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Abstract We consider a class of ��ltered� schemes for �rst order time de-
pendent Hamilton-Jacobi equations and prove a general convergence result for
this class of schemes. A typical �ltered scheme is obtained mixing a high-order
scheme and a monotone scheme according to a �lter function F which decides
where the scheme has to switch from one scheme to the other. A crucial role for
this switch is played by a parameter ε = ε(∆t,∆x) > 0 which goes to 0 as the
time and space steps (∆t,∆x) are going to 0 and does not depend on the time
tn, for each iteration n. The tuning of this parameter in the code is rather
delicate and has an in�uence on the global accuracy of the �ltered scheme.
Here we introduce an adaptive and automatic choice of ε = εn(∆t,∆x) at
every iteration modifying the classical set up. The adaptivity is controlled by
a smoothness indicator which selects the regions where we modify the regular-
ity threshold εn. A convergence result and some error estimates for the new
adaptive �ltered scheme are proved, this analysis relies on the properties of the
scheme and of the smoothness indicators. Finally, we present some numerical
tests to compare the adaptive �ltered scheme with other methods.
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1 Introduction

Here we propose and analyze a new adaptive �lter scheme and prove its con-
vergence to the viscosity solution of the scalar evolutionary Hamilton-Jacobi
equation {

vt +H(vx) = 0, (t, x) ∈ [0, T ]× R,
v(0, x) = v0(x), x ∈ R, (1)

where Hamiltonian H and the initial data v0 are Lipschitz continuous func-
tions. A precise result of existence and uniqueness in the framework of weak
viscosity solutions can be found in [4] and the precise setting of assumptions
will be given in Sect. 2.
The accurate numerical solution of Hamilton-Jacobi (HJ) equations is a chal-
lenging topic of growing importance in many �elds of application, e.g. control
theory, KAM theory, image processing and material science. Due to the lack
of regularity of viscosity solutions, this issue is delicate and the construction
of high-order methods can be rather complicated and the proof of convergence
is challenging. It is well known that simple monotone schemes are at most �rst
order accurate as shown in [9] so monotonicity should be abandoned to get
high-order convergence. Our goal is to present a rather simple way to construct
convergent schemes to the viscosity solution v of (1) with the property to be
of high-order in the region of regularity.
In recent years a general approach to the construction of high-order methods
using �lters has been proposed by Lions and Souganidis in [21] and further
developed by Oberman and Salvador [22]. It is also interesting to mention that
�ltered schemes were also used for second order problems by Froese and Ober-
man [15] for the Monge-Ampere equation and, more recently, by Bokanowski,
Picarelli and Reisinger [7] who studied second order time dependent HJB equa-
tions. Let us remind that a typical feature of a �ltered scheme SF is that at the
node xj the scheme is combination of a high-order scheme SA and a monotone
scheme SM according to a �lter function F . The scheme is written as

un+1
j ≡ SF (un)j := SM (un)j + ε∆tF

(
SA(un)j − SM (un)j

ε∆t

)
, j ∈ Z, (2)

where un+1
j := u(tn+1, xj) is the numerical approximation at time tn+1 and

node xj , ε = ε(∆t,∆x) > 0 is a �xed parameter going to 0 as (∆t,∆x) is
going to 0 and does not depend on n. Filtered schemes are high-order accurate
where the solution is smooth, monotone otherwise, and this feature is crucial
to prove a convergence result as in [6]. Note that the choice of the parameter
ε is delicate because it plays a crucial role in the switching so its tuning is
rather important (see [6] for a detailed discussion of this point). Then it seems
natural to adapt its choice to the regularity of the solution in the cell via a
smoothness indicator. Here we improve the �ltered scheme (2) introducing an
adaptive and automatic choice of the parameter ε = εn at every iteration. To
this end, we introduce a smoothness indicator to select the regions where we
have to update the regularity threshold εn, this indicator is chosen according to
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the analysis proposed in [19] although other proposals with similar properties
can be applied.

To set this paper into perspective let us remind that the construction of
high order methods for hyperbolic equations has been a very active research
area started by the seminal paper [18]. Several techniques have been proposed
to improve the accuracy leading to essentially non oscillatory schemes ENO
and weighted ENO (so called WENO) for conservation laws as in [17,2,16,1],
for a survey on these high-order techniques we refer to [24,25]. More recently
a centered and more e�cient version (called CWENO) has been proposed in
[10]. We should also mention that high-order methods have been proposed for
Hamilton-Jacobi equation either extending the ENO approach as in [19,20,8]
or by semi-lagrangian techniques as extensively discussed in [12]. For a recent
survey on the numerical approximation of Hamilton-Jacobi equations we refer
the interested reader to [11].

The paper is organized as follows:
In Sect. 2 we construct the new adaptive �ltered scheme and present in detail
all its building blocks, the main assumptions are given there. Sect. 3 is focused
on the analysis of the smoothness indicators in one dimension. In Sect. 4 we
state and prove the main convergence result (that was announced in [13]), some
technical lemmas are proved in Appendix A at the end of this paper. Finally
in Sect. 5 we present several tests to show the e�ectiveness of the adaptive
scheme with respect to the basic �ltered scheme and to other state-of-the-art
methods. Sect. 6 contains the conclusions with �nal comments.

2 A new Adaptive Filtered scheme

Consider the �rst order evolutionary Hamilton-Jacobi equation (1) where
the Hamiltonian H and the initial data v0 are Lipschitz continuous functions.
It is well known that with these assumptions we have the existence and unique-
ness of the viscosity solution. Notice that to keep the ideas clear we are con-
sidering the most simple scalar case with the Hamiltonian depending only on
the derivative of the solution, with more general situations following directly.

Our aim is to present a rather simple way to construct convergent schemes
to the viscosity solution v of (1) with the property to be of high-order whenever
some regularity is detected. Starting from the ideas of [6] on �ltered schemes,
we proceed in this study introducing a procedure to compute the regularity
threshold ε in an automatic way, in order to exploit the local regularity of the
solution.

Let us begin de�ning a uniform grid in space xj = j∆x, j ∈ Z, and in time
tn = t0 +n∆t, n ∈ [0, N ]∩N, with (N − 1)∆t < T ≤ N∆t. Then, we compute
the numerical approximation unj = u(tn, xj) with the simple formula

un+1
j = SAF (un)j := SM (un)j + φnj ε

n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
, (3)
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where un+1
j := u(tn+1, xj), S

M and SA are respectively the monotone and the
high-order scheme, F is the �lter function needed to switch between the two
schemes, εn is the switching parameter at time tn and φnj is the smoothness
indicator function at the node xj and time tn. More details on the components
of the schemes will be given in the following sections.

Notice that if εn ≡ ε∆x, with ε > 0 and φnj ≡ 1, we get the Basic Filtered
Scheme (2).

2.1 Assumptions on the schemes

In this section we present the basic components of our scheme, which are
a monotone �nite di�erence scheme SM and a high-order, possibly unstable,
scheme SA. Let us begin by giving the assumptions on the monotone scheme.

Assumptions on SM .

(M1) The scheme can be written in di�erenced form

un+1
j ≡ SM (unj ) := unj −∆t hM (D−unj , D

+unj )

for a function hM (p−, p+), with D±unj := ±u
n
j±1−u

n
j

∆x ;

(M2) hM is a Lipschitz continuous function;
(M3) (Consistency) ∀v, hM (v, v) = H(v);
(M4) (Monotonicity) for any functions u, v u ≤ v ⇒ SM (u) ≤ SM (v).

Under assumption (M2), the consistency property (M3) is equivalent to
say that for all functions v ∈ C2([0, T ] × R), there exists a constant CM ≥ 0
independent of ∆ = (∆t,∆x) such that

EM (v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SM (v(t, ·))(x)

∆t

∣∣∣∣ ≤ CM (∆t||vtt||∞+∆x||vxx||∞) ,

(4)
where EM is the consistency error. The last relation clearly shows the bound on
the accuracy of the monotone schemes, which are at most �rst order accurate
even for regular solutions.

