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AN EXAMPLE OF MIRROR SYMMETRY

FOR FANO THREEFOLDS

ANDREA PETRACCI

Abstract. In this note we illustrate the Fanosearch programme of Coates,

Corti, Galkin, Golyshev, and Kasprzyk in the example of the anticanonical
cone over the smooth del Pezzo surface of degree 6.

1. Introduction

1.1. Aim. The Fanosearch programme of Coates, Corti, Galkin, Golyshev, and
Kasprzyk [CCG+13] studies Fano varieties via Mirror Symmetry. In this context
it is crucial to study toric degenerations of smooth Fano varieties, or conversely
smoothings of toric Fano varieties. Toric Fano varieties are associated to certain
lattice polytopes, called Fano polytopes; some combinatorial input on a Fano poly-
tope conjecturally allows to construct a deformation of the corresponding toric
Fano. This is also reflected by Mirror Symmetry, where the combinatorial input
is encoded by certain special Laurent polynomials. The goal of this note is to il-
lustrate this programme in a specific example where two different combinatorial
inputs on the same polytope produce two different smoothings of the same toric
Fano threefold.

1.2. The example. The example we consider is the projective cone over the an-
ticanonical embedding of the smooth del Pezzo surface of degree 6. This threefold,
denoted by X, is a toric Fano and has an isolated Gorenstein canonical non-terminal
singularity at the vertex of the cone. The deformations of this singularity have been
studied by Altmann [Alt97]; we will recall Altmann’s results in §2.3. In §2.4 we
will see that the base of the miniversal deformation (or equivalently the Kuranishi
family) of the projective threefold X has two irreducible components, which deform
X to two different smooth Fano threefolds, namely:

• a general element X2 of the linear system |OP2×P2(1, 1)|,
• X3 = P1 × P1 × P1.

(The reason for the subscripts 2 and 3 will be evident later.) These two smooth
Fanos are connected via deformation through X, but cannot be connected via a
deformation with smooth fibres, as their Betti numbers are different.

As X is toric, by means of toric geometry, we can associate to X a 3-dimensional
lattice polytope P ⊆ R3 which is a hexagonal pyramid (see the precise definition in
(2) and Figure 1). The hexagonal facet of P is denoted by F (see (1) and the left
part of Figure 2). In Proposition 2.2 we will see that the two smoothings of X are
associated to some combinatorial additional data on the polytope P . More precisely,
they correspond to the two maximal Minkowski decompositions of the hexagon F
(see (3) and (4), and Figure 2). We will introduce the notion of Minkowski sum
and Minkowski decomposition in §2.3.
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2 ANDREA PETRACCI

Figure 1. The 3-dimensional lattice polytope P associated to X.

Now we consider the Laurent polynomials in 3 variables which are supported on
P , i.e. Laurent polynomials f ∈ C[x±, y±, z±] such that if the monomial xiyjzk ap-
pears in f then the point (i, j, k) ∈ Z3 lies in P . Among these Laurent polynomials,
we consider those which have coefficient 1 on the vertices of P and have coefficient
0 on the origin of R3; this gives rise to the following 1-dimensional family:

fa = z

(
a+ x+ xy + y +

1

x
+

1

xy
+

1

y

)
+

1

z

with parameter a ∈ C.
One can show that f2 is mirror to X2 and f3 is mirror to X3. In other words,

a certain generating function for some Gromov–Witten invariants of X2, called
quantum period (see §3.1), is equal to a certain power series, called classical period
(see §3.3), associated to f2, and the same holds for X3 and f3. Here we are using the
formulation of the Mirror Symmetry correspondence between Fanos and Landau–
Ginzburg models that is given in [CCG+13,Prz07,Prz13] and summarised in §3.4.

We will see that the Laurent polynomial f2 is closely related to the combinatorial
input given by the Minkowski decomposition of the hexagon F which is associated
to the smoothing of X to X2. Analogously, f3 is closely related to the Minkowski
decomposition of the hexagon F which is associated to the smoothing of X to X3.

1.3. The general picture. What we have described in the case of the projective
cone over the del Pezzo surface of degree 6 is an instance of the following conjecture,
which is still slightly vague.

Conjecture 1.1 ([CCG+13]). Let Q be a Fano polytope of dimension 3 and let
XQ be the corresponding toric Fano threefold. Assume that XQ has Gorenstein
singularities. From some “combinatorial input” on Q one constructs

(i) a smoothing V of XQ and
(ii) a Laurent polynomial f supported on Q

such that f is mirror to V .

