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SOME EXAMPLES OF NON-SMOOTHABLE GORENSTEIN

FANO TORIC THREEFOLDS

ANDREA PETRACCI

Abstract. We present a combinatorial criterion on reflexive polytopes of di-

mension 3 which gives a local-to-global obstruction for the smoothability of
the corresponding Fano toric threefolds. As a result, we show an example of a

singular Gorenstein Fano toric threefold which has compound Du Val, hence

smoothable, singularities but is not smoothable.

1. Introduction

In this note we consider a specific feature of the deformation theory of Fano
toric threefolds with Gorenstein singularities. Such varieties are in one-to-one cor-
respondence with the 4319 reflexive polytopes of dimension 3, which were classified
by Kreuzer and Skarke [6].

Fix such a polytope P and denote by XP the corresponding Fano toric variety,
i.e. the toric variety associated to the spanning fan of P . The singularities of XP

are detected by the shape of the facets of P . Here we will ignore the problem
of understanding which singularities are smoothable. Instead, we will present a
local-to-global obstruction to the smoothability of XP . In other words, we will
show examples where there exists an open non-affine subscheme Y ↪→ XP such
that Y is singular, Y has smoothable singularities, and Y is not smoothable (and
consequently XP is not smoothable). These examples are constructed by means of
the following combinatorial criterion — the relevant definitions are given in §3.

Theorem 1.1. Let P be a reflexive polytope of dimension 3 and let XP be the Fano
toric threefold associated to the spanning fan of P . If, for some integer n ≥ 1, the
polytope P has “two adjacent almost-flat An-triangles” as facets, then XP is not
smoothable.

A particular polytope, which satisfies the hypothesis of Theorem 1.1, allows us
to prove the following result.

Theorem 1.2. There exists a singular Fano toric threefold X such that the singular
locus of X is isomorphic to P1, X has only cA1-singularities, and every infinitesimal
deformation of X is trivial. In particular, X is not smoothable.

This refutes a conjecture made by Prokhorov [10, Conjecture 1.9], according to
which all Fano threefolds with only compound Du Val singularities are smoothable.
This conjecture was motivated by Namikawa’s result [8] on the smoothability of
Fano threefolds with Gorenstein terminal singularities.

Idea of the proof of Theorem 1.1. Fix an integer n ≥ 1. An An-triangle (see
Definition 3.1) corresponds, via toric geometry, to the cAn threefold singularity
SpecC[x, y, z, w]/(xy − zn+1).
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2 ANDREA PETRACCI

If a reflexive polytope P of dimension 3 has two adjacent An-triangles as facets,
then there is an open non-affine toric subscheme Y of XP such that the singular
locus of Y is isomorphic to P1 and the singularities are transverse An. Here An
denotes the affine toric surface SpecC[x, y, z]/(xy − zn+1). More precisely, Y is
an An-bundle over P1 (see Definition 2.1), i.e. there exists a map π : Y → P1 such
that, Zariski locally on the target, it is the trivial projection with fibre An. The
map π may be globally non-trivial, depending on the relative position of the two
adjacent An-triangles. It is possible to express the sheaf π∗Ext1Y (Ω1

Y ,OY ), which is
a vector bundle on P1 of rank n, in terms of the combinatorics of the two triangles.
In particular, we get to know when this sheaf is the direct sum of negative line
bundles on P1. This gives a combinatorial condition for Ext1Y (Ω1

Y ,OY ) not to
have global sections; the condition is expressed by insisting that the two triangles
almost lie on the same plane, i.e. they are “almost-flat” (see Definition 3.2). If this
happens, then every infinitesimal deformation of Y is locally trivial and, thus, XP

is not smoothable.

Relation to Mirror Symmetry for Fano varieties. In the context of Mirror
Symmetry for Fano varieties [1,3], Akhtar–Coates–Galkin–Kasprzyk [2] introduced
the notion of “mutation”. Starting from some combinatorial datum, a mutation
transforms a Fano polytope (i.e. the lattice polytope associated to a Fano toric va-
riety) into another Fano polytope. Varying the combinatorial datum gives different
mutations of the same Fano polytope.