Remark 1 As pointed out in [6], under the Lipschitz assumption (M2) the
monotonicity property (M4) can be restated in terms of some quantities that
can be easily computed. In fact, it is enough to require, for a.e. (p−, p+) ∈ R2,

∂hM

∂p−
(p−, p+) ≥ 0,

∂hM

∂p+
(p−, p+) ≤ 0, (5)

and the CFL condition

∆t

∆x

(
∂hM

∂p−
(p−, p+)− ∂hM

∂p+
(p−, p+)

)
≤ 1. (6)
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We call the CFL number, dependent on the Hamiltonian of the considered
problem, the constant ratio λ := ∆t

∆x such that (6) is satis�ed. Notice that
working with explicit �nite di�erence schemes this number can always be com-
puted.
An important consequence of property (M4) is the nonexpansivity in L∞ of
the mapping SM (see [9], page 8), that is, for any functions u, v,

||SM (u)− SM (v)||∞≤ ||u− v||∞. (7)

Example 1 We give some examples of monotone schemes in di�erenced form
which satisfy (M1)-(M4). Other examples may be found in the pioneering work
[9] or in [24].

� For the eikonal equation,
vt + |vx|= 0,

we can use the simple numerical Hamiltonian

hM (p−, p+) := max{p−,−p+}. (8)

� For general equations, instead, we recall the Central Upwind scheme of [20]

hM (p−, p+) :=
1

a+ − a−
[
a−H(p+)− a+H(p−)− a+a−(p+ − p−)

]
, (9)

with a+ = max{Hp(p
−), Hp(p

+), 0} and a− = min{Hp(p
−), Hp(p

+), 0},
using the usual notation Hp for the derivative of H with respect to vx.

� Another numerical Hamiltonian we could use is the Lax-Friedrichs Hamil-
tonian

hM (p−, p+) := H

(
p− + p−

2

)
− θ

2
(p+ − p−) (10)

where θ > 0 is a constant. The scheme is monotone under the restrictions
maxp|Hp(p)|< θ and θλ ≤ 1.

Next, we de�ne the requirements on the high-order scheme.

Assumptions on SA.

(A1) The scheme can be written in di�erenced form

un+1
j = SA(un)j := unj −∆thA(Dk,−uj , . . . , D

−unj , D
+unj , . . . , D

k,+unj ),

for some function hA(p−, p+) (in short), with Dk,±unj := ±u
n
j±k−u

n
j

k∆x ;

(A2) hA is a Lipschitz continuous function.
(A3) (High-order consistency) Fix k ≥ 2 order of the scheme, then for all

l = 1, . . . , k and for all functions v ∈ Cl+1, there exists a constant CA,l ≥ 0
such that

EA(v)(t, x) :=

∣∣∣∣v(t+ ∆t, x)− SA(v(t, ·))(x)

∆t

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
.
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It is interesting to notice that we are not making any assumption on the
stability of the high-order scheme, that is because �ltered schemes are able to
stabilize a possibly unstable scheme.

Before giving some examples of high-order schemes satisfying (A1)-(A3),
let us state an interesting property of the solution v of (1) in case of enough
regularity. Notice that we are considering the simplest case of H dependent
only on the derivative of v.

Lemma 1 Let v be the solution of (1). Then, if v ∈ Cr
(
Ω(t,x)

)
, r ≥ 2, where

Ω(t,x) is a neighborhood of a point (t, x) ∈ Ω := [0, T ]× R, it holds

∂kv(t, x)

∂tk
= (−1)k

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
(11)

= (−1)k
∂k−2

∂xk−2

(
Hk−1
p (vx(t, x))

∂

∂x
H(vx(t, x))

)
,

for k = 2, . . . , r.

Proof Let us proceed by induction on 2 ≤ k ≤ r, omitting the dependence on
(t, x) to simplify the notation. For k = 2, we have

vtt =
∂

∂t
(−H(vx)) = −Hp(vx)vxt = −Hp(vx)

∂

∂x
(−H(vx)) = H2

p (vx)vxx,

and the statement holds in this case. Suppose now that (11) holds for 2 < k <
r − 1, then we can compute

∂k+1v

∂tk+1
=

∂

∂t

(
∂kv

∂tk

)
=

∂

∂t

(
(−1)k

∂k−2

∂xk−2

(
Hk
p (vx))vxx

))
by inductive hypothesis

= (−1)k
∂k−2

∂xk−2

(
∂

∂t

(
Hk
p (vx))vxx

))
= (−1)k

∂k−2

∂xk−2

(
∂

∂p

(
Hk
p (vx)

)
vxtvxx +Hk

p (vx)vxxt

)
= (−1)k

∂k−2

∂xk−2

(
∂

∂x
(Hk

p (vx))vxt +Hk
p (vx)

∂

∂x
(vxt)

)
= (−1)k

∂k−1

∂xk−1

(
Hk
p (vx)vtx

)
= (−1)k+1 ∂

k−1

∂xk−1

(
Hk+1
p (vx)vxx

)
,

as we wanted. ut
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Let us now consider the value of the solution at v(t+ ∆t, x), with ∆t > 0 and
its Taylor expansion of order r ≥ 2 around the point (t, x). Using Lemma 1,
we can rewrite

v(t+ ∆t, x) = v(t, x) + ∆tvt(t, x) +

r∑
k=2

∆tk

k!

∂kv(t, x)

∂tk
+O(∆tr+1)

= v(t, x)−∆tH(vx(t, x))+
r∑

k=2

(−∆t)k

k!

∂k−2

∂xk−2

(
Hk
p (vx(t, x))vxx(t, x)

)
+O(∆tr+1), (12)

which for r = 2 simply reads

v(t+ ∆t, x) = v(t, x)−∆tH(vx(t, x)) +
∆t2

2
H2
p (vx(t, x))vxx(t, x) +O(∆t3).

(13)

Remark 2 Using this last relation we could show that, assuming (A1)-(A2),
the consistency property is equivalent to require that for l = 2, . . . , k, and for
all v ∈ Cl+1,

EA(v)(t, x) :=

∣∣∣∣hA(D−v,D+v)−H(vx) +
∆t

2
H2
p (vx)vxx

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞

)
. (14)

Now, let us give some examples of high-order schemes satisfying (A1)-(A3)
with l = 2.

Example 2 As a �rst example let us consider the class of schemes obtained
combining a high-order in space numerical Hamiltonian hA∗ and the second
order Runge-Kutta SSP (or Heun scheme). To explain the simple procedure,
let us consider the semidiscrete problem

ut = hA∗ (D−u(t, x), D+u(t, x))),

where hA∗ , is a high-order in space numerical Hamiltonian of second order,

hA∗ (D−vnj , D
+vnj ) = H(vx(tn, xj)) +O(∆x2), (15)

such as the simple second order central approximation

hA∗ (D−unj , D
+unj ) = H

(
D−unj +D+unj

2

)
. (16)

In order to obtain the same accuracy in time, we discretize using the second
order SSP Runge-Kutta scheme,{

u∗j = unj −∆thA∗ (D−unj , D
+unj )

un+1
j = 1

2u
n
j + 1

2u
∗
j − ∆t

2 h
A
∗ (D−u∗j , D

+u∗j ).
(17)
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The scheme can be written in di�erenced form in the sense of (A1)-(14) de�ning

hA(D−unj , D
+unj ) =

1

2

[
hA∗ (D−unj , D

+unj ) + hA∗ (D−u∗j , D
+u∗j )

]
. (18)

Notice that through this procedure the stencil of the scheme (16) becomes
doubled for hA. Notice also that this procedure can be easily extended to the
case of Hamiltonian dependent on the space variable x.

Example 3 In this example, we propose a couple of numerical Hamiltonians
hA obtained discretizing directly the formula (13) or, equivalently, obtained
from the same Lax-Wendro� schemes for conservation laws by the substitution

unj =
vnj+1−v

n
j

∆x . The �rst is the original Lax-Wendro� scheme

hA(D−unj , D
+unj ) = 1

2

{
H
(
D+unj

)
+H

(
D−unj

)
+

−∆t
∆xHp

(
D−un

j +D+un
j

2

) [
H
(
D+unj

)
−H

(
D−unj

)]}
,

(19)
and the second is its variation proposed by Richtmyer,

hA(D−unj , D
+unj ) = H

(
D−unj +D+unj

2
− ∆t

2∆x

[
H
(
D+unj

)
−H

(
D−unj

)])
.