The definition of “mirror” that we are using comes from [CCG+13,Prz07,Prz13]
and is given in Definition 3.4.

If the toric variety XQ is smooth (there are 18 cases), then the polytope Q
has only triangular facets which are standard simplices and XQ is rigid. Thus
V = XQ and f is uniquely determined by insisting that it has coefficient 1 on
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vertices of Q and coefficient 0 on the origin. This case was already known by
Givental [Giv98,Giv96] who proved that f is mirror to XQ.

In the example considered in this note, the combinatorial input on P is the choice
of a maximal Minkowski decomposition of the facet F of P . There are two such
choices which lead to two different smoothings of X and to two different Laurent
polynomials.

An interesting case, which is not too restrictive, is the following: the combi-
natorial input is the choice of a Minkowski decomposition of each facet of Q into
A-triangles. Here an A-triangle is either a unitary segment or a lattice triangle
which is Z2 oGL2(Z)-equivalent to the convex hull of the points (0, 0), (0, 1), (`, 0),
for some integer ` ≥ 1. For example, both maximal Minkowski decompositions of
the hexagon F are decompositions into A-triangles. In these circumstances one
can easily construct a Laurent polynomial f which is supported on Q and depends
on the choice of the Minkowski decompositions of the facets of Q (see [ACGK12],
where such Laurent polynomial f is called a Minkowski polynomial). In joint work
with Corti and Hacking [CHP], we construct a smoothing V of XQ, under a slight
additional assumption which is necessary by [Petb]. It is conjectured that f is mir-
ror to V . However, even in this situation we completely lack a conceptual way to
prove that f is mirror to V .

Unfortunately, there exist polytopes Q which have facets without Minkowski
decompositions into A-triangles. So, at the moment, it is not clear what sort of
combinatorial input we should consider on Q in the general case.

Another approach to construct smoothings of the toric Fano variety XQ is pur-
sued by Coates, Kasprzyk, and Prince [CKP, Pri]; they embed XQ into a bigger
toric variety Z and try to deform it inside Z. This works very well in many explicit
examples, but a general framework has yet to be discovered.

Finally, it is worth mentioning that Conjecture 1.1 can be stated in all dimen-
sions. Therefore, this might be a way to classify smooth Fano varieties that admit
a toric degeneration.

Notation and conventions. In a real vector space of finite dimension, a poly-
hedron is the intersection of finitely many closed half-spaces and a polytope is a
compact polyhedron; equivalently, a polytope is the convex hull of a finite set. We
denote by conv {·} the convex hull of a set.

All varieties and schemes are defined over C. We always use the following nota-
tion.

dP6 the smooth del Pezzo surface of degree 6
X the projective cone over the anticanonical embedding of dP6

U the affine cone over the anticanonical embedding of dP6

X2 a general effective divisor of type (1, 1) in P2 × P2

X3 P1 × P1 × P1

F the lattice polygon associated to dP6 (see (1) and the left part of Fig-
ure 2)

P the lattice polytope associated to X (see (2) and Figure 1)
fa z

(
a+ x+ xy + y + x−1 + x−1y−1 + y−1

)
+ z−1, for each a ∈ C

Q an arbitrary Fano polytope (see Definition 2.1)
XQ the Fano toric variety associated to the Fano polytope Q
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2. The geometry of X

2.1. Toric geometry. We now recall the basics of Fano toric varieties. We refer
the reader to [CLS11, §8.3], [Ful93, p. 25], and [KN13].

Definition 2.1. Let N be a lattice of rank n. A Fano polytope in N is an n-
dimensional polytope Q ⊆ NR such that the origin 0 ∈ N lies in the interior of Q
and every vertex of Q is a primitive lattice point of N .

The spanning fan of a Fano polytope Q in N is the complete fan whose cones are
the cones over the proper faces of Q. We denote by XQ the toric variety associated
to the spanning fan of a Fano polytope Q.

For brevity, we say that XQ is associated to Q, and conversely. If Q is a Fano
polytope of dimension n, then XQ is an n-dimensional complete toric variety which
is Fano, i.e. its anticanonical divisor is Q-Cartier and ample. Every Fano toric
variety arises in this way from a Fano polytope.

