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Abstract
We present a derivative-free method for solving systems of nonlinear equations that belongs
to the class of spectral residual methods.Wewill show that by endowing a previous version of
the algorithmwith a suitable new linesearch strategy, standard global convergence results can
be attained under mild general assumptions. The robustness of the new method is therefore
potentially improved with respect to the previous version as shown by the reported numerical
experiments.

Keywords Nonlinear systems of equations · Spectral residual methods · Global
convergence · Nonmonotone linesearch

1 Introduction

In this work we propose a variant of the derivative-free spectral residual method Pand-
SR presented in [16], for solving nonlinear systems of equations of the form:

F(x) = 0, (1)

with the aim of obtaining stronger global convergence results when F : R
n → R

n is a
continuously differentiable mapping. Indeed, the sequence generated by Pand- SR was
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368 A. Papini et al.

proved to be convergent under mild standard assumptions, but only in a more specific setting
it was shown in [16] that the limit point is also a solution of (1).

Inspired by [11], we adopt here a different linesearch strategy, which allows us to obtain
a more general and nontrivial result for methods that do not make any use of derivatives of
f , and in fact was not established in [16]. Namely we can prove that at every limit point x∗
of the sequence {xk} generated by the new algorithm, either F(x∗) = 0 or the gradient of the
merit function

f (x) = 1

2
‖F(x)‖22 (2)

is orthogonal to the residual F :

〈∇ f (x∗), F(x∗)
〉 = 〈

J (x∗)T F(x∗), F(x∗)
〉 = 0, (3)

being J the Jacobian of F .1 Clearly the orthogonality condition (3) does not generally
imply F(x∗) = 0; however this result can be recovered under additional conditions, e.g.
when J (x∗) is positive (negative) definite. We further remark that the improvement with
respect to Pand- SR is not only theoretical; as discussed in Sect. 4, the performed numerical
experiments show that the new linesearch has a positive impact also on the practical behaviour
of the method.

Given the current iterate xk , spectral residual methods are methods of linesearch type
which produce a new iterate xk+1 of the form:

xk+1 = xk ± λkβk F(xk)

– both the residual vectors ±F(xk) are used as search directions;
– the spectral coefficient βk �= 0 is generally the reciprocal of an appropriate Rayleigh quo-

tient, approximating some eigenvalue of (suitable secant approximations of) the Jacobian
[11,15];

– the steplength parameter λk > 0 is determined by suitable—typically nonmonotone—
linesearch strategies to reduce the norm of F (or a smooth merit function as (2)).

Spectral residual methods have received a large attention because of the low-cost of the
iterations, and because they require a lowmemory storage beingmatrix free, see e.g. [7,9–11,
16]. They are particularly attractivewhen the Jacobianmatrix of F is not available analytically
or its computation is burdensome. Indeed, distinguishing features of these methods are that
the computation of the search directions does not involve the solution of linear systems, and
that effective derivative-free linesearch conditions can be defined [6,7,11,12,15].

The paper is organized as follows. Our algorithm is presented in Sect. 2, wherewe describe
the new linesearch strategy and recall themain features of the spectral residualmethodPand-
SR. Convergence analysis is developed in Sect. 3 and numerical experiments are discussed
in Sect. 4. Some conclusions and perspectives are drawn in Sect. 5.

Notations

The symbol ‖ · ‖ denotes the Euclidean norm, J denotes the Jacobian matrix of F . Given a
sequence of vectors {xk}, we occasionally denote F(xk) by Fk .

1 The symbol 〈x, y〉 denotes the scalar product between vectors x and y.
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On the global convergence of a new spectral residual algorithm… 369

2 The Srand2 algorithm

We present a spectral residual method that is a modification of the Projected Approximate
Norm Descent algorithm with Spectral Residual step (Pand- SR) proposed in [16]. Pand-
SR was developed for solving convexly constrained nonlinear systems; here it is applied in
an unconstrained setting. A brief discussion on the constrained case is postponed to Sect. 5.

The new algorithm is denoted asSrand2 (Spectral ResidualApproximateNormDescent)
and differs from Pand- SR in the definition of the linesearch conditions and in the choice
of the spectral stepsize βk .

