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New extended thermodynamics balance equations

for an electron gas confined in a metallic body∗

Elvira Barbera† Francesca Brini‡

Abstract

Sommerfeld’s theory of metal electrons suggests that the electrons in
a metal can be described as a gas of free fermion particles confined in-
side the metallic body. In this paper a new extended thermodynamics
model is proposed starting from this idea. The model includes both the
stress tensor and a quadratic expansion of the distribution function in
the neighborhhod of an equilibrium state. Such contributions were ne-
glected in the original model proposed by Müller in 1976; so this new set
of balance laws represents an improvement aimed at the description of
non-equilibrium phenomena. The application to a simple case is briefly
analysed.

1 Introduction

Sommerfeld [1, 2] suggested a new way to treat physical problems that involve
metal electrons. In particular, he thought the electrons as a gas of fermion free
particles that from time to time collide with a lattice metallic ion. In order to
construct a macroscopic model to describe thermomagnetic and galvanomag-
netic effects related to metal electrons, it is natural to refer to rational extended
thermodynamics (RET). In fact, this theory [3, 4] was developed to describe
non-equilibrium phenomena in rarefied gases. Its new idea with respect to clas-
sical thermodynamics (CT) is to consider as field (independent) variables not
only the usual ones (mass density, momentum, energy) but also non-equilibrium
quantities such as the stress tensor, the heat flux and others. The corresponding
field equations turn out to be balance laws supplemented by local and istanta-
neous constitutive equations that satisfy universal physical principles, like the
entropy principle and the principle of relativity. [3, 4]. In order to fix such
constitutive relations different methods were developed. The RET macroscopic
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approach identifies suitable constitutive relations through the validity require-
ment of the universal physical principles; a complete overview of this technique
can be found in [3], while a simple application of this approach in the case of
metal electrons is presented in [5]. At a microscopic level the set of balance
laws can be obtained referring to the Grad method [6] or to the Maximum En-
tropy Principle (MEP) [3, 4]. As first step the infinite hierarchy of moments
derived from the Boltzmann equation is truncated at some order. To close the
truncated system, that is to say to express all the quantities as functions of
the field variables, the form of the suitable ”truncated” distribution function is
identified through MEP and in this way all the constitutive relations are fixed.
Usually the ”truncated” distribution function is linearized in the neighborhood
of an equilibrium state and this gives rise to a theory linearized with respect
to the non-equilibrium variables. For an exhaustive description and compar-
ison of such procedures see, for example, [3, 4, 7] and the references therein.
The hyperbolic PDE systems of RET, initially proposed by Müller, Ruggeri
and others researchers for monatomic gases [3], were capable to describe well
non-stationary phenomena, overcoming the paradox of infinite velocity typical
of parabolic PDEs. Recently, RET has been generalized to rarefied polyatomic
gases both in the classical [4] and in the relativistic [8] framework and also
to quantum systems [9], providing relevant results and good agreement with
experimental data.

For metal electrons a RET model with 8 moments (mass density, momentum,
energy and heat flux) was deduced by Müller and Ruggeri in [3], starting from
a previous paper by Müller [10]. The model was also studied and generalized
in [5]. It is well known that a good description of phenomena sufficiently far
from equilibrium could require more moments and a nonlinear expansion of the
systems with respect to non-equilibrium variables [3, 4, 7]. For this reason,
in the present paper we introduce a RET model for metal electrons with 13
moments and take into account also quadratic non-equilibrium terms. The
RET procedure is briefly summarized in section 2 with a particular attention to
degenerate gases. Some preliminary calculations and notation are presented in
section 3, while in section 4 and 5 the ”linear” and the ”quadratic” 13-moment
model is constructed. An application of the quadratic model is presented in
section 6 and, finally, section 7 is devoted to the conclusions.

