
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Extraction of common conceptual components from multiple ontologies / Luigi Asprino, Valentina Anita
Carriero, Valentina Presutti. - ELETTRONICO. - (2021), pp. 185-192. (Intervento presentato al convegno
11th on Knowledge Capture Conference (K-CAP 2021) tenutosi a Virtual, Online nel December 2-3, 2021)
[10.1145/3460210.3493542].

Published Version:

Extraction of common conceptual components from multiple ontologies

Published:
DOI: http://doi.org/10.1145/3460210.3493542

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/844292 since: 2024-04-08

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1145/3460210.3493542
https://hdl.handle.net/11585/844292

Extraction of Common Conceptual Components
from Multiple Ontologies

LUIGI ASPRINO, FICLIT, University of Bologna, Italy

VALENTINA ANITA CARRIERO, DISI, University of Bologna, Italy

VALENTINA PRESUTTI, LILEC, University of Bologna, Italy

Understanding large ontologies is still an issue, and has an impact on many ontology engineering tasks. We describe a novel method
for identifying and extracting conceptual components from domain ontologies, which are used to understand and compare them. The
method is applied to two corpora of ontologies in the Cultural Heritage and Conference domain, respectively. The results, which show
good quality, are evaluated by manual inspection and by correlation with datasets and tool performance from the ontology alignment
evaluation initiative.

CCS Concepts: • Computing methodologies→ Ontology engineering.

Additional Key Words and Phrases: ontology design patterns; conceptual components; empirical knowledge engineering; knowledge
extraction; ontology usability

1 Introduction

Understanding large ontologies - by humans or machines - is both a struggle and crucially important for performing
ontology engineering tasks such as ontology reuse, ontologymatching, ontology evaluation, and (federated) querying [2].
According to [6], existing visualisation tools fail in providing overviews of large ontologies, which is crucial for ontology
understanding, while none of them allows to compare multiple ontologies. Besides the layout and interaction features,
the problem lays in the lack of effective methods for producing summaries of large ontologies. Many summarisation
approaches focus on analysing the data level, e.g. to reduce the size of a knowledge graph and allow simplified queries
for testing its coverage [3, 16]. Available summarisation methods addressing the conceptual level are based on extractive

approaches that select and return a subset of nodes from the original ontology, i.e. the key concepts, as a summary
[16]. However, an overall understanding of all the facts an ontology can represent, and a comparison between multiple
ontologies, are not supported. For example, we may identify that in a cultural heritage ontology the concepts Cultural
Property and Collection are key ones, however this is insufficient to understand if one ontology allows to answer whether
a cultural property has been in a collection. Two ontologies having the same key concept would appear they address
the same modelling problem, which may not be the case. For instance, an ontology 𝑂1 may implement a membership

relation between an object and a collection, i.e. “being a member of a collection”, as an object property hasMember

between a class Collection and a class Object, while an ontology 𝑂2 may implement it as an n-ary relation class
Membership connected to three arguments e.g., the classes Collection, Time, and Object1 (Figure 1). We refer to
these implementations as observed ontology design patterns [9], intended as adopted modelling solutions that can be
observed in existing ontologies, regardless their correctness or quality level, which may or may not reuse reference
ontology design patterns (ODPs).

A conceptual component (CC) is a complex (cognitive) relational structure that a designer implements in an ontology
by using classes, properties, axioms, etc. Examples of CCs are membership, locating, interpreting, observing. This
notion of CC is inspired by the concept of knowledge pattern presented in [10]. Conceptual components are cognitive

1Other implementations are possible.

1

Fig. 1. Implementations of the Membership CC from two different ontologies.

objects: they are the intensional counterparts of OWL implementations in semantic web ontologies2. A CC may be
implemented by means of different ontology fragments, the observed ontology design patterns (OODPs), across different
ontologies. Therefore, the CCs emerging from an ontology (corpus) indicate which types of facts, rather than which
types of entities, an ontology (corpus) can represent. The OODPs implementing a CC show the adopted modelling
solutions by a designer: which competency questions [12] and inferences are supported by an ontology.
Our approach aims at identifying the CCs implemented in multiple ontologies, to support their understanding and
comparison. We group OODPs from different ontologies in semantically-meaningful clusters, i.e. CCs. These clusters
provide a conceptual ordering, based on CC, over the different implementations (OODPs), hence providing a means to
e.g. identify the most appropriate OODP to reuse or align, based on specific requirements. While addressing this issue is
an interesting research result per se, the method we propose may lead to novel approaches to ontology engineering tasks
such as pattern-based ontology reuse, ontology visualisation, ontology matching, ontology evaluation. This method is
also relevant from an empirical perspective on knowledge engineering, that is to observe the common conceptual issues
and modelling solutions adopted in ontologies, with potentially a strong impact on semantic web interoperability.

In contrast to existing methods, we develop a non-extractive technique, as the identified conceptual components are
not part of the original sources. To the best of our knowledge, this is the first approach of this kind. Our implementation
combines community detection, word sense disambiguation, frame detection and clustering techniques. By applying it
on a corpus of ontologies from a knowledge domain, it produces a catalogue of CCs and their corresponding observed
ontology design patterns organised as a hierarchical network. The CCs are labeled and linked to their OODPs from
the corpus. Therefore, the ontologies are classified based on the CCs that they implement. We apply our method to a
corpus of 43 cultural heritage ontologies and to a corpus of 16 Conference ontologies used in the ontology alignment
evaluation initiative (OAEI)3. All software, input data, and results are available online4 as a GitHub repository. We
evaluate our results using two approaches: 1) manual inspection of the resulting OODPs and conceptual components,
and 2) correlation of our results with ontology alignment tools and datasets from the ontology alignment evaluation
initiative3.