(20)

Example 4 Following the approach of the Lax-Wendro� schemes and making
use of the expansion (12), we can easily write higher order schemes, in both
space and time, using very compact stencils. The idea is simply to discretize
directly the above expansion using �nite di�erence approximations of the right
order. For example, if we want to write a fourth order Lax-Wendro� scheme
using only �ve points, one of the possibilities is to de�ne

H1 = H
(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)
,

H2 = H2
p

(
uj−2−8uj−1+8uj+1−uj+2

12∆x

)(
−uj−2+16uj−1−30uj+16uj+1−uj+2

12∆x2

)
,

H3 = 1
2∆x

[
H3
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
−H3

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,

H4 = 1
∆x2

[
H4
p

(
uj+2−uj

2∆x

)(
uj+2−2uj+1+uj

∆x2

)
− 2H4

p

(
uj+1−uj−1

2∆x

)(
uj+1−2uj+uj−1

∆x2

)
+H4

p

(
uj−uj−2

2∆x

)(
uj−2uj−1+uj−2

∆x2

)]
,

and then compute

hA(D−unj , D
+unj ) = H1 −

∆t

2

[
H2 −

∆t

3

(
H3 −

∆t

4
H4

)]
. (21)

It is straightforward to verify that, if the solution v is regular enough, using
Taylor expansion we have

� H1 = H(vx) +O(∆x4),
� H2 = H2

p (vx)vxx +O(∆x4),
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� H3 = ∂
∂x

(
H3
p (vx)vxx

)
+O(∆x2),

� H4 = ∂2

∂x2

(
H4
p (vx)vxx

)
+O(∆x2),

and that the resulting scheme satis�es (A1)-(A3) with l = 4. Notice that to
obtain fourth order it would have been enough to have approximations of one
order lower for H2 and H4, but thanks to the symmetry of the discretizations
we can get higher orders without increasing the number of points in the stencil.

2.2 Filter function

In order to couple the schemes and their properties, we need to de�ne a
function F , called �lter function F, such that

(F1) F (x) ≈ x for |x|≤ 1,
(F2) F (x) = 0 for |x|> 1,

which implies that

� If |SA − SM |≤ ∆tεn and φnj = 1⇒ SAF ≈ SA
� If |SA − SM |> ∆tεn or φnj = 0⇒ SAF = SM .

It is clear that, with just these two requirements, several �lter functions can be
considered, which di�er for regularity properties. Four examples are reported
in Fig. 1. The �rst �lter, F1, which we use in our numerical tests, has been
de�ned in [6] as

F1(x) =

{
x if |x|≤ 1
0 otherwise,

(22)

which is clearly discontinuous at x = −1, 1.
As a second possibility, we propose the family of regular �lter functions given
by the formula

F (x) = x exp
(
−c(|x|−a)b

)
,

for appropriate choices of the parameters a, b and c. In Fig. 1, the �lter F2

belongs to that family with a = 0.25, b = 20, c = 4. Functions of that kind
are very regular (F ∈ C∞) and developing with Taylor we can see that they
satisfy the properties (F1)-(F2).
Another example of �lter functions satisfying (F1)-(F2), continuous but not
necessarily derivable, is the following family of functions

F (x) =

{
x exp

(
− a
b−|x|

)
if |x|≤ b

0 otherwise,
(23)

varying the parameters a and b. In Fig. 1 we show F3(x) with a = 0.001 and
b = 1.05, for which the function better approaches the value 1 at x = −1, 1.
Finally, we recall also the �lter de�ned in [15] as

F4(x) =


x |x|≤ 1
0 |x|≥ 2
−x+ 2 1 ≤ x ≤ 2
−x− 2 −2 ≤ x ≤ −1,

(24)
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Fig. 1: Possible choices for the �lter function F .

which satis�es (F1)-(F2) with a rather wide transition phase.
After extensive computations, we noticed that the results obtained with

our adaptive �ltered (AF) scheme are not sensitive with respect to changes in
regularity of the �lter function, even with very large transition phases. That
is probably because, as we will see in the next section, the parameter εn is
designed to obtain the property (F1) whenever possible, then in regions of
regularity of the solution the argument of F lies most probably in [−1, 1],
where all the �lter functions are practically the same. Some major di�erences,
instead, can be seen in the results obtained with the basic �ltered scheme,
for which the threshold ε is �xed at the beginning, as it is highlighted in the
introduction of [6].

2.3 Tuning of the parameter εn

The last step is to show how to compute the switching parameter εn, which
is the real core of the adaptivity of our scheme. Then, if we want the scheme
(3) to switch to the high-order scheme when some regularity is detected, we
have to choose εn such that∣∣∣∣SA(vn)j − SM (vn)j

εn∆t

∣∣∣∣ =

∣∣∣∣hA(·)− hM (·)
εn

∣∣∣∣ ≤ 1, for (∆t,∆x)→ 0, (25)

in the region of regularity at time tn, that is

Rn =
{
xj : φnj = 1

}
. (26)

For the moment, to simplify the presentation we assume the existence of a
function φ such that

φnj =

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity,

(27)
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where Ij = (xj−1, xj+1), referring to the next section for some examples of
practical computation of the function φ.

Assuming v su�ciently regular and proceeding by Taylor expansions as in
[6], we have for the monotone scheme

hM (D−vnj , D
+vnj ) = H(vnx (xj)) +

∆x

2
vnxx(xj)

(
∂p+

hMj − ∂p−hMj
)

+O(∆x2),

where we used the relation

D±vnj = vnx (xj))±
∆x

2
vnxx(xj) +O(∆x2),

whereas for the high-order scheme, by the consistency property,

hA(D−vnj , D
+vnj ) = H(vnx (xj))−

∆t

2
H2
p (vnx )vxx +O(∆t2) +O(∆x2).

Whence, from (25) we obtain

εn ≥
∣∣∣∣∆x2 vnxx

(
∂p+h

M
j − ∂p−hMj + λH2

p (vnx )
)

+O(∆t2) +O(∆x2)

∣∣∣∣ . (28)

Finally, we use a numerical approximation of the lower bound on the right
hand side of the previous inequality to obtain the following formula for εn,

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H

(
Dunj − λ

[
H(D+unj )−H(D−unj )

])
+
[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣ , (29)

with K > 1
2 , λ := ∆t

∆x and Dunj :=
un
j+1−u

n
j−1

2∆x . Notice that if we assume enough
regularity on the solution v, then (29) gives a second order approximation of
the right hand side of (28) multiplied by 2K.

3 Smoothness indicator function

In the previous section we assumed the existence of a smoothness indicator
function φ, in the sense that

φnj = φ(ωnj ) :=

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity,

(30)

where Ij = (xj−1, xj+1) and ωnj is the smoothness indicator at the node xj
depending on the values of the approximate solution un. The aim of this section
is precisely to show a simple construction of a function satisfying (27) which
makes use of smoothness indicators widely known in literature. Moreover, in
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the process we review the theory of the smoothness indicators of [19], de�ned
for the construction of the WENO schemes for (1),

βk = βk(un)j :=

r∑
l=2

∫ xj

xj−1

∆x2l−3
(
P

(l)
k (x)

)2

dx, (31)

for k = 0, . . . , r− 1, where Pk is the Lagrange polynomial of degree r interpo-
lating the values of un on the stencil Sj+k = {xj+k−r, . . . , xj+k}.

Then, before proceeding with the construction of φ, let us state a funda-
mental result on the behavior of the indicators (31).

Proposition 1 Assume f ∈ Cr+1 (Ω \ {xs}), with Ω a neighborhood of xs,
and f ′(x−s ) 6= f ′(x+

s ). Moreover, let f ′′(x) 6= 0, ∀x ∈ Ω \ xs. Then, for k =
0, . . . , r − 1 and j ∈ Z, the followings are true:

i) If xs ∈ Ω \
◦
Sj+k ⇒ βk(f) = O(∆x2),

ii) If xs ∈
◦
Sj+k ⇒ βk(f) = O(1),

where
◦
Sj+k= (xj−r+k, xj+k).

We skip the proof, which is rather technical, but the interested reader can �nd
it in Appendix A.

Remark 3 Notice that we could avoid the restrictions on f ′′ at points of reg-
ularity by adding a small quantity σ∆x := σ∆x2, for some constant σ > 0, to
the indicators βk and consider instead

β̃k := βk + σ∆x. (32)

This is necessary in order to avoid a reduction of accuracy at points such that
f ′′ = 0, as it has been thoroughly discussed in [3] in the case of discontinuous
functions. We will use this consideration in our numerical tests, choosing σ = 1.