2 From the kinetic theory to the closure of the
truncated moment hierarchy

Following Sommerfel’s ideas, the electrons are supposed to be point-particles
moving inside the metallic body, while the ions form a periodic lattice and are
modeled as rigid spheres (with a non-negligible radius) at rest, equipped with
a mass much greater than the electron mass. Under such hypothesis, the colli-
sion between an electron and an ion is described as elastic, while the collisions
between two electrons are neglected. The starting point for the construction of
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a model of free-electrons in a metal is obviously the Boltzmann equation[3, 10]:

∂f

∂t
+ ck

∂f

∂xk
+ ċk

∂f

∂ck
= S, (1)

where, as usual, here and in what follows repeated indexes imply their sum (in

(1), for example,
∑3
k=1 is omitted), t is the time, x = (x1, x2, x3) the space

variables, c = (c1, c2, c3) the particle velocity vector, f = f(x, c, t) is the phase
density, so that

f(x, c, t)dxdc (2)

represents the number of electron in an infinitesimal element dxdc of the phase
space. Moreover, S is the collision term and, concerning ċk, it holds

ċk =
[
ψk +

3∑
l=1

Γklcl

]
for k = 1, 2, 3,

with ψk = −qe
m
Ek + i0k and Γkl = −qe

m
εklnBn + 2Wkl

(3)

if −qe denotes the electron charge, m the electron mass, εkln the Levi-Civita
tensor, Ek and Bk (for k = 1, 2, 3) are respectively the electromotive intensity
and the magnetic flux density that for the metal electrons give rise to the specific
external electromagnetic force, i0k (for k = 1, 2, 3) denotes the k-components of
velocity-independent part of the specific inertial force, while Wkl is related to
the Coriolis force [3]. We stress that Γin represents an antisymmetric matrix.

Following [1, 10] and considering elastic electron-ion collisions, the velocity
of an electron before the collision, c, and the corresponding velocity after the
collision, c′, have to satisfy the following condition

c′k = ck − 2ek(c · e) k = 1, 2, 3, (4)

if · denotes the scalar product and e represents the unit vector that goes from
the center of the ion sphere to the impact point of the electron [10]. In this way,
it holds [1, 2, 10]

S = S(f) =
1

π`

∫ 2π

0

∫ π/2

0

c(f ′ − f) cos θ sin θ dθdε, (5)

if c = |c|, ` is the mean free path of an electron between two collisions, f ′ =
f(c′,x, t), θ is the angle between e and c (so that (c · e) = c cos θ) and ε is the
angle spanned by the plane containing c and e with a fixed plane containing c
[10].

An infinite hierarchy of moment equations can be derived from the Boltz-
mann equation (1), introducing the following definitions
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F = m

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

fdc1dc2dc3

Fj1j2...jn = m

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

cj1cj2 . . . cjnfdc1dc2dc3 n = 1, 2, 3 . . . ,

Qj1j2...jn = m

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

cj1cj2 . . . cjnS(f)dc1dc2dc3 n = 1, 2, 3 . . . ,

(6)

if js = 1, 2, 3 ∀s ∈ N\{0}, and one refers to the usual notation (see, for example,
[3, 7]). In this way the hierarchy reads

∂tF + ∂xk
Fk = 0,

∂tFi + ∂xk
Fki − ψkF − ΓinFn = Qi,

∂tFij + ∂xk
Fkij − ψiFj − ψjFi − ΓinFjn − ΓjnFin = Qij ,

∂tFijl + ∂xk
Fkjil − ψiFjl − ψjFil − ψlFij − ΓinFjln − ΓjnFiln − ΓlnFijn = Qijl,

. . . ,

(7)

with ∂t · = ∂ · /∂t and ∂xk
· = ∂ · /∂xk.

The infinite set of balance laws obtained in (7) is usually truncated at some
truncation order N . In the next section, for example, we will consider the case
N = 3. Usually the truncation practice leads to a closure problem, since the
last fluxes and the production terms are not a priori expressed as a function of
the density variables (which play the role of the independent field variables).
Different methods were introduced in the past to close the system, as already
recalled in the introduction.

In the present case, taking into account that we deal with fermion particles,
the phase density that maximizes the entropy (MEP method) is [3]

fN =
y

exp(χN/kB) + 1
with χN = m Λ ·ϕ(c) (8)

where kB denotes the Boltzmann constant, Λ denotes the main field vector [3]
and

ϕ(c) = (1, cj1 , cj1cj2 , cj1cj2cj3 , · · · , cj1cj2 . . . cjN )

Λ = (Λ,Λj1 ,Λj1j2 ,Λj1j2j3 . . .Λj1j2...jN ).

