and its kernel is (n — k)—dimensional. In particular, if V = C”" —k the system
induces an isomorphism between dual positroid varieties (Theorem 4.4). If V =
R" and one fixes natural boundary conditions at (n — k) boundary vertices, then
the solution of the linear system at the remaining k boundary vertices provides a
representative matrix of the network (G, #,) (Theorem 4.5).

We remark that the Kasteleyn signatures introduced in [8] differ from those ful-
filling (1.1) at the external faces of the graph. A natural connection to total positivity
also holds in their approach and has applications to discrete integrable dynamical
systems such as the pentagram map [58], Q—nets [13, 19] and discrete Darboux maps
[57]. In Section 4.1 we review the main results in [8] and explicitly describe the
transformation which relates the two types of Kasteleyn signatures.

Then in Section 5 we provide a geometric construction of Kasteleyn signatures.
Indeed we show that Kasteleyn signatures are equivalent to the geometric signatures
introduced in [5] for the class of graphs under consideration. In [5] a geometric sig-
nature is uniquely and explicitly assigned to the edges of a planar bicolored (plabic)
graph using two geometric indices: the local winding number and the intersection
number. These indices are ruled by perfect orientations and gauge ray directions
which behave as gauge transformations; therefore there exists a unique equivalence
class of geometric signatures on G [5]. The explicit relation between the equivalence
class of Kasteleyn and that of geometric signatures is given in Theorem 5.20: If G
is a reduced bipartite graph, o a Kasteleyn signature on G satisfying (1.1), and €®
a geometric signature on G as in Definition 5.13, then the Kasteleyn face signature
o (£2),

o(@ =[] o).

eciI2
and the geometric face signature €% (),

c®(Q) = Z €®(e). 1.2)

eco2

are related as follows on each finite face Q:
o (@) = ()@, (1.3)

Such geometric characterization is then used to explicitly solve Kasteleyn sys-
tem of relations (v®), R,,) using Talaska flows. Flows and conservative flows on
directed graphs, originally introduced in [60] to compute the boundary measurement
map, were used in [5] to construct the explicit solution to the system of relations for
geometric signatures. Therefore they also provide the explicit solution to Kasteleyn
system of relations at all internal vertices (Theorem 5.22).

In [5] geometric signatures are defined on the more general class of perfectly ori-
ented plabic graphs such that every edge belongs to at least one directed path starting
and ending at the boundary of the disk. We remark that this condition is exactly the
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one for which the gauge freedom in the definition of the geometric signature is fixed
by the gauge transformations at the vertices of the graph. Since plabic graphs are not
necessarily bipartite, in the setting of [5, 6], (1.3) becomes the definition of Kasteleyn
signature, and (1.1) is replaced by the following relation

o(@ =[] o= (D",

eco2

for any finite face €2, (1.4)

where n,,(2) is the number of internal white vertices bounding €2. We conjecture
that signatures on planar non-bipartite graphs in the disk satisfying (1.4) may be also
given a statistical mechanical interpretation.

The maximal minors of the Kasteleyn weighted sign matrices are the Pliicker
coordinates of points in totally non—negative Grassmannians Gr "N(k, n), and such
parametrization is equivalent to that of Postnikov boundary measurement map [59].
In the present setting Theorems 5.20 and 5.22 imply an alternative proof of such
equivalence (Corollary 5.23).

Then in Section 6 we apply Kasteleyn system of relations to the spectral problem
for the KP-II real regular multi-line solitons. In such setting:

® The point [A] represented by the network (G, tp,,) and the real ordered phases
K ={k1 < --+ < k,} uniquely identify a real regular multi-line soliton solution
of the KP-II equation (see [15, 38]);

e The solution to the direct spectral problem provides a rational curve I'g, with
marked points 1, . . ., k,, Po, a spectral coordinate ¢ such that g“’] (Pg) = 0, and
a degree k non—special divisor DS,FO = {P1,..., Pt} suchthat £ (P;) € [k, kn],
Vj € [k][48];

¢ In a natural normalization, the KP wave function ¥ (P, X¥), where P € I'\{Py}
and X is a finite set of KP times, has the following property: the vector
(W (k1,X), ..., ¥(ky, X)) defines un untrivial flow in the plane orthogonal to [A]
as the KP times X evolve (Lemma 6.1).

As pointed out in [2] the mismatch between the dimension of the soliton variety and
that of the divisor data on I'g does not allow to reconstruct the soliton solution from
the divisor Dg r, (inverse spectral problem). Then, to complete the KP divisor, we
follow the approach in [4, 6] based on the degenerate finite gap theory on reducible
curves introduced in [41]: we prove that it is possible to fix an initial time Xy and
extend the spectral data from (I'o, Po, Ds (Xo)) to (T, Py, DKP,F()?O))’ with " a
reducible M—curve, in such a way that:

® The divisor Dgp 1 (Xo) is non-special, and its restriction to I'g is Ds 1, (¥0);
® Dkp  satisfies Dubrovin-Natanzon reality and regularity conditions [21]: there
is exactly one divisor point in each oval except in the one containing Py.

The key problem is to choose the spectral curve I" so that the wave function takes
equal values at pairs of double points for all KP times. Lemma 6.1 implies that
Kasteleyn system of relations gives the answer to such question provided that

® The spectral curve I' has dual graph G and we identify Iy with the boundary of
the disk;
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® At the boundary vertices b;, we choose boundary conditions vé’j) = Y(kj,X)in

Kasteleyn system of relations, and then we assign the solution vl()k) = vlgk) (X) at
the internal black vertex b to the wave function v at the corresponding double
points of I" at time X.

The normalized wave function is then extended to the whole I'\ { Pp} meromorphi-
cally in the spectral parameter. The reality and regularity property of the divisor on
" follows from the total non—negativity of the soliton data (Theorem 6.10). Finally
the KP divisor on I constructed using Kasteleyn system of relations is equivalent to
that in [6]. In that paper the geometric system of relation was used on a more general
class of graphs. However the present construction is technically simpler, and auto-
matically ensures the independence of the KP divisor on the gauge freedoms of the
graph since it is done on undirected networks.

2 Totally Non-negative Grassmannians and Almost Perfect
Matchings on Planar Bipartite Graphs in the Disk

In this Section we briefly review the properties of totally non-negative Grassman-
nians necessary in the following Sections and, in particular, their relation to almost
perfect matchings on planar bipartite graphs in the disk. We mainly follow [45, 54]
and [55]. We remark that totally non negative Grassmannians are a special case of the
generalization of classical positivity to generalized partial flag varieties by Lusztig
[47].

Definition 2.1 (Totally Non-negative Grassmannian [54]) Let M at,zI;EN denote the
set of real k x n matrices of maximal rank k with non-negative maximal minors
A7(A). Let GL,J(r be the group of k x k matrices with positive determinants. Then the
totally non-negative Grassmannian Gr ™"N(k, n) is

Gr™N(k,n) = GL \Mat N,
In the theory of totally non-negative Grassmannians an important role is played by
the positroid stratification. Each cell in this stratification is defined as the intersection

of a Gelfand-Serganova stratum [27, 28] with the totally non-negative part of the
Grassmannian. More precisely:

Definition 2.2 (Positroid Stratification [54]) Let M be a matroid i.e. a collection of
k-element ordered subsets /I in [n], satisfying the exchange axiom (see, for example
[27, 28]). Then the positroid cell S (™™ is defined as

SUN = {[A1 € Gr™N(k,n) | Aj(A) > 0if I € Mand Aj(A) =0if I ¢ M}.

Its /&NN is not empty, M is called a positroid (totally non—negative matroid). The
positroid variety of M is

(M) = {[A] € Gr(k,n) | Aj(A) =0if I ¢ M}.
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The definition means that a positroid M is a realizable matroid represented by
k x n real matrices with positive maximal minors when the ordered column set / =
{1 <iy <---<iy <n}e M,and zero maximal minors otherwise.

Every positroid cell is homeomorphic to an open ball of finite dimension [54].
The combinatorial classification of all non-empty positroid cells was obtained in
[54], where in particular the equivalence classes of planar bicolored (plabic) graphs
representing positroid cells were classified, and an explicit and relevant minimal
parametrization of each positroid cell & /E{NN was obtained using reduced plabic
networks in the disk.

The class of graphs considered throughout this paper are reduced planar bipartite
graphs in the disk on which there exists at least one almost perfect matching; such
condition is equivalent to the requirement that the graph possesses a perfect orienta-
tion [55]. We recall that a perfect orientation O of a bicolored graph G is a choice of
directions of its edges such that each black internal vertex b is incident to exactly one
edge directed away from b, and each white internal vertex w is incident to exactly
one edge directed towards w. A graph is perfectly orientable if it possesses a perfect
orientation.

Definition 2.3 (Planar Bipartite Graph in the Disk) We call planar bipartite graph
in the disk an undirected planar graph drawn inside a disk, G = (V, &), with finite
vertex set V and finite edge set £, such that:

(1) Internal vertices are strictly inside the disk and are either black or white;

(2) There are n > 0 boundary vertices on the boundary of the disk labeled
by, ..., by, in clockwise order. Boundary vertices share the same color and have
degree one;

(3) Each edge in G joins two vertices of different color;

(4) G is perfectly orientable.

In the following we denote B and W respectively the set of black and of white
vertices.

In Fig. 1 we show a planar bipartite graph in the disk.

Let (G, O) denote the directed graph G with a perfect orientation O. Then the
source set I = 1(O) C [n] is the set of i such that b; is a boundary source of (G, O),
similarly b; is a boundary sink for all j € I.

Proposition 2.4 [54] Let G be as in Definition 2.3. Then all of its perfect orientations
have source sets of equal cardinality and G is called of type (k, n) if source sets have
cardinality k.

Moreover, let Mg be the collection of the k—subsets 1(O) of its perfect orienta-
tions:

Mg = {1(0)| O is a perfect orientation of G }. 2.1
Then Mg is a positroid.
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be bg by b3 b, "by b bg by by b, by be bg by b b, “by

Fig. 1 A planar bipartite graph in the disk [left], a perfect orientation on it [center] and an almost perfect
matching [right]. The boundary of the disk is colored red in all Figures

The graph in Fig. 1 represents the positroid cell S /\T/(NN C Gr™N(3,6) such that
I ¢ M if and only if I = {1, 2, 3}. Indeed it is easy to check that there is no perfect
orientation only for the source set by, by, b3.

Definition 2.5 (Reduced Planar Bipartite Graph in the Disk) A graph G as in
Definition 2.3 is reduced if moreover

(1) Every component of G contains at least one boundary vertex;

(2) Every internal vertex of degree 1 is adjacent to a boundary vertex:

(3) There is at most one edge sharing a pair of vertices b, w;

(4) The number of faces of G is minimal among graphs with the same positroid.

Positroids in Gr™N(k, n) are in bijection with the following objects [54]: dec-
orated permutations on n letters with & weak excedances and with Le—diagrams of
type (k, n).

The decorated permutation ¥ = 7 (M) may be computed using oriented strands
on a reduced bipartite graph G = G(M) [54]: each internal edge intersects trans-
versely two strands at the midpoint, whereas at the boundary edges the strands
terminate at the boundary vertex as shown in Fig. 2. Then 7 (i) is the boundary desti-
nation of the strand starting at the boundary vertex i. In Fig. 3 [left] the reduced graph
corresponds to m = (6, 1, 2, 5, 4, 3). The excedances 7 (1) and 7 (4) imply that the
lexicographically minimal base in the corresponding matroid M is {1, 4}, therefore
G represents a positroid cell in Gr™N 2,6).

Fig.2 Strands at internal and at boundary edges
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01 |4 5 \\1
6 5 \

3 2

be  bs b, by b by &3

Fig. 3 The graph and the Le—diagram both represent the same positroid cell in Gr™N(2, 6) since they
share the same value of the decorated permutation 7 = (6, 1, 2, 5, 4, 3)

A Le—diagram L of type (k, n) is a Young diagram in the k x (n — k) rectangle
together with a filling of 0,1s such that there is no O which has a 1 above it in the
same column and a 1 to the left in the same row [54]. The total number of 1s is the
dimension of the corresponding positroid cell S /\T/INN [54]. If one labels the southeast
border of the Le—diagram L with the numbers 1, 2, ..., n starting from the northeast
corner, then the labels of the vertical edges of the border form the lexicographically
minimal base of the positroid M represented by L. In Fig. 3 [center] we show an
example: the Le-diagram represents a four-dimensional positroid cell in Gr™N (2, 6)
with lexicograhically minimal base {1, 4}.

One may compute 7 also using Le-diagrams [38]: first one replaces each 1 with an
elbow and each O with a cross. Then one labels the northeast destination of each pipe
with the same label of its southeast starting point. 7 is then computed as follows: if i
labels a vertical edge on the southeast border then 7 (i) is the label on the same row
on the west border; if i labels an horizontal edge on the southeast border then 7 (i) is
the label on the same column on the northern border (see Fig. 3 [right]).

The Le-graph Each positroid cell SATANN is represented by at least one reduced graph

[54]. The bipartite Le-graph representing the positroid cell S /\T/[NN is a reduced graph
constructed directly from the Le-diagram L = L(S /\TANN) as follows [54]. It is
obtained putting a black vertex in the middle of each segment of the southeast border
of L; if the border segment is vertical, one also adds a white vertex next to it and a
horizontal edge; finally, in the middle of each Le-box filled by 1 one inserts a hook
with a white vertex on the left and a black vertex on the right (see Fig. 4 [left]). Then,
for each box filled by 1, the horizontal half-edge starting at the black vertex is pro-
longed to the nearest white vertex on the right, and the vertical half-edge starting at
the white vertex is prolonged to its nearest black vertex downwards. The boundary
of the Young diagram is the boundary of the disk. In Fig. 4 [right] we construct the
Le—graph for the positroid cell of Fig. 3.

Irreducible Positroid Cells An irreducible positroid cell S {f™ in Gr™N(k, n) corre-
sponds to a positroid M with the following additional property: for any j € [r], there
exist I, J € M suchthat j € I and j ¢ J. Then the Le—diagram L(S/\T/lNN ) does
not contain either rows or columns filled by Os, whereas 7 (S ATANN) is a derangement,
i.e. a permutation of n letters with k excedances and no fixed points. Bipartite graphs
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mb
1 <:> ?4— 1 0 1 1 |1 T. 1
3 2
0|1 |4 l »be b,
i = D‘*bi 6 5 . [
bs  bs
N—
L o |

j b,

Fig. 4 Left: the rules to construct the Le—graph from the Le—diagram. Right: Le—diagram and Le—graph
for the Example of Fig. 3

representing an irreducible cell S/\T/INN do not possess isolated boundary vertices. The

reduced graphs representing S /\TANN possess g + 1 faces where g is the dimension of

S TNN

Finally let us recall the natural duality transformation of positroids.

Definition 2.6 (Duality Transformations Between Positroids and Positroid Cells)
Given a positroid M of k—element subsets in [r], its dual is the positroid M of
(n — k)— element subsets in [n] such that

IeM — IeM. (2.2)

ItS /\TANN C Gr™N(k, n) is the positroid cell represented by M, then we denote
S%‘IN c Gr™N(n —k, n) its dual positroid cell. Similarly if [Ty C Gr(k, n) is the
positroid variety represented by M, then we denote 157 C Gr(n — k, n) the dual
positroid variety represented by M.

If 7 is the derangement representing M, then the derangement 7 representing M
is 7 =1 [54].

If G is a planar bipartite graph in the disk representing SLNN, then the graph G
obtained inverting the color of all vertices including those at the boundary represents
STW,

Since dual positroid cells have the same dimension, it is possible to introduce

bijections between S /\TANN and S%\IN which allow to parametrize S%\IN starting

from a parametrization of S/\TANN. A natural bijection which preserves the total
non-negativity property is associated to the transposition of Kasteleyn matrices in
Proposition 3.21. A different duality relation between the positroid varieties IT a4
and TTg7 is constructed in Theorem 4.4 solving Kasteleyn system of relations at the
boundary vertices when the vector space is C" .

In Fig. 5 we show the effect of the duality transformation of positroids for the
cell of Fig. 3. The dual cell is four-dimensional in Gr™N(4, 6) with derangement
a=n"1=(2,3,6,54,1).