Our aim is to identify the points (or the intervals) in which a function f
presents a singularity in the �rst derivative using only its nodal values fj ,
j ∈ Z. Let us focus the attention on a point xj of the grid and consider
the simplest case of r = 2, which is enough for our purpose. Let us consider
separately the intervals (xj−1, xj ] and [xj , xj+1) de�ning

β−k := ∆x

∫ xj

xj−1

(P ′′k (x))2dx =

(
fj+k − 2fj+k−1 + fj+k−2

∆x

)2

, (33)

for k = 0, 1, where P0, P1 are the polynomials interpolating the function,
respectively, on the stencils {xj−2, xj−1, xj} and {xj−1, xj , xj+1}, and sym-
metrically

β+
k := ∆x

∫ xj+1

xj

(P ′′k (x))2dx =

(
fj+k+1 − 2fj+k + fj+k−1

∆x

)2

, (34)
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for k = 0, 1, where now P0, P1 are the interpolating polynomials on the sten-
cils {xj−1, xj , xj+1} and {xj , xj+1, xj+2}. From the de�nition it is clear that
(β+)j = (β−)j+1 so we have to compute the quantities just once (note that
these quantities are always nonnegative). Then, we de�ne as in [19]

α±k =
1

(β±k + σ∆x)2
, (35)

with σ∆x := σ∆x2 the parameter we introduced in Remark 3, and focus on the
information given by the interpolating polynomial on {xj−1, xj , xj+1} de�ning

ω+ =
α+

0

α+
0 + α+

1

and ω− =
α−1

α−0 + α−1
,

to inspect the regularity, respectively, on [xj , xj+1) and for (xj−1, xj ].

By Prop. 1 and Remark 3 we know that β̃k = O(∆x2) if there is no singu-

larity in the stencil, and β̃k = O(1) otherwise, so in presence of a singularity
we can only fall in one of the following cases:

� If xj−2 < xs ≤ xj−1, then β̃
−
0 = O(1), β̃−1 = β̃+

0 = O(∆x2), β̃+
1 = O(∆x2),

� If xj−1 < xs < xj , then β̃
−
0 = O(1), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(∆x2),

� If xs = xj , then β̃
−
0 = O(∆x2), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(∆x2),

� If xj < xs < xj+1, then β̃
−
0 = O(∆x2), β̃−1 = β̃+

0 = O(1), β̃+
1 = O(1),

� If xj+1 ≤ xs < xj+2, then β̃
−
0 = O(∆x2), β̃−1 = β̃+

0 = O(∆x2), β̃+
1 = O(1),

with xs point of singularity. Now, we can compute

α±1 − α
±
0

α±0
=

(β±0 + σ∆x)2 − (β±1 + σ∆x)2

(β±1 + σ∆x)2

=

(
β±0 − β

±
1

β±1 + σ∆x

)(
β±0 + β±1 + 2σ∆x

β±1 + σ∆x

)
, (36)

which, noticing that, if the function is smooth in both stencils of β±0 and β±1 ,
we have

β±0 − β
±
1

β±1 + σ∆x

= −2∆x
f ′′j f

′′′
j

(f ′′)2 + σ
+O(∆x2) = O(∆x) (37)

β±0 + β±1 + 2σ∆x

β±1 + σ∆x

= 2 +O(∆x) = O(1),

leads to

α±1 = α±0 (1 +O(∆x)). (38)

Whence we can deduce that if the solution is regular enough in both stencils

ω± =
1

2
+O(∆x). (39)
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On the other hand, if there is a singularity in at least one of the stencils, by
Prop. 1 and the de�nition (35) we have that

α±k =

{
O(1) if f is not smooth in

◦
Sj+k

O(∆x−4) if f is smooth in
◦
Sj+k,

(40)

then it is easy to verify that the behavior of our ω± falls in the following cases:

� If xj−2 < xs ≤ xj−1, then ω− = 1 +O(∆x4), ω+ = 1/2 +O(∆x)
� If xj−1 < xs < xj , then ω− = O(1), ω+ = O(∆x4)
� If xs = xj , then ω− = O(∆x4), ω+ = O(∆x4)
� If xj < xs < xj+1, then ω− = O(∆x4), ω+ = O(1)
� If xj+1 ≤ xs < xj+2, then ω− = 1/2 +O(∆x), ω+ = 1 +O(∆x4),

where with ω± = O(1) we mean a number dependent on the jump of the
derivative. Now, de�ning ωj := min{ω−, ω+} we can rewrite

ωj =

{
O(∆x4) if xj−1 < xs < xj+1
1
2 +O(∆x) otherwise.

(41)

Finally, what is left is to de�ne the function φ such that φ = 1 if ω is close to
1
2 and φ = 0, otherwise. Notice that in the latter are included both cases in
which the function has a singularity in the �rst derivative (ω = O(∆x4)) and
when the second derivative is discontinuous (ω = O(1)). The simplest choice
is to take

φ(ω) = χ{ω≥M}, (42)

with M < 1
2 , a number possibly dependent on ∆x.

Remark 4 Notice that to construct the function φ using the indicators (31)
with r = 2 we need only �ve points to inspect the regularity in Ij .

Next, we show that if we make a particular choice for M we are able to
prove the following result, which can be seen as an �inverse� of Prop. 1 for
numerical solutions and, if we use the previous simple construction for ωj ,
gives a useful tool for the analysis of the next section.

Note that if we consider a one-parameter family of grid values {fj(∆x)}j∈J(∆x),
as ∆x goes to 0, the indexed family of sets of indices J(∆x) is expanding, in
the sense that if ∆x2 < ∆x1, then J(∆x1) ⊂ J(∆x2), where J(∆x) ⊆ Z, for
all ∆x > 0. Moreover, we de�ne Is(∆x) as the set of indices j such that φj = 0
and assume, for simplicity, |Is(∆x)|< Is, where Is is a positive constant.

Lemma 2 Let ω be computed using (33)-(34) and φ be de�ned by (42) with
M(∆x) = 1

2−C∆x, for some constant C such that 0 < M(∆x) < 1
2 . Consider

a one-parameter family of sequences {fj(∆x)}j∈J(∆x) with compact support in
the interval [−b, b], and a partition {Ri}i=0,...,|Is| of the regularity set R =
{j ∈ Z : φj = 1} =

⋃
iRi, and R = Z if Is = ∅. Then, if for all i = 0, . . . , |Is|,

there exists ji ∈ Ri, such that |D2fji(∆x)|<∞, we have that

|D2fj(∆x)|= |fj+1(∆x)− 2fj(∆x) + fj−1(∆x)|
∆x2

≤ B, ∀j ∈ R, (43)

for a constant B independent of ∆x.
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Proof Since {fj} has compact support we have |Is|<∞ and it will be enough
to prove the assertion just for one i ∈ Is. More simply, in the regular case we
have R = Z and we want to show that the statement is true if the discrete
derivative is bounded at some point, so if there exist an index ĵ ∈ R and a
positive constant δ (independent of ∆x) such that |D2fĵ(∆x)|≤ δ (note that

for the nodes outside the support of fj we can even set δ = 0). In the following,
we simplify the notation dropping the dependence of fj on ∆x. By de�nition
of φ and ω, if φj = 1 then both ω± > M . Moreover, (33)-(34) imply that the
coe�cients β± are always nonnegative as well as ω±.
Let us consider the case j < ĵ. Then, by de�nition,

ω+ =
(β+

1 + σ∆x)2

(β+
1 + σ∆x)2 + (β+

0 + σ∆x)2
> M,

which leads by simple computations to

β+
0 <

√
1−M
M

β+
1 +

(√
1−M
M

− 1

)
σ∆x,

then, dividing by ∆x2 and recalling that σ∆x = σ∆x2 , we get

|D2fj |2<
√

1−M
M

|D2fj+1|2+

(√
1−M
M

− 1

)
σ. (44)

Now let us iterate (44) on j till ĵ and de�ne Lj ≡ ĵ − j, we have

|D2fj |2< . . . <

(
1−M
M

)Lj
2

|D2fĵ |
2+

(√
1−M
M

− 1

)
σ

Lj−1∑
k=0

(
1−M
M

) k
2

≤
(

1−M
M

)Lj
2

δ2 +

(√
1−M
M

− 1

)
σ

Lj−1∑
k=0

(
1−M
M

) k
2

=

(
1−M
M

)Lj
2

δ2 +

(√
1−M
M

− 1

)
σ

1−
(

1−M
M

)Lj
2

1−
√

1−M
M

=

(
1−M
M

)Lj
2

(σ + δ2)− σ.