(9)

At equilibrium all the main field components vanish except ΛE = −g/T and
ΛEij = 1/(6T )δij and the distribution function reduces to [3]

fE =
y

exp(χE/kB) + 1
with χE = −mg

T
+
mc2

2T
(10)
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with T temperature and g specific free-enthalpy. In order to simplify the calcu-
lations, usually, in Extended Thermodynamics [3, 4], f is approximated in the
neighborhood of an equilibrium state thanks to a Taylor expansion of a certain
prefixed order o (o ≥ 1)

f
(o)
N = fE+

dfE
dχE

(χN−χE)+
1

2

d2fE
dχ2

E

(χN−χE)2+· · ·+ 1

o!

dofE
dχoE

(χN−χE)o, (11)

that corresponds to the Taylor expansion of the main field Λ(o), of the mo-

ments F(o) = (F (o), F
(o)
j1
· · · , F (o)

J1j2...jN
) and of the production terms Q(o) =

(0, Q
(o)
j1
, . . . Q

(o)
j1j2...jN

) with

F (o) = m

∫
R3

f (o)dc, F (o)
j1j2...js = m

∫
R3

cj1cj2 . . . cjsf
(o)dc,

Q(o)
j1j2...js = m

∫
R3

cj1cj2 . . . cjsS(f (o))dc with s = 1, 2, . . . N,

(12)

so that, one can write

Λ(o) = ΛE + ∆Λ(1) + ∆Λ(2) + · · ·∆Λ(o),

F(o) = FE + ∆F(1) + ∆F(2) + · · ·+ ∆F(o),

Q(o) = QE + ∆Q(1) + ∆Q(2) + · · ·+ ∆Q(o),

(13)

if ∆Λ(k) = Λ(k) −Λ(k−1), ∆F(k) = F(k) −F(k−1) and ∆Q(k) = Q(k) −Q(k−1),
for k = 1, 2 . . . o and Λ(0) = Λ(E), F(0) = F(E), while Q(0) = QE = 0.

Referring to f
(o)
N all the densities, fluxes and production terms of the trun-

cated moment system can be determined [3, 4, 11, 7] as functions of the field
variables. We are studying here a gas of charged particles in the presence of an
external electromagnetic field. Thus, it is not reasonable to impose the Galilean
invariance of the moment equations and from now on we will refer to a ref-
erence frame integral with the metallic body. This fact constitutes a relevant
difference with respect to the common procedure used for non-degenerate gases
[12]. Moreover, we underline that, here, the momentum density is related to the
electric current, that is to say it represents a non-equilibrium quantity and this
is a further difference with respect to the usual procedure for the construction
of the field system. We recall that in the case of metal electrons the set of
balance laws was already determined when the expansion order o is 1 and the
truncation order N = 3, under the restrictive assumption that the stress tensor
vanish [3]. Some further expansions of f with respect to the mean free path
parameter were considered by Müller in [10], but no general expression of the
balance laws were determined.

In the following we will construct the balance equation system both for
a linear and a quadratic expansion of f without neglecting the stress tensor
contribution. Before that, we recall briefly some notations and determine the
general expression for the production terms.
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3 Furhter notation, preliminary definitions and
calculations

In what follows we will denote by α and ϑ the following quantities [3, 10]:

α = − mg

kBT
, ϑ =

2kBT

m
, (14)

so that the equilibrium distribution function can be rewritten as

fE =
y

exp(α+ c2

ϑ ) + 1
(15)

When a fermion gas is taken into account the following integral function is
usually introduced (see for example [3, 10, 13]):

ik(α) =

∫ ∞
0

xk

exp(α+ x2) + 1
dx if k ∈ N. (16)

Since no analytic expression can be derived for ik(α), several techniques have
been developed to calculate it numerically, for an exhaustive review see [13].
Moreover, the function presents some peculiar properties, and in particular we
recall, among the others, the following recurrence relation

dik(α)

dα
= −k − 1

2
ik−2(α) if k ≥ 2. (17)