Definition 2.7 (Almost Perfect Matchings on G) An almost perfect matching of G =
(V, &) is acollection M of edges of G that contains exactly once each internal vertex
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1 4
1 0 |1 2 1
1 0 2 \\
3 2
1 0 |3 \
0 1 4 6\ 3
6 5 . \4

be bs by b3 b, by 6 5

Fig.5 The graph, the derangement and the Le-diagram of the positroid cell in Gr™N (4, 6) dual to that in
Fig. 3

of G and each boundary vertex at most once. For an almost perfect matching M its
boundary d M is defined as follows

oM = {i € [n] : the black boundary vertex b; € M} U {i € [n] : the white boundary vertex b; & M}.

In Fig. 1 [right] we show an almost perfect matching.

If the boundary vertices are colored black, |B| — [W| = n — k and each almost
perfect matching uses k boundary vertices. If the boundary vertices are colored white,
[W| — |B| = k and the set of boundary vertices used in each matching is n — k. If we
release the requirement that boundary vertices share the same color, the boundary of
each matching of G has size

k = #(white vertices) — #(black vertices) + #(black boundary vertices).

In [55] perfect orientations of G are shown to be in bijection with almost perfect
matchings in G. Therefore the following statement holds true.

Proposition 2.8 [55] Let G be as in Definition 2.3 and let Mg be the positroid of
its perfect orientations. Then I € Mg if and only if there exists an almost perfect
matching M in G with OM = 1.

In this paper we are interested in networks of graph G with real positive weights
assigned either to the edges of G or to its faces. In [54] a natural minimal parametriza-

tion of each given positroid cell S/F&NN C Gr™N(k, n) is obtained in terms of face
S TINN
M

weights on reduced graphs representing
Notation for Edges on Undirected and on Directed Graphs If the graph is undirected,
the edge e connecting the black vertex b and the white vertex w will be denoted
e = bw. If the graph is directed, the edge e starting at the vertex u and ending at the
vertex v, will be denoted e = .

Terminology for Faces A face 2 is internal if its boundary has empty intersection
with the boundary of the disk, otherwise it is an external face. There is a unique
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external face including the boundary segment from b, to b1 clockwise and we call it
the infinite face. All other faces are called finite.

If G possesses g + 1 faces, we label the finite faces 2;, i € [g], and denote Q2 the
infinite face. The same labeling rule applies to face weights.

Networks A network A = (G, f) is a graph G as in Definition 2.3 with g + 1 faces
and a choice of non zero face weights on the finite faces f(2;) = f; # 0,7 € [g].
The weight of the infinite face Q¢ is then f(€29) = (]_[ie[g] i)~ ! (see Fig. 7 [left]
for an example).

There is a natural way to pass from the face weights to the edge weights on
undirected or directed networks.

The Rule for Assigning Weights on Undirected and on Directed Networks If G is
undirected, let us label in clockwise order the vertices bounding a given face €2,
b1, wy, by, ..., b, w;. Then the relation between the face weight fo and the edge
weights 13, i is
!
fo = it 23)
Hi =1 Ibw;

with obvious modifications if 2 is an external face (see Fig. 6 [center]). If G is
directed, the face weight is obtained multiplying the edge weights for the edges
bounding €2 and directed anticlockwise, and dividing the edge weights for the edges
bounding €2 and directed clockwise (see Fig. 6 [right]). These two rules may be eas-
ily combined in an explicit transformation between edge weights for undirected and
directed graphs with equal face weights:

u_)z{tbw, ifu=w, v=b; 2.4)

t -1 .
v — i
b, =0, v=uw.

Finally if the directed edge e = v has weight 7., then the directed edge ¢’ = Vit
has weight 1, = 1 1. We illustrate these rules in Fig. 7, where we only write edge
weights different from 1.

If the face weights are all real and positive (complex non—zero), there is more
than one way to assign real positive (complex non—zero) edge weights to the graph
following the above rules. We illustrate the weight gauge transformation only in the
case of positive weights; in the case of complex non—zero weights it is sufficient to
replace everywhere ¢ > 0 with ¢ complex non-zero in the formulas (2.5) and (2.6).

Fig. 6 The rule of transformation between face and edge weights for undirected graphs [left] and for
directed ones [center and right]
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fo=(f1f2fsfsfsfef7fs)"
O

O
L/
O

d

Q O
ot Yo g
b by by b3 b, by

Fig. 7 A planar bipartite network in the disk with face weights [left], an equivalent network sharing the
same undirected graph with edge weights satisfying (2.3) [center] and an equivalent directed network
satisfying (2.4) [right]. Unmarked edges carry unit weights

The Weight Gauge for Undirected and for Directed Networks If the graph is undi-
rected and 7, > 0, ¢ € &, is a solution to the system (2.3) at the faces of G, then the
following gauge transformation at an internal vertex v gives another solution for any
given ¢ > 0:

(2.5)

;| cte, if vbounds e,
e t,, otherwise.

Two reduced networks sharing the same graph for two sets of real positive edge
weights represent the same point in the totally non—negative Grassmannian if and
only if the edge weights can be obtained by composing transformations (2.5) at the
internal vertices of the graph. We remark that on unreduced graphs there is extra
gauge freedom [54].

If the graph is directed and we assign a positive number c, to each internal vertex v
and the directed edge e = iv has initial weight 7, then the gauge equivalent network
has edge weight ¢, with

/I _ -1
t, = cuc,

le. (2.6)

Again, two networks on a perfectly orientated reduced graph are equivalent if and
only if their edge weights are related by (2.6).

In [54], for any given oriented planar network in the disk, the formal boundary
measurement map is defined as

Mij = Y (DY Purp), el jel, 2.7)
PIb,‘I—)bj

where I is the base for the given orientation, the sum is over all directed paths P
from the source b; to the sink b, wt(P) is the product of the edge weights of P
(counting multiplicities if an edge appears more than once in P), and Wind(P) is
its topological winding index (see [54]). These formal power series sum up to sub-
traction free rational expressions in the weights [54] and, for directed networks, their
explicit expression in function of flows and conservative flows is provided in [60].

Let I be the base inducing the orientation of the network N = (G, O), f)
used in the computation of the boundary measurement map. Then (see [54]), for
each choice of positive edge weights associated to f, the image of the boundary
measurement map is the point [A?""] € S /&NN C Gr™N(k, n) represented by the
boundary measurement matrix A = A?”™ such that:

e The submatrix A; in the column set / is the identity matrix;

@ Springer



35 Page 14 of 64 Math Phys Anal Geom (2021) 24: 35

* The remaining entries A’, = (=)D Mi;, r € [k], j € I, where o (ir, j) is
the number of elements of I strictly between i, and ;.

The point [A?"™] € S /&NN is a function of the face weights f, and is independent

on both the perfect orientation of G and the weight gauge [54]. Finally, if S /\T/INN is an
irreducible positroid cell, then the reduced row echelon matrix contains neither zero
columns nor rows with just the pivot entry different from zero.

In [54] the graphs representing the same positroid M are classified. In this equiv-
alence class a special role is played by reduced graphs. Indeed, if the graph is
reduced, the boundary measurement map modulo the weight gauge equivalence is a
homeomorphism from Ri to S /\TANN, where g is the dimension of the positroid cell
represented by G [54].

Postnikov also classifies the network transformations which preserve the value of
the boundary measurement map [A”"™]. Since we use only reduced networks, we
just need to define the actions of moves; for the reductions see [54]. The possible

moves for undirected bipartite networks are:

(1) Contraction/expansion of a vertex Any degree 2 internal vertex not adjacent
to a boundary vertex can be deleted and the two adjacent vertices merged (see
Fig. 8 [left]). With the inverse operation one splits an internal vertex into two
vertices and inserts a degree 2 vertex of opposite color assigning unit weight to
the new edges.

(2) Removal/addition of a boundary-adjacent vertex Any degree 2 internal ver-
tex adjacent to the boundary may be removed, the boundary vertex changes
color and the two edges become a single edge as in Fig. 8 [center]. With the
inverse operation one adds a degree 2 vertex in the middle of a boundary—
adjacent edge, changes the color of the boundary vertex and assigns unit weight
to the new edge.

(3) Square move It is the transformation shown in Fig. 8 [right] and is the only
untrivial one since face weights are changed.

The graph in Fig. 3 [left] is equivalent to the Le—graph in Fig. 4 via the contraction of
bivalent vertices. The corresponding formulas for the same moves on directed bipar-
tite graphs may be easily obtained using (2.4). We remark that by repeated expansions
one may always arrive to graphs with vertex degrees no more than 3.

An alternative characterization of the boundary measurement map using almost
perfect matchings on bipartite graphs is provided in [45] where its equivalence with
the boundary measurement map is proven using the characterization of the latter in

a; a7 a1 a?/
by 40
ac I by / Bibs+bzb
C : b/ b, b,
o) 3 .
? = ‘ by by < \WL_ 5384528y

ac > —
b3 / b1b3+1b1b.
2] as

ﬁ; aa\

\ d ac /d b
a1 g’ 1 1
b_c / <::>\\ .}
A dp 4 db

Fig.8 Left: the contraction/expansion of a degree 2 black vertex; center: the removal/addition of a white
boundary—adjacent vertex; right: the square move. Unlabeled edges carry unit weight

@ Springer



Math Phys Anal Geom (2021) 24: 35 Page 15 0f 64 35

terms of flows on directed graphs by Talaska [60] and the bijection between flows
and almost perfect matchings proven in [55].

Theorem 2.9 [45] Let {t.}.cg be the edge weights on the undirected bipartite graph
G. Then each matching M C & defines a monomial

M= Hte.

eeM

For any k—element subset I C [n] define the partition function Dy as the sum of the
monomials for the matchings with boundary I :

D, = Z ™. (2.8)

M :oM=I

By definition Dy > 0 if I € M(G), and zero otherwise. In particular, if t, = 1,
for all edges e, then Dy is the number of almost perfect matchings M in G such that
OM = I, which we denote A(G, I).

Then the collection {D; : I € M(G)} are the Pliicker coordinates of a point
[Adimer] ¢ SAT/INN with M = M(G). Weight gauge equivalent networks and move—
reduction equivalent networks are mapped to the same point in S AT/IIVN .

Finally, for any choice of positive face weights on the graph, [A4™¢"] coincides
with [AP™™), the value of Postnikov boundary measurement map.

Pliicker coordinates are redundant coordinates because of Pliicker relations; and
there exists a minimal number of Dy, [ € [g], where g equals the dimension of
SAT/lNN, such that all other Pliicker coordinates may be expressed as subtraction free
rational expressions of the Dy,. Such a set of Pliicker coordinates forms a totally
positive base in the sense of Fomin and Zelevinsky [24]. An explicit totally positive
base was constructed in [61] using Le—diagrams, whereas almost perfect matchings
on reduced planar bipartite networks are used in [49] (see also [52]) for the same
purpose.

3 Kasteleyn Matrices on Planar Bipartite Networks in the Disk

In this Section, given G, a planar bipartite reduced graph in the disk representing an
irreducible positroid cell S /&NN c Gr™N(k, n), we introduce a Kasteleyn signature
on G: such a signature is an assignment of +1 to the edges fulfilling (3.1). We then
prove that this signature realizes the variant of Kasteleyn theorem in [59]: 1) maximal
minors of the |B| x || Kasteleyn matrix share the same sign and count the number of
almost perfect matchings of G with given boundary conditions; 2) equivalence classes
of weighted Kasteleyn matrices provide a parametrization of S/\T/INN. We remark that
the transpose of a Kasteleyn matrix is a Kasteleyn matrix of a point in the dual cell
SIW,
M
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Remark 3.1 The reduced property of the graph is a sufficient condition to avoid
zero elements in the systems of relations studied throughout the paper. Instead the
irreducibility of the positroid cell just simplifies the overall construction.

Definition 3.2 (Kasteleyn Signature on G) Let G = (V = BU W, £) be a reduced
bipartite planar graph in the disk with boundary vertices of equal color as in Defini-
tion 2.5. Assume that M (G) is irreducible. A function o : £ — {*1} is a Kasteleyn
signature if, for any finite face €2,

5(Q) = (-1)'7 1, G.1)

where |€2| denotes the number of edges bounding the face €2, and o (£2) is the total
signature of the face 2 of G, that is the product over all edges e € 92 of the edge
signature o (e):

o(@ =[] o. (3.2)

eci2

In Fig. 9 we show a Kasteleyn signature for the reduced graph of Fig. 1.

Remark 3.3 The number of edges bounding a finite external face is always even
because the graph is bipartite and all boundary vertices share the same color.

Remark 3.4 In [8] it is called Kasteleyn a signature which satisfies (3.1) at the inter-
nal faces and depends also on the number of boundary vertices at the external faces.
We compare the properties of the two signatures in Section 4.1.

Next Proposition is the restatement of a classical Lemma by Kasteleyn [33] in the
present setting.

Proposition 3.5 Kasteleyn signatures exist on reduced planar bipartite graphs in the
disk with boundary vertices of equal color.

by;  bio by bg b, bg

Fig. 9 A Kasteleyn signature for the reduced planar bipartite graph in the disk of Fig. 1. Labels of the
boundary vertices have been changed to be consistent with the notation of Definition 3.10
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Proof If G is the Le—graph, one assigns o (¢) = 1 to any horizontal edge e included
those corresponding to the lexicographically minimal base of the positroid M repre-
sented by the graph. Then there remain exactly g vertical edges, where g is both the
number of finite faces of G and the dimension of S /\TANN. Exactly one such vertical
edge e; is the NW boundary of the finite face €2;, i € [g]. Then, starting from the last
row of the Le—diagram and proceeding from right to left and bottom up, one chooses
o (e;) = %1 so that (3.1) is fulfilled for any finite face.

If the reduced graph G is move equivalent to the Le—graph via a finite sequence
of contraction/expansions at internal vertices and square moves, one can obtain a
Kasteleyn signature on G using the transformation of face signatures under the action
of the moves illustrated in Fig. 10.

The removal/addition of a boundary—adjacent vertex must involve all boundary
vertices in order to keep the even parity property of the external faces. If one adds a
boundary-adjacent vertex next to each boundary vertex and call e; the edge added to
the boundary vertex b, j € [n]. If o is the Kasteleyn signature on the initial graph,
then the signature o’ on the transformed graph such that

o' (e) = o(e), if e is an edge common to both graphs;
Tl DIt ife=e;,  jeln],

is Kasteleyn. We illustrate an example of such move in Figs. 11 and 12 [left]. The
explicit transformation in the case of removal of boundary—adjacent vertices follows
along similar lines. O

(3.3)

Remark 3.6 In Section 5 we illustrate an alternative method to construct Kasteleyn
signatures using the geometric signatures introduced in [5].

There is of course not a unique Kasteleyn signature for a given graph G. As in the
case of lattices with periodic boundary conditions [34], a vertex gauge transformation

fully characterizes equivalent signatures on plabic graphs in the disk.

Definition 3.7 (Equivalent Kasteleyn Signatures) Two signatures ¢ and 6 on G are
equivalent if they both satisfy Definition 3.2.

01 Oit1

(o] Ol+m

Fig. 10 The transformation of signatures for the contraction/expansion of a degree 2 vertex [left] and for
the square move [right]
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w b
t 2 1 t11
72 — — — O " wy
f4_ W3
fs t21
£, |ts3 * M ¥
+ +
e o
b be bg b, b; b,

Fig. 11 A choice of Kasteleyn signature and face weights for a network with the reduced graph of Fig. 3.
The relation between face and edge weights is as in (3.14)

Definition 3.8 (Gauge Transformation Between Kasteleyn Signatures) A function
o : V — {£l1} is a gauge transformation if it takes the same value at all boundary
vertices b;:

a;) =aby), j € [n]. 3.4

Proposition 3.9 (Equivalent Kasteleyn Signatures) Two signatures o and & on G are
equivalent if and only if there is a gauge transformation o : 'V +— {=£1} such that at
any edge e = bw,

o(e) = ab)o(e)a(w). 3.5)

In one direction the proof is obvious, in the other direction the proof follows as in
[34] identifying the boundary vertices.
A Kasteleyn matrix K is associated to any given Kasteleyn signature o.