For example, consider the hexagon

(1) F = conv

{(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)}
⊆ R2,

which is depicted on the left of Figure 2. It is clear that F is a Fano polytope in
Z2. The toric variety associated to its spanning fan is the smooth del Pezzo surface
of degree 6, denoted by dP6. The anticanonical map of dP6 is a closed embedding
into P6.

Now imagine to put the hexagon F into the plane R2×{1} in R3 and create the
pyramid over it with apex at the point (0, 0,−1): this is the polytope

(2) P = conv


1

0
1

 ,

1
1
1

 ,

0
1
1

 ,

−1
0
1

 ,

−1
−1
1

 ,

 0
−1
1

 ,

 0
0
−1

 ⊆ R3

and is depicted in Figure 1. It is clear that P is a Fano polytope in Z3. Let X be
the toric variety associated to the spanning fan of P . Let U be the affine toric open
subscheme of X associated to the hexagonal face of P , i.e. U is the affine toric
variety associated to the cone R≥0(F × {1}). Hence X (resp. U) is the projective
(resp. affine) cone over the anticanonical embedding of dP6. We have that X is
a Fano threefold with an isolated non-terminal canonical Gorenstein singularity at
the vertex of the cone.

2.2. Equations. The equations of the three closed embeddings dP6 ⊆ P6, U ⊆ A7

and X ⊆ P7 are the same and can be conveniently described in two ways. Here,
x1, . . . , x7 denote the homogeneous coordinates of P6, the affine coordinates of A7
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and the last homogeneous coordinates of P7, as x0 is the remaining homogeneous
coordinate of P7.

The first way is:

rank

x7 x1 x2

x4 x7 x3

x5 x6 x7

 ≤ 1.

Note the repetition of x7 on the diagonal. If two of the x7’s had been two extra
variables, these would have been the equations of the Segre embedding of P2 × P2

in P8. This shows that X is the intersection of the projective cone over the Segre
embedding of P2 × P2 with two hyperplanes of P9 passing through the vertex.

Now consider the cube

x3 x2

x7 x1

x4 x7

x5 x6

where at the vertices there are the variables x1, . . . , x7. Note the repetition of x7.
The second way to describe the equations is to consider the determinants of all
rectangles which can be formed with edges of the cube or with diagonals of faces
of the cube. If one of the x7’s had been an extra variable, these would have been
the equations of the Segre embedding of P1 × P1 × P1 into P7. This shows that X
is the intersection of the projective cone over the Segre embedding of P1 × P1 × P1

with a hyperplane of P8 passing through the vertex.
The equations above also appear in [JR11, Example 3.3]. Moreover, these two

ways of describing the equations of X in P7 are called Tom and Jerry, respectively,
in [BKR12].

2.3. Minkowski sums and deformations of U . We first define the notion of
Minkowski sum of polyhedra (for instance see [Zie95, §1.1]). If Π1, . . . ,Πr are poly-
hedra in a real vector space, we define their Minkowski sum to be the polyhedron

Π1 + · · ·+ Πr := {p1 + · · ·+ pr | p1 ∈ Π1, . . . , pr ∈ Πr}.
When we have Π = Π1 + · · ·+ Πr, we say that we have a Minkowski decomposition
of the polyhedron Π. We consider Minkowski decompositions up to translation:
for instance, we consider the Minkowski decomposition (p+ Π1) + (−p+ Π2) to be
equivalent to Π1 + Π2 for every vector p. Moreover, in what follows we require that
the summands Πj are lattice polyhedra, i.e. their vertices belong to a fixed lattice.

The hexagon F has two maximal Minkowski decompositions (see Figure 2): one
into 3 unitary segments

(3) F = conv

{(
0
0

)
,

(
1
0

)}
+ conv

{(
0
0

)
,

(
0
1

)}
+ conv

{(
0
0

)
,

(
−1
−1

)}
and one into 2 triangles

(4) F = conv

{(
0
0

)
,

(
−1
0

)
,

(
−1
−1

)}
+ conv

{(
0
0

)
,

(
1
0

)
,

(
1
1

)}
.
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= + = + +

Figure 2. The two maximal Minkowski decompositions of the
hexagon F .

Altmann [Alt95] has noticed that Minkowski decompositions of polytopes induce
deformations of affine toric varieties (see also [Mav] and [Peta]). More precisely,
from a Minkowski decomposition of a polytope Π it is possible to construct an
unobstructed deformation of the affine toric variety associated to the cone R≥0(Π×
{1}).