For the sake of brevity, we introduce also the following functions that depends
on ik(α) (n, k ∈ N):

Ik(α) = (k + 1)ik(α), Hn,k(α) = In(α)Ik+2(α)− In+2(α)Ik(α), (18)

the main properties of Hn,k(α) are summarized and proved in Appendix A.
The production terms of the moment equations are determined starting from

(5) and (6) [10, 3].
In particular, besides the relations already available in [10]

1

π`

∫ 2π

0

∫ π/2

0

(c′k − ck) cos θ sin θ dθdε = −1

`
ck,

1

π`

∫ 2π

0

∫ π/2

0

(c′kc
′
j − ckcj) cos θ sin θ dθdε = −1

`
(ckcj −

1

3
c2δkj),

(19)

we have also determined:

1

π`

∫ 2π

0

∫ π/2

0

(c′kc
′
jc
′
i − ckcjci) cos θ sin θ dθdε = −1

`
ckcjci,

1

π`

∫ 2π

0

∫ π/2

0

(c′kc
′
jc
′
ic
′
l − ckcjcicl) cos θ sin θ dθdε =

= −1

`
(ckcjcicl −

1

15
c4 (δkjδil + δkiδjl + δklδji)) .

(20)
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In what follows we will focus on the case N = 3 for a certain expansion order o
and we will consider only the first 13 moment variables which are: mass density

ρ = F (o), the components of the momentum density Ji = F
(o)
i (we recall that

Si = −qeJi/m is the i-component of the electric current), the momentum flux

Pij = F
(o)
ij , and the componets of heat flux 2qi =

∑3
l=1 F

(o)
ill (i, j = 1, 2, 3). The

corresponding equation system reads

∂tF
(o) + ∂xk

F
(o)
k = 0,

∂tF
(o)
i + ∂xk

F
(o)
ki − ψkF

(o) − ΓinF
(o)
n = Q

(o)
i ,

∂tF
(o)
ij + ∂xk

F
(o)
kij − ψiF

(o)
j − ψjF (o)

i − ΓinF
(o)
jn − ΓjnF

(o)
in = Q

(o)
ij ,

∂tF
(o)
ill + ∂xk

F
(o)
kill − ψiF

(o)
ll − 2ψlF

(o)
il − ΓinF

(o)
nll = Q

(o)
ill .

(21)

4 The balance laws in the case of linear expan-
sion of fN

In this Section we will consider the linear expansion of fN that is to say o = 1,
so that the moments are expressed as

ρ = F (1) = m

∫
R3

f
(1)
3 dc,

Ji = F
(1)
i = m

∫
R3

cif
(1)
3 dc i = 1, 2, 3,

Pij = F
(1)
ij = σij +

2e

3
δij = m

∫
R3

cicjf
(1)
3 dc i, j = 1, 2, 3,

2qi = F
(1)
ill = m

∫
R3

cic
2f

(1)
3 dc,

(22)

if e = FEll /2 denotes the energy density, while σij = F
(1)
<ij> the deviatoric part

of Pij .
The equilibrium variables ρ and e turn out to be

ρ =
4

3
πmyϑ3/2I2(α), e =

2

5
πmyϑ5/2I4(α). (23)

From the previous relations one can derive the explicit expression of the non-
equilibrium main field components.

∆Λ(1) = 0, ∆Λ
(1)
k =

3kB(ϑI6(α)Jk − 2I4(α)qk)

2ym2πϑ7/2H4,2(α)

∆Λ
(1)
ik = − 15kBσik

4ym2πϑ7/2I4(α)
, ∆Λ

(1)
kll = −3kB(ϑI4(α)Jk − 2I2(α)qk)

2ym2πϑ9/2H4,2(α)
,

(24)
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and consequently, if a = a(ϑ, α) = 4πmyϑ7/2I6(α)/21, the last flux components
read

∆F
(1)
kij =

2

5
(qkδij + qiδjk + qjδik), ∆F

(1)
kill =

I6(α)

I4(α)
ϑσki + aδki. (25)

Furthermore, the production terms can be determined thanks to relations (5),
(19) and (20); so, finally, the balance laws read