Definition 3.10 (Kasteleyn Sign Matrix) Let G = (V = BUW, &) be a given planar
bipartite network in the disk with boundary vertices of equal color. Let |B]|, |W)|

Fig. 12 The network on the left represents a point in Gr NN (2, 6), whereas its dual network on the right
represents a point in GrTNN(4, 6). The Kasteleyn matrix of the dual network is the transpose of the initial
one. For the correspondence between Le—diagrams and derangements see Figs. 3 and 5
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respectively denote the number of black and of white vertices. Let o be a Kasteleyn
signature for G. Following [59], we label the white vertices from 1 to |W|, and the
black vertices from 1 to |B], so that the boundary vertices share the highest labels
of their color and are labeled in increasing order clockwise. Then the |B] x |W)|
Kasteleyn sign matrix K¢ associated to such data is

o (e) if the edge e joins b; and w;,

o _
Kij = { 0 if there is no edge joining b; and w;. (3.6

If one assigns positive weights to the edges of G, t : £ — R™T, the weighted Kasteleyn
matrix K% is

KO _ { o(e)t, ife =bjwj, 3.7)

ij 0 otherwise.

In the next Theorem we show that K¢ satisfies the variant of Kasteleyn theorem
proven in [59]: the maximal minors of K¢ indexed by the boundary dimer configu-
rations share the same sign and count the number of almost perfect matchings of G.
To fix ideas we choose the black color for the boundary vertices.

Theorem 3.11 (The Number of Almost Perfect Matchings and the Minors of K)
Let G be a planar bipartite graph in the disk with black boundary vertices represent-
ing the positroid cell S/\TANN C Gr™N(k, n). Let N be the number of internal black
vertices of G, so that |W| = N + k. Assume a labeling of vertices such that bound-
ary vertices are labeled clockwise in increasing order by.1, ..., bnyy,. Let 0 be a
Kasteleyn signature on G and K° be its Kasteleyn sign matrix. For any k element
subset I of 0G, let K| be the submatrix of K° using all columns, the first N rows
and the additional k rows indexed by 1. Then

(1) For any pair of k—element subsets I, J the determinants of the submatrices
Kj, K share the same sign,

det(K;) - det(K;) > 0; (3.8)

(2) The absolute value of det(Ky) is A(G, I), the number of almost perfect
matchings M in G such that OM = I,

A(G, I) = |det(K))|. (3.9)

Proof The proof is a straightforward adaptation of the original Kasteleyn Theorem
[33, 34] to the present setting. First we check (3.9). Let B; and 3 respectively denote
the set of internal black vertices of G and that of the boundary vertices indexed by 1.
By definition
detK; = Z sign (h) l_[ Kh(w),wa
h weW

where the summation is over all bijections & : W +— B; U B;. Since Kjp),w # 0
if and only if there is an edge joining w and h(w), the non zero terms contributing
to the determinant correspond exactly to the almost perfect matchings 7 using the
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boundary vertices 3;. Therefore

detK;:Zsign(n) 1—[ Kb,w=Zsign(n) 1—[ o (bw).

(b,w)em b4 (b,w)em

Now sign (7) [ | (bwyer O (bw) is the same for all matchings sharing the same bound-
ary vertices. Indeed, if 7, 7’ are two such matchings, then their union is a set of
simple cycles and double edges and the statement easily follows using Definition 3.2.

Next let us prove (3.8). It is sufficient to check the formula in the case J = I\{i}U
{j}. Let =, =’ be two almost perfect matchings respectively for the boundary sets I,
J. Then 7w U 7’ is a Temperley-Lieb subgraph, that is the union of simple cycles,
double edges and a path from by ; to by ;. If j =i+ 1, then the statement follows
identifying the two boundary vertices so to obtain a cycle with flat curvature. In the
case j =i +1[, with[ > 1, then the boundary vertices by 441, ...by4j—1 are either
used by both 7 and 7" or not used. Then again identifying by; and by4; we obtain
a cycle with flat curvature and the statement follows. [

Remark 3.12 Since the sign of the minors changes by exchanging two consecutive
rows, in the rest of the paper we assume a labeling of the internal vertices such that
det(Kj) > O for all k—element subsets.

Remark 3.13 (The Point in the Totally Non-negative Grassmannian Associated to
K™y Given a Kasteleyn signature o and a positive edge weighting on the graph
G, the maximal minors of the weighted Kasteleyn matrix K IU’"” are different from
zero if and only if / € M, where M is the positroid of S/\T/tNN represented by G.
Therefore, following [59], the minors K ;”W are the Pliicker coordinates of a point
[Ao¥1] ¢ S/\T/tNN C Gr™N(k, n) uniquely identified by the condition that for any

k—element subset I C [n]

det(AT"") = det K7"". (3.10)

Lemma 3.14 The point [A% "] is the same for gauge equivalent edge weightings on
G. Moreover, if o’ is another Kasteleyn signature in the equivalence class for G and
the face weights are kept fixed, then [A®" W] = [A%Y!), that is for a given graph it
is a function of the face weights f. Finally if the networks (G, ') and (G, f) are
move equivalent, then for any Kasteleyn signature o on G and o' on G', the points
in the Grassmannian constructed using the respective Kasteleyn matrices coincide:
[A”’*w’(g’, N1 = [ATYU(G, f)]. Therefore given the (move equivalence class of
the) network (G, f), there exists a unique point in 1 pq which we denote

[AkaS] = [AO',U)I]’

such that the Pliicker coordinates of its representative matrix A®%" are defined in
(3.10).
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The proof of the above Lemma is trivial taking into account the action of
(2.5) on the edge weights, the characterization of gauge equivalent signatures in
Proposition 3.9 and the action of the moves on signatures.

Given a reduced planar bipartite graph in the disk G, so far we have illustrated three
natural parametrizations of the positroid cell S/\T/tNN, where M = M(G). Indeed, the

following points in S/aNN are assigned to the move equivalence class of the network

@, f):

(1) The point [A?"] is obtained choosing a perfect orientation on the graph and
computing Postnikov boundary measurement map [54] (see formula (2.7));

(2) The Pliicker coordinates D; of the point [A%™¢"] are the weighted matchings
with boundary dM = I'in (2.8): Dy = 4. apr—s [ Loens te [451;

(3) The Pliicker coordinates of the point [A%45] are the minors of a weighted
Kasteleyn sign matrix (see (3.10)).

In the previous Section we have recalled that [Abmm] = [Adimer] [45]. In [59]
it is proven that, if o is a signature such that Theorem 3.11 holds and # 4, is a
positive edge weighting on the graph, then [A%%5] = [A9i™¢"]. Therefore the three
parametrizations of S /\TANN coincide.

Theorem 3.15 (Parametrization of Positroid Cells via Kasteleyn Weighted Matrices)
[59] Let S/\T/IIVN C Gr™N(k, n) be given and let G be a reduced planar bipartite graph
with boundary vertices of equal color representing S /\T/tNN .Let f : G* - RT bea
positive face weighting of G. Let N = (G, f) be the corresponding network and let
[Abmm] = [Adimer] ¢ S/\T/tNN be as above. Let o be a Kasteleyn signature for G, and
let K™ be a weighted Kasteleyn matrix representing N'. Let A**S be such that for
any k—element subset I C [n]

det(A**); = det K", (3.11)
Then

[Akas] — [AbMM] — [Adimer]. (312)
In the following, we simplify notations to [A] = [Akas] = [Abmm] = [Adimer],

Remark 3.16 (Alternative Proof of Theorem 3.15 Using Geometric Signatures) In
[5] (see also Section 5), geometric signatures on directed plabic graphs are intro-
duced and it is proven that they induce Postnikov boundary measurement map for
any choice of positive face weights. In Theorem 5.20 we explain the relation between
geometric and Kasteleyn signatures. Therefore Theorem 3.15 follows also from the
relation between these two signatures (see Corollary 5.23).

If one chooses G with black boundary vertices, it is easy to reconstruct a repre-
sentative k x n matrix of [A] starting from (K%*")T | the transpose of K%' [59]:

@ Springer



35 Page 22 of 64 Math Phys Anal Geom (2021) 24: 35

applying row operations one can transform (K **)T into a matrix in block form

N n

N Id ‘ *
N (3.13)

kK \ o ‘ A

without changing any maximal minor. If A; denotes the maximal minor using all
rows of A and the columns indexed by 7, then

det A; = detK{"".

Theorem 3.17 (The Representative Matrix in S /\T,INN c Gr™N(k, n) Associated to
the Weighted Kasteleyn Matrix [59]) Let N = (G, f) be a bipartite network, where
the graph G = (V, £) has black boundary vertices and represents the positroid cell
S/\T/JIVN C Gr™N(k,n), and f are positive face weights. Let o be a Kasteleyn sig-
nature on G and K%' be its Kasteleyn weighted matrix as in (3.7). Then the k x n
matrix A defined in (3.13) represents [ AF®].

Remark 3.18 In Theorem 4.5 we provide an alternative way to construct a represen-
tative matrix of [A%**] using Kasteleyn system of relations.

Let us illustrate the construction of K% %! and of [A*%5] for the network shown in
Fig. 11.

Example 3.19 Let N be the reduced bipartite network in Fig. 11 representing a point
in the positroid cell in Gr™N(2, 6) of Fig. 3 where the face weights fi, ..., f4
are assumed positive. A possible minimal positive edge weight parametrization,
11, 111, 153, 172, is obtained using (2.3)

fi=t5,  pH=u', A=t fi=tnots, (3.14)

where all other edges carry unit weights. A Kasteleyn signature satisfying Definition
3.2 is marked with & on the edges of AV in the Figure. The transpose of the weighted
Kasteleyn matrix (3.10) is then

ti1 21 10 0 0 O
(K" = =1 001 0 0—z1p |. (3.15)
0 00031 0
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Upon transforming (K%**)T into the block form (3.13),
/ 1 \ O 0 -1 0 O 72

g

the point [A] € SATANN is identified by the submatrix A in the SE block; its reduced
row echelon form is

125! 2‘11t_1 00 —t11t722‘_1
ARREF _ 21 21 21 ). 3.17
00 0 1w 0 G170

thr 1 mp 0 0 —t11t72) (3.16)
0 0 0 153 1 0

We remark that, in agreement with Theorem 3.15, ARREF ¢qincides with the matrix
in Postnikov construction [54] for the same choice of face weights and the acyclic
orientation of G with respect to the lexicographically minimal base {1, 4}.

A natural bijection between dual positroid cells S/\T/lNN and S%\IN (see Defini-
tion 2.6) is associated to the operation of transposition of Kasteleyn matrices.

Definition 3.20 (Duality Transformation Between Networks) Let S XANN C
Gr™N(k n) be given and let G be a reduced planar bipartite graph with boundary
vertices of equal color representing S ATANN. Let f : G* — C* be a face weighting
of G: for any finite face €2; let f; = f(2;) € C* be the face weight of ;. Let
N = (G, f) be the corresponding network. Then the dual network N = (G, f) is
obtained from N by the following transformation:

(1) G is the dual graph to G obtained by changing the color of all vertices of G,
boundary vertices included;

(2) f is the reciprocal of the weighting f: if f; is the face weight of ; in A/ then
fi = 1/f; is its weight in V.

In Fig. 12 we assume that the face weights are real and positive: then the network
on the left represents a point in S /\T/[NN c Gr™N(2, 6) where the cell is the same as in
Fig. 3, whereas the one on the right represents the dual point in S%\I N'c Gr™N4, 6)
for the cell of Fig. 5.

Proposition 3.21 (Weighted Kasteleyn Matrices and Duality in Totally Non-negative
Grassmannians) Let G = (BUW, &) be a reduced planar bipartite graph in the disk
with white boundary vertices representing the positroid cell S /\T/IIVN C Gr™N(k, n).
Let [A] € T1 pq be the point represented by (G, f).

Then (a, 1/f) represents a point in [A] € Iy; C Gr(n—k,n), where My is the
dual positroid variety of Definition 2.6. In particular, if the face weights f are real
and positive, then [A] € S/\T/IlVN C Gr™N(k, n) and [A] € S%VN C Gr™Ny —k, n),

where S%VN is the dual positroid cell of Definition 2.6.

Finally, if K%' is a weighted Kasteleyn matrix for the network (G, f) and the
Kasteleyn signature o, then its transpose, (K% is a Kasteleyn matrix for the dual
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network (G, 1/f). In this case, the transformation of K°"" into the block form

N n
N (I

v : (3.18)
n—k \0 | A

provides a representative matrix A of [A].

Proof The transformed graph represents the dual positroid cell 157, and the face
transformation preserves the total non—negativity property. It is also evident that the
Kasteleyn weighted matrices of the dual networks are related by transposition (the
labeling of the black (respectively white) vertices of G becomes the labeling of the
white (respectively black) vertices of ?). Therefore

detA; = detA; = det(K7™"),

where o is a Kasteleyn signature for G = (BU W, £), and we assume a labeling of
the vertices satisfying Definition 3.10 and Remark 3.12. Finally, the transformation
of K% ¥ into the block form satisfies (3.18). O]

This map looks similar to the twist map studied in [52] to relate Postnikov
parametrization to the one introduced in [49] using dimer partitions, but this is
not so. Indeed in our setting the transformed point [A] belongs to the dual cell
S%\IN C GrTNN(n — k, n), whereas the twist map t in [49, 52] acts on face weights
as in Definition 3.20, but without changing the graph so that both [A] and 7 ([A])
belong to SATANN c Gr™N(k, n).

Let us apply the duality transformation to the Example of the previous Section.

Example 3.22 The network in Fig. 12 [left] represents the same point in Gr TNN (2, 6)
as in Example 3.19. As before the correspondence between edge and face weights is
fi= t5_31, Hh= tz_ll, f3 = t11 and f4 = t72153. For the labeling of the vertices in the
Figure, the transpose of the weighted Kasteleyn matrix (3.10) is

th =1 00 0 0 0 O O

npr 0 01 00O0O0O
1 0 00-10000O0
(K*HYI'=]1 0 1 0001000 (3.19)
0 0 30 0 0—-100
0 0 1000O0OT1O0
0 —t2 00 0 0 0 0-1
Using the correspondence det A; = det K?’wr, a representative matrix of [A] €

SN is ARREF defined in (3.17).

The network in Fig. 12[right] represents its dual point in Gr TNN(4, 6) and is
obtained changing the color of all vertices and inverting the face weights. By con-
struction (K?"")T is the Kasteleyn matrix of such dual network. Upon transforming
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(K*)T into the block form,

1 0 0|0 -1 O 0 0 0
0O 1 0|0 O 1 0 0 0
0O 0 1]0 O 0 0 1 0
0 0 0|0 m 1 0 0 0 (3.20)
0O 0 0|1 1 0 0 0 0
0O 0 0|0 O 0 —-1 -3 O
0O 0 0|0 O 1t O 0 —1

the point [A] € S%\IN c Gr™N(4, 6) is identified by the submatrix A in the SE
block; its reduced row echelon form is

1000 0 —to1(t11t72) !
JRREF _ 01000 (f1t72)”"

00100 —t)!

0001 t53 0

(3.21)

4 Kasteleyn Systems of Relations

In this Section we characterize Kasteleyn systems of relations on planar bipartite
graphs in the disk with black boundary vertices, and discuss their properties for the
natural choices V = C"~* R”". Then in Section 6 we use Kasteleyn system for V
the space of polynomials in a finite number of variables to solve a spectral problem
in KP theory. If V.= C"¥, the solution at the boundary vertices embeds a duality
transformation between positroid varieties different from the one of Proposition 3.21
since it does not preserve total positivity, whereas in the case V = R” the solution at
the boundary vertices allows to reconstruct the point in the positroid cell S/\TANN rep-
resented by the network when edge weights are positive. In Section 4.1 we compare
a different variant of Kasteleyn theorem recently proposed in [8] to the present con-
struction. We use both the representation of systems of relations on bipartite graphs
introduced in [8] and that in [45].

Definition 4.1 (Kasteleyn System of Relations for Black Boundary Vertices) Let
G = (BUW, &) be areduced bipartite graph with black boundary vertices and let
o : & — {£1} be a Kasteleyn signature satisfying Definition 3.2. For any given edge
weighting 7, : £ — C* we call Kasteleyn the system w® = {vlgk) :b € B}, Ry),
where:

(1) ( ) is an element in the vector space V assigned to the black vertex b € B;

(k)

2) At any given white vertex w € W, the variables v, * satisfy the linear relation

Ry ®) = 3" 6 (bw) 1y vk = > k" v =0, .1

beB beB

where K" is the weighted Kasteleyn matrix defined in (3.7).
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Since the Kasteleyn matrix has full rank |W)|, the kernel of the linear operator R,
has dimension n—k. Therefore a natural choice for the vector space is V = C"~*. Let
us denote Up, *) the variables at the boundary vertices b;, i € [n]. Then by construction
the followmg statement holds true.