Both Pand- SR and Srand2 employ a nonmonotone linesearch strategy based on the
so-called approximate norm descent property [12]. This means that the generated sequence
of iterates {xk} satisfies

‖F(xk+1)‖ ≤ (1 + ηk)‖F(xk)‖ (4)

for all k, where {ηk} is a positive sequence of scalars such that

∞∑

k=0

ηk ≤ η ≤ ∞. (5)

The idea behind such a condition is to allow a highly nonmonotone behaviour of ‖Fk‖ for
(initial) large values of ηk while promoting a decrease of ‖F‖ for small (final) values of ηk . A
nonmonotone behaviour of the norm of F is crucial to avoid practical stagnation of methods
based on spectral stepsizes (see e.g. [5,11,17]); at the same time condition (4) ensures the
sequence {‖Fk‖} to be bounded (see Theorem 1 in Sect. 3).

In detail, given the current iterate xk and the initial stepsize βk , in [16] a new iterate xk+1

of form
xk+1 = xk − λkβk F(xk) or xk+1 = xk + λkβk F(xk) (6)

is computed. The scalar λk ∈ (0, 1] is fixed by using a backtracking strategy; starting from
λk = 1, it is progressively reduced by a factor σ ∈ (0, 1) (e.g. halved) until one of the
following conditions is satisfied:

‖F(xk+1)‖ ≤ (1 − α(1 + λk))‖F(xk)‖, (7)

or
‖F(xk+1)‖ ≤ (1 + ηk − αλk)‖F(xk)‖, (8)

where α ∈ (0, 1).
In Srand2 conditions (7) and (8) are respectively replaced by

‖F(xk+1)‖ ≤ (1 − α(1 + λ2k))‖F(xk)‖, (9)

and
‖F(xk+1)‖ ≤ (1 + ηk − αλ2k)‖F(xk)‖. (10)

All these conditions are derivative-free. If F is continuously differentiable, as long as
FT
k J (xk)Fk �= 0, either +βk Fk or −βk Fk is a descent direction for the merit function f

in (2) and for ‖F‖ at xk ; hence the first condition (9) (similarly (7)) promotes a sufficient
decrease in ‖F‖ and is crucial for establishing results on the convergence of {‖Fk‖} to zero.
On the other hand, the second condition (10) (similarly (8)) allows for an increase of ‖F‖
depending on the magnitude of ηk . Trivially, (9) implies (10) and both imply the approximate
norm descent condition (4); the same holds for conditions (7) and (8).
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370 A. Papini et al.

We observe that the change in conditions (9) and (10) with respect to (7) and (8) only
derives from the λ2k term in the right hand side of (9) and (10). This squared term is common
to other linesearch strategies as e.g. those in [11,12]. This small change in the linesearch
conditions has a great impact on the global convergence result of the overall algorithm as
shown in the forthcoming section.

As concerns the choice of the spectral coefficient βk in (6), both Pand- SR and Srand2
use formulas closely related to the Barzilai–Borwein’s steplength employed in spectral
gradient methods for optimization problems, see e.g. [2,5]. However, differently from the
optimization case, in spectral residual methods βk may be positive or negative since both
directions ±Fk are attempted. Also, its absolute value is constrained to belong to a given
interval [βmin, βmax] to get a bounded sequence of stepsizes. As an example βk can be chosen
by computing

βk,1 = pTk−1 pk−1

pTk−1yk−1
, (11)

or

βk,2 = pTk−1yk−1

yTk−1yk−1
,

with pk−1 = xk − xk−1 and yk−1 = Fk − Fk−1, and then ensuring that βk,1 or βk,2 is such
that |βk | ∈ [βmin, βmax] by some thresholding rule. Alternative choices of βk that suitably
combine βk,1 and βk,2 can be found in [15], where a systematic analysis of the stepsize
selection for spectral residual methods is addressed also in combination with an approximate
norm descent linesearch. In Algorithm 2.1 we formally describe Srand2 for a general βk

such that |βk | ∈ [βmin, βmax].

Algorithm 2.1: The Srand2 algorithm

Given x0 ∈ IRn , 0 < βmin < βmax, β0 ∈ [βmin, βmax], α and σ ∈ (0, 1), {ηk } a positive sequence
satisfying (5).