For j > ĵ, we can use the relation ω− > M and iterate back to ĵ rede�ning
Lj ≡ j − ĵ, the calculations are similar also for this case.
Since Lj∆x is bounded by b, we have Lj ≤ b

∆x , ∀j ∈ R. Recalling that
M = 1

2 − C∆x, we can use the previous bound on |D2fj |2 to proceed

|D2fj |2 ≤
(

1

M
− 1

) b
2∆x

(σ + δ2)− σ =

(
2

1− 2C∆x
− 1

) b
2∆x

(σ + δ2)− σ.

(45)
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We get the �nal bound passing to the limit for ∆x going to 0 in (45), in
conclusion we get

|D2fj |2≤ e2Cb(σ + δ2)− σ (46)

and the statement follows simply taking B :=
√
e2Cb(σ + δ2)− σ. ut

Unfortunately, we noticed through numerical tests that the O(∆x) term in
regular regions may produce heavy oscillations around the optimal value ω =
1/2. To increase the accuracy, we can use higher order smoothness indicator
(r > 2), but we would need a bigger reconstruction stencil. Otherwise, if we
want to keep the compactness of the stencil, we can use the mappings de�ned
in [16],

g(ω) =
ω(ω + ω2 − 3ωω + ω2)

ω2 + ω(1− 2ω)
, ω ∈ (0, 1), (47)

which have the properties that g(0) = 0, g(1) = 1, g(ω) = ω, g′(ω) = 0 and
g′′(ω) = 0. Then, we de�ne

ω∗± = g(ω±)

= g(ω) + g′(ω)(ω± − ω) +
g′′(ω)

2
(ω± − ω)2 +

g′′′(ω)

6
(ω± − ω)3 +O(∆x4)

= ω +
(ω± − ω)3

ω − ω3 +O(∆x4)

= ω +O(∆x3).

Notice that with respect to the de�nition in [16] we avoided the second weight-
ing which seems unnecessary in our case. More explicitly, the mapping we use
is

g(ω) = 4ω

(
3

4
− 3

2
ω + ω2

)
. (48)

It is important to remind that, at the moment, Lemma 2 is valid only for indi-
cators ω using the standard construction for r = 2, without the possibility to
introduce any modi�cation, or higher order indicators. Moreover, as it will be
brie�y discussed in Remark 5, it introduces some limitations in the applicabil-
ity even when using the standard indicators, testifying the necessity of some
improvements in the argument used. Notice that the previous lemma strongly
relies on the fact that ω is computed using (33)-(34) without introducing the
mappings (48). In fact, if we were to use (48), we could develop the algebra
until the inequality

|D2fj |2≤
(

1

g−1(M)
− 1

) b
2∆x

(σ + δ2)− σ,

but, by de�nition, g−1 cannot be expanded in Taylor series around the point
1
2 , whence we could not use the notable limit to conclude.

Therefore, we are forced to add a �technical� assumption in order to justify
the proof of Prop. 2. More precisely, when using the alternative constructions
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for ω (using the mapping (48)), we de�ne the region of regularity R detected

by the function φ̃ as the set

R =
{
j ∈ Z : φ̃(ωj) = 1

}
, with φ̃j =

{
1 if φ(ωj) = 1 and |Du2

j |< B,
0 otherwise,

(49)
for some constant B � 0. Notice that with this de�nition, which, we recall, is
needed only for theoretical reasons, it is not necessary to require M(∆x)→ 0,
then we can simply choose a constant M > 0 small enough (e.g. M = 0.1), as
we will do in the numerical tests of Sect. 5.

4 Convergence result

We are now able to present our main result, but before doing so let us state
a useful proposition about the numerical solution and the parameter εn.

Proposition 2 Let un be the solution obtained by the scheme (3)-(29) and
assume that v0 and H are Lipschitz continuous functions. Assume also that
Rn is de�ned by (26) or (49), with φ given by (42), and that λ = ∆t/∆x is
a constant such that (6) is satis�ed. Then, εn is well de�ned and un satis�es,
for any i and j, the discrete Lipschitz estimate

|uni − unj |
∆x

≤ L (50)

for some constant L > 0, for 0 ≤ n ≤ T/∆t. Moreover, there exists a constant
C > 0 such that

εn ≤ C∆x. (51)

Proof Before proceeding with the proof let us notice that, if un satis�es (50)
for a constant Ln > 0, calling for brevity

D∗uj := Dunj − λ
[
H(D+unj )−H(D−unj )

]
,

we have that

εn = max
xj∈Rn

K
∣∣H (Dunj

)
−H (D∗uj) +

[
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

]
−
[
hM (D+unj , D unj )− hM (D−unj , D unj )

]∣∣
= max
xj∈Rn

K

∣∣∣∣∣
[

∆t

(
H
(
Dunj

)
−H (D∗uj)

Dunj −D∗uj

)(
H(D+unj )−H(D−unj )

D+unj −D−unj

)

+ ∆x

(
hM (Dunj , D

+unj )− hM (Dunj , D
−unj )

D+unj −D−unj

)

−∆x

(
hM (D+unj , D unj )− hM (D−unj , D unj )

D+unj −D−unj

)](
D+unj −D−unj

∆x

)∣∣∣∣∣ ,
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whence we can conclude

εn ≤ K |(∆tLHLH2 + 2∆xLhM )B| = KB (λLHLH2 + 2LhM ) ∆x, (52)

where LhM is the Lipschitz constant of hM , whereas LH and LH2 are the local
Lipschitz constant of H on [−Ln, Ln] and [−2Ln −∆tLHB, 2Ln + ∆tLHB],
respectively. Notice that, if the smoothness indicators are computed using the
de�nitions (33)-(34), we have√

β+
0 (un)j

∆x
=
D+unj −D−unj

∆x
= D2unj .

Then, in such case by Lemma 2, xj ∈ Rn ⇒ D2unj < B, for some constant
B > 0 independent on n. Otherwise, we can obtain the same estimate by the
de�nition (49) of Rn.

Notice also that if the function H is globally Lipschitz continuous we
have the same estimate with LH2 = LH , where now LH is the global Lip-
schitz constant of H. Consequently, the last statement would follow with
C = KB(λL2

H + 2LhM ).
Let us now prove the main statement proceeding, as usual, by induction

on n ≥ 0 and noticing that it is su�cient to prove (50) for i and j such that
i = j ± 1.

For n = 0, as we take u0
j = v0(xj) for j ∈ Z, we have that (50) is satis�ed

by the Lipschitz continuity assumption on v0, with constant L0.
Now, assuming that (50) is satis�ed for n − 1 > 0 so that εk for k =

0, . . . , n− 1 are bounded by (52), we can compute

|uni − unj |
∆x

=
1

∆x

∣∣SM (un−1)i + φiε
n−1∆tF (·)i − SM (un−1)j − φjεn−1∆tF (·)j

∣∣
≤ 1

∆x

(
|SM (un−1)i − SM (un−1)j |+εn−1∆t|φiF (·)i − φjF (·)j |

)
≤
|un−1
i − un−1

j |
∆x

+
2∆t

∆x
εn−1

then, iterating back and using the same arguments,

|uni − unj |
∆x

≤
|un−1
i − un−1

j |
∆x

+ 2∆tC ≤ . . .

≤
|u1
i − u1

j |
∆x

+ 2(n− 1)∆tC ≤
|u0
i − u0

j |
∆x

+ 2n∆tC

≤ L0 + 2
T

∆t
∆tC = L,

where C is well de�ned by (52). Notice that we have used the nonexpansivity
in L∞ of SM and the fact that |F |≤ 1, |φ|≤ 1. ut

Therefore, it is clear that by construction our scheme is ε-monotone, in the
sense of the following
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De�nition 1 (ε-monotonicity) A numerical scheme S is ε-monotone if for
any functions u, v,

u ≤ v ⇒ S(u) ≤ S(v) + Cε∆t,

where C is constant and ε→ 0 as ∆ = (∆t,∆x)→ 0.