The contribution of this paper can be summarised as follows: (i) we define a novel method for multiple ontology
summarisation, based on conceptual components and observed ontology design patterns; (ii) we implement the proposed

2OWL has purely extensional semantics.
3http://oaei.ontologymatching.org/
4https://github.com/stlab-istc-cnr/conceptual-components

2

http://oaei.ontologymatching.org/
https://github.com/stlab-istc-cnr/conceptual-components

method as a non-extractive technique; (iii) we produce and publish a catalogue of conceptual components and observed
ODPs from a corpus of CH ontologies.

Section 2 describes the datasets used as input sources. Section 3 illustrates our approach and its implementation.
Section 4 reports our experiments and results, while Section 5 focuses on their evaluation and discussion. Before
concluding in Section 7, we discuss related works in Section 6.

2 Input source

Our empirical basis is composed of two ontology corpora.
Cultural Heritage.We build a corpus consisting of 43 Cultural Heritage (CH) ontologies4. The motivation for choosing
this domain is twofold: (i) we have experience in modelling CH ontologies, and (ii) the requirements of CH ontologies
are generally complex, hence we hypothesise that it provides a good testbed for the generalisability of our method.
Ontologies that focus on related domains (e.g. geometry, chemistry) and top-level ontologies have been excluded. To
select the ontologies we used two main sources. We analysed and searched the Vocabs section of the Linked Open
Vocabularies Repository (LOV)5 by filtering the results using tags related to CH (such as Catalogs, FRBR, Metadata).
Moreover, we disseminated a call to fill a Survey6 on 3 CH- and ontology engineering-related mailing lists and on social
networks: 40 people, mostly researchers, participated in the survey. People were asked to (i) indicate which ontologies
they already knew, from the list of ontologies selected from LOV; (ii) recommend other ontologies; (iii) indicate in
which projects they had used any of them. Almost all ontologies were known by at least one participant, and four CH
ontologies have been recommended and added to the corpus. For each ontology, the latest version available is included
in the corpus. Four of them are ontology networks i.e. composed of multiple modules: we consider each networked
ontology as one ontology. When possible, we include the inferred version (i.e. with materialised inferences) of the
ontologies. To this end we use the OWL API7 and the HermiT Reasoner8. Due to import- and inconsistency-related
problems, for 10 ontologies we only include the asserted version.
The resulting CH corpus (cf. Table 1) counts a total number of 2,707 classes (owl:Class, rdfs:Class), with an average
of ∼63 classes per ontology. As for the properties (owl:ObjectProperty, owl:DatatypeProperty, rdf:Property),
they are 9,132 in total, with an average of ∼212 per ontology The total number of logical axioms is 26,392, with an
average of ∼613 per ontology
Conference. Our second corpus is provided by the dataset of the Conference evaluation track9 of the OAEI 2020
campaign (Conf for short), which contains 16 ontologies10 on a specific domain, less vast than CH but with a good
range of subtopics and related domains (e.g. price, travel). This corpus counts (cf. Table 1) a total number of 851 classes,
with an average of ∼53 classes per ontology; the total number of properties is 714, with an average of ∼44 properties
per ontology. For all 16 ontologies the inferred versions have been computed. The total number of logical axioms is
4,097, with an average of ∼256 axioms per ontology.

5https://lov.linkeddata.es
6https://t.co/ghwk6lxCOH?amp=1
7https://github.com/owlcs/owlapi
8http://www.hermit-reasoner.com
9http://oaei.ontologymatching.org/2020/results/conference
10https://owl.vse.cz/ontofarm/#ontologies

3

https://lov.linkeddata.es
https://t.co/ghwk6lxCOH?amp=1
https://github.com/owlcs/owlapi
http://www.hermit-reasoner.com
http://oaei.ontologymatching.org/2020/results/conference
https://owl.vse.cz/ontofarm/#ontologies

Table 1. Corpora of ontologies: statistics

Dataset # ontologies # logical axioms # classes # properties
tot avg min max tot avg min max tot avg min max

CH 43 26,392 ∼613 16 1,060 2707 ∼63 5 539 9132 ∼212 6 4324
Conf 16 4097 ∼256 65 739 851 ∼53 14 140 714 ∼44 17 78

3 Approach

The intuition (and assumption) behind our method (summarised in Figure 2) is that ontologies are designed (either
intentionally or unintentionally) as compositions of conceptual components, implemented by (observed) ODPs (an
adopted modelling solution). An ODP11 captures some relational meaning e.g. membership, observation, participation.
We hypothesise that OODPs emerge because 1) their vocabulary is semantically coherent with the relation they
represent, i.e. the combination of terms of an OODP evokes that relation. For example, in an OODP Membership a
possible vocabulary may include the terms: collection, is member of, has member, has unifying property; 2) the density
of their internal connections is higher than the density of the connections between them. For example, consider an
ontology that models the address of an object as a class Address having four arguments: the object, the city, the street
and number, and the postal code. They form an OODP Address. Now consider that the same ontology also includes an
OODP Event, modelling events and their participants. The connections between the entities involved in Address, and
the connections between the entities involved in Event will be denser than the connections between Address and Event.
Community detection algorithms, such as [4], are able to recognise this topological phenomenon.
Our method, depicted in Figure 2, detects the communities in each ontology from a corpus (cf. Section 3.2), after a
pre-processing step named intensional ontology graphs (cf. Section 3.1). Each community potentially identifies an OODP.
Then, we retrieve the OWL/RDF12 fragments corresponding to all communities (the actual OODPs) and store them
for later use. At the same time, each community is associated with a virtual document: a bag of words generated by
concatenating the vocabulary terms describing its entities (e.g. rdfs:label). After a disambiguation and a frame detection
steps performed on these virtual documents, they are submitted to a clustering algorithm (cf. Section 3.3). As a result we
obtain a set of clusters, each grouping communities from different ontologies. Based on our assumptions, each cluster
is a manifestation of a conceptual component, and each OODP is one of its possible OWL/RDF implementations. We
use some heuristics for naming the clusters, and finally we generate a catalogue, which provides an abstract, indexed
summary of the whole ontology corpus.

