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Abstract. We extend the Altmann–Mavlyutov construction of homogeneous deformations
of affine toric varieties to the case of toric pairs (X, ∂ X), where X is an affine or projective
toric variety and ∂ X is its toric boundary. As an application, we generalise a result due to
Ilten to the case of Fano toric pairs.

1. Introduction

An important trend in modern algebraic geometry is to study pairs consisting of
a variety with a divisor. Recent work by Gross–Hacking–Keel [16] suggests that
Mirror Symmetry, which was originally formulated for Calabi–Yau varieties, is
better understood as a correspondence between log Calabi–Yau pairs, i.e. pairs
(X, B) where X is a variety and B is an effective divisor such that K X + B is
linearly trivial. Toric pairs—that is, pairs (X, ∂ X) where X is a toric variety with
toric boundary ∂ X—are one of the simplest examples of log Calabi–Yau pairs, and
can be understood to lie at the boundary of the moduli space of log Calabi–Yau
pairs. It is therefore interesting to understand deformations of toric pairs in this
setting.

The aimof this paper is to construct deformations of toric pairs via combinatorial
methods of toric geometry, by generalising the constructions due to Altmann [7,9]
andMavlyutov [24]. The deformations we construct are homogeneous with respect
to the action of the torus (see Remark 3.7) and unobstructed.

After surveying the work of Mavlyutov [24] on deformations of affine toric
varieties, we extend his construction to deformations of affine toric pairs (Theo-
rem 1.1). More precisely, if X is an affine toric variety without torus factors and
∂ X is its toric boundary, then from some combinatorial input (which we call ∂-
deformation datum) we construct a formal deformation of the closed embedding
∂ X ↪→ X over a power series ring in finitely many variables over C. The con-
struction of the deformation is achieved by constructing an affine toric variety X̃
and a closed embedding X ↪→ X̃ and by deforming the equations of this closed
embedding.
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By applying Proj to this construction, we also construct deformations of pro-
jective toric pairs (Theorem 1.2). Both in the affine and in the projective case, the
deformations we construct lie inside a bigger toric variety X̃ and are explicit in
terms of Cox coordinates of X̃ ; therefore, in specific examples, it is easy to check
if we get smoothings.

Finally, we apply our construction of deformations of projective toric pairs to
a particular case which arises in the study of Mirror Symmetry for Fano varieties
[11]: in this way we are able to reprove and extend an important result of Ilten [20]
about families of Fano varieties coming from a combinatorial procedure on Fano
polytopes called “mutation” (Theorem 1.3).

Now we give a more detailed account of what we do.

1.1. Minkowski decompositions and deformations of affine toric pairs

Let σ be a full dimensional strongly convex rational polyhedral cone inside a
lattice N and let X = TVC(σ ) be the affine toric variety over C associated to
σ . Klaus Altmann has extensively studied the deformation theory of X . In [8] he
computes the tangent space T1

X to deformations of X . In [10] he describes the
miniversal deformation of X when it is an isolated Gorenstein singularity. In [9]
he notices that Minkowski decompositions of a polyhedron inside σ , under some
hypotheses, induce certain deformations of X ; for example, the two Minkowski
decompositions of the standard hexagon (Fig. 1) induce two different deformations
of the anticanonical affine cone over the smooth del Pezzo surface of degree 6.
In [7] he constructs deformations of X from Minkowski decompositions of more
general polyhedra inside the cone σ .

In [24] Anvar Mavlyutov gives a unified description of all Altmann’s deforma-
tions thanks to the use of Cox coordinates. His construction has the same strategy
as Altmann’s: starting from aMinkowski decomposition of some polyhedron (with
some assumptions) one embeds the considered affine toric variety into a larger
affine toric variety and then deforms the equations of this closed embedding. More
specifically, starting from a Minkowski decomposition of a polyhedron inside the
cone σ one can construct a bigger cone σ̃ in a bigger lattice Ñ and embed the toric
variety X associated to σ inside the toric variety X̃ = TVC(σ̃ ) associated to σ̃

via binomial equations in the Cox coordinates of X̃ ; by deforming these binomial
equations with extra monomials one may produce a deformation of X . The precise
statement is a theorem of Mavlyutov [24] and is rewritten in Sect. 3 together with
a detailed proof. There the Minkowski decomposition is encoded in the notion of
a deformation datum (see Definition 3.1).

= + = + +

Fig. 1. The two Minkowski decompositions of the hexagon
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We have noticed that Mavlyutov’s construction can be applied also to deform
the affine toric pair (X, ∂ X), where ∂ X is the toric boundary of X . More precisely,
we construct a formal deformation of the closed embedding ∂ X ↪→ X over a
power series ring A in finitely many variables over C. By a formal deformation of
∂ X ↪→ X over A we mean a collection made up of a commutative diagram

Bn Xn

Spec A/mn+1
A

for each n ∈ N, where mA is the maximal ideal of A, Bn ↪→ Xn is a closed
embedding, Bn and Xn are flat over A/mn+1

A , and all these diagrams are required
to be compatible in the following way: the 0th diagram is just the embedding
∂ X ↪→ X over SpecC, and the base change of the (n+1)th diagramalong the closed
embedding induced by A/mn+2

A � A/mn+1
A is isomorphic to the nth diagram.

Our main theorem, which significantly rests on [24], is the following.

Theorem 1.1. Let X be an affine toric variety without torus factors and let ∂ X be
its toric boundary. Given a Minkowski decomposition of a polyhedron satisfying
certain conditions, one can construct a formal deformation of the pair (X, ∂ X)

over a power series ring in finitely many variables over C. (See Theorem 4.1 for
the precise statement.)

Example 4.2 shows how to use this theorem to deform the 3-fold toric cA1
singularity SpecC[x, y, z, u]/(xy − u2) together with its toric boundary.

1.2. Deformations of projective toric pairs

The deformation theory of complete toric varieties is not fully understood yet.When
X is a smooth complete toric variety, Nathan Ilten [19] has computed the tangent
space T1

X to deformations of X . But, when X is a singular complete toric variety,
the tangent space T1

X and the miniversal deformation of X are unknown in general.
Nonetheless, in the literature there are some constructions of homogeneous

deformations of toric varieties. Ilten and Vollmert [21] construct deformations of
rational T -varieties of complexity 1, which are a generalisation of toric varieties [3–
5]. Hochenegger and Ilten [18] construct deformations of a rational complexity-1
T-variety together with a T-line bundle. Mavlyutov [24] uses Minkowski decompo-
sitions of polyhedral complexes in order to construct homogeneous deformations.
Laface and Melo [22] construct deformations of smooth complete toric varieties
by using their Cox rings.

Here, by avoiding the languages of T-varieties and of Cox rings (or more pre-
cisely by sweeping them under the carpet), we propose an explicit construction of
deformations of polarised projective toric varieties together with their toric bound-
aries. These deformations live in an ambient projective toric variety X̃ and are
completely explicit in terms of the Cox coordinates of X̃ .
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Our strategy consists in deforming a projective toric variety X by deforming
its affine cone C with respect to an ample torus-invariant Q-Cartier Q-divisor D
on X . Deforming a polarised projective variety by deforming its affine cone have
already appeared in the literature, e.g. [26,27]; in our toric context we took the idea
from a specific case in [20]. More specifically, if the fan of X is in the lattice N of
rank n, then the section ring

⊕

k∈N
H0(X,OX (�k D�))

coincides with C[τ∨ ∩ M0], where τ is an (n + 1)-dimensional strongly convex
rational polyhedral cone in the lattice N0 = N ⊕ Ze0 such that e0 is in the inte-
rior of τ . We refer the reader to Sect. 2.2 for more details about the relationship
between the pair (X, D) and the cone τ . Starting from a Minkowski decomposi-
tion of a polyhedron inside τ and by applying Mavlyutov’s construction ([24] and
Theorem 3.5), we can deform C = SpecC[τ∨ ∩ M0], which is the affine cone
over X ; by applying Proj we construct a deformation of X = ProjC[τ∨ ∩ M0].
Theorem 5.1 expresses this deformation via explicit equations in Cox coordinates
of a projective variety X̃ .

If, in addition, the divisor D is a Z-divisor, then we are able to deform also the
toric boundary of X . This is the content of the following theorem.

Theorem 1.2. Let X be a projective toric variety with toric boundary ∂ X. Given an
ample torus-invariant Q-Cartier Z-divisor on X and a Minkowski decomposition
of a polyhedron satisfying certain conditions, one can construct a deformation of
the pair (X, ∂ X) over a power series ring in finitely many variables over C. (See
Theorem 6.1 for the precise statement.)

1.3. Mutations and deformations of Fano toric pairs

A Fano polytope in a lattice N is a full dimensional polytope P ⊆ NR such that the
origin 0 ∈ N lies in the strict interior of P and every vertex of P is a primitive lattice
point. The spanning fan (also called the face fan) of a Fano polytope P ⊆ NR, i.e.
the fan in NR whose cones are the cones over the faces of P , determines a toric
variety X P which is Fano, i.e. its anticanonical divisor isQ-Cartier and ample. This
establishes a bijective correspondence between Fano TN -toric varieties and Fano
polytopes in N .

Starting from a primitive vector w ∈ M and a polytope F ⊆ w⊥ ⊆ NR

satisfying certain conditions (see Definition 7.1) with respect to the Fano polytope
P ⊆ NR, it is possible to construct another Fano polytope P ′ := mutw,F (P) ⊆ NR

(see Definition 7.2). This procedure is called mutation [2] and its motivation lies in
the study of Mirror Symmetry for Fano varieties [1,11].

It was observed by Nathan Ilten [20] that if two Fano polytopes P and P ′ in NR

are related by a mutation then the corresponding Fano varieties X P and X P ′ are
two closed fibres of a flat family over P

1. Ilten’s construction relies on the theory
of deformations of T-varieties developed in [21].
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Here we apply our Theorem 1.2 (i.e. Theorem 6.1) to this case because the toric
boundary ∂ X P is an ample Q-Cartier Z-divisor on X P and the combinatorial con-
ditions in the definition of mutation allows us to construct a ∂-deformation datum.
We will show that X P and X P ′ are two fibres of the flat family of divisors defined
by a trinomial in the Cox coordinates of a projective toric variety of dimension
dim X P + 1. In addition to what was done by Ilten, we can show that also the toric
boundary ∂ X P deforms to ∂ X P ′ .

Theorem 1.3. Let P and P ′ be two Fano polytopes related by a mutation. Let X P

(resp. X P ′ ) be the Fano toric variety associated to the spanning fan of P (resp.
P ′) and let ∂ X P (resp. ∂ X P ′ ) be the toric boundary of X P (resp. X P ′ ). Then there
exists a commutative diagram

B X

V

such that V is an open subscheme of P
2
C

, the morphism B ↪→ X is a closed
embedding, the morphisms B → V and X → V are projective and flat, and there
are two closed points in V for which the base change of the diagram to them are
the closed embeddings ∂ X P ↪→ X P and ∂ X P ′ ↪→ X P ′ over SpecC, respectively.

Very roughly speaking, Ilten’s result says that mutations of Fano polytopes
create a 1-dimensional skeleton in the moduli space of Fano varieties. Our theorem
extends this interpretation to moduli of log Calabi–Yau pairs (X, B) where X is
Fano.

The precise constructions of V , B and X in Theorem 1.3 are given in The-
orem 7.3. We refer the reader to Example 7.4 for an application of this result to
construct the degeneration of P

2 to the weighted projective plane P(1, 1, 4).

1.4. Outline of the article

In Sect. 2 we discuss Cox coordinates on toric varieties and we study polarised
projective toric varieties. In Sect. 3 we recall Mavlyutov’s construction of defor-
mations of affine toric varieties. In Sect. 4 we construct deformations of affine toric
pairs and we prove Theorem 1.1. In Sect. 5 we construct deformations of projective
toric varieties. In Sect. 6 we construct deformations of projective toric pairs and
we prove Theorem 1.2. In Sect. 7 we recall the notion of mutation between Fano
polytopes and we prove Theorem 1.3.