In the setting of Theorem 1.1, if a 3-dimensional reflexive polytope P has two
adjacent An-triangle facets (n ≥ 1), then these are almost-flat if and only if the
polytope P does not admit a special kind of mutation, which we will not specify
here. Therefore, Theorem 1.1 says that, in some cases, a Gorenstein Fano toric
threefold is not smoothable if the corresponding polytope does not admit a special
kind of mutation. This agrees with Ilten’s observation [5] that mutations of Fano
polytopes induce deformations of the corresponding Fano toric varieties.

Higher dimensions. The methods of this paper could be easily adapted to study
obstructions to deformations of toric An-bundles on smooth toric varieties of any
dimension. This would give a local-to-global obstruction to the smoothability of
toric varieties of dimension d ≥ 4 which contain, as an open toric subscheme, a
toric An-bundle over a smooth toric variety of dimension d− 2.

Notation and conventions. We work over C, but everything will hold over a
field of characteristic zero or over a perfect field of large characteristic. If N is a
lattice, its dual is denoted by M := HomZ(N,Z) and the symbol 〈·, ·〉 denotes the
duality pairing between M and N .

Acknowledgements. The results in this note have appeared in my Ph.D. the-
sis [9], which was supervised by Alessio Corti; I would like to thank him for sug-
gesting this problem to me and for sharing his ideas. I am grateful to Victor
Przyjalkowski for bringing Prokhorov’s conjecture to my attention.

The author was funded by Tom Coates’ ERC Consolidator Grant 682603 and by
Alexander Kasprzyk’s EPSRC Fellowship EP/N022513/1.
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2. An-bundles and their deformations

For any integer n ≥ 1, let An denote the toric surface singularity associated
to the cone spanned by (0, 1) and (n + 1, 1) inside the lattice Z2, i.e. the affine
hypersurface

An = SpecC[x, y, z]/(xy − zn+1).

The conormal sequence of the closed embedding An ↪→ A3 produces a free resolution
of Ω1

An
:

(1) 0 −→ I/I2 = OAn


y
x

−(n+ 1)zn


−−−−−−−−−−−−−→ Ω1

A3

∣∣
An

= O⊕3An
−→ Ω1

An
−→ 0

where I is the ideal of An in A3. This allows us to compute

Ext1An
(Ω1

An
,OAn

) = coker

(
O⊕3An

(y,x,−(n+1)zn)

−−−−−−−−−−→ OAn

)
= OAn

/(y, x, zn) = ODn

where Dn ' SpecC[z]/(zn) is the closed subscheme of An defined by the ideal
generated by y, x and zn. Notice that Dn is the singular locus of An equipped with
the schematic structure given by the second Fitting ideal of Ω1

An
.

We want to define the notion of an An-bundle and globalise this computation
of the Ext group. Informally, an An-bundle is a morphism Y → S which, Zariski-
locally, is the projection An × S → S. More precisely we have to insist that an
An-bundle is a closed subscheme in a split vector bundle over S of rank 3.

Definition 2.1. An An-bundle over a C-scheme S is a morphism of schemes
πY : Y → S such that there exist three line bundles Lx,Ly,Lz ∈ Pic(S), a closed
embedding of S-schemes

ι : Y ↪→ E = SpecS Sym•OS
(Lx ⊕ Ly ⊕ Lz)∨

of Y into the total space of Lx ⊕ Ly ⊕ Lz, and an affine open cover {Si}i of S
satisfying the following condition: for each i, there are trivializations Lx|Si ' OSi ,
Ly|Si

' OSi
, Lz|Si

' OSi
and a commutative diagram of Si-schemes

π−1Y (Si) SpecOSi
(Si)[xi, yi, zi]/(xiyi − zn+1

i )

π−1E (Si) SpecOSi(Si)[xi, yi, zi] = A3
Si

'

ιSi

'

where πE denotes the projection E → S, the coordinates xi ∈ Γ(Si,L∨x ), yi ∈
Γ(Si,L∨y ) and zi ∈ Γ(Si,L∨z ) are the local sections corresponding to the trivializa-
tions above, the horizontal arrows are isomorphisms, the left vertical arrow is the
restriction of the closed embedding ι : Y ↪→ E, and the right vertical arrow is the
base change of the standard embedding An ↪→ A3 to Si.