In the case at hand, the Minkowski decomposition (3) induces the deformation
of U over SpecC[u, v] given by the equations

rank

x7 x1 x2

x4 x7 + u x3

x5 x6 x7 + v

 ≤ 1.

The Minkowski decomposition (4) induces the deformation of U over SpecC[s] given
by the equations obtained by taking minors of rectangles on edges and diagonals of
faces of the following cube.

x3 x2

x7 x1

x4 x7 + s

x5 x6

Moreover, Altmann [Alt97] shows that the miniversal deformation of U is (the
completion of) the union of these two deformations and its base is C[[s, u, v]]/(su, sv).

2.4. The two smoothings of X. Now we want to study deformations of X.

Proposition 2.2. The base of the miniversal deformation of X is C[[s, u, v]]/(su, sv)
and has two irreducible components. The 2-dimensional component (s = 0) is as-
sociated to the Minkowski decomposition (3) and deforms X to a general divisor
X2 ∈ |OP2×P2(1, 1)|. The 1-dimensional component (u = v = 0) is associated to the
Minkowski decomposition (4) and deforms X to X3 = P1 × P1 × P1.

Proof. Consider the local-to-global spectral sequence for Ext•X(ΩX ,OX): the sec-
ond page is Ep,q2 = Hq(X, ExtpX(ΩX ,OX)). As X has an isolated singularity, for all
p ≥ 1, the sheaf ExtpX(ΩX ,OX) is supported on the singular point of X; therefore,
for all p ≥ 1 and q ≥ 1, Ep,q2 = 0.

Let j : W ↪→ X be the smooth locus. The sheaves HomX(ΩX ,OX) and j∗Ω
2
W ⊗

OX(−KX) are the same, because they are both reflexive and coincide on W . As
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X is toric and −KX is ample, by Bott–Steenbrink–Danilov vanishing [CLS11, Theo-

rem 9.3.1] (see also [BTLM97,Fuj07,Mus02]) one has E0,q
2 = Hq(X,HomX(ΩX ,OX)) =

0 for all q ≥ 1. This argument comes from the proof of [Tot12, Theorem 5.1].
Therefore E2 is zero outside the line q = 0. This implies that, for all p ≥ 0, the

natural map

ExtpX(ΩX ,OX)→ H0(X, ExtpX(ΩX ,OX))

is an isomorphism. Since the unique singular point of X is contained in U and U is
affine, we have H0(X, ExtpX(ΩX ,OX)) = ExtpU (ΩU ,OU ) for all p ≥ 1. This implies
that, for all p ≥ 1, the natural map

φp : ExtpX(ΩX ,OX)→ ExtpU (ΩU ,OU ),

is an isomorphism.
We now consider the functors of infinitesimal deformations of X and U : Def X

and Def U , which are covariant functors from the category of local finite C-algebras
to the category of sets (see [Man09, §3]). There is an obvious map φ : Def X →
Def U , which restricts a deformation of X to U . Since X is normal, Ext1

X(ΩX ,OX)
is the tangent space of Def X and Ext2

X(ΩX ,OX) is an obstruction space for Def X ,
and a similar statement holds for U . Since φ1 is bijective and φ2 is injective,
we have that φ induces an isomorphism on tangent spaces and an injection on
obstruction spaces. Therefore, by [Man09, Remark 4.12], φ is smooth and induces
an isomorphism on tangent spaces. In particular, the two functors Def X and Def U
have the same hull, i.e. the bases of the miniversal deformations of X and U are
the same.

The equations of the two deformations of U , given in §2.3, can be projectivised
to construct deformations of X: it is enough to replace s, u and v by sx0, ux0 and
vx0. These are the two components of the miniversal deformation of X. The fact
that they are associated to the two Minkowski decompositions (3) and (4) of the
hexagon F follows from the discussion in §2.3.

From §2.2 we know that X is the intersection of the projective cone over the
Segre embedding of P2×P2 with two hyperplanes of P9 passing through the vertex
of the cone. On the component (s = 0), in the deformation we are moving these two
hyperplanes away from the vertex. Therefore, the general fibre over this component
is X2, a general (1, 1)-divisor in P2 × P2.