Thanks to that property, by applying the Barles-Souganidis result [5], the con-
vergence follows directly. We conclude this section with the following theorem,
which gives us the order of convergence for the Adaptive Filtered Schemes.

Theorem 1 Let the assumptions on SM and SA be satis�ed. Assume that
v0 and H are Lipschitz continuous functions, un+1

j is computed by (3)-(29),

with K > 1/2 and λ = ∆t
∆x , a constant such that (6) is satis�ed. Assume also

that Rn is de�ned by (26) or (49), with φ given by (42). Let us denote by
vnj := v(tn, xj) the values of the viscosity solution on the nodes of the grid.
Then,

i) the AF scheme (3) satis�es Crandall-Lions estimate [9]

||un − vn||∞≤ C1

√
∆x, ∀ n = 0, . . . , N,

for some constant C1 > 0 independent of ∆x.
ii) (First order convergence for regular solutions) Moreover, if v ∈ C2([0, T ]×

R), then
||un − vn||∞≤ C2∆x, ∀ n = 0, . . . , N,

for some constant C2 > 0 independent of ∆x.
iii) (High-order local consistency) Let k ≥ 2 be the order of the scheme SA.

If v ∈ Cl+1 in some neighborhood of a point (t, x) ∈ [0, T ] × R, then for
1 ≤ l ≤ k,

EAF (vn)j = EA(vn)j = O(∆xl) +O(∆tl)

for tn − t, xj − x, ∆t, ∆x su�ciently small.

Proof i) Let us proceed as has been done in [6] de�ning wn+1
j = SM (wn)j , the

solution computed with the monotone scheme alone with w0
j = v0(xj). Then

by de�nition,

un+1
j − wn+1

j = SM (un)j − SM (wn)j + φnj ε
n∆tF

(
SA(un)j − SM (un)j

εn∆t

)
,

(53)
whence, exploiting the nonexpansivity in L∞ of SM , the de�nition of εn and
that |F |≤ 1,

max
j
|un+1
j − wn+1

j |≤ max
j
|unj − wnj |+εn∆t. (54)

Then, proceeding recursively on n ≤ N and recalling that by Prop. 2 there
exists a constant C > 0 such that εn ≤ C∆x := ε for each n,

max
j
|unj − wnj |≤

n−1∑
k=0

εk∆t ≤ nε∆t ≤ Tε. (55)
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At this point, by the triangular inequality

max
j
|un+1
j − vn+1

j |≤ max
j
|un+1
j − wn+1

j |+ max
j
|wn+1
j − vn+1

j |, (56)

whence we have that

max
j
|un+1
j − vn+1

j |≤ max
j
|wnj − vnj |+εT ≤ (CCL + CT )

√
∆x, (57)

with CCL > 0 given by the Crandall-Lions estimate for SM .
ii) Let us recall that by (4), in the case of v ∈ C2 the consistency error for
the monotone scheme is such that EM (vn)j ≤ CM (∆t + ∆x). Then we can
compute

|un+1
j − vn+1

j | = |SM (un)j + φjε
n∆tF (·)− vn+1

j |
≤ |SM (un)j − SM (vn)j |+|SM (vn)j − vn+1

j |+εn∆t

≤ ||un − vn||∞+∆t (EM (vn) + εn) ,

whence, by recursion on n ≤ N and recalling what we have done in the previous
point,

||un − vn||∞≤ ||u0 − v0||∞+T

(
max

k=0,...,n−1
||EM (vk)||∞+ε

)
. (58)

To �nish this proof what is left is to use the estimate on EM and Prop. 2 .

iii) In order to show that SAF (vn)j = SA(vn)j for ∆t e ∆x small enough it
is su�cient to prove that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1, for (∆t,∆x)→ 0, (59)

which follows directly from the computation we have done in Sect. 2.3 for
the tuning of the parameter εn. In fact, if we plug (29) inside the previous
inequality, we can deduce that

|SA(vn)j − SM (vn)j |
εn∆t

≤ 1

2K
+O(∆x) +O(∆t),

which, using that K > 1/2 by assumption, leads to the thesis as (∆t,∆x)→ 0.
Notice that we have used the property εn = O(∆x) and exploited the CFL
condition. ut

Remark 5 Notice that the assumption M(∆x) = 1
2 −C∆x, for some constant

C > 0 such that M(∆x) > 0, needed to apply Lemma 2, may give some
problems in the proof of third assertion of the previous theorem. In fact, ap-
plying the standard de�nition (39) to the viscosity solution v at a point xj
and recalling the computations that led to (37), we get that

ω±j =
1

2
∓∆x

4v′′j v
′′′
j

(v′′j )2 + σ
+O(∆x2).
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Consequently, in order to be sure that if v ∈ C3, then j ∈ R, we have to choose
the constant C such that

C ≥

∣∣∣∣∣ 4v′′j v
′′′
j

(v′′j )2 + σ

∣∣∣∣∣ ,
or require additional smoothness assumptions on v, for example v′′′j � v′′j .
This in fact poses a strong limitation on the applicability of Lemma 2, at least
in the present formulation.

5 Numerical Tests

In this section we will present some one-dimensional examples designed to
show the properties of our scheme, stated by Theorem 1. Our goal is also to
compare the performances of our Adaptive Filtered Schemes SAF with those
of the Filtered Scheme SF introduced in [6] and of the WENO scheme of
second/third order of [19]. Regarding the basic �ltered scheme, we decided
to avoid the introduction of the limiter used in [6] in all the numerical tests
here presented for a more direct comparison. For all our numerical examples,
we will use the function φ de�ned in (42), with βk given by (33)-(34), the
mapping (48), and M = 0.1, the parameter εn de�ned in (29), and we will
compute the errors and orders in L∞ and L1 norm. For each test, we will
specify the monotone and high-order schemes composing the �ltered scheme.
As already stated in Sect. 2.2, in all our numerical simulations we will use
the discontinuous �lter function de�ned in (22). This choice is justi�ed by
comparison reasons, since in [6] this is the only �lter function used and we
suppose the authors in [6] used it since it gives the best performances for their
SF scheme. Since our scheme is not sensitive to the choice of the �lter function,
we use the same as in [6] for best comparisons. At the end of the section, we
will also show brie�y how to use these schemes in order to approximate simple
two dimensional problems. To be precise, in the following examples we will
refer to the standard CFL condition

λmax|Hp(p)|≤ 1, (60)

to de�ne λ , which is alternative to (6) and more easily computed.
All the numerical tests have been implemented in language C++, with plots
generated by using MATLAB. The computer used for the simulations is a
Notebook Asus F556U Intel Core i7-6500U with speed of 2.59 GHz and 12 GB
of RAM.

Example 1: Transport equation. In order to test the capability of our
scheme to handle both regular and singular regions, let us begin with a simple
linear example and consider the problem{

vt(t, x) + vx(t, x) = 0 in (0, T )× Ω
v(0, x) = v0(x),
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with periodic boundary conditions, in two di�erent situations. At �rst, aiming
to test the full accuracy of the schemes, we consider the regular initial data
(Case a),

v0(x) = sin(πx), x ∈ Ω (61)

with Ω = [−2, 2] and T = 0.9. Then, as a second test, we take the mixed initial
datum (Case b),

v0(x) =


min{(1− x)2, (1 + x)2} if − 1 ≤ x ≤ 1,
sin2(π(x− 2)) if 2 ≤ x ≤ 3,
0 otherwise,

(62)

with Ω = [−1.5, 3.5] and T = 2. The latter problem models the transport
of a function composed by two peaks, the �rst with one point of singularity
whereas the second is in C2. For these tests we use the Central Upwind scheme
(9) as monotone scheme and the simple Heun-Centered (HC) scheme (16)-
(17) as high-order scheme, with λ = 0.9 for Case a and λ = 0.4 for Case
b. We also compare the results obtained using SAF with the 4th order Lax-
Wendro� scheme (21) as high-order scheme. We recall that the latter high-
order scheme has a very compact 5-points stencil, whereas the WENO scheme
of second/third order (coupled with the third order Runge Kutta scheme) has
a stencil of nine points.

Fig. 2: (Example 1a.) Plots at time T = 0.9 with the AF-HC scheme on the left and WENO
on the right for ∆x = 0.05.