Remark 2.2. A posteriori one can see that Lx⊗Ly ' L⊗(n+1)
z . This follows from

the following easy fact in commutative algebra: let A be a ring and f ∈ A be an
invertible element; if the ideal of A[x, y, z] generated by xy − zn+1 coincides with
the ideal generated by xy − fzn+1, then f = 1.
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Lemma 2.3. Let S be a scheme with a line bundle L ∈ Pic(S). Let D be the k-th
order thickening of the zero section of the total space of L, i.e. the closed subscheme
of SpecS Sym•OS

L∨ locally defined by the equation xk+1 = 0 where x is a nowhere
vanishing local section of L∨. Let π : D → S be the projection. Then

π∗OD =

k⊕
i=0

(L∨)⊗i.

Proof. Let {Si}i be an affine open cover of S which trivializes L. Let xi ∈ Γ(Si,L∨)
be a local coordinate. Then we have the isomorphism of Si-schemes

π−1(Si) ' SpecOS(Si)[xi]/(x
k+1
i ).

Therefore π∗OD|Si
is the free OSi

-module with basis {1, xi, . . . , xki }, which is a local
frame of OS ⊕ L∨ ⊕ · · · ⊕ (L∨)⊗k.

Another way to see this is to notice that D = SpecS(Sym•OS
L∨)/I, and con-

sequently π∗OD = (Sym•OS
L∨)/I, where I ⊆ Sym•OS

L∨ is the ideal made up of
elements of degree greater than k. �

Proposition 2.4. Let S be a C-scheme and πY : Y → S be an An-bundle, with
Lx,Ly,Lz ∈ Pic(S) as in Definition 2.1. Then there is an isomorphism of OS-
modules

(πY )∗

(
Ext1Y (Ω1

Y/S ,OY )
)
'

⊕
2≤j≤n+1

L⊗jz .

Proof. Assume we are in the setting of Definition 2.1, with projections πY : Y → S
and πE : E → S, closed embedding ι : Y ↪→ E, and a trivialising affine open cover
{Si}i of S with local sections xi, yi, zi.

We consider the conormal sequence of Y
ι
↪→ E

πE→ S:

(2) IY/E/I2Y/E −→ Ω1
E/S |Y −→ Ω1

Y/S −→ 0,

where IY/E is the ideal sheaf of the closed embedding ι : Y ↪→ E. We restrict

this sequence to Si and we get the conormal sequence of Yi = π−1Y (Si)
ιSi
↪→ Ei =

π−1E (Si)→ Si:

(3) IYi/Ei
/I2Yi/Ei

−→ Ω1
Ei/Si

|Yi −→ Ω1
Yi/Si

−→ 0;

this is the base change to Si of (1), the conormal sequence of An ↪→ A3 → SpecC.
As Si → SpecC is flat, we have that (3) is left exact for all i. As {Si}i is an open
cover of S, we have that also (2) is left exact.

Since πE : E → S is the vector bundle whose sheaf of sections is Lx ⊕ Ly ⊕ Lz,
we have that Ω1

E/S = π∗E(Lx⊕Ly⊕Lz)∨. Therefore Ω1
E/S |Y = π∗Y (Lx⊕Ly⊕Lz)∨.

One can check that IY/E/I2Y/E ' π
∗
Y (Lx⊗Ly)∨. On the intersection Sij = Si∩Sj

we have the equalities xi = gxijxj , yi = gyijyj , and zi = gzijzj , where gxij , g
y
ij , g

z
ij ∈

Γ(Sij ,O∗S) are invertible functions such that gxijg
y
ij = (gzij)

n+1 (by Remark 2.2).
Then the restriction of the map

π∗Y (Lx ⊗ Ly)∨ = IY/E/I2Y/E −→ Ω1
E/S |Y = π∗Y (Lx ⊕ Ly ⊕ Lz)∨
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in (2) to Yij = π−1Y (Sij) produces the following commutative diagram.