1.5. Notation and conventions

The sets of non-negative or positive integers are denoted by N := {0, 1, 2, 3, . . . }
and N

+ := {1, 2, 3, . . . }, respectively. The symbol C stands for an algebraically
closed field of characteristic zero.
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A lattice is a finitely generated free abelian group. The letters N , N0, Ñ , Ñ0
stand for lattices and M, M0, M̃, M̃0 for their duals, e.g. M = HomZ(N , Z). We
set NR := N ⊗Z R and MR := M ⊗Z R. The perfect pairing M × N → Z and its
extension MR × NR → R are denoted by the symbol 〈·, ·〉.

In a real vector space V of finite dimension, a cone is a non-empty subset which
is closed under sum and multiplication by non-negative real numbers. The conical
hull cone 〈S〉 of a subset S ⊆ V is the smallest cone containing S, i.e. the set made
up of λ1s1 + · · · + λksk , as k ∈ N, λi ≥ 0, and si ∈ S. A subset of V is called
a polyhedral cone if it coincides with cone 〈S〉 for some finite subset S ⊆ V , or
equivalently it is the intersection of a finite number of closed halfspaces passing
through the origin. The convex hull of a subset S ⊆ V is denoted by conv 〈S〉. A
polyhedron is the intersection of a finite number of closed halfspaces, so it is always
convex and closed. A compact polyhedron is called polytope. If Q is a polyhedron,
vert(Q) denotes the set of vertices of Q and rec(Q) is its recession cone, i.e. the
cone of the unbounded directions of Q. If Q1 and Q2 are polyhedra, then their
Minkowski sum is Q1 + Q2 := {q1 + q2 | q1 ∈ Q1, q2 ∈ Q2}; in this case we say
also that this is a Minkowski decomposition of Q. If Q is a polyhedron such that
rec(Q) is strongly convex, then Q = conv 〈vert(Q)〉+ rec(Q). We refer the reader
to the book [29] for details.

We assume the standard terminology of commutative algebra and of algebraic
geometry. By a ring we always understand a commutative ring with unit.

2. Preliminaries on toric geometry

2.1. Cox coordinates

For generalities about toric varieties we refer the reader to [15] and [12]. We firstly
treat toric schemes, with split tori, which are defined over arbitrary rings and con-
sider their total coordinate rings.

Remark 2.1. (Toric schemes over arbitrary rings) Let A be a ring, let N be a lattice,
and let � be a fan of strongly convex rational polyhedral cones in NR. For every
cone σ ∈ �, we consider its dual σ∨ ⊆ MR, the semigroup σ∨ ∩ M , and the
semigroup A-algebra A[σ∨ ∩ M]. We denote by TVA(�) the scheme obtained by
gluing the affine schemes TVA(σ ) = Spec A[σ∨ ∩ M] thanks to the structure of
the fan �, as it is customary in toric geometry. One may prove that TVA(�) is a
separated flat scheme of finite presentation over A with relative dimension rank N
and geometrically integral fibres. When A = C, TVA(�) = TVC(�) is exactly
the toric variety over C associated to the fan � considered in [12,15].

Now suppose that NR is generated as an R-vector space by the support |�| of
�. In other words we assume that TVC(�) has no torus factors. Let�(1) be the set
of rays of �. We do not distinguish a ray of �, which is actually a 1-dimensional
cone of�, from its primitive generator, which is actually the lattice point on the ray
that is the closest one to the origin. Generalising the definition of Cox coordinates
on toric varieties (see [13], [12, Section 5.2] or [25]), we say that the polynomial
ring S = A[xρ | ρ ∈ �(1)] is the total coordinate ring of TVA(�). The variables
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xρ are called Cox coordinates or homogeneous coordinates. The A-algebra S has
a grading with respect to the divisor class group G� = Cl(TVC(�)) of the variety
TVC(�), which is a quotient of the free abelian groupZ

�(1) according to the divisor
sequence of � (see [12, (5.1.1)]):

0 −→ M −→ Z
�(1) −→ G� = Cl(TVC(�)) −→ 0.

For every cone σ ∈ �, setting x σ̂ =∏ρ /∈σ(1) xρ ∈ S, the map defined by

Cox : χu �→ xu =
∏

ρ∈�(1)

x 〈u,ρ〉
ρ ,

where u ∈ σ∨ ∩ M and χu is the corresponding element in A[σ∨ ∩ M], induces a
ring isomorphism

A[σ∨ ∩ M] � S(x σ̂ ) ⊆ Sx σ̂ ,

where Sx σ̂ is the localization of S obtained by inverting the element x σ̂ and S(x σ̂ )

is the subring of the Sx σ̂ consisting of elements of degree 0 with respect to the
G�-grading.

Imitating [12, Section 5.3], from a G�-graded S-module E one may construct
a quasi-coherent sheaf Ẽ on TVA(�) such that, for every cone σ ∈ �, the sections
of Ẽ over TVA(σ ) are the elements of E(x σ̂ ), i.e. the elements of degree 0 in the

localization Ex σ̂ . The assignment E �→ Ẽ is sometimes called sheafification and
is an exact functor from the category of G�-graded S-modules to the category
of quasi-coherent sheaves on TVA(�). In particular, the sheafification of a G�-
homogeneous ideal J of S induces a closed subscheme of TVA(�), whose structure
sheaf is the sheafification of S/J . Moreover, if A is noetherian and E is finitely
generated graded S-module, then Ẽ is coherent on TVA(�).

The following lemma gives a sufficient criterion to ensure the flatness of the
sheafification of a graded module on a toric scheme.

Lemma 2.2. Let N be a lattice and let � be a fan of strongly convex rational
polyhedral cones in NR such that NR is generated by |�| as R-vector space. Let
A be a ring and let TVA(�) be the A-scheme constructed in Remark 2.1. Let S be
the total coordinate ring of TVA(�) and let E be a graded S-module. If E is flat
as an A-module, then Ẽ ∈ QCoh(TVA(�)) is flat over Spec A.

Proof. It is enough to show that E(x σ̂ ) is flat over A, for every cone σ ∈ �. The
localisation Ex σ̂ is a G�-graded flat A-module and the homogeneous localisation
E(x σ̂ ) is its degree zero part. Therefore, E(x σ̂ ) is a direct summand of Ex σ̂ as A-
modules and is flat over A. ��
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2.2. Polarised projective toric varieties

Now we discuss projective toric varieties X polarised by an ample Q-Cartier Q-
divisor which is supported on the toric boundary ∂ X . This section is not necessary
for Sects. 3 and 4.

The lemma below is a well known characterisation of polarised projective toric
varieties.

Lemma 2.3. If N is a lattice of rank n, then the following data are naturally equiv-
alent:

(1) a pair (X, D), where X is a projective normal toric variety over C with respect
to the torus TN = SpecC[M] and D is an ample torus-invariant Q-Cartier
Q-divisor on X;

(2) a pair (�, ϕ), where � is a complete fan in N and ϕ is a strictly convex rational
support function on �, i.e. ϕ : NR → R is a continuous function such that

• for every σ ∈ �(n), there exists uσ ∈ MQ such that ϕ(v) = 〈uσ , v〉 for all
v ∈ σ ;

• for every σ ∈ �(n), ϕ(v) < 〈uσ , v〉 for all v ∈ NR \ σ ;
(3) a rational polytope P ⊆ MR of dimension n;
(4) a strictly convex rational polyhedral cone τ in the lattice N0 = N ⊕ Ze0 such

that the dimension of τ is n + 1 and e0 is in the interior of τ .

In the setting above there are natural bijective correspondences if in addition we
require the following further conditions too:

(1) D is a Q-Cartier Z-divisor on X;
(2) ϕ takes integer values on the primitive generators of the rays of �;
(3) every supporting hyperplane of P contains at least a point of the lattice M;
(4) the primitive generator of every ray of τ is of the form ρ − ae0 for some a ∈ Z

and ρ ∈ N primitive.

Moreover, in the setting above there are natural bijective correspondences if we
require the following more restrictive further conditions too:

(1) D is a Cartier divisor on X;
(2) ϕ is a strictly convex integral support function on �, i.e. we also require that

uσ ∈ M for every σ ∈ �(n);
(3) P is a lattice polytope;
(4) every facet of τ is contained in a hyperplane of the form (u + e∗

0)
⊥ for some

u ∈ M.

Sketch of proof. The equivalence among (1), (2), and (3) is well known (at
least under the additional conditions) and associates the pair (�, ϕ) to the pair
(TVC(�), D), where D = −∑ρ∈�(1) ϕ(ρ)Dρ , and to the polytope

P =
⋂

ρ∈�(1)

{u ∈ MR |〈u, ρ〉 ≥ ϕ(ρ) } .

Conversely, � is the normal fan of P and ϕ = minu∈P 〈u, ·〉. We refer the reader
to [12, Section 6] for more details.
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The equivalence with (4) is as follows: τ is the convex hull of the graph of the
function −ϕ, i.e. τ = {v + ke0 ∈ NR ⊕ Re0 | ϕ(v) + k ≥ 0}, or equivalently the
cone with rays ρ − ϕ(ρ)e0 as ρ ∈ �(1). Conversely, the cones of � are precisely
the images of the faces of τ along the projection N ⊕ Ze0 � N and

P = τ∨ ∩ e−1
0 (1) = {u ∈ MR | u + e∗

0 ∈ τ∨}.
��

The following lemma, which is a reformulation of [12, Theorem 7.1.13 and
Proposition 8.2.11], describes a polarised projective toric variety X as the Proj of
anN-graded ring constructed from the cone τ , where τ is the cone as in Lemma 2.3.
It also gives a description of the toric boundary.

Lemma 2.4. Let N be a lattice of rank n, let τ be a (n + 1)-dimensional strongly
convex rational polyhedral cone in the lattice N0 = N ⊕Ze0 such that e0 ∈ int(τ ),
and let (X, D) be the pair associated to τ via Lemma 2.3. Consider the ideal

L =
⊕

u+le∗
0∈int(τ∨)∩M0

Cχu+le∗
0 ⊆ C[τ∨ ∩ M0], (1)

which is the ideal of the toric boundary of the affine toric variety SpecC[τ∨ ∩ M0].
Then X = ProjC[τ∨∩M0] and its toric boundary is ∂ X = ProjC[τ∨∩M0]/L,

where C[τ∨ ∩ M0] is N-graded via e0 ∈ N0.

Sketch of proof. The N-grading on C[τ∨ ∩ M0] is such that the degree of χu+le∗
0 is

l for every u ∈ M such that u + le∗
0 ∈ τ∨ ∩ M0. It is clear that L is a homogeneous

ideal.
Let � be the fan of X and let ϕ be the support function associated to D as in

Lemma 2.3. There is a bijective correspondence between cones of � and proper
subcones of τ . For any ray ρ ∈ �(1), let ξρ ∈ τ(1) be the corresponding ray
of τ . In other words, ξρ = bρρ − aρe0 where bρ ∈ N

+, aρ ∈ Z are such that
gcd(aρ, bρ) = 1 and ϕ(ρ) = aρ/bρ .

Fix an n-dimensional cone σ ∈ �(n). It corresponds to an n-dimensional face
of τ , namely Fσ = cone

〈
ξρ | ρ ∈ σ(1)

〉
. Since D is Q-Cartier, there exist uσ ∈ M

and hσ ∈ N
+ such that Fσ is contained in the hyperplane (uσ +hσ e∗

0)
⊥. The affine

open subscheme TVC(σ ) of the toric variety X = TVC(�) is isomorphic to the
affine open subscheme of ProjC[τ∨ ∩ M0] defined by the homogeneous element
χuσ +hσ e∗

0 because there is a ring isomorphism

C[τ∨ ∩ M0]
(χ

uσ +hσ e∗0 )

∼−→ C[σ∨ ∩ M] (2)

which is defined by

χu+khσ e∗
0

(χuσ +hσ e∗
0 )k

�→ χu−kuσ

for any u ∈ M , k ∈ N such that u + khσ e∗
0 ∈ τ∨ ∩ M0. This shows that X =

ProjC[τ∨ ∩ M0].
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In order to prove ∂ X = ProjC[τ∨ ∩ M0]/L , we have to check that, for every
cone σ ∈ �(n), the homogeneous localisation L

(χ
uσ +hσ e∗0 )

coincides with the ideal

of the toric boundary of TVC(σ ) under the ring isomorphism (2). So, let us fix a
cone σ ∈ �(n) and elements u ∈ M and k ∈ N such that u − kuσ ∈ σ∨. The
element χu+khσ e∗

0/(χuσ +hσ e∗
0 )k ∈ C[τ∨ ∩ M0]

(χ
uσ +hσ e∗0 )

lies in L
(χ

uσ +hσ e∗0 )
if and

only if χu+khσ e∗
0 ∈

(
L : (χuσ +hσ e∗

0 )∞
)
, i.e. there exists m ∈ N such that

u + khσ e∗
0 + m(uσ + hσ e∗

0) ∈ int(τ∨).