∂tρ+ ∂xk
Jk = 0,

∂tJi + ∂xk

(
σki +

2

3
eδki

)
− ψiρ− ΓinJn =

1

`
√
ϑ

[
ϑJiΠ1 + 2qiΠ2

]
,

∂t

(
σij +

2

3
eδij

)
+ ∂xk

(2

5
qkδij +

2

5
qiδkj +

2

5
qjδik

)
− ψiJj − ψjJi−

− Γinσjn − Γjnσin = −
√
ϑ

`

I5(α)

I4(α)
σij ,

∂t(2qi) + ∂xk

(
σkiϑ

I6(α)

I4(α)
+ aδki

)
− 2ψn

(
σin +

5

3
eδin

)
−

− 2Γinqn =

√
ϑ

`
[ϑJiΠ3 + 2qiΠ4] ,

(26)

where

Π1 =
H3,4(α)

H4,2(α)
, Π2 =

H2,3(α)

H4,2(α)
, Π3 =

H5,4(α)

H4,2(α)
, Π4 =

H2,5(α)

H4,2(α)
.

(27)

5 The balance laws in the case of quadratic ex-
pansion of fN

The second order terms of the main field variables can be determined with the
procedure described in [11, 7], obtaining:

∆Λ(2) = β1JnJn + β2Jnqn + β3qnqn + β4σnsσns,

∆Λ
(2)
i = β5σinJn + β6σinqn,

∆Λ
(2)
ij = β7JiJj + β8JnJnδij + β9(Jiqj + Jjqi) + β10Jnqnδij + β11qiqj+

+ β12qnqnδij + β13σinσjn + β14σsnσsnδij ,

∆Λ
(2)
ill = β15σinJn + β16σinqn,

(28)
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where

β1 =
3kB(3I26 (α)H2,0(α)− 7H2

4,2(α)− 9I2(α)I6(α)H4,2(α))

16π2m3y2ϑ4H2,0(α)H2
4,2(α)

,

β2 =
9kBI4(α)(3I2(α)H4,2(α)− I6(α)H2,0(α))

4π2m3y2ϑ5H2,0(α)H2
4,2(α)

,

β3 =
kB(9I24 (α)H2,0(α)− 27I22 (α)H4,2(α))

4π2m3y2ϑ6H2
4,2(α)H2,0(α)

, β4 =
15kBI2(α)

16π2m3y2ϑ5I4(α)H2,0(α)
,

β5 =
−45kBI6(α)

8π2m3y2ϑ5I4(α)H4,2(α)
, β6 =

63kB
4π2m3y2ϑ6H4,2(α)

,

(29)

β7 =
β5
2
, β8 =

kB(3I2(α)(7H2
4,2(α)− 3I26 (α)H2,0(α) + 9I2(α)I6(α)H4,2(α))

16π2m3y2I4(α)H2,0(α)H2
4,2(α)

,

β9 =
63kB

8π2m3y2ϑ6H4,2(α)
β10 =

9kBI2(α)(I6(α)H2,0(α)− 3I2(α)H4,2(α))

4π2m3y2ϑ6H2,0(α)H2
4,2(α)

,

β11 = − 81kBI2(α)

4π2m3y2ϑ7I4(α)H4,2(α)
, β12 =

9kBI2(α)(3I22 (α)H4,2(α)− I24 (α)H2,0(α)

4π2m3y2ϑ7I4(α)H2,0(α)H2
4,2(α)

,

β13 =
225kB

16π2m3y2ϑ6I24 (α)
, β14 = −15kB(5H2,0(α) + 2I0(α)I4(α))

32π2m3y2ϑ6I24 (α)H2,0(α)
,

β15 =
63kB

8π2m3y2ϑ6H4,2(α)
, β16 = β11.