OYij O⊕3Yij

OYij
O⊕3Yij

gxijg
y
ij


yi

xi

−(n+1)zni



diag(gxij ,g
y
ij ,g

z
ij)


yj

xj

−(n+1)znj


Therefore the sequence (2) becomes

0 −→ π∗Y (Lx ⊗ Ly)∨ −→ π∗Y (Lx ⊕ Ly ⊕ Lz)∨ −→ Ω1
Y/S −→ 0,

which gives a locally free resolution of Ω1
Y/S . Hence

Ext1Y (Ω1
Y/S ,OY ) = coker (π∗Y (Lx ⊕ Ly ⊕ Lz) −→ π∗Y (Lx ⊗ Ly))

= π∗Y (Lx ⊗ Ly)⊗OY
OD

= π∗Y (Lz)⊗(n+1) ⊗OY
OD

where D ↪→ Y is the closed subscheme locally defined by xi = yi = zni = 0. Denote
by πD : D → S the projection. It is clear that D is the (n− 1)-th order thickening
of the zero section in the total space Lz over S. By Lemma 2.3 we have

(πD)∗OD =

n−1⊕
i=0

(L∨z )⊗i.

Thus

(πY )∗Ext1Y (Ω1
Y/S ,OY ) = (πY )∗(π

∗
Y L⊗(n+1)

z ⊗OY
OD)

= (πD)∗(π
∗
DL⊗(n+1)

z )

= (πD)∗OD ⊗OS
L⊗(n+1)
z

=

n−1⊕
i=0

(L∨z )⊗i ⊗OS
L⊗(n+1)
z

=
⊕

2≤j≤n+1

L⊗jz .

This concludes the proof of Proposition 2.4. �

The following lemma is well known in deformation theory.

Lemma 2.5. Let Y be a reduced C-scheme. Assume that Y → SpecC is a local
complete intersection morphism and that H0(Y, Ext1Y (Ω1

Y ,OY )) = 0.
Then all infinitesimal deformations of Y are locally trivial. In particular, if Y

is not smooth, then Y is not smoothable.

Proof. Let (Art) be the category of local artinian C-algebras with residue field C.
LetDefY be the functor of infinitesimal deformations of Y , i.e. the covariant functor
from (Art) to the category of sets which maps each A ∈ (Art) to the set DefY (A)
of isomorphism classes of deformations of Y over SpecA and acts on arrows by base
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change. For every A ∈ (Art), let Def ′Y (A) be the subset of DefY (A) made up of
the locally trivial deformations. This gives a subfunctor φ : Def ′Y ↪→ DefY . We
refer the reader to [11, §2.4] or to [7] for details.

We want to show that the natural transformation φ is an isomorphism. It is
enough to show that the injective function φA : Def ′Y (A) ↪→ DefY (A) is surjective
for every A ∈ (Art). This is implied by the smoothness of φ (see [7, Definition 3.9]).
This is what we will prove below.

Let TY = HomY (Ω1
Y ,OY ) be the sheaf of derivations on Y . By [11, Theorem

2.4.1] the tangent space of Def ′Y is H1(Y, TY ) and the tangent space of DefY
is Ext1Y (Ω1

Y ,OY ). By [11, Proposition 2.4.6], H2(Y, TY ) is an obstruction space

for Def ′Y . By [11, Proposition 2.4.8] or [13, Theorem 4.4], Ext2Y (Ω1
Y ,OY ) is an

obstruction space for DefY .
The local-to-global spectral sequence for Ext gives the following five term exact

sequence

0 −→ H1(Y, TY ) −→ Ext1Y (Ω1
Y ,OY ) −→ H0(Y, Ext1Y (Ω1

Y ,OY )) −→
−→ H2(Y, TY ) −→ Ext2Y (Ω1

Y ,OY ).

With the identifications above, the vanishing of H0(Y, Ext1Y (ΩY ,OY )) implies that
φ induces an isomorphism on tangent spaces and an injection on obstruction spaces.
By [7, Remark 4.12] we get that φ is smooth. �

Corollary 2.6. Let S be a smooth C-scheme and πY : Y → S be an An-bundle,
with Lx,Ly,Lz ∈ Pic(S) as in Definition 2.1. Then we have:

(i) the sheaf Ext1Y (Ω1
Y ,OY ) is isomorphic to Ext1Y (Ω1

Y/S ,OY );

(ii) if H0(S,L⊗jz ) = 0 for all 2 ≤ j ≤ n+ 1, then all infinitesimal deformations
of Y are locally trivial and Y is not smoothable.