In order to check this we need to pair this vector of M0 with the rays of τ , i.e.
ξρ = bρρ − aρe0 as ρ ∈ �(1). We distinguish two cases:

• the ray ρ lies in σ ; then bρ〈uσ , ρ〉 − aρhσ = 0; for any m ∈ N we have

〈u + khσ e∗
0 + m(uσ + hσ e∗

0), bρρ − aρe0〉 = bρ〈u − kuσ , ρ〉,

which is positive if and only if 〈u − kuσ , ρ〉 > 0;
• the ray ρ does not lie in σ ; then bρ〈uσ , ρ〉 − aρhσ > 0; then

〈u + khσ e∗
0 + m(uσ + hσ e∗

0), bρρ − aρe0〉 =
= bρ〈u, ρ〉 − aρkhσ + m(bρ〈uσ , ρ〉 − aρhσ )

is positive for m big enough.

This shows that the element χu+khσ e∗
0/(χuσ +hσ e∗

0 )k lies in the homogeneous local-
isation of L if and only if for every ρ ∈ σ(1) we have 〈u − kuσ , ρ〉 > 0, or
equivalently if u − kuσ lies in the ideal of the toric boundary of TVC(σ ). ��

In the following lemma we compare the homogeneous coordinate rings of a
polarised toric variety and of its affine cone. We deduce an alternate description of
closed subschemes of a polarised toric variety.

Lemma 2.5. Let N be a lattice of rank n, let τ be a (n + 1)-dimensional strongly
convex rational polyhedral cone in the lattice N0 = N ⊕Ze0 such that e0 ∈ int(τ ),
and let (X, D) and (�, ϕ) be the pairs associated to τ via Lemma 2.3. Consider
the affine toric variety C = SpecC[τ∨ ∩ M0]. Let SX and SC be the homogeneous
coordinate rings of X and C, respectively.

For every ray ρ ∈ �(1), let ξρ = bρρ − aρe0 ∈ τ(1) be the corresponding ray
of τ , where ϕ(ρ) = aρ/bρ for aρ ∈ Z and bρ ∈ N

+ such that gcd(aρ, bρ) = 1.
Consider the ring homomorphism SX → SC given by xρ �→ (xξρ )

bρ .
Let JX be a G�-homogeneous ideal in SX and let H ⊆ C[τ∨ ∩ M0] � (SC )0

be the degree zero part of the ideal JX SC ⊆ SC . If H is homogeneous with respect
to the N-grading of C[τ∨ ∩ M0], then the closed subscheme of X defined by the
ideal JX coincides with ProjC[τ∨ ∩ M0]/H.
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Proof. Consider the commutative diagram

Z
τ(1)

b

rτ
N0

pr

Z
�(1) r� N

where r� is the ray map of X , rτ is the ray map of C , pr is the natural projection,
and b is the diagonal matrix with entries bρ . Consider the dual maps r∗

� and r∗
τ and

the following commutative diagram with exact rows, where G� is the divisor class
group of X and Gτ is the divisor class group of C .

0 M
r∗
�

Z
�(1)

b

G� 0

0 M0
r∗
τ

Z
τ(1) Gτ 0

The ring homomorphism SX → SC is homogeneous with respect to the group
homomorphism G� → Gτ . In particular, the ideal JX SC ⊆ SC is Gτ -
homogeneous.

Fix a full dimensional cone σ ∈ �(n) and let uσ ∈ M and hσ ∈ N
+ be such

that the hyperplane (uσ + hσ e∗
0)

⊥ contains the corresponding face Fσ of τ , as in
the proof of Lemma 2.4. We set ūσ = uσ + hσ e∗

0 ∈ M0 for brevity. We have to
show that the ideal (JX )(x σ̂ ) ⊆ (SX )(x σ̂ ) � C[σ∨ ∩ M] is mapped to H(χ ūσ ) via
the isomorphism (2).

Since ūσ is zero on the face Fσ and strictly positive on τ \ Fσ , a Cox coordinate
xξ of C appear in the monomial xūσ ∈ SC if and only if ξ /∈ Fσ . This implies that
there is a ring homomorphism

(SX )x σ̂ −→ (SC )xūσ (3)

that is the localisation of SX → SC defined above. At this point it is not difficult to
show that there is a commutative diagram of rings

C[τ∨ ∩ M0] Coxτ
(SC )0 SC

C[τ∨ ∩ M0](χ ūσ )

(2)

C[τ∨ ∩ M0]χ ūσ

CoxFσ
(SC )(xūσ ) (SC )xūσ

C[σ∨ ∩ M] Coxσ
(SX )(x σ̂ ) (SX )x σ̂

(3)

SX

where the equality symbols stand for isomorphisms. Now consider the ideal K =
JX (SC )xūσ ⊆ (SC )xūσ .

Since SC is a finite free SX -module, SC is faithfully flat over SX . Therefore,
also the localised homomorphism (3) is faithfully flat. By [23, Theorem 7.5(ii)] the
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contraction of K to (SX )x σ̂ is the extension of JX . This implies that (JX )(x σ̂ ) is the
contraction of K to (SX )(x σ̂ ) along the homomorphisms in the diagram above.

On the other hand, it is clear that K is the extension of JX SC to (SC )xūσ . Since
xūσ has degree zero with respect to the Gτ -grading of SC , it is not difficult to
check that the extension of H = (JX SC ) ∩ (SC )0 to (SC )(xūσ ) � C[τ∨ ∩ M0]χ ūσ

is the contraction of K . It follows that the ideal H(χ ūσ ) is the contraction of K to
C[τ∨ ∩ M0](χ ūσ ).

Since the two ideals that must be checked to coincide are both contractions of
the same ideal K , we are done. ��

3. Deformations of affine toric varieties after A. Mavlyutov

In this section we recall the work [24] by Anvar Mavlyutov on the deformations
of affine toric varieties. We have rewritten a detailed proof, as it will be useful for
our generalisations, and we have taken this opportunity to fill in details missing
from Mavlyutov’s original paper. In so doing we have reformulated many of his
statements in terms of deformation datum.

Definition 3.1. Let N be a lattice and σ ⊆ NR be a strongly convex rational poly-
hedral cone with dimension rank N . A deformation datum for (N , σ ) is a tuple
(Q, Q0, Q1, . . . , Qk, w) where w ∈ M and Q, Q0, Q1, …, Qk are non-empty
rational polyhedra in NR such that the following conditions are satisfied:

(i) Q ⊆ σ ;
(ii) 0 /∈ Q;
(iii) Q = Q0 + Q1 + · · · + Qk ;
(iv’) for every vertex v ∈ vert(Q), there exist vertices v0 ∈ vert(Q0), v1 ∈

vert(Q1), …, vk ∈ vert(Qk) such that v = v0 + v1 + · · · + vk and

# {i ∈ {0, 1, . . . , k} | vi /∈ N } ≤ 1;
(v) the minimum of w on Q exists and is not smaller than −1;
(vi) every vertex of the polyhedron σ ∩ {n ∈ NR|〈w, n〉 = −1} is contained in

R
+ · Q.

A ∂-deformation datum for (N , σ ) is a deformationdatum (Q, Q0, Q1, . . . , Qk, w)

for (N , σ ) such that the following further condition is satisfied:

(iv) Q1, …, Qk are lattice polyhedra.

It is immediate to see that (iv) implies (iv’).

Notation 3.2. If (Q, Q0, Q1, . . . , Qk, w) is a deformation datum for (N , σ ), then
we set

Ñ := N ⊕ Ze1 ⊕ · · · ⊕ Zek

σ̃ := cone 〈σ, Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉 ⊆ ÑR

w̃ := w −
k∑

i=1

⌊
min

Qi
w

⌋
e∗

i ∈ M̃
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Remark 3.3. If N is a lattice, σ ⊆ NR is a (rank N )-dimensional strongly convex
rational polyhedral cone,w ∈ M , and Q = conv 〈vert(σ ∩ {v ∈ NR|〈w, v〉 = −1})〉
= Q0 + Q1 + · · · + Qk where Q0 is a rational polytope and Q1, . . . , Qk are lat-
tice polytopes, then (Q, Q0, Q1, . . . , Qk, w) is a ∂-deformation datum for (N , σ ).
Moreover, if in addition Qi ⊆ {v ∈ NR|〈w, v〉 = 0} =: w⊥ for i = 1, . . . , k, then
w̃ = w.

Lemma 3.4. Let N be a lattice of rank n, let σ ⊆ NR be a strongly convex rational
polyhedral cone of dimension n, let (Q, Q0, Q1, . . . , Qk, w) be a deformation
datum for (N , σ ), and let Ñ and σ̃ be as in Notation 3.2. Then σ̃ is a strongly
convex rational polyhedral cone in Ñ of dimension n + k such that σ = σ̃ ∩ NR.

We will postpone the proof of Lemma 3.4 to page 15.

Theorem 3.5. (Mavlyutov [24]) Let N be a lattice, let σ ⊆ NR be a strongly convex
rational polyhedral cone with dimension rank N, let (Q, Q0, Q1, . . . , Qk, w) be
a deformation datum for (N , σ ), and let Ñ , σ̃ and w̃ be as in Notation 3.2. Let
X be the affine toric variety associated to σ and let X̃ be the affine toric variety
associated to σ̃ .

(A) Then the toric morphism X → X̃ , induced by the inclusion N ↪→ Ñ , is a
closed embedding and identifies X with the closed subscheme of X̃ associated to the
homogeneous ideal generated by the following binomials in the Cox coordinates
of X̃ :

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ −

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ

for i = 1, . . . , k. Moreover, these binomials form a regular sequence.
(B) Let t1, . . . , tk be the standard coordinates on A

k
C

. Consider the closed
subscheme X of X̃ ×SpecC A

k
C

= TVC[t1,...,tk ](σ̃ ) defined by the homogeneous
ideal generated by the following trinomials in Cox coordinates:

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ −

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ − ti

∏

ξ∈σ̃ (1)

x 〈w̃,ξ〉
ξ

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ (4)

for i = 1, . . . , k. Then the morphism X → A
k
C

induces a formal deformation of X
over C[[t1, . . . , tk]].
Remark 3.6. We will clarify what we mean when we say that the aforementioned
closed subscheme induces a formal deformation of TVC(σ ) overC[[t1, . . . , tk]]. By
(A) the fibre of X → A

k
C
over the origin of A

k
C
is X . We do not know if X → A

k
C

is a flat morphism, but it is “formally flat” over the origin in the following sense:
for every (t1, . . . , tk)-primary ideal q of C[t1, . . . , tk], the fibre product X ×

A
k
C

SpecC[t1, . . . , tk]/q is flat over SpecC[t1, . . . , tk]/q. Since the inverse limit of the
rings C[t1, . . . , tk]/q is C[[t1, . . . , tk]], we say that we have a formal deformation
over C[[t1, . . . , tk]] by using à la Schlessinger terminology.
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As we will see in Sect. 5, if we had been dealing with deformations of complete
varieties there would have been no need to specify the adverb “formally” thanks to
Lemma 5.2

Remark 3.7. Here we explain the meaning of the adjective homogeneous in the
title of this paper. Let us assume that we are using notation from Theorem 3.5.
The torus TN = SpecC[M] acts on the affine toric variety X and consequently
on T1

X = Ext1(�X ,OX ), which is the tangent space of the deformation functor
of X . Therefore T1

X is an M-graded vector space over the field C. Every formal
deformation of X over a complete local noetherianC-algebra (A,mA)with residue
field C induces a C-linear map

(
mA/m2

A

)∨ → T1
X

which is called the Kodaira–Spencer map of the deformation (see [28, Sec-
tion 6.1.2]). By [24, Theorem 2.14] the image of the Kodaira–Spencer map of
the deformation of X constructed in Theorem 3.5 is contained in T1

X (w), which is
the homogeneous component of T1

X with degree w ∈ M .