In the �rst case (Case a) of this test, all the schemes are very accurate and
achieve optimal order in both norms, as shown in Tab. 1. In this case, both
�ltered schemes have the same numerical results, except for a slight di�erence
with the coarstest grid, and coincide with the simple HC high-order scheme,
as expected (we avoided to add another column in the table to report also
the results for the HC high-order scheme since they are the same). Moreover,
we can see that our fourth order scheme is much more accurate even than the
WENO scheme, despite the smaller stencil required. In Fig. 2 we reported only
the AF-HC scheme and the WENO scheme, avoiding to show all the schemes
since no di�erences are visible for that case.
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Table 1: (Example 1a.) Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 1.36e-02 1.70e-02 7.88e-03 8.02e-02
80 20 2.56e-03 2.41 2.56e-03 2.73 8.66e-06 9.83 2.62e-02 1.62
160 40 5.76e-04 2.15 5.76e-04 2.15 5.43e-07 4.00 4.50e-03 2.54
320 80 1.40e-04 2.04 1.40e-04 2.04 3.40e-08 4.00 1.95e-04 4.52

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 3.58e-02 3.29e-02 1.08e-02 2.07e-01
80 20 6.66e-03 2.43 6.66e-03 2.30 2.25e-05 8.90 4.14e-02 2.32
160 40 1.48e-03 2.17 1.48e-03 2.17 1.40e-06 4.01 5.09e-03 3.02
320 80 3.57e-04 2.05 3.57e-04 2.05 8.69e-08 4.01 3.08e-04 4.05

Fig. 3: (Example 1b.) Plots of the solution at time T = 2 with ∆x = 0.025. Top: simple
�ltered scheme with HC on the left, adaptive on the right. Bottom: fourth order AF scheme
on the left and WENO on the right.

For the second case (Case b), looking at Fig. 3 we can observe that the
adaptive tuning of εn is able to contain the oscillations behind the peaks
produced by the unstable HC scheme, which are clearly visible instead in the
case of SF with ε = 10∆x. We can also see that our scheme coupled with the
fourth order scheme produces again almost always the best results in terms
of errors and orders in both norms (see Tab. 2) and gives the best resolution
of the peaks, preserving better the kink of the singularity and the feet of
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Table 2: (Example 1b.) Errors and orders in L∞ and L1 norms.

F-HC (10∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
50 50 3.46e-01 3.55e-01 3.31e-01 3.47e-01
100 100 1.41e-01 1.29 1.90e-01 0.90 1.72e-01 0.94 2.07e-01 0.75
200 200 9.69e-02 0.54 1.17e-01 0.70 9.72e-02 0.82 1.28e-01 0.70
400 400 7.29e-02 0.41 7.27e-02 0.69 5.47e-02 0.83 7.66e-02 0.74

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
50 50 4.34e-01 3.31e-01 2.68e-01 3.62e-01
100 100 1.41e-01 1.63 1.19e-01 1.47 9.27e-02 1.53 1.39e-01 1.39
200 200 4.24e-02 1.73 3.03e-02 1.98 1.30e-02 2.83 3.83e-02 1.86
400 400 1.38e-02 1.62 9.51e-03 1.67 3.07e-03 2.08 8.39e-03 2.19

Table 3: (Example 1b.) CPU times in seconds.

Nx Nt F-HC AF-HC AF-LW4ord WENO 2/3

50 50 0.000 s 0.001 s 0.001 s 0.002 s
100 100 0.001 s 0.004 s 0.005 s 0.006 s
200 200 0.004 s 0.016 s 0.018 s 0.026 s
400 400 0.019 s 0.061 s 0.077 s 0.095 s

the regular part, without introducing any oscillation. In Tab. 3 we reported
the CPU times for this Case b, in which the evolution lasts longer. All the
schemes are very fast and complete the computations in less than 0.1 s for all
the re�nements. Note that our two adaptive �ltered schemes perform faster
than the WENO scheme, even in the case of the fourth-order scheme. On the
other hand, as could be expected, the adaptive procedure increases the cost of
the �ltering process three/four times depending on the re�nement with respect
to the basic �ltered scheme.

Example 2: Eikonal equation. As a �rst nonlinear problem let us con-
sider the eikonal equation{

vt(t, x) + |vx(t, x)|= 0 in (0, 0.3)× (−2, 2),
v0(x) = max{1− x2, 0}4, (63)

where v0 is a Lipschitz continuous initial datum with high regularity (Case a).
Then, we repeat the simulation with the �reversed� initial datum (Case b)

v0(x) = −max{1− x2, 0}4, (64)

which presents also a major problem in the origin because of the saddle point
in the Hamiltonian, where two directions of propagation occur. Here the aim
is mainly to compare the results obtained by the un�ltered high-order schemes
with their �ltered versions, in order to show the stabilization property of the
�ltering process. For the monotone scheme we use the numerical Hamiltonian
(8), whereas to achieve high-order we use the Lax-Wendro�-Richtmyer (LWR)
scheme (20). Moreover, as in the previous example, we present also the results
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Fig. 4: (Example 2a.) Initial datum (left) and plots of the solution at time T = 0.3 with
the AF scheme (center) and the LWR scheme (right) for ∆x = 0.025.

Table 4: (Example 2a.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.96e-02 1.89e-02 1.95e-02 6.81e-02
80 16 4.48e-03 2.13 3.56e-03 2.41 1.04e-02 0.90 3.42e-02 1.00
160 32 1.06e-03 2.08 8.53e-04 2.06 1.45e-03 2.85 1.62e-02 1.08
320 64 2.56e-04 2.05 2.20e-04 1.96 2.31e-04 2.65 7.52e-03 1.11

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 1.52e-02 1.63e-02 1.28e-02 2.05e-02
80 16 3.78e-03 2.01 3.61e-03 2.17 1.11e-03 3.53 4.68e-03 2.13
160 32 8.94e-04 2.08 8.80e-04 2.04 7.48e-05 3.89 9.55e-04 2.29
320 64 2.09e-04 2.09 2.08e-04 2.08 7.14e-06 3.39 1.40e-04 2.78

obtained with the AF scheme coupled with the fourth order LW scheme. The
CFL number is set to 0.375 for both simulations.

Let us �rst point out that, as Figs. 4 - 5 clearly show, the LWR scheme
is unstable in the origin in both situations, whereas the AF scheme (and the
simple �ltered scheme) is stable. Then, for the �rst case, looking at Tab. 4 we
can see that the �ltered-LWR schemes give almost the same results, are of high-
order in both norms and get lower errors with respect to the WENO scheme in
almost all simulations. Moreover, we can recognize the typical improvements
and drawbacks of the fourth order LW scheme, which has a slightly wider
stencil. In fact, as will be shown also in the following examples, the scheme
has bigger errors in the L∞ norm with respect to the second order AF scheme
whereas has way better errors and orders in the L1 norm, achieving almost
optimal order, which testi�es the overall improvement.

For Case b, looking at Tab. 5 we can repeat almost the same considerations
made for Case a, but this time the improvements given by the adaptive �ltering
are more evident. The AF-LWR scheme is again of high-order especially in the
L1 norm, without the need to introduce any limiter as has been done in [6], and
the numerical results are always comparable to those obtained by the WENO
scheme of second/third order, whereas the AF-LW4ord scheme produces again
bigger errors in L∞ with respect to the second-order AF-LWR scheme and
better orders in the L1 norm.
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Fig. 5: (Example 2b.) Plots at time T = 0.3 with the AF and WENO schemes with
∆x = 0.05 (left) and LWR scheme with ∆x = 0.0125 (right).

Table 5: (Example 2b.) Errors and orders in L∞ and L1 norms.