(30)

When the expansion order o is varied, the density vector remains the same; so,

in the present case, F (2) = F (1), F
(2)
i = F

(1)
i , F

(2)
ij = F

(1)
ij and F

(2)
ill = F

(1)
ill

while the last components of the flux vector change as follows:

∆F
(2)
kij =b1[(Jiσjk + Jjσik + Jkσij)−

2

5
Jn(σknδij + σinδjk + σjnδik)]+

+ b2[(qiσjk + qjσik + qkσij)−
2

5
qn(σknδij + σinδjk + σjnδik)],

∆F
(2)
kill =b3JiJk + b4J

2δik + b5(Jkqi + Jiqk) + b6Jnqnδik+

+ b7qkqi + b8q
2δik + b9σknσin + b10σsnσsnδik,

(31)
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where the previous coeffiecients b1, b2, .., b10 depend on α and ϑ and read

b1 =
3I6(α)

14πmyϑ3/2H4,2(α)
, b2 =

3(9H4,2(α)− 2I24 (α))

14πmyϑ(5/2)I4(α)H4,2(α)
,

b3 =
3(5I26 (α)H4,2(α)− 11I24 (α)H6,4(α))

20πmyϑ1/2I4(α)H2
4,2(α)

,

b4 =
35H3

4,2(α)− 33H2,0(α)H6,4(α)I24 (α) + 45H2
4,2(α)I2(α)I6(α)

40πmyϑ1/2I4(α)H2,0(α)H2
4,2(α)

,

b5 = −3(5I6(α)H4,2(α)− 11I2(α)H6,4(α)

10πmyϑ3/2H2
4,2(α)

,

b6 =
3I2(α)(11H2,0(α)H6,4(α)− 15H2

4,2(α)

10πmyϑ3/2H2,0(α)H2
4,2(α)

,

b7 =
3(7H2

4,2(α)− 11I22 (α)H6,4(α) + 5I2(α)I6(α)H4,2(α))

10πmyϑ5/2I4(α)H2
4,2(α)

,

b8 =
3(−15I22 (α)H2

4,2(α) + 11I22 (α)H6,4(α)H2,0(α)− 2H2,0(α)H2
4,2(α))

10πmyϑ5/2I4(α)H2,0(α)H2
4,2(α)

,

b9 =
15I6(α)

14πmyϑ3/2I24 (α)
, b10 =

5(3I6(α)H2,0(α)− 7I2(α)H4,2(α))

56πmyϑ3/2I24 (α)H2,0(α)
.

(32)

Finally, also the quadratic terms of the production can be determined

∆Q(2) =0,

∆Q
(2)
i =

3H3,4(α)ϑJnσin + 6H3,2(α)qnσin
4πmy`ϑ3I4(α)H4,2(α)

,

∆Q
(2)
ij =c1(3JiJj − J2δij) + c2(3qiqj − q2δij)+

+ c3(3Jiqj + 3Jjqi − 2Jnqnδij) + c4(3σinσjn − σsnσsnδij),

∆Q
(2)
ill =

9H5,4(α)ϑJnσin + 6H2,5(α)qnσin
4πmy`ϑ2I4(α)H4,2(α)

,

(33)

where i, j = 1, 2, 3 and the coefficients c1, c2, c3, c4 are

c1 = −5I26 (α)H3,2(α) + I6(α)I4(α)H3,4(α) + 10I24 (α)H4,5(α)

20πmy`ϑI4(α)H2
4,2(α)

,

c2 = −6I24 (α)H3,2 + I2(α)I4(α)H2,5(α) + 9I22 (α)H4,5(α)

5πmy`ϑ3I4(α)H2
4,2(α)

,

c3 = −I4(α)H4,3(α) + 5I6(α)H2,3(α) + 10I2(α)H5,4(α)

10πmy`ϑ2H2
4,2(α)

,

c4 = − 5I5(α)

28πmy`ϑ2I24 (α)
.

(34)

Referring to the previous relations, system (21) can be easily written explicitly.
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6 A simple one-dimensional stationary case

To make a simple comparison between the present model and that proposed in
[3], we investigate the case of one-dimensional phenomena, that take place, for
example, in a metallic wire. Let x1 be the one-dimensional space variable and
assume that σij = 0 ∀i, j = 1, 2, 3. Neglecting the differential equation for σij in
(21), and assuming that q2 = q3 = J2 = J3 = 0, the ”quadratic” model derived
in the previous sections reduces to

∂tρ+ ∂x1
J1 = 0,

∂tJi + ∂x1

(
2

3
e

)
− ψ1ρ =

1

`
√
ϑ

[
ϑJ1Π1 + 2q1Π2

]
,

∂te+ ∂x1
q1 − ψ1J1 = 0,

∂t(2q1) + ∂x1

(
a+ (b3 + b4)J2

1 + (2b5 + b6)J1q1 + (b7 + b8)q21

)
− 10

3
ψ1e =

=

√
ϑ

`

[
ϑJ1Π3 + 2q1Π4

]
.