Proposition 4.2 Let G = (BUW, &) be a reduced bipartite graph with black bound-
ary vertices such that M(G) is irreducible. Let 6 : €& +— {£1} be a Kasteleyn
signature on it. Then, for any given edge weighting tp,, : €& +— C*, there exists a
choice of v = {v(k) e C" %, b e BY, such that

(1) The vectors at the boundary vertices {v , I € [n]} span crk,

(2) The system of vectors solves the linear system at the white vertices: Ry, (v(k)) =

0, weW.

Remark 4.3 (The Case of White Boundary Vertices) A system of relations may be
also introduced if G = (BU W, &) is a reduced bipartite graph with white boundary
vertices. Given a Kasteleyn signature o and an edge weighting #;,,, we call Kasteleyn
the system @® = {v(k) cw € W}, Rp), where: v( ) is an element in the vector
space V assigned to the white vertex w € W, and, at any given black vertex b €

B, the variables o) satisfy the linear relation R,(t%)) = Zwewa(e)tbwv( ) =

> weww Ko wiE®) 0 with Ky as in (3.7). All results in this Section hold with
obvious modlflcatlons in this case as well after replacing n — k with k.

Next let us classify the solutions to the linear system.

Theorem 4.4 (Kernel of R,, and Euclidean Duality Between Positroid Varieties) Let
G = (BUW,E) be a reduced bipartite graph with black boundary vertices and
let o : & — {X1} be a Kasteleyn signature on it. Let tyy, : € — C* be a choice
of edge weights and let [A] € TIpq C Gr(k,n) be the point represented by the
network N' = (G, tpy). Let v® be a solution to the system of relations described
in Proposition 4.2. Then the (n — k) X n matrix A° whose columns are the ordered
vectors at the boundary vertices,

k k k
= (g v o) 4.2)

is orthogonal to [A] in the usual sense: if A = (Aij), i € lkl, j e [n]isa
representative matrix of [A], then

|
S

n
AT __ i ca0N
A (AT = ZAj(A ), (4.3)
= i€lkl,leln—k]
Moreover, if u® is another solution fulﬁlling Proposition 4.2 for the given choice of
edge weights, then the (n — k) x n matrix (ub , ug;) , ug;)) € [A?].

Finally the point [A°] is the point in the dual posttroid variety Ty, represented
by the dual network N = (G, f’) obtained from N by the following transformation.:
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(1) G is the dual graph to G obtained from it changing the color of all vertices,
boundary vertices included;

(2)  f' is the face weighting of G such that, if f; is the face weight of i in N then
fl/ is its weight in N, where

_ fi_l, if Q; is an internal face,
fl=1 Do fi_l if Q; is an external finite face and 2bg; is the  (4.4)
number of boundary vertices bounding2; ,

1
bg, = 3 #{b; boundary vertex : b; € 0Q; }. (4.5)

Equation (4.3) easily follows using the equivalent representation of the Kasteleyn
weighted matrix given in (3.13). We prove that [A°] is the point in [T represented
by the duality relation between networks described above in Section 4.1 using the
weak Kasteleyn signature introduced in [8].

We remark that if face weights are positive in the initial network, at least one face
weight fi’ is negative. Therefore the transformation between dual positroid varieties
described by (4.3) does not preserve the total non—negativity property since [A] €
S € Gr™N(k, n) is mapped to [A%] € Mg \S TN € Gr(n—k, m\Gr™N(n—
k,n).

There is a second interpretation for the system of relations of Definition 4.1.
Indeed we may freely assign quantities to n —k boundary vertices b;, j € I, for some
I € M(G), and solve the resulting [WW| x [W)] linear system in the |VV| unknowns
v b £bjel

Theorem 4.5 (Reconstruction of [A] Using the System of Relations) Let G = (B U
W, E) be a reduced bipartite graph with black boundary vertices and let 0 : £ +—
{£1} be a Kasteleyn signature on it. Let I = {1 < i] <ip < --- < iy < n} €
M = M(G) be a base in the positroid of the graph. For any given edge weighting
thw : € > RT let [A] € S/\T/IIVN C GrTNN(k, n) be the point represented by the
network N' = (G, tpy), and let its representative matrix A be the reduced row echelon
one with respect to the base I. Let vlgk) be n—row vectors, and let us assign Ej, the

J-th canonical basis vector, to v,(;;) at the boundary vertex b;, for any j € I,

k . =
v =Ej, jel (4.6)

Then the vectors vlgk) # 0 forall b € B, and v,(j:) at the boundary vertices i, € I
satisfy
— Alr], 4.7)

where E;_is the i,—th vector of the canonical basis and A[r] is the r—th row of A.

Proof (4.7) and the fact that vék) # 0 for all b € B easily follow using the
representation of the Kasteleyn matrix in (3.13). O
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Remark 4.6 (The Explicit Solution to the System of Relations in Theorem 4.5) In
Theorem 5.22 we give the explicit solution vlgk) € R” at all vertices using the rela-
tion between Kasteleyn and geometric systems of relations, and the solution to the
geometric system of relations in terms of flows and conservative flows proved in [5].

Remark 4.7 (Interpretations of the Linear System) Theorems 4.4 and 4.5 provide two
possible uses of the linear system: it provides both a natural parametrization of the
open dual variety and the parametrization of the positroid variety equivalent to the
boundary measurement map.

Example 4.8 Let us solve Kasteleyn system of relation for the network of Example
3.19 (see Fig. 13).

(1) First we solve system (4.9) using Theorem 4.5 so that v® are 6-dimensional
row vectors. In such case, we choose a base I € M and assign the canonical
basis vectors to v( ) , j € I.Forinstance if I = (1, 4) and

v = (0,1,0,0,0,0), v =(0,0,1,0,0,0),
(") =(0,0,0,0.1,0), v¥ =(0.0,0,0,0,1),

then we have three linear equations in the unknowns vl(jk), vl(j:) vg;).

(k) (k) (k)

tllvbo +t21U = —v,’,
. k k k k
RiwM) =0, jeBl = v = vl — v — 100,
k k
1531)1()4) = —vlgs)
(k)
R, Uy
t72 ° t11~R
1
f4 R3
f5 t21
£, |ts3 u Hof T
+ +
(k) (K) (k) (K) (k) (k)
Uy Vs Uy, Vb, Vs, Vb,

Fig. 13 Kasteleyn system of relation for the network of Example 4.8. The relation between face and edge
weights is as in (3.14)
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(k)

Its solution at the boundary vertices v, s i €1, satisfies

o = (0, —t3;". —15,'111. 0,0, t;l‘mrn): (1,0,0,0,0,0) — A[1],
vy = (0,0,0,0,0, —t53', 0) = (0,0,0, 1,0,0) — A[2],

where A is the reduced row echelon matrix with respect to the base (1, 4)
represented by the network in the Figure:

1t i1t 0 0 —t,; l‘]]l‘72
A= 21 21 21 4.8
(0 0 0 13" 0 ) (48)

(2) If we use Theorem 4.4, the variables vék) are 4-dimensional column vectors. We
have three relations at the white vertices

Ri") = luv(ﬁ) +tzlv;(,k) + vl(j;) =0,
Ry(w®) = v — vl — 17009 =0, 4.9)
R;w™) = t53v1(,f) + v,gl? =0,

so that its solution gives the point [A°] € [T537 C Gr(4, 6) represented by

1000 0 t(1t2)~ !

® k) *) 0100 0 (tit)!
=0t )= 0010 0 g
0001 —t53 0

and A - (A°)T = 0 with A is as in (4.8).
4.1 Weak Kasteleyn Signatures and Duality Relations in Positroid Varieties

In this Section we recall the definition and properties of another variant of Kasteleyn
Theorem proposed in [8] naturally connected to Postnikov boundary measurement
map. In the following, we call weak the Kasteleyn signature introduced in [8]; this
terminology is appropriate since the absolute value of the maximal minors of the
Kasteleyn matrix of [8] give the number of almost perfect matchings with prescribed
boundary conditions; however they do not share the same sign. Finally we complete
the proof of Theorem 4.4.

Definition 4.9 (Weak Kasteleyn Signature and Weak Kasteleyn Matrix) [8] Let
opy = =1 for each edge of G. They constitute a weak Kasteleyn signature if the
product of the signs along the boundary of each face is

@4_1 . . .
l—[ P { —1) 2 if 2 is an internal face;

12l
e (- 1) 2 +b9+1, if Q is a finite external face,

where 2 is the number of edges bounding 2 and bg, is half the number of boundary
vertices bounding 2.

If one labels the white vertices of G from 1 to |VV|, and the black vertices from
1 to |B], so that the boundary vertices share the highest labels of their color and are
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labeled in increasing order clockwise, then the |B| x [W| weak Kasteleyn sign matrix
K¢ associated to such data is

o S 5(6) ife= b,’wj,
Kij = { 0 otherwise. (4.10)

Ift : £ — C* is an edge weighting of G, then the weighted weak Kasteleyn matrix
Kov s

4.11)

Igo,wt
l 0 otherwise.

5 _{ﬂ@&ﬁezhw,
Weak Kasteleyn signatures exist [8]. Here we explicitly construct them starting
from Kasteleyn signatures satisfying Definition 3.2 (Fig. 14).

Proposition 4.10 (Construction of Weak Kasteleyn Signatures) Let G = (BUW, &)
be a reduced bipartite graph with black boundary vertices representing S /\T//lVN -
Gr™N(k,n) and let o be a Kasteleyn signature on it satisfying Definition 3.2.
Assume that the initial graph G has r = N + k white vertices and N + n black ver-
tices. Let G be the bipartite graph obtained from G adding a black boundary—adjacent
vertex by j next to each boundary vertex, changing the color of the boundary ver-
tices to white, relabeling the boundary vertices wyy j, and assigning unit weight to
the added edges ej = by jwyyj, j € [n]. The transformed graph G has N +n black
vertices and r + n white vertices. Then the signature

5(e) = {0’(6), if e is an edge common togandg; (4.12)

+1 ife=ej, jel[nl

is a weak Kasteleyn signature on G. ~
Finally any weak Kasteleyn signature on G is equivalent to that defined in (4.12)
up to the gauge transformation of Definition 3.8.

Proof The number of edges and the signatures are the same at each internal face.
At the finite external faces the total signatures are the same but the number of edges
differ by 2 bq. O

Fig. 14 We illustrate Proposition 4.10: the Kasteleyn signature of the graph G [left] is transformed into
the weak Kasteleyn signature of the graph G[right]
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The relation of weak Kasteleyn signatures to the boundary measurement map
has been proven in [8]. In next Theorem we prove a weaker version of such result
assuming that the graphs are related as in Proposition 4.10.

Theorem 4.11 (Weak Kasteleyn Signatures and the Boundary Measurement Map)
Let G and G be as in Proposition 4.10. Let [A] € TIpq C Gr(k, n) be the point rep-
resented by both networks (G, f) and (G, f). Lett : G — C* be an edge weighting
in the equivalence class represented by f, and let T be the edge weighting on G such
that T, = t, for any edge common to G and G, and tNej =1, j€[n]

Let o be a Kasteleyn signature on G and & be the weak Kasteleyn signature on
G fulfilling (4.12). Let K = K% be the corresponding weighted weak Kasteleyn

matrix. Then, for any k—element subset I = {1 < i) < iy < -+ < iy < n} the
Pliicker coordinates of A are
det A7 = (=1)°D det Ky, (4.13)

where§(I) = (i;j—1)+(i—2)+- - -+ (ix—k) and IZW\I is the minor oflz containing
all columns except those corresponding to the boundary vertices in I, and all rows.

Proof Under the hypotheses, the weak Kasteleyn matrix K for (G, &) is obtained
from the Kasteleyn matrix K for (G, o) by adding to its right a block containing the
identity matrix

K=|K ) (4.14)
Id,
Therefore, if we use (3.13) to transform K into block form, we get

N k n
N/IdN\ 0\0\

n « | AT | 1d,)
\« | a7 |14,/

(4.15)

and it is straightforward to check that
det A; = det(—1)°D det Ky,

where notations are as in (4.13). Finally [A] € [1 4 is the point represented by the
network (G, f) because of Theorem 3.15. O

Corollary 4.12 Under the hypotheses of Theorem 4.11, the minors of K are real,
but do not share the same sign for any given choice of real positive face weights.
Moreover, in case of unit weights | det I%W\ 1| equals the number of almost perfect
matchings M of G such that OM = 1.

Next, if one introduces the system of relations for the weak signature, then its
kernel provides the point [A] € IT represented by the given network [8].

Theorem 4.13 (Construction of the Representative Matrix of the Network Using
the System of Relations for the Weak Kasteleyn Signature) [8] Letr [A] € TIpq C
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Gr(k, n) be the point represented by the network (Q~, thw), Where G = BUW, &)
is a reduced bipartite graph with white boundary vertices, and tpy, : € — C* an
edge weighting. Let & : € — {£1} be a weak Kasteleyn signature on G, and K =

0 " be the weighted Kasteleyn matrix for these data. Let the weak Kasteleyn system
(v(k) Rp) be defined as follows:

(D vl(u) is an element in the vector space C* assigned to the white vertex w € W;
(2) At any given black vertex b € B, the variables 17,(1],( ) satisfy the linear relation
Ry(3®) = 3" s(@nui® = Y K% =0, (4.16)
weW weW
Then, there exist solutions to the above system such that the vectors at the boundary
vertices {f).(k), i € [n]} span RX, and in such case the k x n matrix A whose columns

50 , I € [n], at the boundary vertices,

~(k) ~(k ~
= @, 50, 5%,

are the vectors v;

represents [A].

In particular, if one restricts the map to the real positive octant, the kernels of the
corresponding weighted weak Kasteleyn matrices span S/&NN.
Let us now complete the proof of Theorem 4.4:

Proof Let (G, f) be the network with black boundary vertices representing [A] €
ITp4 in the statement of Theorem 4.4, and let (G, f) be the equivalent network
obtained from it adding a black boundary—adjacent vertex next to each boundary ver-
tex, and changing the color of the boundary vertices to white. Let o be a Kasteleyn
signature on G and & the weak Kasteleyn signature on G fulfilling (4.12). Then the
weak weighted Kasteleyn matrix K on (G , thw, 0) (see (4.10)), where 1, is an edge
weighting for the network (G, f), has maximal rank by construction and may be put
in the block form

4.17)
By Theorem 4.13, A is orthogonal to A:
AAT =o. (4.18)
Therefore [A] and [A°] in Theorem 4.4 are the same point in Gr(n — k, n)
[A] = [A].
Next, let N7 = (G, f/), be the network such that
= { fi if ©; is an internal face,
(—D)Pe f; if Q; is an external finite face with 2bg boundary vertices,
4.19)
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and let o’ be the Kasteleyn signature on G satisfying (3.3),

o' (e) = o(e), if e is an edge common to both graphs;
PTVDI ife=e;, jelnl

Then, t, = 06,1, is an edge weighting for the network @, f7), and K coincides
with the Kasteleyn matrix for the data G, [, o) (see (3.7)).
A network representing [A] = [A°] € Ty is obtained applying Proposition 3.21:

start with the network (Q: . f) and apply the duality transformation of Definition 3.20.
Then the network (G’, f') represents [A°] where:

(1) G’ is the dual graph to G obtained by changing the color of all vertices of G,
boundary vertices included;

2) f/,- = (fl/)_1 =(— l)bQi (f)~!, where 2bg; is the number of boundary vertices
bounding the face €2; and thus it satisfies (4.4). O]

We illustrate Theorem 4.4 and the duality relations of the two Kasteleyn signatures
for the networks in Fig. 15. The two networks represent distinct points in the positroid
variety ITpq C Gr(2, 6) indexed by the derangement 7 = (6, 1, 2, 5, 4, 3): indeed
they share the same graph, but have different face weights. Assume f; > 0, i € [4].
The graph on the left has face weights f = (fi, f2, f3, fa) and has a weak Kaste-
leyn signature, whereas on the right graph the face weights [ = (f], f5. f3. fy) =
(—f1, — f2, — f3, fa) satisfy (4.19) and the signature is Kasteleyn. We mark in blue
the edge weights different from one on the graphs.