Recall that X is the intersection of the projective cone over the Segre embedding
of P1 × P1 × P1 with a hyperplane of P8 passing through the vertex. On the
component (u = v = 0), in the deformation we are moving this hyperplane of P8

away from the vertex. Therefore, the general fibre on this component is X3 =
P1 × P1 × P1. �

3. Mirror Symmetry

3.1. Gromov–Witten invariants and quantum periods. The quantum period
of a smooth Fano variety is a generating function for some genus zero Gromov–
Witten invariants. The regularised quantum period is a slightly different version,
which is convenient for our description of Mirror Symmetry.



8 ANDREA PETRACCI

Definition 3.1 ([CCG+13, CCGK16, Prz07]). The quantum period and the regu-
larised quantum period of a smooth Fano variety V are the following power series

GV (t) = 1 +
∑

β∈H2(V,Z)

〈[pt]ψ−KV ·β−2〉V0,1,βt−KV ·β ∈ Q[[t]]

ĜV (t) = 1 +
∑

β∈H2(V,Z)

(−KV · β)!〈[pt]ψ−KV ·β−2〉V0,1,βt−KV ·β ∈ Q[[t]]

where 〈[pt]ψ−KV ·β−2〉V0,1,β denotes the 1-marked genus zero Gromov–Witten in-
variant of curve class β associated to the cohomology class of a point in V and
gravitational descendant of order −KV · β − 2.

Roughly speaking, 〈[pt]ψ−KV ·β−2〉V0,1,β is the number of rational curves in V of
class β passing through a fixed general point of V and satisfying a certain condition
on their complex structure. Therefore, the quantum period GV gives information
about rational curves in V . The series GV is a symplectic invariant of V , so it does
not change if V is deformed to another smooth Fano variety through a deformation
with smooth fibres.

If the anticanonical line bundle OV (−KV ) is divisible by a positive integer m
inside the Picard group of the smooth Fano variety V , then only powers of tm

appear in the (regularised) quantum period of V .
It is also possible to define quantum periods for Fano varieties with quotient

singularities [OP18, §3.3].
It is known how to compute the quantum period of smooth Fano varieties which

are either toric or complete intersections in smooth Fano toric varieties [CG07,
Giv96]. The quantum periods of all smooth Fano varieties of dimension ≤ 3 have
been computed by Coates, Corti, Galkin, and Kasprzyk [CCGK16]. In particular,
we have the following formulae for X2 and X3.

Proposition 3.2 ([CCGK16]). The quantum periods and the regularised quantum
periods of X2 and X3 are the following.

GX2(t) =

∞∑
l=0

∞∑
m=0

(l +m)!

(l!)3(m!)3
t2l+2m

GX3
(t) =

∞∑
l=0

∞∑
m=0

∞∑
n=0

1

(l!)2(m!)2(n!)2
t2l+2m+2n

ĜX2(t) = 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + 567504t10 + · · ·

ĜX3
(t) = 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + 1172556t10 + · · ·

3.2. Laurent polynomials. Let C[x±1 , . . . , x
±
n ] be the ring of Laurent polynomials

in n variables with coefficients in C. To every monomial xi = xi11 · · ·xinn we associate
the point i = (i1, . . . , in) ∈ Zn. The Newton polytope of a Laurent polynomial f is
the convex hull of the lattice points that correspond to the monomials that appear
in f , i.e. if f =

∑
i∈Zn aix

i then

Newt(f) = conv {i ∈ Zn | ai 6= 0} ⊆ Rn.
If Q is a lattice polytope in Zn, we say that a Laurent polynomial f ∈ C[x±1 , . . . , x

±
n ]

is supported on Q if every monomial appearing in f corresponds to a lattice point
of Q, or equivalently if Newt(f) ⊆ Q.
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Given a Fano polytope Q in Zn, Kasprzyk and Tveiten [KT] have introduced and
studied a particular class of Laurent polynomials supported on Q; they call them
maximally mutable, because these behave well with respect to mutations of Fano
polytopes [ACGK12]. The definition of maximally mutable Laurent polynomials in
dimension 2 can be also found in [ACC+16]. We are not going to define maximally
mutable Laurent polynomials here, we just mention some properties in a particular
case.