3.1 Intensional ontology graph

Most community detection algorithms manipulate undirected graphs and ignore labels: they focus on the topological
structure of a network. Therefore, we need to transform our ontologies into graph structures that can be processed
by these algorithms, while preserving as much as possible the information about how the ontologies formalise their
conceptualisations. To this aim, we introduce the concept of intensional ontology graph, which is a graph derived from
an ontology where the nodes represent its predicates (both classes and properties) and the arcs indicate that there is
a meaningful relation between two predicates. Informally, this graph encodes the intensional level of the ontology.
Formally, we transform an ontology to its intensional graph by applying the rules defined in Listing 1. With the notation

11In this context, by ODP we refer to the notion of Content ODP.
12OWL ontologies, RDF vocabularies.

4

Fig. 2. Approach for conceptual components extraction. One owl-logo means that the process works on one ontology at a time, two
owl-logos that it works on the whole corpus.

edge_label(source_label, target_label), we indicate a pair of nodes source_label, target_label that are connected by the
arc edge_label, in the intensional graph. To indicate undirected and unlabelled arcs we use no_label. A rule is a set of
premises, expressed in turtle syntax, and a conclusion, expressed with the introduced notation, that follows the symbol
“→”.

Listing 1. Transformation rules from an OWL/RDF ontology to its corresponding intensional graph.

(r1) :p rdfs:domain :d . :p rdfs:range :r .→ :p(:d, :r)

(r2) :c1 rdfs:subClassOf | owl:equivalentClass [
owl:onProperty :p ;
owl:someValuesFrom | owl:allValuesFrom | owl:hasValue |
owl:maxCardinality | owl:minCardinality | owl:cardinality :c2]
→ :p(:c1, :c2)

(r3) :p(:n1, :n2)→ 𝑛𝑜−𝑙𝑎𝑏𝑒𝑙 (:n1, :n1−p−n2) 𝑛𝑜−𝑙𝑎𝑏𝑒𝑙 (:n1−p−n2, :n2)

Given an ontology 𝑂 , the first rule (r1) generates an arc :𝑝 connecting two nodes, :𝑑 and :𝑟 , for all properties that have
domain :𝑑 and range :𝑟 . We ignore domain/range declarations involving blank nodes. Properties without domain/range
declarations are assumed to have owl:Thing as domain/range. Property restrictions (existential, universal, cardinality)
generate an edge :𝑝 between the class local to the restriction and the class in the restriction expression (r2). We ignore all
class expressions, that is we only consider named classes or datatypes. While this may cause some loss of information, we
empirically verified on our corpora that the impact is almost insignificant: only 1.62% of subClassOf/equivalence axioms

5

and 5.42% of domain/range axioms involve class expressions in the CH corpus, while 1.48% of subClassOf/equivalence
axioms and 9.22% of domain/range axioms involve class expressions in the Conf dataset.

Class hierarchy and equivalence relations between named classes are left off the intensional graph, to avoid merely
taxonomic patterns, but they are reintroduced when the OWL/RDF OODPs are retrieved (cf. Subsec. 3.2).

Rules (r1) and (r2) produce a labelled multi-graph (a graph having multiple edges). The last rule (r3) transforms
the resulting intensional graph to a corresponding unlabeled and undirected graph structure. For each arc :𝑝 between
two nodes :𝑛1 and :𝑛2 it generates two unlabelled arcs. The first connecting 𝑛1 to a new node :𝑛1 − 𝑝 − 𝑛2, the second
connecting :𝑛1 − 𝑝 − 𝑛2 to :𝑛2. The node :𝑛1 − 𝑝 − 𝑛2 captures the meaning of the property :𝑝 , contextualised to its
use for connecting :𝑛1 and :𝑛2. This is a crucial detail for maximising the quality of the detected communities. In fact,
communities are disjoint, hence if we only store the information of a property :𝑝 , this property will only fall into one
community. Nevertheless, a same property :𝑝 may be relevant in different contexts (and OODPs) and these contexts are
captured by its local usage, i.e. the predicates it connects. With this representation we enable overlapping communities,
which is crucial to capture concepts that are relevant to more than one pattern. We transform each ontology from the
two corpora into its intensional graph. Figure 313 shows two OODPs (in 3a) from POSTDATA (on the left) and CIDOC
CRM (on the right) and their corresponding intensional graphs (in 3b)14.