If ‖F0‖ = 0 stop.
For k = 0, 1, 2, . . . do

1. Set λk = 1.
2. Repeat

2.1 If xk+1 = xk − λkβk F(xk ) satisfies (9), go to Step 3.
2.2 If xk+1 = xk + λkβk F(xk ) satisfies (9), go to Step 3.
2.3 If xk+1 = xk − λkβk F(xk ) satisfies (10), go to Step 3.
2.4 If xk+1 = xk + λkβk F(xk ) satisfies (10), go to Step 3.
2.5 Otherwise set λk = σ λk .

3. If ‖F(xk+1)‖ = 0 stop.
4. Choose βk+1 such that |βk+1| ∈ [βmin, βmax] .

We observe that the Repeat loop at Step 2 terminates in a finite number of steps: indeed, from
the continuity of F and the positivity of ηk , there exists λ̄ > 0 such that

‖F(xk ± λβk F(xk))‖ ≤ ‖F(xk)‖ + (ηk − αλ2)‖F(xk)‖,
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On the global convergence of a new spectral residual algorithm… 371

with λ ∈ (0, λ̄], and i = 1, . . . , n; therefore, inequality (10) holds for small enough values
of λk .

3 Global convergence analysis

We now provide the convergence analysis of the Srand2 algorithm. Theorems 1 and 2
analyze the behaviour of the sequences {λk} and {‖Fk‖}; they state general results which
derive from the linesearch strategy and hold for Pand- SR as well. Their proofs follow the
lines of [16, Theorem 4.2] and therefore are not reported in this work. Theorem 2 in particular
identifies situations where {‖Fk‖} may or may not converge to zero. Theorem 3 constitutes
the main contribution of this work. It is related both to the linesearch strategy and to the
choice of the spectral residual steps, and it does not rely on the specific choice of βk .

Theorem 1 Let F : Rn → R
n be a continuous map, and let {xk} and {λk} be the sequences of

iterates and of linesearch stepsizes generated by the Srand2 algorithm. Then the sequence
{‖Fk‖} is convergent and bounded by

‖Fk‖ ≤ eη‖F0‖, for all k ≥ 0, (12)

where η > 0 is given in (5). Moreover

lim
k→∞ λ2k‖Fk‖ = 0. (13)

Theorem 2 Let F : Rn → R
n be a continuous map, and let {xk} and {λk} be the sequences

of iterates and of linesearch stepsizes generated by the Srand2 algorithm. Then

(i) liminfk→∞ λ2k > 0 implies that limk→∞ ‖Fk‖ = 0.
(ii) If (9) is satisfied for infinitely many k, then limk→∞ ‖Fk‖ = 0.
(iii) If ‖Fk‖ ≤ ‖Fk+1‖ for infinitely many iterations, then liminfk→∞ λ2k = 0.
(iv) If ‖Fk‖ ≤ ‖Fk+1‖ for all k sufficiently large, then {‖Fk‖} does not converge to 0.

Wenow provide themain convergence result, that is at every limit point x∗ of the sequence
{xk} generated by the Srand2 algorithm, the gradient of the merit function f in (2) is
orthogonal to the residual F(x∗).

Theorem 3 Let F be continuously differentiable. Let {xk} be the sequence generated by the
Srand2 algorithm and let x∗ be a limit point of {xk}. Then either

F(x∗) = 0

or 〈∇ f (x∗), F(x∗)
〉 = 〈

J (x∗)T F(x∗), F(x∗)
〉 = 0. (14)

Proof Let K be an infinite subset of indices such that limk∈K xk = x∗. By Theorem 1 we
know that limk∈K λ2k‖Fk‖ = 0. Hence there are two possibilities:

either liminf
k∈K λ2k > 0 or liminf

k∈K λ2k = 0.

The first one implies limk∈K ‖Fk‖ = 0. Then using the continuity of F it follows easily that

lim
k∈K ‖F(xk)‖ = ‖F(x∗)‖ = 0.

123



372 A. Papini et al.

In the second case we have liminfk∈K λ2k = liminfk∈K λk = 0. Let λk = λk/σ denote the last
attempted value for the linesearch parameter before λk is accepted during the backtracking
phase. Hence for sufficiently large values of k ∈ K we have

‖F(xk − λkβk Fk)‖ > (1 + ηk − αλ2k)‖F(xk)‖,
‖F(xk + λkβk Fk)‖ > (1 + ηk − αλ2k)‖F(xk)‖.