The weighted weak Kasteleyn matrix for the network (G, f) and the weighted
Kasteleyn matrix for the network (G, f') coincide and we denote both of them K s

t;y =1 0000000
npr 0 0100000
1 0 0010000
0 1 0001000

0 0 %3000100

0 0 1000010

0 -2 0000001

Applying Theorem 4.13, a matrix for the point [A] € S LNN c Gr™N(@2, 6)
represented by the network (G, f) is

-1 -1 —1
1 Iy Iyt 00 —1y 1111‘72>.

A = (Uw4’ Uwsa Uw6a UIU7a Uwga Uwg) = ( —1
00 0 113 0

Then Theorem 3.17 provides a matrix for the point [A’] € TIx\S /;F/INN -
Gr(2,6)\Gr™N(2, 6) represented by the network (G, f):

A = 1 —t2_11 t2_11t11 0 O t2_11t11t72
00 0 1-t3 0 '
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w2

b
At
— Y +

Fig. 15 The signature on the left is weak Kasteleyn, whereas on the right the signature is Kasteleyn. The
face weights of the two networks are related by (4.19); therefore the weighted weak Kasteleyn matrix
associated to the network on the left coincides with the weighted Kasteleyn matrix of the network on the
right

Finally, trasfogming K to the block form as in (4.17), we obtain the matrix
representing [A] € Gr(4, 6)

1000 O ni(tit)”
0100 0 (tiitn)~!
0010 0 1)
0001 —1s53 0

2
Il

Summarizing, we have the following relations:

(D [A] is dual to [A’] in the sense of Definition 3.20 and Proposition 3.21, therefore
[A] € MM+ \S TNN Gr(4, 6)\GrTNN(4 6) where M is the dual positroid to
M;

2) [A] is dual to [A] in the sense of (4.18), thatis AAT = 0;

(3) [A] = [A°] where A? is the matrix constructed in Theorem 4.4.

4.2 Lam Representation of Systems of Relations

In this Section we recall an alternative representation of systems of relations origi-
nally introduced in [45] to provide a mathematical framework for the computation
of scattering amplitudes on on—shell diagrams for N = 4 SYM theory [10]. Lam
formulation involves variables on directed half—edges, and Kasteleyn system of rela-
tions may be equivalently expressed in this form. We shall apply Lam representation
in Section 5 to construct the solutions to Kasteleyn systems of relations.

Definition 4.14 (Lam System of Relations) [45] Let (G, O) be a reduced planar
bipartite graph in the disk with black boundary vertices and perfect orientation O. Let
€ : £ — {0, 1} be a signature defined on the oriented edges of the graph, and let #,,
be the weight of the oriented edge ¢ = iv. Then Lam system of relations associated
to such signature on the directed network (G, O, t,,) is the following system in the
formal half-edge variables z,, .:

(1) Forany edge e = ud, zy.e = (=) ©t,020.;
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(2) Ife;, i € [m], are the edges at an m-valent white vertex v, then ) /- | zy ¢, = 0;
(3) Ife;, i € [m], are the edges at an m-valent black vertex v, then z, ¢, = zy,e; for
alli, j € [m].

Signatures on oriented graphs form equivalence classes with respect to the
following gauge equivalence transformation.

Definition 4.15 (Equivalence Between Edge Signatures) Let ¢ and €¢® be two
signatures on the perfectly oriented reduced bipartite graph (G, O). We say that the
two signatures are equivalent if there exists an index n(u) € {0, 1} at each internal
vertex u such that

eW(e) + n(u) +n(w) mod 2, ife= v is an internal edge,

e?® e =1 D)+ n(u) mod 2, if e = uv is the edge at the boundary sink v,
eW(e) + n(v) mod 2, if e = ub is the edge at the boundary source u.
(4.20)

If a system of relations has full rank for one signature, it has also full rank for any
other signature equivalent to it and the solution at the boundary vertices is the same
[45].

Next, let us reformulate Kasteleyn system of relations as a Lam system for half-
edge variables.

Proposition 4.16 (Kasteleyn System in Lam Form) Let G = (BUW, &) be a reduced
planar bipartite graph in the disk with black boundary vertices. Let o : £ — {1}
be a Kasteleyn signature on G, and let tp, ,, : € +— C* be an edge weighting on the
undirected graph. Let (W%, Ry) be a Kasteleyn system of relations for such data as
in Definition 4.1 on some vector space V. Let O be a perfect orientation on G. For
any edge e € £ define

N )0 fole)=1;
¢ (e)_{1 oo — 1. 421

and let Z,(lkl € V be the Lam variables in Definition 4.14 where we use (2.4) to pass

to the edge weights on the directed graph:

thw, ifu=w, v=>b;
Ly = [*1 ifu—=hb _
s SUu=Db, v=w.

Then Lam system of relations for the signature € is equivalent to Kasteleyn system
of relations for the signature o using the following correspondence:

(1) zpe= vék) at any given black vertex b € B and for any edge e at b;

2) zZwe= J(e)tb,wvl()k) at any given white vertex w € VW and for any edge e at w.

Therefore Theorems 4.4 and 4.5 may be reformulated for Lam system of relations.
In particular, if V.= R" and we restrict ourselves to equivalence classes of positive
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edge weights, then the solution to Lam system of relations at the boundary vertices
induces Postnikov boundary measurement map.

Corollary 4.17 (Invariance of the Signature € ©)) Ler € be a signature in the equiv-
alence class of €® on the perfectly oriented graph (G, ©). Then Lam system of
relations for the signature € has full rank for any choice of positive real weights and
for any perfect orientation of G.

In particular, if 7, = (—l)e(e)tuvzu,efor the oriented edge e = uv, then Ly,—e =
(—1)6(6)4;]12,},_6 for the reversed orientation —e = i,

5 The Geometric Nature of Kasteleyn Signatures

In this Section we investigate the geometric nature of Kasteleyn signatures by refor-
mulating the results in [5, 7] in the setting of perfectly orientable reduced bipartite
graphs, and providing the explicit relation between Kasteleyn and geometric signa-
tures (Theorem 5.20). For the wider class of planar bicolored graphs used in [5],
formula (5.22) in Theorem 5.20 defines the natural candidate for a Kasteleyn signa-
ture. Therefore we conjecture that geometric signatures explicitly realize Kasteleyn
signatures for the more general variant of Kasteleyn Theorem in [59], and are there-
fore naturally connected to dimer models also for the more general class of graphs
used in [5].

The main consequence of Theorem 5.20 is Formula (5.24) in Theorem 5.22 which
provides the explicit solution of Kasteleyn system of relations in terms of edge flows
and conservative flows on the perfectly oriented network.

5.1 Loop Erased Walks, Edge Flows and the Geometric Construction of Vectors on
Edges

In [5] the components of the edge vectors have been defined through summations
over all walks sharing both the initial edge and the final destination to the boundary,
and they have been computed explicitly using loop—erased walks [23, 46] and flows
[60]. Below we recall these results restricting ourselves to reduced planar bipartite
networks in the disk with black boundary vertices.

In [5] the many gauge freedoms on the graph are fixed introducing a gauge ray
direction. A geometric signature is then assigned to each path in terms of the sum-
mation of the local winding number between consecutive edges, and of the number
of intersections of its edges with the gauge rays starting at the boundary sources.

Definition 5.1 (The Gauge Ray Direction [) A gauge ray direction is an oriented
direction [ with the following properties:

(1) The ray with the direction [ starting at a boundary vertex points inside the disk;
(2) No internal edge is parallel to this direction;
(3) All rays starting at boundary vertices do not contain internal vertices.
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The first property may always be satisfied since one may deform the boundary of
the disk so that all boundary vertices lie at a common straight interval.

Gauge ray directions were used in [26] to measure the local winding number.
The local winding number between a pair of consecutive edges e, ey measures
whether or not the triple (ex, [, ex+1) is ordered, and the sign depends on whether
such ordering is clockwise or counterclockwise.

Definition 5.2 (The Local Winding Number at an Ordered Pair of Oriented Edges)
For an ordered pair (e, ex+1) of oriented edges, define

+1 if the ordered pair is positively oriented
s(ex, ex+1) = 3 0 if ex and e, are parallel 5.1
—1 if the ordered pair is negatively oriented

Then the winding number of the ordered pair (e, ex+1) with respect to the gauge ray
direction [ is

+1 if s(ek, ex+1) = s(ex, [) = s(l, ex1) = 1
wind(ex, ex+1) = | —1 if s(ex, ex+1) = s(er, ) = s(I, ex1) = —1 (5.2)
0 otherwise.

Next, one counts the intersections of gauge rays with a given path using the rays
[;, parallel to [ and starting at the boundary source vertices b; , r € [k], where [ =
{i1 < i» < --- < ix}is the base of the given perfect orientation (see Fig. 16 for an
example).

Definition 5.3 (The Intersection Number at an Oriented Edge) Given a perfect ori-
entation O(I) on the graph and a gauge ray direction, the intersection number int(e)

Fig. 16 The local winding number at an ordered pair of oriented edges and the intersection number of
gauge rays starting at the boundary sources with an oriented edge depend on the choice of gauge ray
direction [

@ Springer



35 Page 38 of 64 Math Phys Anal Geom (2021) 24: 35

for an edge e is the number of intersections of the gauge rays starting at the bound-
ary sources with e. For each intersection of /; with e we assign 41 if a pair ([, e) is
positively oriented, and —1 otherwise.

In Fig. 16 we illustrate the above definitions. It is straightforward to check that
int(e3z) = 1, int(ep) = int(ejp) = —1, wind(esy, e2g) = —1, wind(egq, e12) = 0.

Next we adapt the construction of edge vectors in [5] to the case of bipartite graphs
and introduce a system of edge vectors for all edges e with initial vertex colored
black. In [5] edge vectors are defined also when the starting vertex is white since the
directed graph is not assumed to be bipartite.

Remark 5.4 In the following, we assign the edge vector at e = b_u)) to its initial black
vertex b since there is a unique edge starting at b in a perfectly oriented graph. For
this reason we modify the notation of [5] and denote edge vectors Ej, where b is the
initial vertex of the path.

The j—th component of the edge vector Ej is defined through a (finite or infi-
nite) summation over all walks starting at the given edge ¢ and ending at the same
boundary sink b;.

Definition 5.5 (The edge vector Ej, [7]) Let G = (BUW, &) be a perfectly oriented
reduced planar bipartite graph in the disk with black boundary vertices. Let [ be a
given gauge ray direction and 7, be a positive edge weighting on G. For an oriented
edge e with initial black vertex b, consider all possible walks (directed paths) P :
b — bj, such that the first vertex is b and the end point is the boundary vertex b,
J € [n]. Then the j-th component of Ej, is defined as:

(Eb)J — Z (—I)Wind(P)Jrin[(P)U)l(P), (53)
P:e—b;j
where, for P = {e] = e, e, ..., en},

(1) The weight wt (P) is the product of the weights z,, of all edges ¢; in P, w(P) =
[T te:
(2) The generalized winding number wind(P) is the sum of the local winding
numbers at each ordered pair of its edges wind(P) = Zk:_1l wind(ey, ex+1),
with wind (e, ex+1) as in Definition 5.2;
(3) int(P) is the number of intersections between the path and the rays [; , r € [k]:
m
int(P) = )_ int(ey), where int(e;y) is the number of intersections of gauge rays
s=1

[;, with e.
If there is no path from b to b, the j—th component of Ej is assigned to be zero.
In particular, by definition, if e = bb;, with b; boundary sink, then the vector Ej
is
(Ep)k = (=)™ Pw(e)djs. (5.4)
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Next, (5.3) is expressed as a summation over equivalence classes of walks using
the notion of loop—erased walk. Loop—erased walks are extensively used in the study
of random walks [46] and have been reformulated for directed graphs in [23] to prove
the total non—negativity property of the boundary measurement matrix in terms of
infinite summations over edge weights.

Definition 5.6 (Edge loop-erased walks) Let G = (BUW, &) be a perfectly oriented
planar bipartite graph in the disk with black boundary vertices. Let P be a walk given
by
vozbeifl Vi 2 Vo — ... = by,

where Vp = b € V is the initial black vertex of the edge e. The loop-erased part of P,
denoted L E(P), is defined recursively as follows. If P does not pass any edge twice,
then LE(P) = P. Otherwise, set LE(P) = LE(Py), where Py is obtained from P
removing the first loop it makes; more precisely, given all pairs /, s with s > [ and
e; = ey, one chooses the one with the smallest values of / and s and removes the cycle

€s—1

el €l+1
Vi=>Vigr = Vipp—> ... > Vg,

from P.

Remark 5.7 For initial black vertices, the definition of edge—loop erased walk coin-
cides with the definition of loop—erased walk in [23]. If the initial vertex of the walk
is white, the above definition does not coincide with that in [23] (see [7]).

With this procedure, to each walk starting at ¢ = (b, w,) and ending at the
boundary sink b, one associates a unique edge loop-erased walk L E(P), where the
latter walk is acyclic. Then one formally reshuffles the summation over infinitely
many paths starting at b, and ending at b; to a summation over the finite number §
of equivalence classes [L E(Ps)], each one consisting of all walks sharing the same
edge loop-erased walk, LE(P;), s € [S]. Let us remark that int(P) — int(LE (Py))
= 0 (mod 2) for any P € [LE(Ps)], and, moreover, wind(P) — wind(L E(Py)) has
the same parity as the number of simple cycles of P. Then, (5.3) is equivalent to

N
(Ep) ;= Z(_1)wind(LE(Px))Jrint(LE(P_;)) Z (—1)Wind(P)=wind(LE(P)) ,  py
s=1 P:e—bj
PE[LE(P))]
(5.5)
The definitions of flows and conservative flows in [60] have been conveniently
adapted in [7] to provide the explicit expression of the above summations. The con-
servative flows are collections of non-intersecting simple loops in the directed graph
G. In our setting an edge flow Fe,bj in ]-"e,bj (G) is either an edge loop-erased walk
P p; starting at the edge e and ending at the boundary sink b; or the union of P p;
with a conservative flow with no common edges with P, bj-
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Definition 5.8 (Conservative flow [60]). A collection C of distinct edges on G is
called a conservative flow if

(1) For each interior vertex V; in G the number of edges of C that arrive at Vj is
equal to the number of edges of C that leave from V;
(2) C does not contain edges incident to the boundary.

The set of all conservative flows C in G is denoted C(G).
The weight w(C) of the conservative flow C is the product of the weights of all
edges in C. Unit weight is assigned to the trivial flow with no edges.

The following definition of edge flow coincides with the definition of flow in [60]
if e starts at a boundary source except for winding and intersection numbers. In [7]
edge flows are defined also for white vertices.

Definition 5.9 (Edge flow at e [7, 60]) A collection F, of distinct edges in G is called
—
edge flow starting at the edge e = €1 = b,, w,, if

(1) ee€Fe

(2) For each interior vertex v # b,,, the number of edges of F, that arrive at v is
equal to the number of edges of F, that leave from v;

(3) At b,, the number of edges of F, that arrive at b,, is 0;

(4) It contains no edge at a boundary source, except possibly e itself.

Fep;(G) denotes the set of all edge flows F starting at the edge e and end-
ing at the boundary sink b; in G. An element Fep, € Fe; (G) is the union of
an edge loop-erased walk P, 5, with a conservative flow with no common edges
with P p; (this conservative flow may be the trivial one). The following triple
(W(Fe,p;), Wind(Fe p;), Int(Fe p;)) is assigned to Fep;:

(1) The weight w(F ;) is the product of the weights of all edges in Fe p;.
(2) The generalized winding number wind(Fe,bj) is the winding number of its
loop—erased part:

wind(F, ;) = wind(Pe p,); (5.6)

(3) The intersection number int(Fe,p;) is the intersection number of its loop—
erased part:

int(Fep;) = 1nt(Pep; ). 5.7

Remark 5.10 In [7] it is proven the following relation between Postnikov topological
winding number of a path Wind(P) from the boundary source b; and the boundary
sink b}, and its generalized winding number wind(P):

Wind(P) + o (ir, j) = wind(P) + int(P), mod 2,

where o (i, j) is the number of boundary sources strictly between b;, and b;.