In dimension 3, when the Fano toric threefold XQ has Gorenstein singularities
(equivalently Q is a reflexive polytope of dimension 3), every maximally mutable
Laurent polynomial on Q is such that:

• the coefficient of the monomial 1, corresponding to the origin of Z3, is 0;
• the monomials corresponding to the vertices of Q have coefficients equal to

1;
• on the edges of Q there are binomial coefficients. (For example, the 4 lattice

points of an edge with lattice length 3 have coefficients 1, 3, 3, 1.)

In the case of the polytope P , a Laurent polynomial is supported on P if and
only if its monomials are among 1, xz, xyz, yz, x−1z, x−1y−1z, y−1z, z−1, which
correspond to the lattice points of P . The Laurent polynomials on P which satisfy
the three properties above form a 1-dimensional family

fa = z

(
x+ xy + y +

1

x
+

1

xy
+

1

y
+ a

)
+

1

z

with parameter a ∈ C. Here a is the coefficient of the centre of the hexagonal
facet of P . Kasprzyk and Tveiten [KT] show that there are exactly two maximally
mutable Laurent polynomials on P , namely fa with a = 2 and a = 3. One notices
that, in these two cases, the restriction of fa to the hexagonal facet of P is reducible:

f2 = z(1 + x)(1 + y)(1 + x−1y−1) + z−1,

f3 = z(1 + x−1y−1 + y−1)(1 + xy + y) + z−1.

The Newton polytopes of the three factors of (1+x)(1+y)(1+x−1y−1) are the three
unitary segments appearing in the Minkowski decomposition (3) of the hexagon F .
The Newton polytopes of the factors of (1 + x−1y−1 + y−1)(1 + xy + y) are the
two triangles appearing in the Minkowski decomposition (4) of the hexagon F .
The Laurent polynomials f2 and f3 are Minkowski polynomials in the sense of
[ACGK12].

3.3. Classical periods. We now define the classical period of a Laurent polyno-
mial in n variables.

Definition 3.3 ([ACGK12, GU10]). The classical period of f ∈ C[x±1 , . . . , x
±
n ] is

the power series

πf (t) =

(
1

2πi

)n ∫
Γε

1

1− tf(x1, . . . , xn)

dx1 ∧ · · · ∧ dxn
x1 · · ·xn

=

∞∑
k=0

coeff1(fk)tk

where in the first formula we are integrating a holomorphic n-form of the torus
(C×)n = SpecC[x±1 , . . . , x

±
n ] over the real torus Γε = {|x1| = · · · = |xn| = ε} ⊆
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(C×)n, for some 0 < ε � 1, and coeff1(fk) ∈ C is the coefficient of the monomial
1 = x0

1 · · ·x0
n in the Laurent polynomial fk.

The equality between the two formulae in the definition above comes from ap-
plying Cauchy’s integral formula n times. The classical period πf is related to the
Hodge theory of the fibres of f : (C×)n → A1.

One can see that the classical period of the Laurent polynomial fa is

πfa(t) = 1 + 2at2 + (6a2 + 36)t4 + (20a3 + 360a+ 240)t6

+ (70a4 + 2520a2 + 3360a+ 6300)t8

+ (252a5 + 15120a3 + 30240a2 + 113400a+ 90720)t10 + · · ·
for every a ∈ C. In particular,

πf2(t) = 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + 567504t10 + · · · ,
πf3(t) = 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + 1172556t10 + · · · .

3.4. Fano/Landau–Ginzburg correspondence. Mirror Symmetry [CCG+13,
KP12] predicts that the mirror of a smooth Fano n-fold V is a pair (Y,w), called
Landau–Ginzburg model, where Y is an n-fold and w ∈ Γ(Y,OY ) is a regular func-
tion. The Gromov–Witten theory of V should be related to the Hodge theory

of the fibres of w : Y → A1 as follows: the regularised quantum period ĜV (see
Definition 3.1) of V coincides with the period πw which is defined as

(5) πw(t) =

∫
Γ

Ω

1− tw
where Ω is an appropriate holomorphic n-form on Y and Γ ∈ Hn(Y ;Z) is such that∫

Γ
Ω = 1.
Under some circumstances (which conjecturally and experimentally should coin-

cide with when there is a toric degeneration of V ) there is an open subset of Y that
is isomorphic to the torus (C×)n = SpecC[x±1 , . . . , x

±
n ]. In this case the restriction

of w to this open subset gives a Laurent polynomial f ∈ C[x±1 , . . . , x
±
n ]. In this

situation the period πw in (5), when Y = (C×)n, Γ = {|x1| = · · · = |xn| = ε}
and Ω = (2πi)−n(x1 · · ·xn)−1dx1 · · · dxn, becomes the classical period of a Laurent
polynomial (see Definition 3.3).