Being ηk > 0, and by virtue of (12), there is a positive constant c1 such that

‖F(xk ± λkβk Fk)‖ − ‖F(xk)‖ > (ηk − αλ2k)‖F(xk))‖ > −αλ2k‖F(xk)‖ > −c1αλ2k, (15)

and multiplying both sides of (15) by ‖F(xk ± λkβk Fk)‖ + ‖F(xk)‖, we obtain
‖F(xk ± λkβk Fk)‖2 − ‖F(xk)‖2 > −c1αλ2k

(‖F(xk ± λkβk Fk)‖ + ‖F(xk)‖
)
. (16)

Now we observe that xk ± λkβk Fk is bounded ∀k ∈ K; indeed, by hypothesis λk ∈ (0, 1],
|βk | ≤ βmax, the subsequence {xk}k∈K is convergent to x∗ and hence bounded, and ‖Fk‖ is
bounded by Theorem 1. Then recalling the definition of λk = λk/σ and the continuity of F ,
we have

‖F(xk ± λkβk Fk)‖ + ‖F(xk)‖ ≤ c2, k ∈ K, (17)

for some positive constant c2. Consequently, from (16) and (17), there exists a constant c > 0
such that

‖F(xk ± λkβk Fk)‖2 − ‖F(xk))‖2 > −cαλ2k, (18)

for sufficiently large values of k ∈ K.
Now, we suppose that βk > 0 for infinitely many indices k ∈ K1 ⊆ K, and we consider

the two steps −λkβk Fk and +λkβk Fk separately.

– Firstly, we consider−λβk Fk .By virtue of theMean Value Theorem and (18), there exists
ξk ∈ [0, 1] such that

〈∇ f (xk − ξkλkβk Fk),−λkβk Fk
〉
> −cαλ2k,

for sufficiently large k ∈ K. Hence, for all large k ∈ K1 we have that:

〈∇ f (xk − ξkλkβk Fk), Fk
〉
< cα

λk

βk
≤ cα

λk

βmin
. (19)

– Nowwe consider+λβk Fk . Similarly there exists ξ ′
k ∈ [0, 1] such that for all large k ∈ K1

〈∇ f (xk + ξ ′
kλkβk Fk), Fk

〉
> −cα

λk

βk
≥ −cα

λk

βmin
. (20)

Since liminfk∈K λk = 0, taking limits in (19) and (20) we get
〈∇ f (x∗), F(x∗)

〉 = 0.

We proceed in a quite similar way if βk < 0 for infinitely many indices. ��

Corollary 1 The orthogonality condition (14) implies F(x∗) = 0 in the following cases:
(a) J (x∗) is positive (negative) definite;
(b) vT J (x∗)v �= 0, for all v ∈ R

n, v �= 0.
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Case (a) in Corollary 1 includes the class of nonlinear monotone systems of equations
of the form (1) with F continuously differentiable and strictly monotone, that is (F(x) −
F(y))T (x − y) > 0 for any x, y ∈ R

n with x �= y [4]. Nonlinear monotone systems of
equations arise in several applications and tailored spectral type methods have been recently
proposed, see e.g. [18].

Remark 1 A general result like Theorem 3 was not proved for Pand- SR, which is in turn
known to be convergent. Moreover, if x∗ is the limit point and x0 the starting guess, the
following bound

‖x0 − x∗‖ ≤ βmax

(
1

α
+ η

α
eη

)
‖F0‖ (21)

was provided in [16]. However it cannot be proved in general that F(x∗) = 0. Such a result
was obtained in [16] basing the choice of βk on (11), assuming the Jacobian J to be Lipschitz
continuous, and focusing on specific classes of problems. For example, [16, Theorem 5.2]
consider the case of J (x∗) with positive (negative) definite symmetric part and suitably
bounded condition number. In [16, Theorem 5.2] instead, J (x∗) is assumed to be strongly
diagonal dominant, with diagonal entries of constant sign.

We show in the forthcoming section, that the stronger convergence properties of Srand2
correspond in practice to an algorithm potentially more robust than Pand- SR. Of course,
we cannot expect strong difference in the performance of the two methods, given the small
change between the two. Nevertheless, the new linesearch is able to recover few cases when
‖Fk‖ does not converge to zero encountered with the previous one.