Proof. As Y → S is a Zariski-locally trivial fibration, the sequence of Kähler dif-
ferentials of Y → S → SpecC is left exact and locally split:

0 −→ π∗Y Ω1
S −→ Ω1

Y −→ Ω1
Y/S −→ 0.

This implies that the dual sequence

0 −→ HomY (Ω1
Y/S ,OY ) −→ HomY (Ω1

Y ,OY ) −→ HomY (π∗Y Ω1
S ,OY ) −→ 0

is exact. From the long exact sequence of Ext sheaves we get the following exact
sequence of OY -modules:

0 −→ Ext1Y (Ω1
Y/S ,OY ) −→ Ext1Y (Ω1

Y ,OY ) −→ Ext1Y (π∗Y Ω1
S ,OY ).

But the last sheaf is zero because S is smooth over C. This proves (i).
By Proposition 2.4 we deduce that

H0(Y, Ext1Y (Ω1
Y ,OY )) =

⊕
2≤j≤n+1

H0(S,L⊗jz ) = 0.

From Lemma 2.5 we deduce (ii). �

3. Toric An-bundles over P1

Definition 3.1. Fix an integer n ≥ 1 and a 3-dimensional lattice N . An An-
triangle in N is a lattice triangle T ⊆ NR such that:

(1) there are no lattice points in the relative interior of T ;
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Figure 1. An A1-triangle and an A2-triangle

(2) the edges of T have lattice lengths 1, 1, and n+ 1;
(3) T is contained in a plane which has height 1 with respect to the origin, i.e.

there exists a linear form w ∈ M = HomZ(N,Z) such that T is contained
in the affine plane Hw,1 := {v ∈ NR | 〈w, v〉 = 1}, where 〈·, ·〉 is the duality
pairing between M and N .

If T is an An-triangle in the 3-dimensional lattice N , consider the cone σ ⊆ NR
spanned by the vertices of T . Then the affine toric variety associated to the cone
σ, namely SpecC[σ∨ ∩M ], is isomorphic to SpecC[x, y, z, w]/(xy − zn+1); every
point with x = y = z = 0 is a cAn singularity.

Definition 3.2. Fix an integer n ≥ 1 and a 3-dimensional lattice N . Two adjacent
An-triangles in N are two An-triangles T0 and T1 in N such that:

(4) T0 ∩ T1 is the edge of length n+ 1 for both T0 and T1;
(5) T0 and T1 lie in the two different half-spaces of NR defined by the plane

spanR (T0 ∩ T1).

We say that T0 and T1 are almost-flat if 〈w1, ρ0〉 = 0, where ρ0 is the vertex of the
triangle T0 not in the segment T0 ∩ T1 and w1 ∈M is the linear form such that T1
is contained in the plane Hw1,1.

Notice that the condition of almost-flatness is symmetric between T0 and T1
because 〈w1, ρ0〉 = 〈w0, ρ1〉.

Remark 3.3. Let P be a reflexive polytope in the lattice N of rank 3 and let T0
and T1 be two adjacent An-triangles which are facets of P . The convexity of P
implies 〈w1, ρ0〉 ≤ 0.

Consider the dual polytope

P ∗ = {u ∈MR | ∀v ∈ P, 〈u, v〉 ≥ −1}.
The dual face of T0 (resp. T1) is the vertex −w0 (resp. −w1) of P ∗. The dual face of
the edge T0∩T1 is the edge conv {−w0,−w1} of P ∗. The segment conv {−w0,−w1}
has lattice length equal to 1− 〈w1, ρ0〉.