3.2 Community detection

Community detection aims at gathering the vertices of a network into groups, such that there is a higher density
of edges within groups than between them. For detecting the community structure of each ontology, we use the
Clauset-Newman-Moore algorithm [4]. This algorithm is based on the greedy optimization of the modularity, i.e. a
measure of how much the computed division is good in terms of the ratio between the number of edges inside the
communities and the number of edges between them. Initially, there are as many communities as the vertices, with
each vertex being the only member of its own community, then the two communities that, if merged, most increase the
modularity, are repeatedly joined, until it is no longer feasible to merge communities without decreasing the modularity.
After running this algorithm on the intensional ontology graphs, we observe that the detected communities highly
differ in their density, and that communities with lower density could be further split into meaningful subcommunities.
After running some experiments, we found that recursively running the algorithm on communities with density lower
than the average density of all communities detected at the previous step, would improve the results. Therefore, the
algorithm has been modified to behave in this way (until there is no community that can be split further).
OWL/RDF OODPs retrieval. Communities are represented as sets of nodes. In order to further investigate their
structure and content, we retrieve the OWL/RDF ontology fragments that contain the original nodes (classes and
properties): the observed ODPs. To define their boundary, we use the following heuristics: for each node in the
community, we retrieve the triples asserting its type. As for properties, we retrieve domain and range axioms, inverse,
super- and equivalent properties. We retrieve all super- and equivalent classes, and all restrictions that involve at least
one property within the community. Figure 4 shows the sets of nodes retrieved from the two communities depicted in
Figure 3b (from POSTDATA and CIDOC)15. They almost perfectly overlap with the ontology fragments in Figure 3a.

13pd: http://postdata.linhd.uned.es/ontology/postdata-core# tr: http://postdata.linhd.uned.es/ontology/postdata-transmission# dates: http://
postdata.linhd.uned.es/ontology/postdata-dates# crm: http://www.cidoc-crm.org/cidoc-crm/

14We use the Graffoo diagram notation.
15Arrows mean consecutive steps.

6

http://postdata.linhd.uned.es/ontology/postdata-core#
http://postdata.linhd.uned.es/ontology/postdata-transmission#
http://postdata.linhd.uned.es/ontology/postdata-dates#
http://postdata.linhd.uned.es/ontology/postdata-dates#
http://www.cidoc-crm.org/cidoc-crm/
https://essepuntato.it/graffoo/

(a) Two OODPs from the CH corpus.

(b) Intensional graphs corresponding to the OWL OODPs in 3a.

Fig. 3. Example of OWL OODPs and their corresponding intensional ontology graphs. Blue rectangles indicate object properties,
green rectangles data properties.

3.3 Clustering and Catalogue Generation

Communities are recognised based on the intensional graph’s topological features. Our hypothesis is that they identify
OODPs, hence the terms in their vocabulary shall concur to evoke the relational meaning captured by these OODPs.
These relational meanings correspond to (possible specialisations of) the conceptual components that we are looking for.
As we are working with multiple ontologies, if we cluster the communities according to their vocabularies, we may
identify CCs that are shared by (potentially) all of them.
Clustering input. We build a virtual document for each community by concatenating all rdfs:label values from
its entities. We take all English terms and, when no label is present, we use local IDs. We remove all repetitions and
exclude comments, since they may introduce noise. Entities with namespaces owl:, rdf:, rdfs: and xsd: are excluded.

7

Fig. 4. Example of communities detected from two ontologies of the CH corpus.

Fig. 5. Virtual document disambiguation, frame detection and clustering on the communities from Fig. 4.

We disambiguate all virtual documents by using UKB16, which is based on WordNet (English) version 3.017. Then, we
query the profile B of Framester18, a knowledge graph that connects many linguistic resources (including WordNet and
FrameNet19), for extracting all FrameNet frames that have a close match with (i.e. are evoked by) the synsets in the
virtual documents, and we add them to it. The hierarchy of frames is also exploited to include additional, more general
frames. As a result, each community is represented by a concatenation of all the retrieved synsets and frames. Figure
520 shows the synsets and frames included in the virtual documents of the two communities from Figure 4.
Clustering.We use K-Means [14] and the elbow method to cluster the communities’ virtual documents. It is a general-
purpose clustering algorithm that has been tested across different application areas and domains [18]. K-Means partitions
the observations into a predefined number of 𝑘 disjoint groups, defining, after a number of iteration, 𝑘 centroids, one
for each cluster.
Clusters i.e. conceptual components, are organised as a hierarchical network. To generate relations between them we
use FrameNet inheritance relations between frames. Given a cluster 𝑐 , we indicate with 𝐹 (𝑐) the set of frames associated
with 𝑐 . Two clusters 𝑐1 and 𝑐2 are hierarchically related 𝑟 (𝑐1, 𝑐2), with a weight 𝑤 , if at least one frame 𝑓1 ∈ 𝐹 (𝑐1)
inherits from at least one frame 𝑓2 ∈ 𝐹 (𝑐2). We indicate with 𝑚𝑎𝑥 the maximum number of inheritance relations
between frames that occur between two clusters of the network. The weight𝑤 indicates the strength of 𝑟 (𝑐1, 𝑐2) and is

16https://github.com/asoroa/ukb
17https://wordnet.princeton.edu/
18https://github.com/framester/Framester
19https://framenet.icsi.berkeley.edu/fndrupal/
20wn30: https://w3id.org/framester/wn/wn30/instances/ frame: https://w3id.org/framester/framenet/abox/frame/