In [7], Theorem 3.2 in [60] is adapted to prove that the components of E;, defined
in (5.3) are rational expressions in the weights with subtraction-free denominator and
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an explicit expression for them is provided in terms of edge flows and conservative
flows.

Theorem 5.11 (Rational Representation for the Components of Vectors Ej, [7]) Let
(G, O, 1) be a reduced planar bipartite graph in the disk representing the irreducible
prositroid cell S/\T/ItVN C Gr™N(k, n), with perfect orientation © = O(I), where
I ={l <i <iy<- <iy <n} e M, and gauge ray direction . Let t, be a
positive edge weighting on G and let [A] € S/\TANN be the point represented by (G, t,).

Then (Eb)j, the j—th component of the vector Ep in (5.5) with e = 171), is a
rational expression in the edge weights with subtraction-free denominator:

Z ( _ l)wind(F)—Hnt(F) wt(F)
FeFey; (©)

(Ep); = , (5.8)

> w)
CeC(9)
where notations are as in Definitions 5.8 and 5.9. Moreover, if]-'e,bj (G) # @, then
(Ep)j #0.

In particular, if the graph is acyclically oriented, then the denominator in (5.8)
equals 1, and the sum wind(F) + int(F) is the same for all F € Fe p, (G). Therefore
in such case the j—th component of Ey, is an untrivial polynomial in the edge weights
with coefficients sharing equal signs if Fe p;(G) # 9.

Finally, if b is the boundary source b;,, then (5.8) becomes

2 FeFy, 4G WF)
> cecig) w(©)

where M;; is the entry of Postnikov boundary measurement map with respect to the
base I defined in (2.7), and o (ir, j) is the number of elements of 1 strictly between
ir and j. Therefore, if we assign the j-th canonical vectors E to the boundary sinks
bj, j € I, the edge vectors at the boundary source are

Ep, = Alr]l - Ei,, r € [k], (5.10)

(Ev,); = (=1)""" = 07" My (59)

where A;- = (—l)a(i"j)Mij, r € [kl, j € I, are the entries of the boundary
measurement matrix A representing [A), and E; _is the i,—th canonical basis vector.

Remark 5.12 1f the graph is reducible, it may happen that (Ep); = 0 even if
Fe; () # B [5].
5.2 The Geometric Signature and the Geometric System of Relations

In this Section we recall the geometric formulation of a signature and of its full rank
system of relations following [5], and reformulate it in a form suitable for comparison
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Fig. 17 The geometric relation at the white vertex w follows from the definition of Ey, , i € [3]

with Kasteleyn system of relations. Using the notations of Fig. 17, we remark that

a path with initial edge b3w necessarily passes either through the vertex by or by
(for simplicity we assume w trivalent). Then, by definition, the vectors Ej,, i € [3],
satisfy the following geometric relation at the white vertex w:

(_l)int(e3) 1+int(e31)+wind(e3,e31)+wind(e3;,eq)
Eb3 + (_1) 31 3,€3] 31,€1 tw—)blEbl

bzw
4 (1) Hint(ex)+wind(es,e3)+wind(e.e2) top Evy = 0. (5.1D)

If b3 is a boundary source, we write the above formula as

(=DltHine I-int(esy)-+wind(es,e3))-+wind(esp e1)
mt(e wind(es,e wind(esy,e
—(—Eb3)+(—1) 31 3,31 31,€1 tmEbl

1—>
byw
+(_ 1)1+im(e32)+wmd(e3’632)+Wind(632’62)tw.>b2 Eb2 — 0’ (512)

to stress the analogy between (5.10) and the solution to Kasteleyn system of relations
in Theorem 4.5.

Following [5], we introduce the following signature on the edges, where notations
are consistent with Fig. 18.

Definition 5.13 (The geometric signature on (G, O, ) [5]) Let (G, O, I) be a reduced
bipartite graph with black boundary vertices representing the positroid cell S 'AT/[NN -
Gr™N(k, n), where O is a perfect orientation for some base / € M and [ is a gauge
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e ey €1 €y
u , v . U, Vv
g(e) = int(e) g(e) = 1 + int(e) + wind(e,, ) + wind(e, es)

e, es e es

ey Yl

i =int(e)+1 U

b e(e) = int(e) e b g(e) =1+ int(e) + wind(eq, €)

e

5 e,

Fig. 18 The geometric signature at the edges of an oriented bipartite graph with black boundary vertices

ray direction. We call a signature on (G, O, I) geometric if it is equivalent in the sense
of Definition 4.15 to the following signature €® &> {0, 1} on (G, O, I): for any
edge e = u e & s

int(e) mod 2, if v is white;
int(e) +1 mod 2, if u is a boundary source;
@ (o) = 1 + int(e) + wind(ey, e) + wind(e, es) if v is black internal, e
mod 2, ends at i and es starts at v;
1+ int(e) + wind(e;,e) mod 2, if v is a boundary sink and
e; ends at u.

(5.13)

In Fig. 19 we compute the geometric signature on the edges of the directed graph
of Fig. 16. In [5] geometric signatures are defined in the more general case of plabic
graphs in the disk with no reference to the color of the boundary vertices.

In [5] it is investigated the dependence of the geometric signature on the many
gauge freedoms of the graph.

Theorem 5.14 (The Effect of the Graph Transformations on €® [5]) Let G be a
reduced planar bipartite graph in the disk. Then the following elementary transfor-
mations: change of orientation along a cycle, change of orientation along a simple
directed path ‘P from the boundary source b; to the boundary sink b;, change of
gauge ray direction or internal vertex position change (which locally modifies wind-
ing and intersection numbers) act on the geometric signature as gauge equivalence
transformations in the sense of Definition 4.15.

Therefore the equivalence class of €€, the geometric signature of Definition 5.13,

depends only on the graph. Let us denote € (£2) the total contribution of €(® at the
edges e bounding the face Q:

€@ Q) = Z €®(e). (5.14)

eco2
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Corollary 5.15 (Equivalence Class of €& Depends Only on the Graph [5]) Let G
be a planar reduced bipartite graph in the disk representing the positroid cell S /\T/IIVN .

Let eig), eég) be two geometric signatures respectively on (G, Oy, 1) and (G, O3, I),

where O; and l;, i € [2], respectivaly are perfect orientations of G and gauge ray
directions. Then at each face 2

e® (@) =e®(Q) mod 2.

Therefore there exists a unique geometric signature €'®) on G modulo the gauge
equivalence described in Definition 4.15.

The solution to Lam system of relations for the geometric signature provides a
representation of the edge vectors Ej, equivalent to that in Theorem 5.11 and induces
Postnikov boundary measurement map for the class of graphs studied in [5]. Below
we restate such Theorem in the present setting.

Theorem 5.16 (Lam System for the Signature €®) [5]) Let G be a reduced bipar-
tite graph with black boundary vertices representing the positroid cell S /\T/[NN -
Gr™N(k, n). Let © = O(I) be a perfect orientation for the base I = {1 < ij <
irp < +-- < iy < n}andlet!|bea gauge ray direction. Let €® . & {0, 1} be the
geometric signature defined in (5.13) for the triple (G, O, ). Let z be variables in
R". Then

(1) Lam system of relations of Definition 4.14 for such signature has full rank on
(G, O, 1, t,y) for any choice of real positive edge weights t,,;

Fig. 19 The geometric signature of Definition(5.13) for the directed graph of Fig. 16. The directed network
represents the same point in Gr(2, 6) of Fig. 11

@ Springer



Math Phys Anal Geom (2021) 24: 35 Page 45 of 64 35

(2) For any black vertex b, the j—th component of the half-edge vector zl(fz coin-

cides with the j—th component of the edge vector Ey, computed in Theorem 5.11:

Z (_ l)wind(F)+int(F) w(F)

(g E FEJ:e,hj(g) 5 15
@)y = (Ep); = IR L G5)
ceC(9)
(3) Ifwe assignthe j-th basis vector E; at the half edge vector zl(fj) at the boundary
sink bj,

o, =E;,  jel (5.16)

then the half-edge vector Zl(;,?) . at the boundary source i, € I is
o = Ei, — Alr], (5.17)

where A[r] is the r—th row of the boundary measurement matrix represented by
the network (G, 1, t,y), and E;_is the i,—th vector of the canonical basis;

4) Iff,;v is an edge weighting equivalent to t,, on (G, O, ) and Zl(fg denotes the
solution of Lam system of relation for the same signature €®) and identical
boundary conditions at the boundary sinks, then the solutions of the two systems
coincide at the boundary sources i, € I:

80, =22, (5.18)

(5) Ifé is gauge equivalent to €®) and %, denotes the solution of Lam system of
relation for the new signature €, an equivalent edge weighting to t,, and iden-
tical boundary conditions at the boundary sinks on (G, O, 1), then the solutions
of the two systems coincide at the boundary sources i, € 1:

Bhye =24 o (5.19)

Remark 5.17 Theorems 5.16 and 4.5 look evidently related (see also Proposition
4.16) except for the fact that Kasteleyn signature is defined on an undirected graph
whereas the geometric signature is constructed on the same graph but perfectly ori-
ented. In Theorem 5.20 we verify that the geometric signature is equivalent to the

Kasteleyn signature, and in Theorem 5.22 we provide the relation between z}()k; and
zzgi at the internal vertices.

We end this Section illustrating Theorem 5.16 for the example in Fig. 19.
Example 5.18 The network in Fig. 19 is oriented with respect to the base I = {3, 5}

and equivalent to the undirected network of Fig. 11 and Example 3.19. Lam system
of relations for the geometric signature of Definition 5.13 takes the following form:
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(1) At the oriented edges, the following relations hold:

(€] _ ©  _ (€3] (€3] _ @ _
Zwren = (_I)EHZzlzb].e” - IZIZbl,eH ’ Zwien = (_l)ﬂzzbz,elz = by enn
8
@ (DO oy Zuy e © (e ® —_®
boeon T T Zwy,eqr = n Zwy,e0 = Zho,er0 = " Cby.en’
Zl()f?ezz = (_1)63221(52),632 = Zl(ﬁz),fsz’ Zl(fz),eza = (_1)626”%1(:?@5 =-n Z;fi?ezs’
o (2 :
[0 D @ bien O (Cem® o
w3,e34 — 153 by,e34 I53 ’ bs.es3 w3,e53 — ~W3,€53 2
(2) At the internal black vertex bg, we have the relation
@ _ _(©
Ly, = Lbo.eor’
(3) At the internal white vertices w;, j € [3], we have the relations
Zifl),em + Zl(ﬁl)-ell + fol),mz =0, 2552),632 + 1552),620 + Zl(fz),ezo =0, Z1(111;,3)-853 + Zfdi),eu =0.

If we assign the canonical basis vectors to the half-edges at the boundary sinks

Zl(j?en = (1,0,0,0,0,0), Zg?elz = (0.1,0,0,0,0), ZI(;E?EM = (0,0,0,1,0,0),
2 = (0,0,0,0,0, 1), then the half-edge vectors at the boundary sources are as
be,e26
expected
2, = (—tary' —171,0,0,0, 172) = (0,0, 1,0,0,0) — A[1],
242y, = (0,0,0,=153,0,0) = (0,0,0,0, 1,0) — A[2],
where

A= t21t1_11 tl_ll 1 00—
0 0 031 O
is Postnikov boundary measurement matrix for the directed network in Fig. 19 with
respect to the base / = {3, 5}. If we compare this solution to that of Kasteleyn system

of relations for the equivalent undirected network (see Example 4.8 (1)), for the same

boundary conditions at the boundary vertices j € 1, Ul(j,{) = Zl(;(?)e”’ v}(f;) = Zl(é)m,

& _ (&) & _ (&) o : :
Vb, = Zby e3> by = Zbgoengs 1L 1S straightforward to check that at the internal black

vertex by,

(k) _ -1 —1 _ o _ (@
vbo - (_t2]t11 ) _tll ’ 07 07 05 0) - ZbOveol — ZbanZO’
and at the boundary vertices b;, i € I
k) _ (&) k) _ (&)
Uby = Zbyen Vbs = Zbs,es

In Theorem 5.22 we indeed show that the above relations hold in general.
5.3 Geometric Signatures are Kasteleyn

From the characterization of Kasteleyn signatures on reduced bipartite graphs pre-
sented in this paper and Theorem 5.19 in [5] there follows the equivalence between
geometric and Kasteleyn signatures(Theorem 5.20). Therefore explicit solutions of
Kasteleyn systems of relations are expressed in terms of flows (Theorem 5.22). In
particular, the equivalence between Postnikov parametrization of positroid cells via
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the boundary measurement map and Speyer parametrization via maximal minors of
Kasteleyn weighted matrices (see [59] and Theorem 3.15) follows also from the
geometric characterization of Kasteleyn signatures (Corollary 5.23).

Theorem 5.19 (The Total Geometric Signature at Faces [5]) Let G be a planar bicol-
ored graph representing the irreducible positroid cell S /\T/[NN c Gr™N(k,n), and
such that, upon fixing a perfect orientation, for any edge of G there is a directed path
from boundary to boundary containing it. Let €'®) be a geometric signature of G. Let
€@ Q) = Y ecsn €@ (e) be the geometric signature of the face Q, and let ny(S2)
denote the number of internal white vertices bounding 2. Then

(2) | ne(@)+1 mod 2, if Q is a finite face;
) = { ny () +k mod 2,  if Q is the infinite face. (5.20)

If G is reduced bipartite with black boundary vertices,

n(@) = 4
2
where |€2| is the number of edges bounding the face €2. Therefore for any given geo-

metric signature €® (¢) on the reduced bipartite graph G, (—l)f(g)(e) is a Kasteleyn
signature. Vice versa for any given Kasteleyn signature o (e) on G, then

0, ifo(e) =1,
E(e)_{l, ifo(e) = —1,

is an element in the equivalence class of €& since it satisfies (5.20).

Theorem 5.20 (Equivalence Between Kasteleyn and Geometric Signatures) Let G =
(BUW, &) be a reduced planar bipartite graph in the disk with black boundary
vertices representing the positroid cell SAT/?VN C Gr™N(k,n). Leto : £ — {£1} and
€ : & {0, 1} be such that

a(e) = (=D). (5.21)
Then o is a Kasteleyn signature on G if and only if € is a geometric signature on G.

Moreover in such case, for any finite face 2, its Kasteleyn signature, o (2) =
]_[6639 o (e), and its geometric signature €(2) = Zee&Q €(e), are related as follows:

() = (=), (5.22)

Conjecture 5.21 In the more general setting of Theorem 5.19, the number of internal
white vertices bounding 2, n,, (2), represents the number of relations involving the
edges bounding Q2. In such case, formula (5.21) defines the candidates for Kasteleyn
signatures for the graphs considered in [5]: A function o : € — {£1} is a Kasteleyn
signature in the class of graphs defined in [5] if 0 (2), the total signature of the face,

fulfils

o0(R2) = 1_[ o(e) = (—1)n @D+ for any finite face Q. (5.23)
eca2
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We conjecture that a signature satisfying (5.23) realizes the variant of Kasteleyn the-
orem for planar non—bipartite graphs in the disk in [59], i.e. pfaffians of the minors
of the sign matrix count the number of dimer configurations in the graph involving
all internal vertices exactly once with prescribed boundary conditions. We plan to
discuss this issue in a different paper.

Finally the following relation holds between geometric and Kasteleyn systems of
relation on a given network.

Theorem 5.22 (The Solution to Kasteleyn System of Relations) Let N = (G, f)
be a network representing [A] € S/\T/[tVN C Gr™N(k, n), where G = (BUW, &) is
a reduced bipartite graph with black boundary vertices representing the irreducible
positroid cell SAT/INN. Let I € M be fixed.

Let €®) : £ +— {0, 1} be a geometric signature on the directed graph (G, O(I))
and let o : £ — {x1} be the Kasteleyn signature defined by (5.21)

ole)=(—1)¥©  vee€.