The rest of this section is devoted to the proof of Theorem 3.5 and relies entirely
on [24].

The following lemma is a very particular case of a result by K. G. Fischer and
J. Shapiro [14] that gives a necessary and sufficient criterion for a sequence of
binomials to be a regular sequence. For every a ∈ Z, define a+ := max{a, 0} and
a− := max{−a, 0}.
Lemma 3.8. (Fischer–Shapiro [14]) Let M = (ai j

)
1≤i≤k,1≤ j≤n be a k × n matrix

with entries in Z. For every i = 1, . . . , k, consider the binomial

fi =
n∏

j=1

x
a+

i j
j −

n∏

j=1

x
a−

i j
j ∈ C[x1, . . . , xn].

If the rank of M is k and every column of M has at most one positive entry, then
f1, . . . , fk is a regular sequence in C[x1, . . . , xn].

When we have a cone in a lattice Ñ , it is possible to intersect it with a saturated
sublattice N of Ñ and get a toric morphism. The following lemma describes the
scheme-theoretic image of this toric morphism under some hypotheses.

Lemma 3.9. Let N be a lattice and let Ñ = N ⊕ Z
k . Denote by e1, . . . , ek the

standard basis of Z
k . Let σ̃ ⊆ ÑR be a (rank Ñ )-dimensional strongly convex

rational polyhedral cone that satisfies the following condition: the Z
k-component

of every ray of σ̃ has at most one positive entry, i.e.

σ̃ (1) ⊆ N ×
(
(−N)k ∪ N

+e1 ∪ · · · ∪ N
+ek

)
(5)

If σ is the cone σ̃ ∩ NR inside NR, then the scheme-theoretic image of the toric
morphism TVC(σ ) → TVC(σ̃ ) is the closed subscheme of TVC(σ̃ ) defined by the



Homogeneous deformations of toric pairs 51

homogeneous ideal generated by the following binomials in the Cox coordinates
of TVC(σ̃ ):

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ −

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ

for i = 1, . . . , k. Moreover, these binomials form a regular sequence.

Proof. The toric morphism TVC(σ ) → TVC(σ̃ ) is associated to the ring homo-
morphism

C[σ̃∨ ∩ M̃] → C[σ∨ ∩ M] (6)

that maps χ ũ to χφ(ũ), where φ : σ̃∨ ∩ M̃ → σ∨ ∩ M is the semigroup homomor-
phism given by u + a1e∗

1 + · · · + ake∗
k �→ u. Let I ⊆ C[σ̃∨ ∩ M̃] be the kernel of

(6). The scheme-theoretic image of TVC(σ ) → TVC(σ̃ ) is the closed subscheme
of TVC(σ̃ ) defined by the ideal I .

We consider the Cox ring of TVC(σ̃ ): S = C[xξ | ξ ∈ σ̃ (1)], with its G σ̃ -
grading. Consider the following monomials in Cox coordinates:

yi =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ and zi =

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ ,

for i = 1, . . . , k. Let J ⊆ S be the ideal generated by y1 − z1, . . . , yk − zk . It is
obviously homogeneous. In order to prove the thesis, we need to show that, under
the Cox isomorphism between C[σ̃∨ ∩ M] and S0, the ideal I equals the degree
zero part of the ideal J , i.e.

Cox(I ) = J ∩ S0. (7)

We now prove the containment ⊆ in (7). Since I is the kernel of (6), it is not
difficult to show that I is generated by the elementsχr −χ s whenever r, s ∈ σ̃∨∩M̃
are such that φ(r) = φ(s). So r − s =∑k

i=1 ai e∗
i , for some ai ∈ Z. Now, for each

i = 1, . . . , k, consider a+
i ∈ N and a−

i ∈ N: we have a+
i a−

i = 0 and ai = a+
i −a−

i .
Consider the element

q = r −
k∑

i=1

a+
i e∗

i = s −
k∑

i=1

a−
i e∗

i ∈ M̃ .

Let us show that q ∈ σ̃∨. We need to show that q is non-negative on the rays of σ̃ .
By (5), we distinguish two cases:

• v = n − b1e1 − · · · − bkek ∈ σ̃ (1), for some n ∈ N and b1, . . . , bk ∈ N; then
〈q, v〉 = 〈r, v〉 +∑k

i=1 a+
i bi ≥ 〈r, v〉 ≥ 0.

• v = n + bei ∈ σ̃ (1), for some n ∈ N , 1 ≤ i ≤ k and b ∈ N
+; then

〈q, v〉 = 〈r, v〉−a+
i b = 〈s, v〉−a−

i b. Since either a+
i = 0 or a−

i = 0, we have
either 〈q, v〉 = 〈r, v〉 ≥ 0 or 〈q, v〉 = 〈s, v〉 ≥ 0.
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Therefore χq ∈ C[σ̃∨ ∩ M̃].
For each ξ ∈ σ̃ (1) we have

〈r, ξ 〉 −
∑

i :〈e∗
i ,ξ〉<0

a+
i 〈e∗

i , ξ 〉 = 〈q, ξ 〉 +
∑

i :〈e∗
i ,ξ〉>0

a+
i 〈e∗

i , ξ 〉.

Therefore, in the ring S we have the equality

Cox(χr ) ·
k∏

i=1

z
a+

i
i = Cox(χq) ·

k∏

i=1

y
a+

i
i . (8)

By (5) every Cox variable appearing in y1 · · · yk does not appear in z1 · · · zk . There-

fore the monomials
∏k

i=1 y
a+

i
i and

∏k
i=1 z

a+
i

i are coprime. From (8) we obtain that

themonomial
∏k

i=1 y
a+

i
i divides Cox(χr ). Therefore there exists amonomial p ∈ S

such that

Cox(χr ) = p ·
k∏

i=1

y
a+

i
i and Cox(χq) = p ·

k∏

i=1

z
a+

i
i ;

thus the binomial

Cox(χr − χq) = p ·
(

k∏

i=1

y
a+

i
i −

k∏

i=1

z
a+

i
i

)

is clearly in the ideal J . In a completely analogous waywe prove that Cox(χ s −χq)

is in J . Therefore, by taking the difference, we have that Cox(χr − χ s) is in J .
We now prove the containment ⊇ in (7). Let f ∈ J ∩ S0. We may write

f =
k∑

i=1

fi (yi − zi )

for some fi ∈ S. Let βi ∈ G σ̃ be the degree of yi − zi . By taking the homogeneous
componentswith respect to theG σ̃ -grading,wemay assume that fi is homogeneous
of degree −βi . By decomposing fi into the sum of its monomials, in order to show
the containment ⊇ in (7), it is enough to show that p(yi − zi ) ∈ Cox(I ), whenever
i ∈ {1, . . . , k} and p ∈ S is a monomial of degree −βi .

Since pyi and pzi are monomials of degree 0 in S, there exist r, s ∈ σ̃∨ ∩ M̃
such that pyi = Cox(χr ) and pzi = Cox(χ s). Since p(yi − zi ) = Cox(χr − χ s),
we must show that φ(r) = φ(s). Let us assume that

p =
∏

ξ∈σ̃ (1)

x
bξ

ξ .

For each ξ ∈ σ̃ (1), we have that

bξ + 〈e∗
i , ξ 〉+ = 〈r, ξ 〉

bξ + 〈e∗
i , ξ 〉− = 〈s, ξ 〉,
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therefore 〈e∗
i , ξ 〉 = 〈r − s, ξ 〉. Since σ̃ is full dimensional, we have r − s = e∗

i ;
this proves that φ(r) = φ(s) and χr − χ s ∈ I .

Now we prove that y1 − z1, . . . , yk − zk is a regular sequence. By Lemma 3.8 it
is enough to show that the matrixM = (〈e∗

i , ξ 〉)1≤i≤k, ξ∈σ̃ (1) has rank k and every
column ofM has at most one positive entry. The latter condition is satisfied by (5).

The linear map associated to the matrix M is the composite of the ray map
ρ : Z

|σ̃ (1)| → Ñ = N ⊕Z
k of TVC(σ̃ ) and the projection π : Ñ = N ⊕Z

k → Z
k .

Since σ̃ is full-dimensional, ρ ⊗Z idR is surjective. This implies that (π ◦ρ)⊗Z idR
is surjective and that M has rank k. ��

Proof of Lemma 3.4. By (iii) and (i) in Definition 3.1 we see that rec(Qi ) ⊆
rec(Q) ⊆ σ for every i = 0, 1, . . . , k. In particular, rec(Qi ) is strongly convex; so
Qi = conv 〈vert(Qi )〉 + rec(Qi ). We have that

σ̃ = cone 〈σ, vert(Q0) − e1 − · · · − ek, vert(Q1) + e1, . . . , vert(Qk) + ek〉 .

This implies that the cone σ̃ is a rational convex polyhedral cone in Ñ . Moreover,
the rays of σ̃ are among the following rays:

• rays passing through the vertices of Q0 − e1 − · · · − ek ;
• rays passing through the vertices of Qi + ei , as i = 1, . . . , k;
• rays of σ that are not in the cone generated by the previous rays.

Now we prove that σ = σ̃ ∩ NR. The containment ⊆ is obvious. We need to
show the containment ⊇. Let ṽ ∈ σ̃ ∩ NR. By the convexity of Q0, Q1, . . . , Qk ,
which implies that cone 〈Qi + ei 〉 = R≥0(Qi + ei ) and an analogous statement
for Q0, we may assume that

ṽ = v + λ0(q0 − e1 − · · · − ek) + λ1(q1 + e1) + · · · + λk(qk + ek)

= v + λ0q0 + λ1q1 + · · · + λkqk + (λ1 − λ0)e1 + · · · + (λk − λ0)ek

for some v ∈ σ , qi ∈ Qi and λi ≥ 0. Since ṽ ∈ NR, λ0 = λi for every i . Therefore
ṽ = v + λ0(q0 + q1 + · · · + qk). By (iii) and (i), q0 + q1 + · · · + qk ∈ Q ⊆ σ and
we conclude that ṽ ∈ σ .

Now we show that σ̃ is strongly convex. Since σ is strongly convex and 0 /∈ Q
by (ii), we may find u ∈ int(σ∨) such that minQ u > 0. Since the recession cones
of Q, Q0, Q1, . . . , Qk are contained in σ , the minimum of u on each of these
polyhedra exists. Consider

ũ = u −
k∑

i=1

min
Qi

u e∗
i + 1

k + 1
min

Q
u

k∑

i=1

e∗
i ∈ M̃R

In order to show that σ̃ is strictly convex, we prove that ũ is positive on the rays of
σ̃ . We may distinguish three cases as follows:

• the ray passes through v − e1 − · · · − ek , for some v ∈ vert(Q0); then
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〈ũ, v − e1 − · · · − ek〉 = 〈u, v〉 +
k∑

i=1

min
Qi

u − k

k + 1
min

Q
u

≥ min
Q0

u + min
Q1+···+Qk

u − k

k + 1
min

Q
u

= min
Q

u − k

k + 1
min

Q
u

= 1

k + 1
min

Q
u > 0;

• the ray passes through v + ei , for some v ∈ vert(Qi ) and 1 ≤ i ≤ k; then

〈ũ, v + ei 〉 = 〈u, v〉 − min
Qi

u + 1

k + 1
min

Q
u ≥ 1

k + 1
min

Q
u > 0.