(35)

The underlined terms are quadratic in the non-equilibrium variables, if they are
neglected the equation system reduces to the one of [3].

Let us assume that the electric current vanish (J1 = 0), there are no external
forces and only stationary phenomena are examined, after some calculations the
previous equations imply

q1 = const

dα

dx1
=

3Π2

eα
√
ϑ`
q1 −

eϑ
eα

dϑ

dx1

dϑ

dx1
=

2ϑΠ4eα − (aα + (b7 + b8)αq
2
1)3Π2√

ϑ`[ea(aϑ + (b7 + b8)ϑq21)− eϑ(aα + (b7 + b8)αq21)]
q1,

(36)

where for a generic variable u and a generic function z zu = ∂z/∂u and (·)u =
∂ ·/∂u. Equation (36)3 can be seen as a generalization of the Fourier law, written
in an implicit form. In fact, if the underlined terms (which are the quadratic
ones) are neglected, (36)3 reduces to the the Fourier law already determined in
[10]. In a similar way also the generalized Ohm’s law can be determined.

7 Conclusions and final remarks

In this paper we introduced a RET model for metal electrons and we studied
it in a simple one-dimensional stationary case. The equation system is a gen-
eralization of a previous one by Müller and Ruggeri [3] and takes into account
both quadratic contributions and the deviatoric part of the momentum density.
The goal of this work was the description of phenomena far from equilibrium
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that involve metal electrons. Therefore, the present paper constitutes the start-
ing point for further investigations on the mathematical properties and on the
range of applicability of the model, as well as for applications to realistic physical
problems.

8 Appendix A

Property 1
Given n, k ∈ N and assuming that the fermion gas is not completely degen-

erate, for Hn,k(α) it holds

Hn,k(α)

 > 0 if n < k
= 0 if n = k
< 0 if n > k

(37)

Proof of Property 1 Recalling the definition of Hn,k = In(α)Ik+2(α) −
In+2(α)Ik(α) it is immediate to show that Hn,n = 0 ∀n ∈ N and also that
Hn,k = −Hk,n. Thus the proof reduces to the first case, i.e. n < k; in this
framework we assume that k = n + h with h ∈ N\{0}. From (17), we can

deduce that Ij−2 = −2
dij(α)
dα ∀j ≥ 2 with j ∈ N. So the function Hn,k(α)

becomes

Hn,k(α) = 4

(
din+2(α)

dα

dik+4(α)

dα
− din+4(α)

dα

dik+2(α)

dα

)
(38)

If we consider (16) and define g(x, α) = 1/(exp(α+ x2) + 1), (38) becomes

Hn,k(α) = 4

∫ +∞

0

∫ +∞

0

∂g(x, α)

∂α

∂g(y, α)

∂α

(
xn+2yn+h+4 − xn+4yn+h+2

)
dxdy.

(39)
Permuting the integration variables x and y in (39), it holds

Hn,k(α) =2

∫ +∞

0

∫ +∞

0

∂g(x, α)

∂α

∂g(y, α)

∂α
xn+2yn+2

(
yh+2 − x2yh+

+ xh+2 − y2xh
)
dxdy =

=2

∫ +∞

0

∫ +∞

0

∂g(x, α)

∂α

∂g(y, α)

∂α
xn+2yn+2

(
y2 − x2

) (
yh − xh

)
dxdy.

(40)

The integrand in (40) is a non-negative function ∀h ∈ N\{0}, moreover its
support has clearly a non-zero mesaure in R2, therefore the double integral is
strictly positive.

By contrast, when a gas is completely degenerate, i.e. when α → −∞ the
integrand function vanishes and the property is no more valid. �

The property 1 and its proof are a generalization of theorem 1 in [5].
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