Setup 3.4. Let T0 and T1 be two adjacent An-triangles in a 3-dimensional lattice
N . We denote by ρu and ρv the vertices of the segment T0 ∩ T1. Let ρ0 (resp. ρ1)
be the vertex of T0 (resp. T1) which does not lie on T0 ∩ T1 (see Figure 2). Let Y
be the toric variety associated to the fan in N generated by cone {ρ0, ρu, ρv} and
cone {ρ1, ρu, ρv}. The projection N → N/(N ∩ (Rρu + Rρv)) ' Z induces a toric
morphism π : Y → P1.

Proposition 3.5. Let T0 and T1 be two adjacent An-triangles in a 3-dimensional
lattice N . Then the toric morphism π : Y → P1, constructed in Setup 3.4, is an
An-bundle and there exists an isomorphism

(4) π∗Ext1Y (Ω1
Y ,OY ) '

⊕
2≤j≤n+1

OP1 (−j (〈w1, ρ0〉+ 1)) .
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T0

T1

ρu

ρv

ρ0
ρ1

Figure 2. Two adjacent A2-triangles

Moreover, if 〈w1, ρ0〉 ≥ 0 then all infinitesimal deformations of Y are locally trivial
and Y is not smoothable.

Before proving this proposition we prove the following lemma.

Lemma 3.6. After a GL3(Z)-transformation, in Setup 3.4 we may assume that
N = Z3 and

ρ0 =

 a
b
−1

, ρ1 =

0
0
1

, ρu =

1
0
0

, ρv =

 −nn+ 1
0

,
for some a, b ∈ Z.

Proof. Let ρ̂ ∈ N be the lattice point on the segment between ρu and ρv which is
the closest one to ρu. The triangle with vertices ρu, ρ1, ρ̂ is an empty triangle at
height 1, so {ρu, ρx1

, ρ̂} is a basis of N . Without loss of generality we may assume
that ρu = (1, 0, 0), ρ̂ = (0, 1, 0) and ρ1 = (0, 0, 1). Since on the edge between ρu and
ρv there are n+ 2 lattice points, we have ρv = ρu+ (n+ 1)(ρ̂−ρu) = (−n, n+ 1, 0).

Assume ρ0 = (a, b, c) for some a, b, c ∈ Z. Since ρu, ρ̂, ρ0 are the vertices
of an empty triangle at height 1, they constitute a basis of N . Therefore c =
det(ρu|ρ̂|ρ0) = ±1.

Since ρ0 and ρ1 have to be in the two different half-spaces in which the plane
Rρu + Rρv = (0, 0, 1)⊥ divides NR, we have c < 0, so c = −1. �

Proof of Proposition 3.5. By Lemma 3.6, the ray map Z4 → N = Z3 of Y is given
by the matrix  a 0 1 −n

b 0 0 n+ 1
−1 1 0 0

.
One can see that the ideal of Z generated by the 2 × 2 minors is Z itself and the
ideal generated by the 3× 3 minors is rZ, where r = gcd(n+ 1, b) > 0. Let p, q ∈ Z
be such that b = rp and n+ 1 = rq. The kernel of the ray map is generated by the
primitive vector (q, q,−np−aq,−p). By Bézout let s, t ∈ Z be such that sp+tq = 1.
The cokernel of the transpose of the ray map is the homomorphism Z4 � Z⊕Z/rZ
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given by the matrix (
q q −qa− pn −p
s̄ s̄ −s̄ā+ t̄n̄ t̄

)
,

where ·̄ denotes the reduction modulo r. By [4, Theorem 4.1.3], the divisor class
group of Y is isomorphic to Z⊕ Z/rZ.

Let the group

G =
{(
λqεs, λqεs, λ−qa−pnε−sa+tn, λ−pεt

)
∈ G4

m

∣∣λ ∈ Gm, ε ∈ µr
}

act linearly on the affine space A4 = SpecC[x0, x1, u, v]. By [4, §5.1], Y is the
geometric quotient of A4 r V(x0, x1) = SpecC[x±0 , x1, u, v] ∪ SpecC[x0, x

±
1 , u, v]

with respect to this action. The variables x0, x1, u, v can be identified with the
Cox coordinates of Y associated to the rays ρ0, ρ1, ρu, ρv, respectively. The toric
morphism π : Y → P1 is defined by

[x0 : x1 : u : v] 7→ [x0 : x1],

where [x0 : x1 : u : v] denotes the point of Y corresponding to the G-orbit of the
point (x0, x1, u, v) ∈ A4.