• the ray is a ray of σ through v ∈ N \ {0}; then 〈ũ, v〉 = 〈u, v〉 > 0, because
u ∈ int(σ∨);

This concludes the proof of the strong convexity of σ̃ .
We now show that σ̃ has dimension rank Ñ . Equivalently we see that zero is the

unique linear functional on Ñ that vanishes over σ̃ . Let ũ = u +∑k
i=1 ai e∗

i ∈ M̃ be
such that it vanishes over σ̃ . In particular it vanishes over σ , hence u = 0 because
σ is full-dimensional. By evaluating ũ on Qi + ei we see that ai must be zero. This
implies that ũ = 0.

This concludes the proof of Lemma 3.4. ��
Proof of Theorem 3.5(A). By Lemma 3.4 and Lemma 3.9 it is enough to show that
the toric morphism TVC(σ ) → TVC(σ̃ ) is a closed embedding.

Before proving this, we shall prove the following claim:

∀u ∈ σ∨ ∩ M,

k∑

i=0

⌊
min

Qi
u

⌋
=
⌊
min

Q
u

⌋
. (9)

Firstly we show that the minimum of u on Q is attained on a vertex of Q; this
comes from the strong convexity of σ as follows. By (i) rec(Q) is contained in σ

and so is a strongly convex cone. We have

Q = conv 〈vert(Q)〉 + rec(Q). (10)

Since u ∈ σ∨, u is non-negative on rec(Q). Therefore there exists a vertex v of
Q such that minQ u = 〈u, v〉. Now we prove the claim (9). By (iv’) we may find
vertices vi ∈ vert(Qi ), i = 0, 1, . . . , k, such that v = v0 + v1 + · · · + vk and they
are all integral with at most one exception. This implies that the numbers 〈u, v0〉,
〈u, v1〉, …, 〈u, vk〉 are all integral with at most one exception. Therefore

k∑

i=0

�〈u, vi 〉� = �〈u, v〉� .
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But minQ u = 〈u, v〉 and it is clear that minQi u = 〈u, vi 〉 for i = 0, 1, . . . , k.
Therefore we have proved (9).

Now we prove that the toric morphism TVC(σ ) → TVC(σ̃ ) is a closed embed-
ding. Equivalently, we have to show that the semigroup homomorphism

φ : σ̃∨ ∩ M̃ → σ∨ ∩ M

is surjective. Let u ∈ σ∨ ∩ M and consider

ũ = u −
k∑

i=1

⌊
min

Qi
u

⌋
e∗

i ∈ M̃;

if we prove that ũ ∈ σ̃∨ we have finished because the equality φ(ũ) = u obviously
holds true. It is clear that ũ is non-negative on σ and it is very easy to show that ũ
is non-negative on Qi + ei , for each i = 1, . . . , k. So it remains to show that ũ is
non-negative on Q0 − e1 − · · · − ek . If q ∈ Q0, then

〈ũ, q − e1 − · · · − ek〉 = 〈u, q〉 +
k∑

i=1

⌊
min

Qi
u

⌋

≥
⌊
min
Q0

u

⌋
+

k∑

i=1

⌊
min

Qi
u

⌋
=
⌊
min

Q
u

⌋
≥ 0,

where the last equality is (9) and the last inequality holds because of (i).
This concludes the proof of Theorem 3.5(A). ��

Lemma 3.10. Let (A,m, κ) be an artinian local ring and B be a flat A-algebra
of finite type. Let b1, . . . , bk ∈ B generate the ideal J of B. If b1, . . . , bk is a
(B ⊗A κ)-regular sequence, then B/J is flat over A.

Proof. Let P be a prime ideal of B. Since m is the unique prime ideal of A, we
have m = P ∩ A and A → BP is a local homomorphism. We need to show that
(B/J )P = BP/J BP is flat over A. If J � P , then (B/J )P = 0 and we are done.
If J ⊆ P , then we conclude by [23, Corollary to Theorem 22.5]. ��
Proof of Theorem 3.5(B). From (10) and (v), we have that w is non-negative on
rec(Q) and minQ w = 〈w, v〉 for some vertex v of Q. By (iv’) we may find
vertices vi ∈ vert(Qi ), i = 0, 1, . . . , k, such that v = v0 + v1 + · · · + vk and they
are all integral with at most one exception. This implies that the numbers 〈w, v0〉,
〈w, v1〉, …, 〈w, vk〉 are all integral with at most one exception. Therefore

k∑

i=0

�〈w, vi 〉� = �〈w, v〉� .

But minQ w = 〈w, v〉 and it is clear that minQi w = 〈w, vi 〉 for i = 0, 1, . . . , k.
Therefore we have proved the equality

k∑

i=0

⌊
min

Qi
w

⌋
=
⌊
min

Q
w

⌋
. (11)
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Now we show that the trinomials (4) are elements of the polynomial ring

C[t1, . . . , tk][xξ | ξ ∈ σ̃ (1)],
which is the homogeneous coordinate ring of TVC[t1,...,tk ](σ̃ ). It is enough to show
that every Cox coordinate appearing in the third monomial in (4) has a non-negative
exponent. Fix a ray ξ of σ̃ . We may distinguish three cases as follows.

• ξ passes through a vertex of Q0−e1−· · ·−ek . Then ξ = λ(v0−e1−· · ·−ek),
for some λ ∈ N

+ and v0 ∈ vert(Q0). Then

〈w̃, ξ 〉 = λ〈w, v0〉 + λ

k∑

i=1

⌊
min

Qi
w

⌋
≥ λ

k∑

i=0

⌊
min

Qi
w

⌋
= λ

⌊
min

Q
w

⌋
≥ −λ,

where the last equality holds by (11) and the last inequality holds by (v). There-
fore the exponent of xξ in the third trinomial in (4), which is 〈w̃, ξ 〉 + λ, is
non-negative.

• ξ passes through a vertex of Qi +ei , for some 1 ≤ i ≤ k. Then ξ = λ(v+ei ), for
some λ ∈ N

+ and v ∈ vert(Qi ). Then 〈w̃, ξ 〉 = λ〈w, v〉 − λ
⌊
minQi w

⌋ ≥ 0.
• ξ is a ray of σ too. We need to show that 〈w̃, ξ 〉 = 〈w, ξ 〉 is non-negative. For
a contradiction assume that 〈w, ξ 〉 < 0. Therefore a positive multiple of ξ lies
in the polyhedron P := σ ∩ {n ∈ NR | 〈w, n〉 = −1}. Since rec(P) is strongly
convex, P = conv 〈vert(P)〉 + rec(P). By (vi) we obtain that ξ = λq + r ,
for some λ > 0, q ∈ Q, r ∈ rec(P). Since λq and r are both in σ and ξ is a
ray of σ , we have that ξ = μq for some μ ≥ 0. From (iii) we have that ξ is
in cone 〈Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek〉. This contradicts the fact
that ξ is a ray of both σ and σ̃ .

Now the closed subscheme X is well defined. We need to show that the restric-
tion of X → A

k
C
to any infinitesimal neighbourhood of O ∈ A

k
C
is flat.

Fix a (t1, . . . , tk)-primary ideal q. Consider the local artinian C-algebra A =
C[t1, . . . , tk]/q. We need to show thatX ×

A
k
C

Spec A → Spec A is flat. The homo-

geneous coordinate ring of TVA(σ̃ ) is the polynomial A-algebra B = A[xξ | ξ ∈
σ̃ (1)]. By (A) the trinomials (4) form a (B⊗A C)-regular sequence. By Lemma 3.10
the homogeneous ideal J ⊆ B generated by the trinomials (4) is such that B/J
is flat over A. By Lemma 2.2 the sheafification of the G σ̃ -graded B-module B/J
is a coherent sheaf on TVA(σ̃ ) which is flat over Spec A. This sheaf is the struc-
ture sheaf of the closed subscheme X ×

A
k
C

Spec A of TVA(σ̃ ). Therefore we have
proved that X ×

A
k
C

Spec A is flat over Spec A.
This concludes the proof of Theorem 3.5(B). ��

4. Deformations of affine toric pairs

If in Theorem 3.5 we assume that (Q, Q0, Q1, . . . , Qk, w) is a ∂-deformation
datum, then Mavlyutov’s construction of deformations of affine toric varieties,
which appears in [24] and is rewritten in Sect. 3, actually gives deformations of
their toric boundary too.
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More precisely, in the setting of Theorem 3.5 with the additional hypothesis
(iv), we construct a reduced divisor D in the toric variety X̃ = TVC(σ̃ ) such that
D∩ X is the toric boundary ∂ X of X . Theorem 3.5 constructs a formal deformation
X → A

k
C
of X as a closed subscheme in the trivial family X̃ ×C A

k
C
; then one can

see that the closed subscheme X ∩ (D×C A
k
C
) gives a deformation of ∂ X . In other

words, X ∩ (D ×C A
k
C
) ↪→ X → A

k
C
induces a formal deformation of the toric

pair (X, ∂ X). This is the content of the following theorem, which is the precise
formulation of Theorem 1.1.

Theorem 4.1. Let N be a lattice, let σ ⊆ NR be a strongly convex rational polyhe-
dral cone with dimension rank N, let (Q, Q0, Q1, . . . , Qk, w) be a ∂-deformation
datum for (N , σ ), and let Ñ , σ̃ and w̃ be as in Notation 3.2.

Let X be the affine toric variety associated to σ , let ∂ X be the toric boundary of
X, and let X̃ be the affine toric variety associated to σ̃ . Consider the reduced effec-
tive divisor D on X̃ defined by the homogeneous ideal generated by the following
monomial in the Cox coordinates of X̃ :

∏

ξ∈σ̃ (1) :
∀i∈{1,...,k},〈e∗

i ,ξ〉≤0

xξ . (12)

Let t1, . . . , tk be the standard coordinates on A
k
C

. Consider the closed sub-
scheme X of X̃ ×SpecC A

k
C

= TVC[t1,...,tk ](σ̃ ) defined by the homogeneous ideal
generated by the following trinomials in Cox coordinates:

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ −

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ − ti

∏

ξ∈σ̃ (1)

x 〈w̃,ξ〉
ξ

∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ (13)

for i = 1, . . . , k.
Then the diagram

X ∩ (D ×SpecC A
k
C
) X

A
k
C

induces a formal deformation of the toric pair (X, ∂ X) over C[[t1, . . . , tk]].
Example 4.2. In the lattice N = Z

3 consider the cone

σ = cone

〈⎛

⎝
1
1
0

⎞

⎠ ,

⎛

⎝
−1
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠
〉

⊆ NR.

The corresponding affine toric variety X = TVC(σ ) is the cA1-singularity:

X = SpecC[x, y, z, u]/(xy − u2)
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where the variables x, y, z, u correspond to the following generators of the monoid
σ∨ ∩ M : (1, 1, 0), (−1, 1, 0), (0, 0, 1), (0, 1, 0). The toric boundary is

∂ X = SpecC[x, y, z, u]/(xy − u2, zu).

Fix p ∈ N and consider the ∂-deformation datum (Q0 + Q1, Q0, Q1, w) for
(N , σ ) (see Definition 3.1) given by the polytopes

Q0 =
⎧
⎨

⎩

⎛

⎝
−1/2
1/2
0

⎞

⎠

⎫
⎬

⎭ and Q1 = conv

〈⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠
〉

,

and by the character w = (0,−2, p) ∈ M . Following Notation 3.2, inside the
bigger lattice Ñ = Z

4 we construct the cone

σ̃ = cone

〈
⎛

⎜⎜⎝

1
1
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1
1
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1/2
1/2
0

−1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
0
1

⎞

⎟⎟⎠

〉

= cone

〈
⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−1
1
0

−2

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
0
1

⎞

⎟⎟⎠

〉
.

One can see that these last four vectors are a basis of Ñ = Z
4, therefore the

affine toric variety X̃ associated to σ̃ is the affine space A
4
C

= SpecC[x, y, z, u].
Now the variables x, y, z, u correspond to the following elements of M̃ = Z

4:
(1, 1, 0, 0), (−1, 1, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), which form the dual basis to the
primitive generators of the rays of σ̃ . In this particular case the Cox coordinates of
X̃ coincide with x, y, z, u.