4 Numerical illustration

We compare the performance of Srand2 and Pand- SR algorithms on two problem sets.
The first set (named set- Luksan) contains 17 nonlinear systems of theLukšan test collection
described in [13] that are commonly used as benchmark for optimization algorithms. The
second set (named set- contact) consists in nonlinear systems arising in the solution of rail-
wheel contact models via the classical CONTACT algorithm [8]. These tests were described
in details and used in [15, Section 5.2]. We selected here the 153 problems generated with
train speed ofmagnitude v = 16m/s, yielding systemswhose dimensions vary from n = 156
to n = 1394.

Pand- SR and Srand2 algorithmswere implemented as described in Sect. 2with param-
eters

β0 = 1, βmin = 10−10, βmax = 1010, α = 10−4, σ = 0.5,

ηk = 0.99k(100 + ‖F0‖2) ∀k ≥ 0,

see [16]. A maximum number of 105 iterations and F-evaluations was imposed, and a max-
imum number of backtracks equal to 40 was allowed at each iteration. The procedure was
declared successful when

‖Fk‖ ≤ 10−6. (22)

Failure was declared when either the assigned maximum number of iterations or F-
evaluations or backtrackswas reached, or ‖F‖was not reduced for 500 consecutive iterations.
Such occurrences are denoted below as Fit, Ffe, Fbt, Fin, respectively.

Regarding the choice of βk , we used three classical rules based on βk,1, βk,2 and their
alternation, respectively named BB1, BB2 and ALT in what follows. Given a scalar β, let T (β)
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be the projection of |β| onto Iβ
def= [βmin, βmax], that is

T (β) = min{βmax,max{βmin, |β|}}. (23)

We recall below the definition of BB1, BB2 and ALT as given in [15].

BB1 rule. By [7,9,10,16], at each iteration set

βk =
{

βk,1 if |βk,1| ∈ Iβ
T (βk,1) otherwise

(24)

BB2 rule. At each iteration set

βk =
{

βk,2 if |βk,2| ∈ Iβ
T (βk,2) otherwise

(25)

ALT rule. Following [1,7], at each iteration alternate between βk,1 and βk,2, setting:

βALT
k =

{
βk,1 for k odd

βk,2 otherwise
(26)

βk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βALT
k if |βALT| ∈ Iβ

βk,1 if k even, |βk,1| ∈ Iβ, |βk,2| /∈ Iβ
βk,2 if k odd, |βk,2| ∈ Iβ, |βk,1| /∈ Iβ
T (βALT

k ) otherwise.

(27)

We experimented Pand- SR and Srand2 also with more elaborated, adaptive rules for βk

see e.g. [2,15], but the qualitative behaviour of the two methods did not change; therefore we
do not report the corresponding results.

Problems in set- Luksan were solved setting n = 500 and starting from the initial guess
x0 suggested in [13]. Problem lu5 requires an odd value for n and therefore we set n = 501.
For 16 out of 17 problems, Pand- SR and Srand2 give the same results: Table 1 reports
the number of F-evaluations varying the updating rule for βk . More interesting is the case
of Problem lu16 reported in Table 2. Though performing a large number of F-evaluations,
Srand2 is able to successfully solve Problem lu16 using BB2 and ALT, whereas Pand- SR
returns a failure with all the attempted βk rules.

In Fig. 1 we give an insight into the convergence behaviour of both methods with BB2 on
Problem lu16. We display ‖Fk‖ versus the iterations and the number of F-evaluations (top
part), the number of backtracks performed by both algorithms (central part), and values of
‖Fk‖ and λk versus the iterations for both algorithms (bottom part). All plots are obtained
by disabling the stopping criterion on the number of consecutive increases of ‖F‖. In this
setting Pand- SR fails since the maximum number of backtracks is reached, after 3278
iterations and 56883 F-evaluations while Srand2 converges after 8456 iterations and 45624
F-evaluations. We observe that the sequence of {‖Fk‖} generated by Pand- SR does not
satisfy the stopping criterion (22), whereas the increasing number of backtracks along the
iterations corresponds to the fact that {λk} is going to zero. On the contrary, the sequence
{‖Fk‖} generated by Srand2 converges to zero and λk does not decrease with the iterations.
Both situations are in accordance with the theory: at least one among the sequences {‖Fk‖}
and {λk} converges to zero, but the linesearch adopted in Srand2 more likely generates a
sequence {‖Fk‖} that goes to zero.
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Table 1 set- Luksan: number of
F-evaluations performed by
Pand- SR and Srand2 with
different rules for βk