We consider the following integers

dx = b− (n+ 1)(a+ b),

dy = −b,
dz = −a− b.

We consider the line bundles Lx = OP1(dx), Ly = OP1(dy), Lz = OP1(dz) and
the sheaf E = Lx ⊕ Ly ⊕ Lz on P1. Let πE : E → P1 be the total space of E
over P1. Then E is the geometric quotient of SpecC[x0, x1, x, y, z]rV(x0, x1) with
respect to the linear action of Gm with weights (1, 1, dx, dy, dz). The variables
x0, x1, x, y, z can be identified with the Cox coordinates of the toric variety E. We
denote by [x0 : x1 : x : y : z] the point of E corresponding to the Gm-orbit of
(x0, x1, x, y, z) ∈ A5.

It is easy to check that the map ι : Y → E given by

[x0 : x1 : u : v] 7→ [x0 : x1 : un+1 : vn+1 : uv]

is a closed embedding, locally defined by xy − zn+1 = 0. So π : Y → P1 is an
An-bundle and we are in the situation of Definition 2.1.

The triangle T1 is contained in the plane Hw1,1, where w1 = (1, 1, 1). Therefore
〈w1, ρ0〉 = a+ b− 1 = −dz − 1. By Proposition 2.4 and Corollary 2.6 we have the
isomorphism (4).

The inequality 〈w1, ρ0〉 ≥ 0 implies that Lz is a negative line bundle on P1 and,
by Corollary 2.6, that all infinitesimal deformations of Y are locally trivial. �

Proof of Theorem 1.1. It is an immediate consequence of Proposition 3.5. �

Remark 3.7. There are 273 reflexive polytopes of dimension 3 which satisfy the
condition of Theorem 1.1: the complete list is given in [9, Remark 4.15]. Therefore,
there are at least 273 non-smoothable Gorenstein Fano toric threefolds.
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Proof of Theorem 1.2. In the lattice N = Z3 consider the reflexive polytope P that
is the convex hull of the following vectors:

ρ0 =

0
0
1

, ρ1 =

 0
1
−1

, ρu =

0
1
0

, ρv =

−2
−1
0

, ξ =

1
0
0

.
Let Σ be the spanning fan of P . The maximal cones of Σ are:

cone {ρ0, ρu, ρv} , cone {ρ1, ρu, ρv} ,
cone {ρ0, ρu, ξ} , cone {ρ1, ρu, ξ} ,
cone {ρ0, ρv, ξ} , cone {ρ1, ρv, ξ} .

The singular cones of Σ are the ones in the first row and cone {ρu, ρv}. The corre-
sponding facets of P are two adjacent A1-triangles. We have w1 = (−1, 1, 0) and
〈w1, ρ0〉 = 0, so the two A1-triangles are almost flat.

LetX be the Fano toric threefold associated to the fan Σ. The singular locus ofX
is the curve C, which is the closure of the torus-orbit corresponding to cone {ρu, ρv}.
The curve C is isomorphic to P1 and the singularities of X along C are transverse
A1.

By Proposition 3.5 the sheaf Ext1X(Ω1
X ,OX) is the line bundle OC(−2) on C.

Therefore H0(X, Ext1X(Ω1
X ,OX)) = 0.

Let j : U ↪→ X be the inclusion of the smooth locus of X. Notice that the sheaf
of derivations TX = HomX(Ω1

X ,OX) is isomorphic to j∗Ω
2
U ⊗OX(−KX), because

these two sheaves are both reflexive and coincide on the open subset U whose
complement has codimension 2. As −KX is ample, by Bott–Steenbrink–Danilov
vanishing [4, Theorem 9.3.1] we have H1(X, TX) = 0. This argument comes from
the proof of [12, Theorem 5.1].

From the five term exact sequence for Ext, which is rewritten in the proof of
Lemma 2.5, we deduce that Ext1X(Ω1

X ,OX) = 0. This implies that all infinitesimal
deformations of X are trivial. In particular, X is not smoothable. �
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