The trinomial (13) is xy−u2−t z p and themonomial (12) is zu. ByTheorem4.1
we consider the following closed subschemes of X̃ ×C SpecC[t]:

X = SpecC[x, y, z, u, t]/(xy − u2 − t z p),

B = SpecC[x, y, z, u, t]/(xy − u2 − t z p, zu).

The diagram

B X

SpecC[t]
induces a formal deformation of the pair (X, ∂ X) over C[[t]], by base changing to
SpecC[t]/(tn+1) for each n ∈ N.

The rest of this section is devoted to the proof of Theorem 4.1.
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Lemma 4.3. Let S be a polynomial ring over C in finitely many indeterminates.
Let m1, . . . , mt ∈ S \ {1} be some monomials such that the t sets of indeterminates
appearing in these monomials have empty pairwise intersections. Let R be the
C-subalgebra of S generated by m1, . . . , mt . Then m1, . . . , mt are algebraically
independent over C and S is a free R-module.

Proof. It is clear that themonomialsm1, . . . , mt are algebraically independent over
C. Another way to see this is to notice that they form a regular sequence in S and
then use [23, Exercise 16.6].

Now we want to prove that S is a free R-module. For each i = 1, . . . , t , let
Si be the polynomial ring over C in the indeterminates that appear in mi and let
Ri ⊆ Si be the C-subalgebra generated by mi . Let S0 be the polynomial ring over
C in the indeterminates of S that do not appear in any mi ’s. If we prove that Si is
a free Ri -module for each i = 1, . . . , t , then S = S0 ⊗C S1 ⊗C · · · ⊗C St will be
free over R = R1 ⊗C · · · ⊗C Rt .

Therefore we may assume that t = 1 and that all the indeterminates of S appear
in m := m1, i.e. S = C[x1, . . . , xn] and m = xa1

1 · · · xan
n with a1, . . . , an ∈ N

+.
The set

n⋃

i=1

{xb1
1 · · · xbn

n ∈ S | bi < ai }

is a free basis of S as R-module. ��
Lemma 4.4. Let S be a polynomial ring over C in finitely many indeterminates.
Let y1, . . . , yk, z1, . . . , zr ∈ S \ {1} be some monomials such that the k + r sets of
indeterminates appearing in these monomials have empty pairwise intersections.
Fix c1, . . . , cr ∈ N and consider the monomial z0 = zc1

1 · · · zcr
r . Then

y1 − z0, . . . , yk − z0, z1 · · · zr (14)

is a regular sequence.

Proof. Consider the polynomial ring R = C[Y1, . . . , Yk, Z1, . . . , Zr ] where the
Yi ’s and the Z j ’s are indeterminates. Consider the C-algebra homomorphism
ϕ : R → S defined by Yi �→ yi and Z j �→ z j . By Lemma 4.3, ϕ is injective
and flat.

Consider the monomial Z0 = Zc1
1 · · · Zcr

r . Consider the C-algebra automor-
phism θ of R that fixes the Z j ’s and maps Yi to Yi − Z0. By applying θ to the
regular sequence Y1, . . . , Yk, Z1 · · · Zr we get the regular sequence

Y1 − Z0, . . . , Yk − Z0, Z1 · · · Zr .

Now, by applying the flat map ϕ to this regular sequence, we get that the sequence
(14) is regular. ��
Remark 4.5. A slight generalisation of Lemma 4.4 can be used to prove that the
binomials in Theorem 3.5(A) form a regular sequence, without using [14] and
Lemma 3.8.
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Proof of Theorem 4.1. ByTheorem3.5, it is enough to dealwith the toric boundary.
Herewe adopt some notations used in the proof of Lemma 3.9. Let I be the kernel of
the surjective ring homomorphismψ : C[σ̃∨∩ M̃] → C[σ∨∩ M] that is associated
to the surjective semigroup homomorphism φ : σ̃∨ ∩ M̃ → σ∨ ∩ M given by
u + a1e∗

1 + · · · + ake∗
k �→ u. The ideal of the toric boundary ∂ X in X is

⊕

u∈int(σ∨)∩M

Cχu .

Therefore the ideal of ∂ X in X̃ is

I := ψ−1

⎛

⎝
⊕

u∈int(σ∨)∩M

Cχu

⎞

⎠

= I +
∑

u+a1e∗
1+···+ak e∗

k ∈((int(σ∨)∩M)×Zk )∩σ̃∨
Cχu+a1e∗

1+···+ak e∗
k .

Nowwe consider the Cox ring of X̃ : S = C[xξ | ξ ∈ σ̃ (1)]with its G σ̃ -grading.
In the proof of Theorem 3.5(A) we had the following description of the rays of σ̃ .

• Rays passing through the vertices of Q0 − e1 − · · · − ek . We denote by
z0,1, . . . , z0,s0 the corresponding Cox coordinates.

• Rays passing through the vertices of Qi + ei , as i = 1, . . . , k. We denote by
yi,1, . . . , yi,si the corresponding Cox coordinates.

• Rays of σ that are not in the cone generated by the previous rays. We denote
by zσ,1, . . . , zσ,sσ the corresponding Cox coordinates.

Consider the following monomials in the Cox coordinates of X̃ :

yi =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ = yi,1 · · · yi,si for each i ∈ {1, . . . , k},

z0 =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ = zc1

0,1 · · · z
cs0
0,s0

for any i ∈ {1, . . . , k},

zred0 =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉<0

xξ = z0,1 · · · z0,s0 for any i ∈ {1, . . . , k},

zσ =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉=0

xξ = zσ,1 · · · zσ,sσ for any i ∈ {1, . . . , k},

z =
∏

ξ∈σ̃ (1) :
〈e∗

i ,ξ〉≤0

xξ = zred0 zσ for any i ∈ {1, . . . , k}.

The exponents c0, . . . , cs0 are the minimal positive integers by which we have
to multiply the vertices of Q0 to get lattice points. Here we have used (iv) in
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Definition 3.1 to deduce that yi are reduced monomials. We see that yi are exactly
the ones used in the proof of Lemma 3.9, whereas the monomials z1, . . . , zk there
coincides with z0 in our case. We see that yi − z0 is the binomial obtained from
the trinomial (13) by setting ti = 0 and z is the monomial in (12). Let J ⊆ S be
the ideal generated by y1 − z0, . . . , yk − z0 and let J = J + Sz. We already know,
from Lemma 3.9 or Theorem 3.5, that the Cox isomorphism between C[σ̃∨ ∩ M]
and S0 ⊆ S maps the ideal I onto the degree zero part of the ideal J , i.e. Cox(I ) =
J ∩ S0. We have to prove that

Cox(I ) = J ∩ S0. (15)

This equality will imply that the scheme-theoretic intersection X ∩ D coincides
with ∂ X .

We now prove the containment ⊆ in (15). Since Cox(I ) ⊆ J ⊆ J , it is enough
to show that Cox(χ ũ) = xũ ∈ J for all ũ = u + a1e∗

1 + · · · + ake∗
k ∈ σ̃∨ ∩ M̃

such that u ∈ int(σ∨). We have that zσ divides xũ because u is in the strict interior
of σ∨. Since ũ ∈ σ̃∨, ũ cannot take negative values on Q0 − e1 − · · · − ek ,
Q1 + e1, . . . , Qk + ek . If ũ is strictly positive on Q0 − e1 − · · · − ek , then zred0
divides xũ , and hence z = zred0 zσ divides xũ , which implies that xũ lies in J and we
are done. Sowemay assume that 0 = minQ0−e1−···−ek ũ = minQ0 u−a1−· · ·−ak .
Therefore, since u ∈ int(σ∨) and 0 /∈ Q, we have

0 < min
Q

u = min
Q0

u + min
Q1

u + · · · + min
Qk

u =
k∑

i=1

(
ai + min

Qi
u

)
=

k∑

i=1

min
Qi +ei

ũ.

So, there exists i ∈ {1, . . . , k} such that minQi +ei ũ > 0. This implies that yi

divides xũ , i.e. there exists a monomial p such that xũ = pyi . Since zσ |xũ , we
know that zσ |p. By writing xũ = p(yi − z0) + pz0 and by noting that z divides
pz0, we conclude that xũ lies in J .

We now prove the containment ⊇ in (15). By using the same argument as
in the second part of the proof of Lemma 3.9, it is enough to show that if ũ =
u + a1e∗

1 + · · · + ake∗
k ∈ σ̃∨ ∩ M̃ is such that xũ = pz for some monomial

p ∈ S then u ∈ int(σ∨). Since z divides xũ , we see that ũ is strictly positive
on Q0 − e1 − · · · − ek and on the rays of σ that are not in the cone generated
by Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek . Now we want to prove that u
is strictly positive on the non-zero elements of σ ; if v ∈ σ we can write v =
λ(q0−e1−· · ·−ek)+λ(q1+e1)+· · ·+λ(qk +ek)+vσ = λ(q0+q1+· · ·+qk)+vσ ,
for some λ ≥ 0, qi ∈ Qi , and vσ in the cone generated by the rays of σ that are not
in the cone generated by Q0 − e1 − · · · − ek, Q1 + e1, . . . , Qk + ek . We have

〈u, v〉 = λ
[〈ũ, q0 − e1 − · · · − ek〉 + 〈ũ, q1 + e1〉 + · · · + 〈ũ, qk + ek〉]+ 〈ũ, vσ 〉.

Since v �= 0, we have that either λ > 0 or vσ �= 0; this implies 〈u, v〉 > 0.
This concludes the proof of the equality (15) and, consequently, of the fact that

X ∩ D = ∂ X .
By Lemma 4.4 we have that y1 − z0, . . . , yk − z0, z is a regular sequence.

Adapting the proof of Theorem 3.5(B) we conclude. ��
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5. Deformations of projective toric varieties

In this section we study deformations of polarised projective toric varieties. Our
strategy is to deform the corresponding affine cones thanks toMavlyutov’s theorem
(Theorem 3.5) and then apply the Proj functor.Wewill use the lemmata in Sect. 2.2.

Theorem 5.1. Let N be a lattice of rank n, let X be a projective TN -toric variety,
and let D be an ample torus-invariant Q-Cartier Q-divisor on X. Let τ be the
(n + 1)-dimensional cone in the lattice N0 = N ⊕ Ze0 associated to the pair
(X, D) as in Lemma 2.3. Let (Q, Q0, Q1, . . . , Qk, w) be a deformation datum for
(N0, τ ) with w ∈ M ⊆ M0. Consider the lattices Ñ = N ⊕ Ze1 ⊕ · · · ⊕ Zek and
Ñ0 = N ⊕ Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zek. Let τ̃ ⊆ (Ñ0)R and w̃ ∈ M̃ ⊆ M̃0 be as in
Notation 3.2. Let (X̃ , D̃) be the polarised projective toric variety associated to the
cone τ̃ via Lemma 2.3.

(A) Then the inclusion τ ↪→ τ̃ induces a toric closed embedding X ↪→ X̃
which identifies X with the closed subscheme of X̃ associated to the homogeneous
ideal generated by the following binomials in the Cox coordinates of X̃ :

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉>0

x
〈e∗

i ,ρ〉
ρ −

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉<0

x
−〈e∗

i ,ρ〉
ρ (16)

for i = 1, . . . , k, where �̃ is the fan of X̃ in Ñ . Moreover, the k binomials in (16)
form a regular sequence.

(B) Let t1, . . . , tk be the standard coordinates on A
k
C

. Consider the closed
subscheme X of X̃ ×SpecC A

k
C

= TVC[t1,...,tk ](�̃) defined by the homogeneous
ideal generated by the following trinomials in Cox coordinates:

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉>0

x
〈e∗

i ,ρ〉
ρ −

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉<0

x
−〈e∗

i ,ρ〉
ρ − ti

∏

ρ∈�̃(1)

x 〈w̃,ρ〉
ρ

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉<0

x
−〈e∗

i ,ρ〉
ρ (17)

for i = 1, . . . , k. Then the morphism X → A
k
C

induces a deformation of X over
C[[t1, . . . , tk]] and over an open neighbourhood of the origin in A

k
C

.