Problem Pand- SR and Srand2
BB1 BB2 ALT

lu1 Fin 1066 Fbt

lu2 496 376 455

lu3 5 5 5

lu4 31 32 31

lu5 15499 1013 2634

lu6 Fin Fin 74

lu7 Fin Fin 417

lu8 419 Fin 266

lu9 Fin Fin 182

lu10 457 Fin 1168

lu11 Fin Fin Fin

lu12 Fin Fin Fin

lu13 Fin 31 84

lu14 37 33 36

lu15 34 33 33

lu17 137 27 28

Table 2 set- Luksan: number of F-evaluations performed by Pand- SR and Srand2 with different rules
for βk on for Problem lu16

Problem Pand- SR Srand2 Pand- SR Srand2 Pand- SR Srand2
BB1 BB1 BB2 BB2 ALT ALT

lu16 Ffe Ffe Fin 45624 Fbt 57432

Fig. 1 set- Luksan: convergence history generated by Pand- SR and Srand2 with BB2 for Problem lu16
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376 A. Papini et al.

Fig. 2 set- contact: F-evaluation performance profile of Pand- SR and Srand2 methods with BB2 (top)
and with ALT (bottom)

This behaviour is also confirmed by the experiments performed with the set- contact
problems. Results obtained for these problems are summarized in the F-evaluation perfor-
mance profiles [3] of Fig. 2, where Pand- SR and Srand2, combined with rules BB2 (top
plot) and ALT (bottom plot), are compared. Results with BB1 are not reported since the two
algorithms give exactly the same values for the number of F-evaluations. The plots clearly
show that the two algorithms perform similarly and Srand2 is slightly more robust. In
detail, Pand- SR and Srand2 with BB2 solve 132 and 135 problems, respectively. Also in
combination with the ALT rule, Srand2 solves 3 problems more than Pand- SR.

In the 6 cases recovered by Srand2, the behaviour of the two methods was similar to
what observed with Problem lu16. To witness, the graphs reported in Fig. 3 are relative to
one of the cases where the BB2 rule was in use. Analogous observations as for Fig. 1 can be
drawn, regarding convergence to zero of the sequences {λk} and {‖Fk‖}.
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On the global convergence of a new spectral residual algorithm… 377

Fig. 3 set- contact: convergence history generated by Pand- SR and Srand2 with BB2 for problem
155_3_3 in [15, Table B.5]

5 Conclusions and outlook

In this work we show how to modify the algorithm proposed in [16] in order to establish
mild general conditions that guarantee the convergence of the sequence {‖Fk‖} to zero, and
the corresponding practical benefits in terms of robustness.

The Pand- SR algorithm in [16] was developed for solving constrained nonlinear system
of the form

F(x) = 0, x ∈ Ω, (28)

where Ω ⊂ R
n is a convex set whose relative interior is non-empty. Srand2 can also

be adapted to the solution of constrained problems of the form (28) by relying on suitable
projection operator onto the feasible set Ω as follows. Proceeding as in [16], feasible iterates
{xk} can be defined by starting from a feasible x0, and by setting for k > 0

xk+1 = P(xk ± λkβk Fk),

where P denotes a projection operator onto the considered domain. As an example, if Ω is
a n-dimensional box {x ∈ R

n s.t. l ≤ x ≤ u}, where l ∈ (R ∪ −∞)n , u ∈ (R ∪ ∞)n ,
and the inequalities are meant component-wise, a projection map may be given by P(x) =
max {l,min {x, u}}.

Such a modification of the Srand2 algorithm to handle constrained problems, trivially
enjoys the theoretical properties presented in Theorems 1 and 2. Remarkably, the new global
convergence result of Theorem 3 can also be easily extended to problem (28) for limit points
lying in the interior of Ω . Convergence to solutions on the boundary of Ω is currently under
investigation.
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