8

https://github.com/asoroa/ukb
https://wordnet.princeton.edu/
https://github.com/framester/Framester
https://framenet.icsi.berkeley.edu/fndrupal/
https://w3id.org/framester/wn/wn30/instances/
https://w3id.org/framester/framenet/abox/frame/

computed as follows. Given two clusters 𝑐1 and 𝑐2, the strength𝑤 of 𝑟 (𝑐1, 𝑐2) is the sum of the frames in 𝑐1 that are
subsumed under at least one frame in 𝑐2, divided by𝑚𝑎𝑥 . The range of values for𝑤 is [0,1].
Naming conceptual components. To automatically assign a meaningful name to each cluster, which identifies a
conceptual component, we generate (and manually check) a label from the most frequent synsets and frames that
belong to it, i.e. we count how many times a same synset or frame is included in the virtual documents belonging to a
cluster. We also generate a textual description for each cluster by concatenating all terms representing its communities.
This description is useful to better understand the more specific concepts covered by the OODPs grouped by a cluster.
For example, the communities in Figure 5 are grouped in the same cluster named Event: the most frequent frame within
the cluster (41 times from 21 communities belonging to 13 different ontologies). The description indicates that the
ontologies implementing the Event conceptual component address cultural events, organisers, reproduction, time, etc.
Catalogue generation. The last step of our method (cf. Figure 2) builds a catalogue that connects and organises the
analysed ontologies according to the extracted conceptual components and their corresponding OODPs. Each CC in the
catalogue is linked to its associated OODPs within the ontologies. Therefore, the catalogue classifies the ontologies
based on the conceptual components that they implement. We provide an HTML rendering of the catalogue21 included
in the online package4, generated from the CH corpus.

4 Experiment and Results

The overall time required for producing all results with our method is about 1h15m (CH corpus) and 30m (Conf corpus)
on a commodity hardware: we used a laptop (2,3 GHz Intel Core i5, 16GB of RAM).
Intensional graphs. The average number of nodes and edges of the intensional graphs derived from the CH corpus is
∼165 and ∼217, respectively. For the Conf corpus, they are ∼91 and ∼115. The intensional graphs preserve an average
47% (CH corpus) and 54% (Conf corpus) of classes and 90% (CH corpus) and 87% (Conf corpus) of object and datatype
properties. The loss of information about ontology classes is due to the fact that the tranformation rules defined in
Rules 1 are biased towards ontologies with rich axiomatisation: ontologies that have poor axiomatisation are mostly
affected by information-loss. Nevertheless, we remark that all superclasses and superproperties are discarded in this
process, while they are all recovered when the OODPs are retrieved.
Community detection. We detect a total number of 1,300 communities from the CH corpus. The smallest number of
communities found per ontology is 1 (RDA): only in one case the algorithm could not split the ontology in different
communities. The greatest number of communities is 363 (ArCo). The average number of communities per ontology
is ∼30. As for the Conf dataset, from 16 ontologies our algorithm detects 419 communities with an average of ∼26
communities per ontology. The minimum number of communities is 8, while the maximum is 83.
Clustering.We convert the virtual documents in numerical feature vectors and apply tf-idf to discard tokens that occur
too frequently. Our setting ignores terms that have a document frequency higher than 90%. We did not fix a minimum
value. To evaluate the optimal number of clusters 𝑘 for our data, we used the elbow method and we run the algorithm
with a fixed number of 100 (CH dataset) and 81 (Conf dataset) clusters. Being K-Means nondeterministic, we set the
random state parameter to a commonly used integer value (42) in order to make our cluster assignments reproducible.
For the CH corpus, the average number of communities per cluster is 13, with a maximum of 111, and a minimum of 3.
Each cluster contains communities that belong to an average of ∼4.5 different ontologies. 11 clusters group communities
from the same ontology. 88 clusters group an average of ∼15 communities that belong to a range between 2 and 10

21https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/

9

https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/

Table 2. The number of hierarchical relations among clusters per level of strength. For each level l, it is indicated the total, maximum
and average number of relations having a strength ≥ 𝑙 .

Strength levels
0.0 0.1 0.2 0.3 0.4

tot max avg tot max avg tot max avg tot max avg tot max avg
CH 6644 91 69.2 813 66 8.4 274 42 2.8 114 30 1.18 58 22 0.6
Conf 2000 47 25.9 572 30 7.4 260 25 3.3 133 15 1.72 63 11 0.8

different ontologies. 1 cluster groups 111 communities from 26 different ontologies.
For the Conf corpus, the average number of communities per cluster is 5.17, with a maximum of 13, and a minimum of 1.
The communities in each cluster belong to an average of ∼2.6 different ontologies. 25 clusters group communities from
the same ontology, the remaining 56 clusters group an average of ∼7.2 communities that belong to a range between 2
and 8 different ontologies.
Catalogue. Table 2 gives an overview of the number of hierarchical relations among the clusters per level of strength
(see Section 3.3).

5 Evaluation and Discussion

Manual inspection of communities. A manual inspection of the communities, focusing on both structure and labels,
has been a necessary step for determining the quality and soundness of our results. We define four categories of
communities based on their quality: bad, medium, good, ideal. A community is bad if it can belong to more than two
CCs, it lacks a conceptual coherence and its implementation (OODP) is poorly axiomatised. For instance, a community
from the Conf corpus includes 27 heterogeneous properties (e.g. created by and has conflict type) that are not involved
in any restrictions e.g. range or domain. A CH community involves unrelated properties having the same domain and
xsd:string as range. In these cases, the topology could not support the identification of significant modules, while the
vocabulary highlights the presence of various conceptual areas22. A community has medium quality if it can belong to
two CCs. A community is good if it can belong only to one CC but includes max 20% of intruders (incoherent entities).
Ideal communities have less than 20% of intruders.
About 8% of communities in both the CH and Conf ontologies are bad. ∼7% (CH) and ∼3% (Conf) have medium quality,
∼17% (CH) and ∼5% (Conf) are good, while the majority of the communities (CH: ∼67%, Conf: ∼84%) have an ideal level
of semantic coherence e.g. see the two implementations of the CC Event of Figure 5.
Let us take two additional examples from both corpora. A community from the Conf dataset (cmt-2 ontology) identifies
an OODP for being a member of a conference: it includes the two inverse binary relations and the concepts conference
and conference member, which are their domain/range. A CH community from CIDOC CRM implements an OODP
for capturing that an object changed its ownership: it includes the concept crm:E8_Acquisition, and the predicates
representing the physical entity and the actors that acquired and surrendered the title over it. By inspecting the OODP,
we found that all properties in this fragment have domain and range, but inverse object properties are not asserted.
Clustering: similarity. For assessing the quality of the clusters we computed a pairwise similarity among them.
Specifically, we adopted the Overlap Coefficient23 (commonly used in data mining techniques) for measuring the
overlap between the sets of synsets and frames of two clusters. This score indicates how similar two clusters are and its