The rest of this section is devoted to the proof of Theorem 5.1.

Proof of Theorem 5.1(A). By Lemma 3.4 τ̃ is a (n + 1 + k)-dimensional strongly
convex rational polyhedral cone in Ñ0. It is clear that e0 ∈ τ̃ .

Now we show that e0 is in the interior of τ̃ : it is enough to show that, if ũ = u +∑k
i=0 hi e∗

i ∈ τ̃∨ ∩ M̃0 and h0 = 0, then ũ = 0. Since τ ⊆ τ̃ , we have that u is non-

negative on τ ; but e0 is in the interior of τ , so u = 0. By evaluating ũ =∑k
i=1 hi e∗

i
on Q0 − e1 − · · · − ek , Q1 + e1, …, Qk + ek , we see h1 = · · · = hk = 0. This
proves that e0 lies in the interior of τ̃ .

Thanks to Lemma2.4we have X̃ = ProjC[τ̃∨∩M̃0] and X = ProjC[τ∨∩M0].
The ring homomorphism

C[τ̃∨ ∩ M̃0] −→ C[τ∨ ∩ M0], (18)
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which is induced by the inclusion τ ↪→ τ̃ and is surjective by the proof of The-
orem 3.5, is homogeneous with respect to the N-grading and induces a closed
embedding ι : X ↪→ X̃ . Using the isomorphisms (2) it is not difficult to write down
the formulae for the actions of the tori TN and TÑ on the affine charts of X and X̃ ,
respectively. From these formulae it is possible to see that ι is a toric morphism.

Wehave to prove that X coincideswith the closed subschemeof X̃ definedby the
ideal JX̃ ⊆ SX̃ generated by the binomials (16). Let JC̃ = JX̃ SC̃ be the extension of
JX̃ to the total coordinate ring SC̃ of the affine cone C̃ = SpecC[τ̃∨ ∩ M̃0] via the
ring homomorphism SX̃ → SC̃ defined in Lemma 2.5. The ideal JC̃ is generated
generated by the binomials

∏

ξ∈τ̃ (1) :
〈e∗

i ,ξ〉>0

x
〈e∗

i ,ξ〉
ξ −

∏

ξ∈τ̃ (1) :
〈e∗

i ,ξ〉<0

x
−〈e∗

i ,ξ〉
ξ for i = 1, . . . , k (19)

in the Cox coordinates of C̃ . By Theorem 3.5 the part of degree zero of JC̃ in the
ring (SC̃ )0 � C[τ̃∨ ∩ M̃0] coincides with the kernel H of the ring surjection (18).
By Lemma 2.5, X = ProjC[τ̃∨ ∩ M̃0]/H coincides with the closed subscheme of
X̃ defined by the ideal JX̃ .

The matrices M�̃ = (〈e∗
i , ρ〉)1≤i≤k,ρ∈�̃(1) and Mτ̃ = (〈e∗

i , ξ 〉)1≤i≤k,ξ∈τ̃ (1)
differ just by multiplication by a positive integer on each column, namely the
numbers bρ defined in Lemma 2.5. From the proof of Lemma 3.9 we see thatMτ̃

has rank k and each of its columns has at most one positive entry. Therefore also the
matrixM�̃ has these two properties. By Lemma 3.8 or Remark 4.5, the binomials
(16) form a regular sequence.

This concludes the proof of Theorem 5.1(A). ��

The following two lemmata should be well known, but we have not been able
to find an adequate reference for them.

Lemma 5.2. Let (A,m) be a noetherian local ring and let π : Y → Spec A be a
proper morphism of schemes such that Y ×Spec A Spec A/mn → Spec A/mn is flat
for every n ∈ N. Then π is flat.

Proof. This proof relies on an argument that appears in the proof of [28, Propo-
sition 6.51]. We want to show that the set Z = {y ∈ Y | OY,y is not flat over A}
is empty. By covering Y with open affine subschemes and by using [23, Theorem
24.3], one can see that Z is closed in Y .

Assume by contradiction that Z is non-empty. Since π is closed, the set π(Z)

is a closed non-empty subset of Spec A. Therefore m ∈ π(Z). Hence there exists
y0 ∈ Z such that π(y0) = m. Let Spec R be an affine open neighbourhood of y0 in
Y and let B = OY,y0 be the local ring of Y at y0. We know that A/mn → R/mn R
is flat for every n ∈ N. Therefore the local homomorphism A → B is such that
A/mn → B/mn B is flat for every n ∈ N. By the local flatness criterion [23,
Theorem 22.3] A → B is flat. But this is absurd because y0 ∈ Z . ��
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Lemma 5.3. Let S be a noetherian scheme and let Y → S be a scheme morphism
of finite type such that Y ×S SpecOS,s → SpecOS,s is flat for some point s ∈ S.
Then there exists an open neighbourhood U of s in S such that Y ×S U → U is
flat.

Proof. Since the problem is local and Y → S is quasi-compact, we may assume
S = Spec A, Y = Spec B and s = m for some noetherian ring A, some finitely
generated A-algebra B and some prime ideal m of A. We know that B ⊗A Am is
flat over Am. Let us consider the set

V = {P ∈ Spec B | BP is flat over AP∩A} = {P ∈ Spec B | BP is flat over A},
which is open in Spec B by [23, Theorem 24.3]. The equality above holds by
transitivity of flatness and [23, Theorem 7.1].

We identify Spec(B ⊗A Am) with the set of primes P ∈ Spec B such that
P ∩ A ⊆ m. If P ∈ Spec B is such that P ∩ A ⊆ m, then by [23, Theorem 7.1] from
the flatness of B ⊗A Am over Am we deduce that BP is flat over (Am)(P∩A)Am =
AP∩A. This shows that Spec(B ⊗A Am) is contained in V .

Consider the set A \ m endowed with the order relation ≤ such that f ≤ g if
and only if g ∈ √

A f . If f ≤ g, there is the localisation map A f → Ag , given
by the restriction of the structure sheaf of Spec A from the principal open subset
defined by f to the principal open subset defined by g. As f runs in A\m, the rings
A f form a direct system and the local ring Am is the direct limit of this system.
Since tensor products and direct limits commute, B ⊗A Am is the limit of B f as
f ∈ A \ m. We are in the situation of inverse limits of affine schemes studied in
[17, Section 8], i.e. Spec(B ⊗A Am) is the projective limit of the affine schemes
Spec B f as f runs in A \ m.

For every f ∈ A \ m, consider the set E f = V ∩ Spec B f , which is open in
Spec B f because V is open in Spec B. Since Spec(B ⊗A Am) is contained in V ,
the set E = V ∩ Spec(B ⊗A Am) coincides with Spec(B ⊗A Am). Since E is the
limit of the E f ’s, by [17, Corollaire 8.3.5] we have that there exists f0 ∈ A \ m
such that E f0 = Spec B f0 . This implies that B f0 is flat over A f0 . Therefore we may
take U = Spec A f0 . ��
Proof of Theorem 5.1(B). The proof of the fact that the trinomials (17) are elements
ofC[t1, . . . , tk][xρ | ρ ∈ �̃(1)] is completely analogous towhat is done in the proof
of Theorem 3.5(B) and will be omitted.

Let X be the closed subscheme of X̃ ×SpecC A
k
C

defined by the homoge-
neous ideal generated by the trinomials (17). By (A) the fibre of X → A

k
C

over the origin is X . The fibred product X ×
A

k
C

SpecC[t1, . . . , tk]/q is flat
over C[t1, . . . , tk]/q for every (t1, . . . , tk)-primary ideal q of C[t1, . . . , tk], thanks
to Lemma 3.10 and Lemma 2.2, as in the proof of Theorem 3.5(B). If A =
C[t1, . . . , tk](t1,...,tk ) is the local ring of A

k
C
at the origin O , by Lemma 5.2 the mor-

phism X ×
A

k
C

Spec A → Spec A is flat, and consequently it induces a deformation

of X over Â = C[[t1, . . . , tk]]. By Lemma 5.3 we may find an open neighbourhood
U ⊆ A

k
C
of O such that X ×

A
k
C

U is flat over U . ��
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6. Deformations of projective toric pairs

In Theorem5.1, from a projective toric variety X with an ampleQ-CartierQ-divisor
D and a Minkowski decomposition of a certain polyhedron with some properties
we constructed a deformation of X . Here we show that if D is a Z-divisor then we
can construct a deformation of the toric pair (X, ∂ X). This is the content of the
following theorem.

Theorem 6.1. Let N be a lattice of rank n, let X be a projective TN -toric variety,
and let D be an ample torus-invariant Q-Cartier Z-divisor on X. Let τ be the
(n + 1)-dimensional cone in the lattice N0 = N ⊕ Ze0 associated to the polarised
projective toric variety (X, D) as in Lemma 2.3. Let (Q, Q0, Q1, . . . , Qk, w) be
a ∂-deformation datum for (N0, τ ) with w ∈ M ⊆ M0. Consider the lattices
Ñ = N ⊕ Ze1 ⊕ · · ·⊕ Zek and Ñ0 = N ⊕ Ze0 ⊕ Ze1 ⊕ · · ·⊕ Zek. Let τ̃ ⊆ (Ñ0)R
and w̃ ∈ M̃ ⊆ M̃0 be as in Notation 3.2.

Let ∂ X be the toric boundary of X. Let (X̃ , D̃) be the polarised projective toric
variety associated to the cone τ̃ via Lemma 2.3. Consider the reduced effective
divisor D on X̃ defined by the homogeneous ideal generated by the following
monomial in the Cox coordinates of X̃ :

∏

ρ∈�̃(1) :
∀i∈{1,...,k},〈e∗

i ,ρ〉≤0

xρ, (20)

where �̃ is the fan of X̃ in Ñ .
Let t1, . . . , tk be the standard coordinates on A

k
C

. Consider the closed sub-
scheme X of X̃ ×SpecC A

k
C

= TVC[t1,...,tk ](�̃) defined by the homogeneous ideal
generated by the following trinomials in Cox coordinates:

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉>0

x
〈e∗

i ,ρ〉
ρ −

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉<0

x
−〈e∗

i ,ρ〉
ρ − ti

∏

ρ∈�̃(1)

x 〈w̃,ρ〉
ρ

∏

ρ∈�̃(1) :
〈e∗

i ,ρ〉<0

x
−〈e∗

i ,ρ〉
ρ (21)

for i = 1, . . . , k.
Then the diagram

X ∩ (D ×SpecC A
k
C
) X

A
k
C

induces a deformation of the pair (X, ∂ X) over C[[t1, . . . , tk]] and over some open
neighbourhood of the origin in A

k
C

.

We mean that the base change of the diagram above to the origin of A
k
C
is

the closed embedding ∂ X ↪→ X over SpecC and that we get flat families when
we base change the morphisms X ∩ (D ×SpecC A

k
C
) → A

k
C
and X → A

k
C
to

SpecC[[t1, . . . , tk]] and to some open neighbourhood of the origin in A
k
C
.
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Proof of Theorem 6.1. By Theorem 5.1 it is enough to deal with the toric boundary.
LetC and C̃ be the affine cones over X and X̃ as in the proof of Theorem 5.1. Let J X̃
be the ideal in the Cox ring of X̃ generated by the binomials (16) and the monomial
(20). We need to show that the closed subscheme of X̃ defined by J X̃ coincides
with ∂ X .

Since X is polarised by a Z-divisor, by Lemma 2.3 the primitive generator of
every ray of the cone τ is of the form ρ − aρe0 for some aρ ∈ Z and ρ ∈ N
primitive. From the definition of τ̃ in Notation 3.2 it is easy to see that also τ̃

has the same property, i.e. the primitive generator of every ray of τ̃ is of the form
ρ − aρe0 for some aρ ∈ Z and ρ ∈ Ñ primitive. Therefore the homomorphism
SX̃ → SC̃ , defined in Lemma 2.5, is the identity. In particular the extended ideal
J C̃ := J X̃ SC̃ ⊆ SC̃ is generated by the binomials (19) and the monomial

∏

ξ∈τ̃ (1) :
∀i∈{1,...,k},〈e∗

i ,ξ〉≤0

xξ .