Thus, a down-to-earth formulation of Mirror Symmetry between smooth Fano
varieties and Laurent polynomials is the following.

Definition 3.4 ([CCG+13,Prz07,Prz13]). A Laurent polynomial f ∈ C[x±1 , . . . , x
±
n ]

is mirror to a smooth Fano variety V of dimension n if the classical period of the

former coincides with the regularised quantum period of the latter: ĜV = πf .

The equality ĜV = πf is equivalent to GV being equal to the oscillatory integral(
1

2πi

)n ∫
Γε

etf
dx1 ∧ · · · ∧ dxn

x1 · · ·xn
=

∞∑
k=0

coeff1(fk)

k!
tk.

Moreover, the equality ĜV = πf can be upgraded to an equality between the Gauss–
Manin connection on the middle cohomology of the fibres of f and the Dubrovin
connection of the quantum D-module of V (see [Gol07]).

Proposition 3.5 ([ACGK12,CCGK16]). The Laurent polynomial f2 (resp. f3) is
mirror to the smooth Fano threefold X2 (resp. X3).
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Proof. Set a = 2 or a = 3. We need to show that the two power series πfa and

ĜXa coincide. By comparing the formulae given in Proposition 3.2 and at the end
of §3.3, one can check the equality of finitely many coefficients. In order to prove

the equality of all coefficients, one has to show that πfa and ĜXa
satisfy the same

linear differential equation; this is done in [ACGK12] and [CCGK16]. �

Now we are ready to illustrate Conjecture 1.1 in the example of the projective
cone over the smooth del Pezzo surface of degree 6, which is the running example
of this note.

In Proposition 2.2 we saw that the Minkowski decomposition (3) of the hexagonal
facet of P into three unitary segments is associated to the smoothing of X to X2.
In §3.2 we saw that the restriction of f2 to the hexagonal facet of P is reducible
and that the Newton polytopes of its three factors are the three unitary segments
appearing in the Minkowski decomposition (3). By Proposition 3.5 we know that
f2 is mirror to X2. This is an instance of Conjecture 1.1: from the combinatorial
input of the Minkowski decomposition of the hexagonal facet of P into three unitary
segments we have constructed the smoothing X2 of X and the Laurent polynomial
f2 which is mirror to X2.

In a completely analogous manner, we can observe that the Minkowski decom-
position (4) of the hexagonal facet of P into two triangles induces the smoothing
X3 of X and the Laurent polynomial f3. This provides another example for Con-
jecture 1.1 because f3 is mirror to X3.

As mentioned in §1.3, given a reflexive polytope Q of dimension 3, from the
combinatorial datum given by the choice of a Minkowski decomposition of each facet
of Q into A-triangles, one constructs an associated Laurent polynomial f supported
on Q. From the same combinatorial datum on Q (with a slight additional condition
which we do not mention here), by [CHP] it is possible to construct a smoothing V
of the toric Fano threefold XQ associated to Q. It is conjectured that the smooth
Fano threefold V is mirror to the Laurent polynomial f .

This circle of ideas should be considered as an approach to the problem of clas-
sifying smooth Fano varieties of dimension ≥ 4. Indeed, computers can classify
Fano polytopes; therefore, once one has developed a combinatorial technology for
smoothing toric Fano varieties, one should be able to construct all smooth Fano
varieties which admit a toric degeneration.

There is another difficulty: a smooth Fano variety may have many toric degen-
erations, hence may arise from several polytopes. For instance, X3 = P1 × P1 × P1

is itself toric and degenerates to the toric Fano X. Conjecturally, these many toric
degenerations of a smooth Fano correspond to many mirror Laurent polynomials;
these Laurent polynomials are related via certain birational transformations of the
torus (C×)n, which are called mutations [ACGK12,CMG13,GU10] and preserve the
classical periods. Therefore, it is conjectured that deformation families of smooth
Fano varieties of dimension n are in one-to-one correspondence with mutation-
equivalence classes of some “special” Laurent polynomials in n variables. We are
not going to expand on this here because otherwise it would lead us far beyond the
scope of this note.
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