22Detecting bad communities may be a useful tool for evaluating the quality of an ontology.
23https://en.wikipedia.org/wiki/Overlap_coefficient

10

https://en.wikipedia.org/wiki/Overlap_coefficient

values ranges from 0.0 (dissimilar) to 1.0 (similar). We observed that, on average, the clusters of both corpora score very
low (0.20 for CH and 0.17 for Conf) thus indicating a good quality of the clusters.
Clustering: manual inspection. The clusters that have been detected in both datasets identify a wide range of
different conceptual components, with different levels of abstraction. General components such as Event, Categorization,
Membership, Intentionally act emerge from both corpora. This finding can support interoperability between ontologies
addressing different domains. Other components are more specific to the domain: e.g. Performing arts, measurement

and attribution from the CH corpus; Submitting documents, Respond to proposal, Award from the Conf corpus. By
inspecting a CC, it is possible to compare implementations from different ontologies and choose the one that best
fits our requirements: for example, the CIDOC CRM and ArCo implementations of the CC Acquisition overlap only
partially: ArCo also addresses the acquisition place and time, while it does not model the new owner as in CIDOC.
In both corpora, some clusters could be either split or merged. If no frames/synsets clearly emerge for a cluster this may
indicate that it groups different conceptual components. The emergence of the same frame(s) as the most frequent in
different components may indicate that they could be merged, or that they are a specialisation of the same conceptual
component: this can be clarified by looking at less frequent frames and at their hierarchical relations.
Evaluation against an ontology engineering task. We evaluate our method by also analysing our results in the
context of an ontology matching task. While it is an indirect evaluation, we believe it is informative of the quality of our
approach. The hypothesis for this evaluation is that given a pair of entities that shall be aligned (through subsumption
or equivalence), these entities should belong to either the same cluster or two related clusters. Intuitively, since a
cluster groups semantically close OODPs from different ontologies, an agent (human or artificial) performing ontology
alignment on a corpus of ontology, can look within a same cluster or follow strong hierarchical relations between
clusters to identify entities that shall be aligned. The question is whether a good number of these alignments can be
identified with this approach. We use three sets of alignments to compare our results: (i) a set AA of 224 asserted
(curated) alignments (1 equivalence and 223 subsumptions) from the CH corpus; (ii) a set AML of 237 alignments (all
equivalences) generated by AgreementMakerLight [7] (the best tool in most of the OAEI 2020 tracks), for all pairs of
ontologies in the CH corpus; (iii) a dataset CA of 224 alignments on the Conf corpus (all equivalences) used as gold
standard in the OAEI 2020 conference track24.
The AML dataset associates a confidence score 𝑐𝑠 with each alignment, while for the CA and AA sets we assume a 𝑐𝑠 =
1 for all alignments. We introduce 𝐴𝑀𝐿.90 ⊆ 𝐴𝑀𝐿 and 𝐴𝑀𝐿.99 ⊆ 𝐴𝑀𝐿 which are the sets containing the alignments
having a confidence score ≥ 0.9 and ≥ 0.99, respectively. To measure the quality of our results, we assume that given a
set of alignments 𝐴, the pairs of entities belonging to 𝐴 are assigned to a same cluster or to related clusters, with the
same 𝑐𝑠 provided for that alignment. For example, if a pair (𝑒1, 𝑒2) belongs to AML with a confidence score 𝑐𝑠 = 0.98,
then we assume that AML would assign (𝑒1, 𝑒2) to the same cluster or to two related clusters with 𝑐𝑠 = 0.98. Finally, we
introduce the sets D, I, H and E to interpret the results of our method. Given a set of entity pairs D from the alignment
in AA, CA or AML, we define: (i) the set 𝐼 ⊆ 𝐷 as the set of entity pairs in 𝐷 , that belong to same clusters; (ii) 𝐻 ⊆ 𝐷

as the set of entity pairs that belong to hierarchically related clusters; and (iii) 𝐸 := 𝐼 ∪𝐻 . With 𝐻𝑛 (similarly 𝐸𝑛) we
indicate the set of entity pairs that belong to two clusters related with strength 𝑙 ≥ 𝑛25.

We propose the measure corr (cf. Formula 1) to compute the correlation between the alignment sets and the results
of our method. Given two sets of entity pairs A and B, each pair assigned with a confidence score 𝑐𝑠 (𝑒𝑖 , 𝑒 𝑗), we define

24http://oaei.ontologymatching.org/2019/conference/data/reference-alignment.zip
25We remind that n = [0,1] indicates the strength of the hierarchical relation between two clusters.

11

http://oaei.ontologymatching.org/2019/conference/data/reference-alignment.zip

Table 3. Correlation between reference alignments (AA, CA, AML, 𝐴𝑀𝐿.90 and 𝐴𝑀𝐿.99) with the sets 𝐼 , 𝐸, 𝐸0.1, 𝐸0.2, 𝐸0.3, 𝐸0.4.