By Theorem 4.1 the contraction of J C̃ to the degree zero part (SC̃ )0 � C[τ̃∨ ∩ M̃0]
of SC̃ coincides with the ideal L̃ of ∂C in C̃ , which is the preimage along the
surjection (18) of the the ideal L of ∂C in C . By Lemma 2.5 the closed subscheme
of X̃ defined by J X̃ coincides with

ProjC[τ̃∨ ∩ M̃0]/L̃ = ProjC[τ∨ ∩ M0]/L = ∂ X,

where the last equality follows from Lemma 2.4.

L L̃ J C̃ ∩ (SC̃ )0 J C̃ J X̃
�

C[τ∨ ∩ M0] C[τ̃∨ ∩ M̃0](18) Coxτ̃
(SC̃ )0 SC̃ SX̃

�

One can show that the binomials (16) and the monomial (20) form a regular
sequence by using Lemma 4.4. By adapting the proof Theorem 5.1(B) we can show
the flatness of the families. ��

7. Mutations of Fano polytopes and deformations of Fano toric pairs

Here we recall the definition of mutations between Fano polytopes from [2] and we
prove Theorem 7.3. The definition of Fano polytope has been given at the beginning
of Sect. 1.3.

If N is a lattice, w ∈ MR \ {0} and h ∈ R, then we denote by Hw,h the set
of all points of NR lying at height h with respect to w, i.e. the affine hyperplane
Hw,h := {v ∈ NR | 〈w, v〉 = h}. In particular w⊥ = Hw,0.
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Definition 7.1. Let P ⊆ NR be a Fano polytope. A mutation datum for P is a pair
(w, F) where w ∈ M is a primitive vector and F ⊆ w⊥ ⊆ NR is a lattice polytope
satisfying the following condition: for every h ∈ Z such that minP w ≤ h < 0,
there exists a (possibly empty) lattice polytope Gh ⊆ NR such that

Hw,h ∩ vert(P) ⊆ Gh + (−h)F ⊆ conv
〈
Hw,h ∩ P ∩ N

〉
. (22)

Note that, for given Fano polytope P ⊆ NR and primitive vector w ∈ M , a
polytope F such that (w, F) is a mutation datum for P need not exist. From a
mutation datum we make the following construction.

Definition 7.2. ([2, Definition 5]) Let P ⊆ NR be a Fano polytope and let (w, F)

be a mutation datum for P . Assume that {Gh}minP w≤h<0 is a collection of lattice
polytopes satisfying (22). We define the corresponding mutation to be the lattice
polytope

mutw,F (P) := conv

〈 −1⋃

h=minP w

Gh ∪
hmax⋃

h=0

((Hw,h ∩ P ∩ N ) + hF)

〉
.

The polytope mutw,F (P) does not depend on the choice of {Gh}. Moreover,
mutw,F (P) is a Fano polytope. See [2, Section 3] or [6, Section 2.5] for the proofs
of these statements.

Roughly speaking, mutw,F (P) is obtained from P by adding hF at height h
(with respect to w) for h > 0 and by removing (−h)F at height h for h < 0. The
pair (w, F) is a mutation datum precisely when it is possible to remove from P
multiples of F at negative heights. For an example of mutation of Fano polytopes
see the beginning of Example 7.4.

The following theorem is the precise version of Theorem 1.3.

Theorem 7.3. Let P ⊆ NR be a Fano polytope, let (w, F) be a mutation datum
for P, and let P ′ = mutw,F (P) be the mutated polytope. Let X P (resp. X P ′ ) be
the Fano toric variety associated to the spanning fan of P (resp. P ′) and let ∂ X P

(resp. ∂ X P ′ ) be the toric boundary of X P (resp. X P ′ ). Set

vert(P)≥0 = vert(P) ∩ {v ∈ N | 〈w, v〉 ≥ 0},
vert(P ′)<0 = vert(P ′) ∩ {v ∈ N | 〈w, v〉 < 0}.

Consider the lattice Ñ = N ⊕ Ze1 and the polyhedron Q̃ ⊆ M̃R defined by

Q̃ =
⎧
⎨

⎩u + ke∗
1 ∈ M̃R

∣∣∣∣∣∣

∀p ∈ vert(P)≥0, 〈u, p〉 + 1 ≥ 0
∀p′ ∈ vert(P ′)<0, 〈u, p′〉 + 1 + k〈w, p′〉 ≥ 0

∀ f ∈ vert(F), 〈u, f 〉 + k ≥ 0

⎫
⎬

⎭ .

Then Q̃ is a full dimensional rational polytope and the primitive generators of the
rays of the normal fan �̃ of Q̃ are

• p for p ∈ vert(P)≥0,
• p′ + 〈w, p′〉e1 for p′ ∈ vert(P ′)<0,
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• f + e1 for f ∈ vert(F).

Let X̃ = TVC(�̃) be the toric variety associated to �̃. Consider the reduced divisor
D on X̃ defined by the following monomial in the Cox coordinates of X̃ :

∏

p∈vert(P)≥0

x p

∏

p′∈vert(P ′)<0

x p′ . (23)

Set V = P
2
C

\ {[1 : 0 : 0], [0 : 1 : 0]}. Consider the closed subscheme X of
X̃ ×SpecC V defined by the vanishing of the trinomial obtained by varying the three
coefficients of

∏

p∈vert(P)≥0

x 〈w,p〉
p +

∏

p′∈vert(P ′)<0

x−〈w,p′〉
p′ +

∏

f ∈vert(F)

x f . (24)

Then in the diagram

X ∩ (D ×SpecC V ) X

V

the two morphisms with target V are flat and the base change of the diagram to the
points [0 : 1 : −1] and [1 : 0 : −1] of V are the closed embeddings ∂ X P ↪→ X P

and ∂ X P ′ ↪→ X P ′ over SpecC, respectively.

When dim X P = 2, a slight variation of this construction was pursued in [1,
Lemma 7]. The rays of the fan of X̃ in Theorem 7.3 have been suggested to us by
Thomas Prince. An example of Theorem 7.3 is given below.

Example 7.4. In the lattice N = Z
2 consider the polygons

P = conv

〈(
1
0

)
,

(
0
1

)
,

(−1
−1

)〉

P ′ = conv

〈(
4
3

)
,

(
0
1

)
,

(−1
−1

)〉

which appear in Fig. 2. We have P ′ = mutw,F (P) with w = (−1, 2) ∈ M and

F = conv

〈(
0
0

)
,

(
2
1

)〉
.

We see that X P = P
2 and X P ′ = P(1, 1, 4). Following Theorem 7.3 we consider

the complete fan �̃ in Ñ = Z
3 whose rays are generated by

x =
⎛

⎝
0
1
0

⎞

⎠ , y =
⎛

⎝
−1
−1
−1

⎞

⎠ , z0 =
⎛

⎝
0
0
1

⎞

⎠ , z1 =
⎛

⎝
2
1
1

⎞

⎠ .
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Fig. 2. The polygons in Example 7.4

This implies that the toric variety associated to �̃ is X̃ = P(1, 2, 1, 1) with Cox
coordinates x, y, z0, z1. The trinomial (24) is x2 + y + z0z1 and the monomial (23)
is xy.

Consider V = P
2
C

\ {[1 : 0 : 0], [0 : 1 : 0]} with homogeneous coordinates
a, b, c. Consider the following closed subschemes of P(1, 2, 1, 1) ×SpecC V :

B = {ax2 + by + cz0z1 = xy = 0} ↪→ X = {ax2 + by + cz0z1 = 0}.
By Theorem 7.3, the projections X → V and B → V are flat and their fibres over
[0 : 1 : −1] (resp. [1 : 0 : −1]) are X P and ∂ X P (resp. X P ′ and ∂ X P ′). We notice
that the fibres over the closed points of V with b �= 0 are P

2
C
with a reducible cubic.

Lemma 7.5. Consider the polynomial ring S = C[x1, . . . , xr , y1, . . . , ys, z1,
. . . , zt ] over C. Fix α1, . . . , αr , β1, . . . , βs ∈ N. If a, b, c ∈ C are such that ab �= 0
or c �= 0, then

axα1
1 · · · xαr

r + byβ1
1 · · · yβs

s + cz1 · · · zt , x1 · · · xr y1 · · · ys

is a regular sequence in S.

Proof. They are two coprime elements in a unique factorisation domain. ��
Proof of Theorem 7.3. Consider the lattice N0 = N ⊕ Ze0 and the cone τ =
cone 〈P + e0〉 ⊆ (N0)R, which is associated to the ample Q-Cartier Z-divisor
∂ X P on X P via Lemma 2.3. Let {Gh} be the collection of lattice polytopes in
Definition 7.1. Consider the polytope

G = conv

〈
⋃

minP w≤h<0

Gh + e0
−h

〉
.

It is not difficult to see that (G + F, G, F, w) is a ∂-deformation datum for (N0, τ )

with w ∈ M ⊆ M0.
Let us prove only (vi). Each vertex of the polyhedron τ ∩ {v + ke0 ∈ (N0)R |

〈w, v〉 = −1} is of the form −〈w, p〉−1(p + e0) for some p ∈ vert(P)<0; by (22)
there exist g ∈ G〈w,p〉 and f ∈ F such that p = g − 〈w, p〉 f ; this implies that

− p + e0
〈w, p〉 = g + e0

−〈w, p〉 + f ∈ G + F.
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Now consider the cone τ̃ = cone 〈τ, G − e1, F + e1〉 in Ñ0 = N ⊕Ze0 ⊕Ze1,
as in Notation 3.2. By using (22) it is not difficult to show that τ̃ is generated by
p + e0 for p ∈ vert(P)≥0, p′ + e0 + 〈w, p′〉e1 for p′ ∈ vert(P)<0, and f + e1
for f ∈ vert(F). It is not difficult to show that these are the rays of τ̃ . This implies
that the polytope Q̃ defined in Theorem 7.3 coincides with τ̃∨ ∩ e−1

0 (1) and that
the rays of �̃ are the ones written down in the statement of the theorem.

Consider a, b, c homogeneous coordinates on V ⊆ P
2
C
, consider the closed

subscheme X of X̃ ×SpecC V defined by the homogeneous ideal generated by the
trinomial

a
∏

p∈vert(P)≥0

x 〈w,p〉
p + b

∏

p′∈vert(P ′)<0

x−〈w,p′〉
p′ + c

∏

f ∈vert(F)

x f . (25)

Let D be reduced effective divisor of X̃ defined by the monomial (23). Consider
B = X ∩ (D ×SpecC V ) ↪→ X̃ ×SpecC V . Therefore the diagram in Theorem 7.3
is B ↪→ X → V .

If we ignore the coefficients, the trinomial (21) in this particular case becomes
the trinomial in Theorem 7.3 and the monomial (20) becomes the monomial (23).
By Theorem 6.1, the fibres of X → V and B → V over the point [0 : 1 : −1] are
X P and ∂ X P .

Now we prove that X and B are flat over V . We pick an arbitrary closed point
v0 = [a : b : c] of V . By Lemma 7.5, the trinomial (25) and the monomial (23)
form a regular sequence in the Cox ring of X̃ . By Lemma 3.10 and Lemma 2.2, we
have that the morphismsX → V andB → V become flat when we restrict them to
every infinitesimal neighbourhood of the point v0 in V . Since X and B are proper
over V , by Lemma 5.2 we have that the morphisms X → V and B → V become
flat when we base change them to SpecOV,v0 . By Lemma 5.3 there exists an open
neighbourhood U of v0 in V such that X |U and B|U are flat over U . Therefore X
and B are flat over V .

It remains to show that X P ′ and ∂ X P ′ are the fibres ofX → V andB → V over
[1 : 0 : −1]. This can be seen by using the inverse mutation from P ′ to P and by
applying the automorphism of N ⊕Ze1 given by v+ke1 �→ v+(k +〈w, v〉)e1. ��
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