Let tyy : € — R be an edge weighting on the undirected graph G representing
N. Let t3 : £ > R" be the corresponding edge weighting on the directed graph
(G, O(D)) fulfilling (2.4)

thw, ifu=w, v=>b;
tﬁ:{t_l ifu=>b, v=w
bw? ’ :
Let (zp,e, Zw,e) and (zl(fz, zl(f,)e) respectively be Lam system of relations for the
Kasteleyn signature on the undirected network (G, tpy), and that for the geometric
signature on the perfectly oriented network (G, O(I), t;3). Moreover let (vlik), R,)
be the Kasteleyn system of relations associated to (2p.e, Zu,e) in Proposition 4.16.
Then the three system of relations have full rank and are equivalent: if we assign
the same quantities v; at the boundary sinks bj, j € I, to the three systems,

k) _ _ (& _ n
Ubj = Zb_/-,e = ij’e = Vj eR s

then the solution of the system at the black vertices is expressed in terms of edge and
conservative flows on the perfectly oriented network (G, O(1), t3) as in (5.15):

Z v Z (_ l)wind(F)-i-int(F) w(F)

*) © _ jel  FeFep; ()
Up

T e T e s > u(©)
CeC(9)

(5.24)

In particular, ifv; = E; e R, j € I, are the canonical basis vectors then, at the
boundary sources

k (g) .
vy = by =2, = B, AL, i€l
where Alr] is the r-th row of the matrix in reduced row echelon form with respect to
the base 1 representing [A], and E; _is the i,—th vector of the canonical basis in R".
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A consequence of Theorems 5.16, 5.20 and 5.22 is an independent proof that
Speyer parametrization of positroid cells using Kasteleyn sign matrices is equivalent
to Postnikov boundary measurement map [59]:

Corollary 5.23 (Parametrization of Positroid Cells via Kasteleyn Weighted Matrices)
Let S/\T/IIVN C Gr™N(k, n) be given and let G be a reduced planar bipartite graph
with black boundary vertices representing S /\T/]IVN . Let f : G* — RT be a positive
face weighting of G. Let N = (G, f) be the corresponding network and let [AP™™] €
S /\TANN be the value of Postnikov boundary measurement map for the network (G, f).
Let o be a Kasteleyn signature for G, and let K™™' be a weighted Kasteleyn matrix
representing N'. Let AX® be such that for any k—element subset I C [n]

det(AF*S); = det K",

Then
[AkaS] — [Abmm]

and (K@) | the transpose of the Kasteleyn matrix, may be put in block form

N n
N [ Idy ‘ *

k 0 ‘ Akas

6 Construction of Real Regular KP Divisors Using Kasteleyn System
of Relations

The KP hierarchy is the most relevant integrable hierarchy [18, 20, 30, 51, 56],
and contains as special reductions other relevant integrable hierarchies such as the
Korteweg de Vries (KdV) and Boussinesq ones. In this Section we use Kasteleyn
system of relations to construct real regular KP divisors on rational degenerations of
M—curves for KP-II real regular multi-line soliton solutions. The present construction
on undirected bipartite graphs has two main advantages: first it unveils the reason
why the graph is dual to the spectral curve, second the invariance of the KP divisor is
for free. Naturally, the relation between Kasteleyn and geometric signatures implies
that, upon fixing the network representing the soliton data, the present construction
provides the same algebraic geometric data as in [6] where directed graphs and geo-
metric signatures were used. We remark that the class of graphs used in [6] is more
ample than the present one: therefore, if Conjecture 5.21 holds true, a direct invariant
construction fo the KP divisor would hold also in the more general case.

The real regular multi-line KP solitons studied in [1-4, 6, 12, 14, 15, 37, 38, 48,
50] are a family of solutions to the KP-II equation [31]

(—4u; + 6uny + tyxx)x + 3”)’)’ =0,
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which is the first non trivial member of the KP hierarchy [63]. Before continuing, we
recall that there exists another representation of this equation, called KP-I equation.
In the following, we always refer to the KP-II representation since the behavior of
the real solutions of the two equations is different [21]. Moreover, we use the notation
X to denote a finite sequence of KP times x; where the first three are the independent
variables appearing in the KP-II equation:

X=X =X,X2=y,X3=1,X4,X5,...).

Real regular multi-line KP solitons correspond to a well defined reduction of the
Sato Grassmannian [56], and they are parametrized by pairs (1C, [A]), where K is a
set of n ordered phases

K={k1 <Kk <--- <Ky},

and [A] is a point in an irreducible positroid cell [A] € SN ¢ Gr™N(k, n). In
particular a KP-II multi-line soliton solution is real and regular for all real times
(x, v, t) if and only if its data are in the totally non—negative part of a real Grassman-
nian [37]. Moreover the combinatorics of totally non—negative Grassmannians has
been successfully used in [15, 38] to classify the asymptotic behavior (tropical limit)
of this class of KP-II solutions.

The real regular multi-line KP-II soliton solutions are also degenerate finite—gap
KP solutions. Krichever [39, 40] showed that finite-gap KP solutions correspond
to non special divisors on arbitrary algebraic curves. Dubrovin and Natanzon [21]
then proved that real regular KP-II finite gap solutions correspond to non—special
divisors on smooth M—curves satisfying natural reality and regularity conditions: the
degree of the divisor equals the genus of the curve, the essential singularity of the KP
wave function belongs to one of the ovals (called infinite) and all other ovals (called
finite) contain exactly one divisor point. In [42] Krichever developed, in particular,
the direct scattering transform for the real regular parabolic operators associated with
the KP spectral problem and proved that the corresponding spectral curves are always
M-curves, and the divisor points are located in the ovals as in [21]. In [2, 4, 6] it
was proven that the real regular multi-line KP-II soliton solutions are degenerate
finite—gap real regular KP-II solutions by providing an explicit construction of their
algebraic geometric data on rational degenerations of M—curves, and by showing that
they satisfy the reality and regularity conditions settled in [21].

In the direct spectral problem real regular KP-II multi-line soliton solutions are
parametrized by divisors on rational curves. To the solution represented by (/C, [A])
there is associated [48]:

(1) A rational spectral curve I'g, with a marked point Py (essential singularity of
the wave function), and a coordinate ¢ such that ;‘1 (Py) =0,
(2) k simple poles DS,FO = DSJ—O()?O) = {Pr(S), r € [k]}, whose ¢{—coordinates
are real and bounded,
v =P e i kal, 1€kl

The following two normalizations for the KP wave function are commonly used in
literature: in the Sato normalization the wave function v (P, X) has degree k pole
divisor at Py and zero divisor Dg (X), whereas in Krichever normalization the wave
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function &(P, X) has degree k pole divisor D such that there is a time Xy and D =
Dg r, (Xo). Therefore one may pass from one normalization to the other through the
following relation

¥ (P, X)

¥ (P, Xo)

On Iy the divisor is defined through a Sato dressing transformation of the vacuum
wave function [56]. For this reason DS,FO was called the Sato divisor in [2]. For the
special class of multi-line solitons, such transformation is represented by a linear
differential operator

Y (P, %) =

D=0 — (X — (),
where 9, = 0y, = ai 1o j(f), J € [k], are analytic in the KP-times 7, fulfil Sato
*1

equations, and are such that the kernel of © are k linearly independent solutions to
the heat hierarchy of the following form

n
fiG) =) Alexp@;(¥)),  ielkl,
j=l1
where A = (A;) is a representative matrix of [A] € SXANN and
exp(9;(x)) = kjx + sz»y + K?t + K?X4 + e
The multi-line KP soliton solution then takes the form
u(f) = 20,101 (7).
Then the Sato divisor at time X on 'y is the k—tuple

Ds.r, () = {PV@)..... PPV, 6.1)

whose local coordinates {(Pl(s) X)) = yl(s) (X) € [k, knl, I € [k], are the solutions
to the characteristic equation P (¢, X) = 0 at time X:

k
P %) =t~ @ — @ = -y @), 62
=1

In the same local coordinates the Sato wave function takes the form

V(£ (P),X) = (1 - - )exp(:x+c2y+;3r+;“x4+- ), P eTo\{P).

¢ ¢k

In the following we use Krichever normalization and an auxiliary third normalization:

V(, %) = kg (z, X), so that

Jen = YD o @ e @) p—g) + 22 —y0) + 20— 1)+
V(. X)) ¢k =y (Xo)gkl — - — (o)
(6.3)
and
k
S S) - > .
V. B = [ — v @) exp@;E).  jelnl. 6.4)

=1
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Therefore

n n k n
0=2/E =Y AiDD =3 AL [ -y V@) exp0; @) = Y AL wix;. %), i €lkl, VE, (6.5
j=1

j=1 =1 j=1

that is the vector (¥ (k1, X), ..., ¥ (k,, X)) defines a flow in the plane orthogonal
to [A] as times X evolve. Then, in view of (4.3), such vector is a natural boundary

condition for Kasteleyn systems of relations on any network (G, t; ,,) representing
[A]

Lemma 6.1 (The Wave Function at the Marked Points and Grassmann Duality) Let
(IC, [A]) be real regular soliton data with [A] € S/\TANN C GrINN(k. n), where SAT/(NN
is an irreducible positroid cell, and let v (k, X) be as in (6.4), i.e. the value of the
KP-II wave function for the given soliton data at the phase kj, j € [n], and at the
KP time X. Let [A°] € [57 C Gr(n — k, n) be the dual point to [A] satisfying (4.3).
Then there exist untrivial analytic functions c,(X), r € [n — k], such that

n—k

Y. 5 =Y @A, jelnl Vi 6.6)

r=1

The relevance of Lemma 6.1 becomes manifest in connection with the solution
to the inverse spectral problem, which consists in the reconstruction of the KP-II
soliton solution from its divisor on the spectral curve at a fixed time Xy. Indeed,
the mismatch between the dimension of Gr™N(k, n) and that of the variety of Sato
divisors implies that generically the Sato divisor is not sufficient to determine the
corresponding KP-II solution.

In [2, 4, 6] a completion of the Sato algebraic—geometric data has been proposed
based on the degenerate finite gap theory on reducible curves introduced in [41].
More precisely:

(1) In [2, 4] the dual graph of the reducible spectral curve I is the Le—graph rep-
resenting the soliton data, 'y is identified with the boundary of the disk, and
the divisor on I is constructed through a recursion. In [6], a larger class of net-
works representing the given soliton solution is used and the real regular divisor
is constructed using Lam system of relations [45] for the geometric signatures
introduced in [5];

(2) In[4, 6], the reality and regularity properties of the KP—II divisor settled in [21]
follow from the combinatorics of GrTNN(k, n), whereas in [2] classical total
positivity was used for soliton data in Gr™ (k,n);

(3) The independence of the divisor from the gauge freedoms of the chosen net-
work (perfect orientation, gauge ray direction, weight gauge, gauge freedom of
the position of internal vertices) follows from the transformation properties of
geometric signatures and was proven in [6].

In the present setting, the comparison between Theorem 4.4 and Lemma 6.1 makes
evident that it is just natural to choose a reducible spectral curve whose dual graph
represents the soliton data [A] and use Kasteleyn system of relations to extend

@ Springer



Math Phys Anal Geom (2021) 24: 35 Page 53 of 64 35

Table 1 The graph G vs the

reducible rational curve I' g r
Boundary of disk Copy of CP! denoted Iy
Boundary vertex b; Marked point k; on I'g
Black vertex b Copy of CP! denoted T,
White vertex w Copy of CP! denoted I,
Internal Edge Double point
Face Oval
Infinite face Infinite oval Q¢

to such augmented curve. Moreover, the invariance of the KP divisor is automati-
cally guaranteed by the properties of Kasteleyn system of relations on undirected
graphs.

The Reducible Spectral Curve T Given the soliton data (K, [A]), [A] € ST C
Gr™N(k, n), one fixes G, a reduced planar bipartite graph in the disk with black
boundary vertices representing S /ElNN. To obtain a universal curve, we assume that
internal vertices are either bivalent or trivalent. As in [4, 6], I" is then the reducible
curve with dual graph G: T’y is the rational component represented by the boundary
of the disk, the boundary vertices b; correspond to the phases «, j € [n], the internal
vertices are rational components, the edges are the double points at which the rational
components of I are connected, whereas the faces are the ovals of the M—curve (see
Table 1 and Fig. 20).

Proposition 6.2 [4] " is a rational degeneration of a smooth M—curve of topological
genus equal to the dimension of the positroid cell S /\TANN .

Fig.20 The correspondence between graphs [left] and the real part of M—curves [right] under the assump-
tion that the curve is constructed reflecting the graph w.r.t. a vertical ray. Objects paired by the duality
relation between the graph and the curve share the same color: internal vertices w;, b; correspond to ratio-
nal components I'y,,, 'y, ; the boundary of the disk is the rational component I'y; faces 2, correspond to
ovals denoted with the same symbol; edges e, joining internal vertices to double points Py, Oy (dotted
lines mark the gluing in the Figure on the right); and edges e joining internal vertices to the boundary
vertices b; are double points Q;, «;
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We then extend the wave function ¥ from I'g meromorphically to I'\{Pp} with
the constraint that it takes equal values at each pair of double points for all times X.
Lemma 6.1 suggests a natural way to extend ¥ to the double points of I, by fixing
a Kasteleyn signature on G, defining vl(j;) x) = Ykj, X) at the boundary vertices,
and assigning the solution to Kasteleyn system of relations of Definition (4.1) to the
corresponding double points in I'. Then the relations at the internal white vertices
set the degree of the meromorphic extension of the normalized wave function on the
corresponding rational components of I' and fully characterize its divisor structure.

Proposition 6.3 Ler (IC, [A]) be given soliton data where K = {k1 < -+ < k,} and
[A] € SON. Let Y (k. X), j € [n], be as in (6.4). Let G = (BUW, €) be a given
planar bipartite reduced graph in the disk with black boundary vertices representing
the irreducible positroid cell S /\T/[NN c Gr™N(k, n). Moreover assume that the inter-
nal vertices of G are either bivalent or trivalent. Let tyy, be an edge weighting such
that the network (G, tyy) represents [A). Let o be a Kasteleyn signature on G, and
let K" be the corresponding Kasteleyn matrix.

Then there exists a unique solution to Kasteleyn system of relations (vlgk) (%), Ry)
such that for all X

vgy@ =Y, %), jelnl (6.7)

Such solution has the following properties:

(1) Foranyb € B, vl(,k) (X) is an untrivial analytic function in X, where we assume
that only a finite number of times vary;
(2) There exists X such that vl(jk) (X0) # O forallb € B.

Moreover, if T, is an edge weighting equivalent to tpy, on G, then the corresponding
solution ﬁlgk) (X) to the Kasteleyn system for the new wsights differs from v}(}k) (X) by
a non—zero multiplicative constant cp independent of x at any given internal black
vertex b:

~(k) = k) -

v; )(x) = cbvl(7 )(x). (6.8)

Finally if o' is another Kasteleyn signature on (G, tpy), then its Kasteleyn system of

relations (ul(jk) (X), R,,) for the boundary conditions as in (6.7)

k) - - . -
uéj)(x) =Yk, x), Jje€ln] Vx,

fulfils

@) =P @), Vb e B, Vi (6.9)

Proof The existence, uniqueness and analyticity of (vék) (X), Ry) follow from
Lemma 6.1 and Theorem 4.4. Let E), = (Ep,1,...Epp) € R", b € B, be the
solution of Kasteleyn system of relations described in Theorem 4.5, and let c(¥) =

(c1(X), ..., cyu—k (X)) be as in Lemma 6.1. Then vlgk)(f) satisfies
n
0@ =Y Epj Uk, X) =< (@), A°Ep >, (6.10)

j=l1
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where we have used (6.6), < -, - > denotes the usual inner product in R"—* and A°
is the matrix orthogonal to A in (4.3). By Theorem 5.22, there exist a base I € M
and a non-zero vector ap = (&p 1, - . . , ®p n—k) sSuch that £}, = Zjei ap,j Ej, where
E; is the j—th canonical basis vector in R". Then the right hand side of (6.10) is not
identically zero for any given internal vertex b € B. Therefore, for any choice of the
soliton data there exists Xo such that vl(Jk) (Xo) # 0, forall b € B.

Finally, the relations between solutions of systems of relations for equivalent
weightings and for equivalent Kasteleyn signatures follows from the properties of
Kasteleyn systems of relations. O

Corollary 6.4 Let the soliton data (IC, [A]) and the graph G be given. Let (G, ) be
the reduced bipartite network in the disk representing [A] in Proposition 6.3. Let X
be such that v,(,k) (X0) # O for all b € B, where v,(,k) (X) is the solution to Kasteleyn
system of relations of Proposition 6.3. Then

(k) =
R v, (x
@) = b © e
(k) =
Uy (x0)

is an untrivial analytic function in X and its value is independent of the choice of
Kasteleyn signature on I" and of the edge weighting in the equivalence class of the
network.