Alignments 𝐼 𝐸 𝐸0.1 𝐸0.2 𝐸0.3 𝐸0.4

AA .21 .99 .64 .46 .34 .32
AML .47 .99 .77 .64 .58 .56

𝐴𝑀𝐿.90 .46 .99 .77 .64 .57 .55
𝐴𝑀𝐿.99 .51 1.0 .75 .63 .60 .57
CA .27 .76 .51 .43 .36 .35

corr(A,B) as the sum of all 𝑐𝑠 of the alignments in A divided by the sum of all 𝑐𝑠 in B, that is:

𝑐𝑜𝑟𝑟 (𝐴, 𝐵) =

∑
(𝑒𝑖 ,𝑒 𝑗) ∈𝐴

𝑐𝑠 ((𝑒𝑖 , 𝑒 𝑗))∑
(𝑒𝑖 ,𝑒 𝑗) ∈𝐵

𝑐𝑠 ((𝑒𝑖 , 𝑒 𝑗))
(1)

The 𝑐𝑠 associated with the alignments of AA and CA is 1.0. The correlation ranges from 0.0 (no correlation) to 1.0
(strong correlation). The entity pairs from our method inherit the 𝑐𝑠 value from the comparing set. Intuitively, 𝑐𝑜𝑟𝑟
computes the ratio between the pairs that should be aligned and the pairs that belong to same or related clusters. Table 3
reports the value of 𝑐𝑜𝑟𝑟 computed for comparing AA, CA, AML, 𝐴𝑀𝐿.90 and 𝐴𝑀𝐿.99 (the testing sets) with the sets 𝐼 ,
𝐸, 𝐸𝑛 , 𝐸0.2, 𝐸0.3, 𝐸0.4.
Discussion. Almost all CH entity pairs aligned in the testing sets (𝑐𝑜𝑟𝑟 ≥ .99) can be found either in same clusters or
in two related clusters, a lower number for 𝐶𝐴 pairs (𝑐𝑜𝑟𝑟 = .76) (see column 𝐸 of Table 3): all hierarchical relations
between clusters are to be inspected in the worst case (69.2/CH and 25.9/Conf, on average per cluster). The dimension
of the task may sound inconvenient for manual inspection, nevertheless we remark that an entity-to-entity analysis
of the ontologies in the CH/Conf corpus would require the inspection of 43/16 ontologies and, in the worst case, of
11839/1565 predicates. An artificial agent e.g. an ontology alignment algorithm, may use clusters and their relations
to inform a strategy for ranking candidate pairs in a corpus (at the moment, ontology alignment tools works with
two ontologies at a time). By setting a threshold for 𝑙 , i.e. discarding weaker hierarchical relations, the value of 𝑐𝑜𝑟𝑟
decreases, but it holds reasonably good for the CH corpus until up to 𝑙 = 0.3 (with only 1.18 average relations per
cluster). With 𝑙 = 0.4, it is possible to find up to 57% of the most precise alignments (𝐴𝑀𝐿.99) by looking to entities
belonging to same clusters. As for 𝐴𝐴, the performance are the the worst in our experiment e.g. for column 𝐼 . To better
understand this result we run AgreementMakerLight on the CH corpus and compare its results against AA (which
are curated/asserted alignments). We report that only 1.5% of the alignments are identified. Our approach does not
identify alignments, hence we cannot claim to perform better than AgreementMakerLight, however we speculate that
this result (cf. Table 3), as compared to this extremely low performance, supports our hypothesis that clusters and their
relations may be used to improve the performance of alignment algorithms.

6 Related work

Ontology selection and understanding. Catalogues of ontologies (e.g. vocab.org) and ODPs (e.g. ontologydesign-
patterns.org) and semantic search engines (e.g. prefix.cc) are meant to support ontology selection for reuse. Users
can browse ontology terms, but comparing multiple ontologies is not supported. None of them support ODP-based
browsing or filtering. Most ontology summarisation approaches, e.g. those cited in [3, 16], look for the most informative
concepts/nodes using centrality measures, PageRank and the like. Or extract relevant subgraphs to support query-testing

12

http://purl.org/vocab/
http://ontologydesignpatterns.org/
http://ontologydesignpatterns.org/
http://prefix.cc/

for validating requirements against available data. To the best of our knowledge, this is the first method using an
ODP-based approach, which provides an ontology designer with relevant small ontology fragments to reuse based on
specific modelling problems.
Ontology partitioning.Modularisation approaches e.g. [1, 5, 11] work on single ontologies and return non-overlapping,
consistent modules, that combined together form the original ontology [5]. They mainly focus on logical and structural
modularisation, and no additional insight about the modules is provided, while each cluster of OODPs (CC) is given a
name, description and images.
Complex ontology matching. Complex ontology matching is the process of generating complex alignments, con-
taining at least one entity on which a constructor or a transformation function is applied [17]. An ODP-based approach
to this task is proposed by [8], which also provides a formalisation of the common structure of two (or more) aligned
patterns (a potential logical characterisation of CCs). Our method may be the basis to novel approaches/implementations
to address this research task.
Patterns discovery. Ontology patterns discovery consists in finding frequent repeating structures. [15] clusters repeti-
tive structures of axioms, and then generalise them, while we start from detecting dense communities in ontologies,
that are then clustered based on their vocabulary. The method by [13] proposes a tree-mining method, that transforms
ontology axioms in a tree shape and uses association analysis to mine co-occurring axiom patterns. However, this
method does not take into account inferences, nor the influence of the vocabulary.

7 Conclusion and ongoing work

Our method implements a non-extractive technique, to support understanding and comparison of multiple ontologies.
It combines community detection, word sense disambiguation, frame detection and clustering to automatically generate
a catalogue of conceptual components and observed ontology design patterns, starting from a corpus of ontologies. The
catalogue classifies the ontologies according to the conceptual components they implement. We show its potential by
testing and evaluating it on two corpora in the CH and Conference domains. While our experiments show satisfying
results, they also point out improvements and research challenges. Class expressions shall be included in the intensional
graph. Studying heuristics for refining CCs (split/merge), improving their naming/description and ranking them in the
catalogue is an immediate next step. A user-based evaluation of the catalogue is also in our plans, however it is not as
easy as evaluating key concepts, it requires involving experts in pattern-based ontology design. Automatically linking
observed patterns to ODP catalogues, and managing a possible synchronous evolution of both resources, is a research
challenge worth a huge impact on interoperability on the Semantic Web.

Acknowledgements. This work has been enabled by the H2020 Project Polifonia: a digital harmoniser for musical

heritage knowledge funded by the European Commission Grant number 101004746.

References
[1] Flora Amato, Aniello De Santo, Vincenzo Moscato, Fabio Persia, Antonio Picariello, and Silvestro Roberto Poccia. 2015. Partitioning of ontologies

driven by a structure-based approach. In Proc of IEEE ICSC 2015. 320–323.
[2] Valentina Anita Carriero, Marilena Daquino, Aldo Gangemi, Andrea Nuzzolese, Silvio Peroni, Valentina Presutti, and Francesca Tomasi. 2020. The

Landscape of Ontology Reuse Approaches. In Applications and Practices in Ontology Design, Extraction, and Reasoning, Giuseppe Cota, Marilena
Daquino, and Gianluca Pozzato (Eds.). SSWS, Vol. 49. IOS Press, 21–38.

[3] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019.
Summarizing semantic graphs: a survey. VLDB Journal 28, 3 (2019), 295–327.

[4] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding community structure in very large networks. Physical review E 70, 6 (2004),
066111.

13

[5] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. 2009. Criteria and Evaluation for Ontology Modularization Techniques.
In Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, Heiner Stuckenschmidt, Christine Parent, and Stefano
Spaccapietra (Eds.). Lecture Notes in Computer Science, Vol. 5445. Springer, 67–89.

[6] Marek Dudás, Steffen Lohmann, Vojtech Svátek, and Dmitry Pavlov. 2018. Ontology visualization methods and tools: a survey of the state of the art.
The Knowledge Engineering Review 33 (2018), 1–39.

[7] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F. Cruz, and Francisco M. Couto. 2013. The AgreementMakerLight Ontology
Matching System. In Proc of OTM Conferences 2013 (Lecture Notes in Computer Science, Vol. 8185), Robert Meersman, Hervé Panetto, Tharam S. Dillon,
Johann Eder, Zohra Bellahsene, Norbert Ritter, Pieter De Leenheer, and Dejing Dou (Eds.). 527–541.

[8] Pablo Rubén Fillottrani and C Maria Keet. 2017. Patterns for heterogeneous tbox mappings to bridge different modelling decisions. In European
Semantic Web Conference. Springer, 371–386.

[9] Aldo Gangemi. 2005. Ontology Design Patterns for Semantic Web Content. In Proc of ISWC 2005. 262–276.
[10] Aldo Gangemi and Valentina Presutti. 2010. Towards a pattern science for the Semantic Web. Semantic Web 1, 1-2 (2010), 61–68.
[11] Soudabeh Ghafourian, Amin Rezaeian, and Mahmoud Naghibzadeh. 2013. Graph-based partitioning of ontology with semantic similarity. In Proc of

ICCKE 2013. 80–85.
[12] Michael Grüninger and Mark S. Fox. 1995. The Role of Competency Questions in Enterprise Engineering. Springer US, 22–31.
[13] Agnieszka Ławrynowicz, Jedrzej Potoniec, Michał Robaczyk, and Tania Tudorache. 2018. Discovery of emerging design patterns in ontologies using

tree mining. Semantic Web 9, 4 (2018), 517–544.
[14] James MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In Proc of the 5th Berkeley symposium on

mathematical statistics and probability, Vol. 1. 281–297.
[15] Eleni Mikroyannidi, Luigi Iannone, Robert Stevens, and Alan Rector. 2011. Inspecting regularities in ontology design using clustering. In Proc of

ISWC 2011. 438–453.
[16] Seyed Amin Pouriyeh, Mehdi Allahyari, Krys Kochut, and Hamid R. Arabnia. 2018. A Comprehensive Survey of Ontology Summarization: Measures

and Methods. CoRR abs/1801.01937 (2018).
[17] Elodie Thiéblin, Ollivier Haemmerlé, Nathalie Hernandez, and Cassia Trojahn. 2020. Survey on complex ontology matching. Semantic Web 11, 4

(2020), 1–39.
[18] Dongkuan Xu and Yingjie Tian. 2015. A comprehensive survey of clustering algorithms. Annals of Data Science 2, 2 (2015), 165–193.

14

	Abstract
	1 Introduction
	2 Input source
	3 Approach
	3.1 Intensional ontology graph
	3.2 Community detection
	3.3 Clustering and Catalogue Generation

	4 Experiment and Results
	5 Evaluation and Discussion
	6 Related work
	7 Conclusion and ongoing work
	References