Corollary 6.4 implies that 13l(7k) (¥) depends only on the given soliton data (K, [A])
and the initial time Xo. Therefore we assign the value f),(’k) (X) to the normalized KP
wave function 1} at the corresponding double points of the spectral curve I' whose
dual graph is G:

(1) If the edge e; joins the boundary vertex b; to the vertex w, we denote Q; the
point in 'y, glued to «; and we assign the value v/ (k, X) to the KP-II wave
function at Q; at time X:

V(Q;,X) =¥(kj, X), (6.11)
and the value 1/?(/( j, X) to the normalized KP-II wave function at Q; at time X:
V(Q), %) = ¥ (kj, ). (6.12)

(2) IfTy, I'p are the rational components corresponding to the vertices w, b joined
by the edge ep, we denote Q;, € I'y,, P, € ', the points where we glue these
components; and we assign the value vék) (x¥) to the KP-II wave function at both

P, and Q), at the time X:
Y (P, X) = ¥ (Qp, ¥) = v (), (6.13)

and the value f),gk) (X) to the normalized KP-II wave function at both P, and Q)
at the time Xx:

U (P, ¥) = 9 (Qp, ) = 0 (3). (6.14)

Finally we extend the normalized KP wave function on each component I'y,, ',
as follows:
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(1) we extend it to a constant function with respect to the spectral parameter on
each rational component corresponding either to a black vertex or to a bivalent
white vertex;

(2) we extend it to a degree one meromorphic function in the spectral parameter on
each rational component I'y, corresponding to a trivalent white vertex w.

By construction we obtain the desired KP divisor which is contained in the union of
the ovals and is given by the union of the Sato divisor and of the pole divisor at the
components I",. More precisely:

Construction 6.5 (The KP Wave Function on I') Let (KC, [A]) be the given soliton
data where K = {k1 < --- < Ky} and [A] € SAT/IIVN. Let yl(s)()?), [ € [k], be the
local coordinates of the Sato divisor at time X, i.e. the solutions to the characteristic
equation P(¢,X) = 0, with P as in (6.2). Let I' = I'(G) be the reducible M—curve
whose dual graph G = (B U W, E) is a reduced trivalent planar bipartite graph
in the disk with black boundary vertices representing the irreducible positroid cell
SJ\T/]lVN C Gr™N(k, n). Let Xo, vp(X) and 0y (X) be as in Corollary 6.4, and let Y and

@ be defined as in (6.11)—(6.14) at the double points of T.
We then define the normalized KP-II wave function on T" as follows:

(1) On Ty it coincides with the normalized wave function in (6.3), that is for P €
Co\{Po} and for any X, in the natural local coordinate ¢ such that g“_l (Py) =0,

| R E3))

Wexp(f(x—x0)+§2()’—y0)+§3([—TO)+C4(X4—X4,O)+'")§
=146 =¥ Ko

V(@) %) =

(2) On each rational component T'y, of I represented by an internal black vertex
b, the normalized wave function  takes the same value at all marked points
P; € Tp. Thus on Ty, we extend the normalized wave function ¥ to a function
constant with respect to the spectral parameter:

V(P %) =y(P,%), VPely Vi

(3) On each rational component Ty, of I' represented by a bivalent white vertex
w, let Q; € Ty, i = 1,2, be the marked points. Then @(Qz, X) = @(Ql,)_c'),
for all X. Thus on Ty, we extend the normalized wave function 1& to a function
constant with respect to the spectral parameter:

Y(P, %) =vy(01,%), VPel,, Vi

(4) On each rational component Ty, of T represented by a trivalent white vertex w,
let Q; € Ty, i € [3], be its marked points, where we label Q; in increasing
order clockwise. Then there is a unique point P,, € Iy, such that 1/Af is extended
to a degree one meromorphic function in the spectral parameter on I'y, with
pole divisor contained in { P, }. A representation of 1@ is

Jepy 5= L@ V@D b vE (615)

¢ = vw
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where ¢ is the coordinate on Ty, such that £ (Q1) =0, £(Q2) = 1 and $(Q3) =
00, Yy is the local coordinate of the divisor point Py: {(Py) = yy, and

Yw (01, %) + (1 — yu) ¥(02,%) — ¥(Q03,%) =0, Vi

Lemma 6.6 (Explicit Expression of the Divisor Coordinates Using Kasteleyn System
of Relations) None of the divisor points in Contruction 6.5 coincides with a double
point of I'. Moreover, the local coordinate y,, of the divisor point Py, € T'y, in (6.15)
takes the value

Ky ¥ (Q1, Xo)
Ky v(Q1, %o) + Kpou' v (Q2, Xo)

Yw =((Py) = (6.16)

where Kgi’uuj ' i € [3], are the three non zero entries of the Kasteleyn matrix at the

w-th column used in Proposition 6.3 to contruct the wave function , that is

3 3
Ru@®) = )" Ky v @) = Y0 K w01 %) = 0. (6.17)

i=1 i=1

The proof is straightforward since one obtains (6.17) substituting (6.16) into (6.15)
for £(Q) =¢(Q2) = 1.

Next the KP divisor is defined as the union of the Sato divisor and of the divisor
points on the rational components represented by the trivalent white vertices of the
graph at the normalization time Xj.

Definition 6.7 (The KP-II Divisor on I') Let the soliton data be (IC, [A]), [A] €
S/\T/lNN, with & /\T/[NN c Gr™N (k, n) a g—dimensional irreducible positroid cell, and
let G be a reduced planar bipartite graph in the disk representing S/\T/tNN. Let I" be
the reducible curve whose dual graph is G and let X be as in the above construction.
Then the KP-II divisor Dkp r is the sum of the following g simple poles,

(1) The k poles on I'g coinciding with the Sato divisor at X = Xo: Dy, =
S) = S) =
(P o). ... P Go)):
(2) The g —k poles Py, = Py, (Xp) €T w, uniquely identified by the condition that,
in the local coordinate defined above ¢ (Py,) = Yu, (Xo), where wy, [ € [g — k],
are the trivalent white vertices of G and y,, is as in (6.16).

Then ¥ is the desired extension to the reducible spectral curve I' of the wave
function on I'y arising in the spectral problem for the KP-II soliton data (IC, [A]) .

Theorem 6.8 Let the data (K, [A]l, G, Xo), and 1} and Dgp  on I be as in Con-
struction 6.5 and Definition 6.7, where we assume that a finite number of KP time
variables may change. Then I/A/ is the KP wave function associated to the soliton data
(IC, [A]) which extends 1/A/ in (6.3) from T'g to ' = ['(G) and is uniquely identified
by the normalization condition @(P, Xo) = 1 at all points P € T'\{Py}. Moreover 1}
has the following properties on T'\{Py}:

@ Springer



35 Page 58 of 64 Math Phys Anal Geom (2021) 24: 35

(1) ¥ is analytic in X;

(2) ¥ takes the same value at pairs of glued points P, Q € T, ¥ (P, %) = ¥(Q, ¥),
forall X;

3) I/Af is meromorphic in P € T'\{Py}. More precisely, 1@(;, X) is either constant
or meromorphic of degree one w.r.t. to the spectral parameter on each rational
component of T' corresponding to a trivalent white vertex of G. I/Af(é' , X) is con-
stant w.r.t. to the spectral coordinate { on each other component corresponding
to an internal vertex;

4) 1&(; (P), X) is real for real values of both the spectral coordinate ¢ and the
KP—times X on T';

(5) DKp.r is the pole divisor of r for all ¥: Dgp.p + (¥ (P, %)) = 0 for all ¥;

(6) The KP-II divisor Dgp 1 is contained in the union of the ovals of I' = I'(G)
and depends only on the soliton data and the normalization time Xo;

1. None of the divisor points in Dgp 1 coincides with any of the double points of
the curve I

We remark that Item (7) in Theorem 6.8 follows from the condition ¥ (P, Xo) # 0
at the double points.

Any trivalent white vertex w bounds three faces; therefore the corresponding ratio-
nal component ', bounds three ovals (see Fig. 21). Next Lemma provides a simple
criterion to detect the oval containing the divisor point Py, € I'y,.

Lemma 6.9 (The Position of the Divisor Points in the Ovals) Let us define
Zup =K' w(PLX0), i €3], (6.18)

where w is a white vertex of G and notations are as in Construction 6.5. Let Q;;
denote both the face in G bounded by the edges bjw and b]_w and the oval in I =
['(G) to which the marked points Q; and Q ; belong, i, j € [3]. Then the KP divisor
point Py, € 'y, belongs to Q;; if and only if 2, p; and Zw,bj share the same sign

Py € Q;j — Zw,hizw,bj > 0.

Fig. 21 The correspondence between faces at the white vertex w (left) and ovals bounded by Ty, (right)
under the assumption that the curve is constructed reflecting the graph w.r.t. a vertical ray. Objects paired
by the duality relation between the graph and the curve share the same color: vertices correspond to rational
components, edges to double points, faces to ovals
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The proof immediately follows comparing the local coordinate of the divisor point
¢(Py) in (6.16) with those of the marked points, ¢(Q1) = 0, ¢(Q>2) = 1 and
¢(Q3) =occonTly,.

Finally, we prove that the divisor Dgp  satisfies the reality and regularity
conditions settled in [21]:

Theorem 6.10 (Number of Divisor Points in the Ovals) There is exactly one divisor
point in each finite oval Q, s € [g], and no divisor point in the infinite oval Q.

Proof To simplify notations we use the same symbol €2 to denote both the face of
the graph G and the oval of the curve I' = I'(G). Let | 2| denote the number of edges
bounding €2 and let Z, be as in (6.18)

Ze= KV Y (Py, Xo), ife=buw.

Then
1_[ t 1_[ (v (P, 550))2, if Q internal;
B eco bedQ
1_[ Ze =1 (=1 1_[ t, l_[ Y (P, xo) l_[ Y(kj, Xo),  if Q finite external.
e€dQ ecdQ  bedQ bjedQ
b internal b./. bury vertex
(6.19)

Let vg denote the total number of divisor points in the oval 2 associated to the
white vertices w bounding the face Q2. From Lemma 6.9, the divisor point P, €
I’y NQif and only if Z; Z,;,, > 0, where the edges ¢;; = bi,w and e;, = b;,w bound
Qatw.

Next, let cq denote the number of white vertices w € 92 such that the product
Ze;Zein; < 0 at the consecutive edges e¢; = biw, ej41 = bir1w € 3. Obviously

2]
v = 7 —CQ- (620)
If Q is an internal face, (6.19) implies that
s

since edge weights are positive. Therefore, vg, the total number of divisor points
belonging to the internal oval 2 is odd.

If Q is a finite external face, then the total number of divisor points on the corre-
sponding face equals vg + pq, where vg is the number of divisor points belonging

to |J [y N, and pg is the number of Sato divisor points belonging to €2 N Ty.
weW
By definition there is an odd (respectively even) number of Sato divisor points in

Iicj, iej1Lif ¥ (Py,, fo)l/f(Ple ,X0) < O (respectively > 0). Therefore p,, has the
same parity as [ | P,edQNTy ¥ (Py, Xp), whereas vq satisfies (6.20). In this case (6.19)
implies that

|€2]

cQ = -5 14+ po, mod 2; (6.22)
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therefore, vo + pgq, the total number of divisor points in the finite external oval €2, is
odd.

This ends the proof since the cardinality of the KP divisor coincides with the
number of finite faces of the graph. O

Let us apply the construction of the KP wave function and of the divisor to the
example shown in Fig. 13 (see also Example 4.8).

Example 6.11 Given the soliton data (X = {k; < --- < «k¢}, [A]) with [A] €

S /;FANN c Gr™N(2,6) as in Example 4.8, a basis of heat hierarchy solutions
generating the KP-II multi-line soliton solution is

FE=e"O PO 4111150 — 15 11187260, o () =B a5 O,
The dressing operator
D =97 — 01 ()dx — w2(¥),
satisfies ©( f;) = 0. Then the KP-II multi—line soliton solution is
u(¥) = 297 log(z(¥)),

where 7(X) = f1(X)dy f2(X) — f2(X)dyx f1(X).

The Sato divisor is Ds.r, = (P>, Py>} where 3> = ¢(P\¥), i € [2], are the
roots of the characteristic equation at time X,

@ = 7@ = 1) = = wi Gt — wa(Fo).
On I'g\{ Py} the auxiliary wave function ¥ takes the form
V() = (@7 = i@ — @) expx + 7y + 1 4.

The relation between the graph and the reducible M—curve is shown in Fig. 20. By

construction for all X
V(Qj, %) =¥k, X), jel6] ¥ (Q7,X) = ¥(Qs, X).

Y takes opposite signs at the marked points k4 and ks, since at the corresponding
white vertex we have

-

V(ks, X) + t12 9 (x5, %) =0, VX.
Therefore one of the two Sato divisor points, say Pl(s), has local coordinate in [«4, k5]
and, necessarily, PZ(S) has local coordinate in [«1, k4] U [ks, k6].
At the trivalent white vertex w; we have the relation
1 ¥ (Qs, X) + 1 Yk, X) + ¥k, X) = 0.

If we assign local coordinates £(Q3) = 0, {(Q1) = 1 and {(Qg) = oo on I',; (see
also Fig. 22), the divisor point Py, on such rational component has local coordinate

¥ (k2, Xo)
121 Y (k1, Xo) + ¥ (k2, Xo)

Similarly, at the trivalent white vertex w, we have the relation

VY(k3,X) — ¥(Q7,X) — t72 ¥ (ke, X) = O.

Yw, = ;(Pwl) =
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Q Q7 Qs Qy
O ) pOE, ),
Q P Q3 Q4 Q3
w
Q Do Pwi 7Q, 0
3 3

8
Qh
P,
;2 QN w2
N p A J/\ - A p Q:
RS 4 tz. . 2 , &9)

Qo

A
Q

s Q1 s

- Pk, k3 Ky PO ks
Rer I
o . Qs
R
Q Q,
BV TS

Pon

Fig.22 The four possible configurations of real regular KP divisors on the reducible rational curve whose
dual graph is in Fig. 20, for the generic soliton data (C, [A]) of Example 6.11 (see also Fig. 13). Double
points are represented by dashed lines and divisor points by stars; we mark the local coordinates at the
marked points of I'y,, and I'y,, in red

If we assign local coordinates ¢£(Q¢) = 0, {(Q3) = 1 and £(Q7) = oo on I'y,, the
divisor point Py, has local coordinate

¥ (k3, Xo)

V(k3, Xo) — 172 ¥ (ke, X0)

Yw, = C(sz) =

Finally let us compute the position of the divisor. For simplicity we omit the time
dependence, using the following abridged notation v/; = v (kj, Xo), and use notation
la, b[ for open intervals. By construction 1, ¢ > 0 and | + t2_111//2 + t2_11t111/13 —
tzjl t11t72%6 = 0. Then the following divisor configurations occur for generic soliton
data (IC, [A]):

(1) I 9> €licy, ol that is Py> € Qa, then y,,, < 0, yu, €10, 1[, i Py, € 23,
Py, € Q4. This configuration is represented in Fig. 22 [top,left];

@) 1y €y, i3], that is P> € Q3, then y,, €10, 1[, yu, €10, 1[, i.e Py, € Qo
and Py, € Q4. This configuration is represented in Fig. 22 [top,right];

3) If > €lis, kalUlks, kgl, that is P> € Qu, then y,,, €10, 1, yu, > 1, ie.
Py, € € and Py, € Q3. This configuration is represented in Fig. 22 [bottom].

In [6], the construction of the KP-II wave function at the double points of the
curve whose dual graph is G is performed solving Lam system of relations for the
geometric signature €; imposing the boundary conditions
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The un-normalized KP wave function is defined as follows for all b € B:
YRy, ¥) = ().
From Theorem 5.22 it follows that the normalized wave function
_ Y& (P, %)
Y& (P, Xo)

constructed in [6] coincides with the one defined in Construction 6.5, and necessarily
the KP-II divisors are the same.

(P, %)

Proposition 6.12 The normalized wave function lﬁ(P, X) and the KP-II divisor
Dxp.r in Construction 6.5 and Definition 6.7 coincide with those defined in [6] using
Lam system of relations for the geometric signatures on I' (G) for any given soliton
data (K, [A]) and reference time X.
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