F-LWR (5∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.91e-02 2.35e-02 2.42e-02 2.33e-02
80 16 9.24e-03 1.04 3.37e-03 2.80 7.51e-03 1.69 1.02e-02 1.19
160 32 5.77e-03 0.68 1.58e-03 1.09 2.14e-03 1.81 4.10e-03 1.32
320 64 3.46e-03 0.74 7.09e-04 1.16 6.92e-04 1.63 1.22e-03 1.75

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 2.38e-02 2.24e-02 2.28e-02 2.96e-02
80 16 8.48e-03 1.49 5.70e-03 1.98 2.05e-03 3.48 7.04e-03 2.07
160 32 3.41e-03 1.32 1.82e-03 1.65 3.20e-04 2.68 1.43e-03 2.30
320 64 1.52e-03 1.17 5.84e-04 1.64 6.38e-05 2.33 2.82e-04 2.34

Example 3: Burgers' equation. Let us consider now the Burgers' equa-
tion for HJ with a regular initial datum{

vt(t, x) + 1
2 (vx(t, x) + 1)2 = 0 in (0, T )× (0, 2),

v0(x) = − cos(πx),
(65)

which is a test case widely used in literature. In order to test the full accuracy of
the schemes even in the nonlinear case, we �rst run the simulation for T = 4

5π2 ,

when the solution is still regular, with λ = 2
π2 ≈ 0.2 < max|Hp|−1

= 0.5. Then,
we consider the �nal time T = 3

2π2 when a moving (to the right) singularity
appears, taking λ = 15

8π2 ≈ 0.19. For both simulations we use the the Central
Upwind monotone scheme and the LWR scheme for both the �ltered schemes
and compare the results as before with the WENO scheme and the fourth
order AF scheme. In Fig. 6 we report the intial datum of the problem and the
solution produced by the AF-LWR scheme at the two di�erent times in order
to show the di�erent behavior.

This example summarizes all the behaviors already seen in the previous
cases. In fact, as displayed by Tabs. 6-7, if the solution is still regular the
fourth order AF scheme gives the best results and achieves the optimal order
in both norms, whereas when the singularity appears, it gets bigger errors in
L∞ norm but lower errors and better orders in the L1 norm with respect to the
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Fig. 6: (Example 3.) From left to right: initial datum of problem (65) and plots of the
solution with AF-LWR at time T = 4/(5π2) and T = 3/(2π2) for ∆x = 0.025.

second order �ltered schemes. Here we have to notice that the WENO scheme
has better errors and orders in the second simulation with respect to all the
�ltered schemes. Moreover, we can clearly see that the simple �ltered scheme
depends heavily on the choice of ε, in fact after extensive computations we
noticed that choosing for example ε = 5∆x we get worse results in both cases,
whereas if we increase the constant we get better results in the regular case
and worse in the latter. In the tables we presented the results for the choice
that gives the best results in the singular case, whereas it has clearly problems
in the �rst situation. This is the main advantage of the adaptive εn which is
able to tune itself in the right way depending on the local (in time) regularity
of the solution.

Table 6: (Example 3.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 8 1.30e-02 9.61e-03 1.89e-03 1.04e-02
80 16 8.67e-03 0.59 2.77e-03 1.79 2.84e-04 2.73 2.12e-03 2.30
160 32 5.07e-03 0.77 7.24e-04 1.94 2.68e-05 3.41 1.82e-04 3.54
320 64 2.66e-03 0.93 1.83e-04 1.99 1.89e-06 3.83 2.05e-05 3.15

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 8 3.76e-03 3.13e-03 3.31e-04 3.67e-03
80 16 1.29e-03 1.54 8.20e-04 1.93 1.85e-05 4.16 6.57e-04 2.48
160 32 4.49e-04 1.52 2.04e-04 2.01 1.43e-06 3.70 5.43e-05 3.60
320 64 1.82e-04 1.30 5.09e-05 2.00 9.80e-08 3.86 2.98e-06 4.19

In order to give a visual evidence of that latter property, in Fig. 7 we
reported the regions of activity of the schemes composing the two second
order �ltered schemes. There we can clearly see that our procedure is able to
better localize the presence of the singularity, whereas when the solution is still
regular the high-order scheme is always active. On the other hand, if we look at
the computational times in Tab. 8, we can see that the basic �ltered scheme
is of course the fastest scheme, whereas the other three schemes have very
similar CPU times, with the fourth order scheme performing slightly slower.
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Table 7: (Example 3.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

F-LWR (10∆x) AF-LWR AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 16 4.88e-02 5.53e-02 5.86e-02 3.89e-02
80 32 2.47e-02 0.98 2.50e-02 1.15 2.62e-02 1.16 1.61e-02 1.27
160 64 9.81e-03 1.33 9.99e-03 1.32 1.03e-02 1.34 5.12e-03 1.65
320 128 2.57e-03 1.93 2.59e-03 1.95 2.67e-03 1.95 8.40e-04 2.61

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 16 5.17e-03 5.38e-03 3.18e-03 3.69e-03
80 32 1.26e-03 2.03 1.28e-03 2.08 6.73e-04 2.24 6.94e-04 2.41
160 64 2.86e-04 2.14 2.87e-04 2.15 1.31e-04 2.36 8.67e-05 3.00
320 128 5.68e-05 2.33 5.68e-05 2.34 1.70e-05 2.95 6.40e-06 3.76

Fig. 7: (Example 3.) Regions of activity of SM (blue) and SA (yellow) for the F-LWR
scheme (left) and the AF-LWR scheme (right) with ∆x = 0.025.

Table 8: (Example 3.) T = 3/(2π2). CPU times in seconds.

Nx Nt F-LWR AF-LWR AF-LW4ord WENO 2/3

40 16 0.000 s 0.000 s 0.001 s 0.000 s
80 32 0.000 s 0.001 s 0.002 s 0.001 s
160 64 0.001 s 0.004 s 0.005 s 0.004 s
320 128 0.005 s 0.016 s 0.020 s 0.016 s

Example 4: Nonconvex Hamiltonian. In this example we consider a
well known test case for nonconvex Hamiltonians (see e.g. [19]), that is{

vt(t, x)− cos(vx(t, x) + 1) = 0 in (0, T )× (−1, 1)
v(0, x) = − cos(πx),

with periodic boundary conditions and �nal time T = 3/(2π2), when two
singularities appear in the solution, as can be seen in Fig. 8. In order to de�ne
the monotone scheme for this test, we use the Lax-Friedrichs Hamiltonian
(10) with θ = 1 as in [6], whereas the CFL number is set to 0.31. A reference
solution is computed by using the AF-LW4ord scheme with 10240 points.
We reported the global errors in Tab. 9 and the errors far away from singular
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points (regularity region) in Tab. 10. More precisely, for the second table we
consider the set of grid points x such that |x−xi|≥ 0.05, for i = 1, 2, where x1 =
−0.895 and x2 = 0.245 are approximately the position of the singularities.

Table 9: (Example 4.) Global Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 3.41e-02 1.87e-02 2.07e-02 1.40e-02
80 20 1.69e-02 1.01 8.08e-03 1.21 8.75e-02 1.24 4.88e-03 1.51
160 40 9.12e-03 0.89 3.07e-03 1.40 3.35e-03 1.38 1.32e-03 1.88
320 80 7.35e-03 0.31 2.89e-03 0.09 3.16e-03 0.09 2.08e-03 −0.65

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 6.06e-03 3.06e-03 2.89e-03 2.93e-03
80 20 1.97e-03 1.62 8.10e-04 1.92 6.85e-04 2.08 5.37e-04 2.45
160 40 6.46e-04 1.61 2.07e-04 1.97 1.68e-04 2.02 6.82e-05 2.98
320 80 2.21e-04 1.55 6.82e-05 1.60 5.07e-05 1.73 2.58e-05 1.40

Table 10: (Example 4.) Local Errors and orders in L∞ and L1 norms.

F-HC (5∆x) AF-HC AF-LW4ord WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 10 5.52e-03 2.59e-03 4.04e-03 4.04e-03
80 20 1.58e-03 1.81 4.92e-04 2.40 1.37e-04 4.88 9.31e-04 2.12
160 40 2.97e-04 2.41 2.22e-04 1.15 1.46e-05 3.22 6.06e-05 3.94
320 80 8.02e-05 1.89 4.33e-05 2.36 1.32e-07 3.47 2.23e-06 4.77

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 10 2.09e-03 1.14e-03 6.23e-04 1.38e-03
80 20 4.47e-04 2.23 3.07e-04 1.91 2.08e-05 4.91 2.33e-04 2.57
160 40 9.08e-05 2.30 8.06e-05 1.93 1.16e-06 4.16 1.62e-05 3.84
320 80 2.13e-05 2.09 2.00e-05 2.01 5.13e-07 1.18 7.66e-07 4.40

Fig. 8: (Example 4.) Initial datum on the left and plots of the exact and the AF-HC
solutions at time T = 3/(2π2) for ∆x = 0.025 on the right.
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Looking at Tab. 9 we can note that all the tested schemes su�er a sort of
�saturating� e�ect in L∞ norm, showing some di�culties in dropping the error
in the last re�nement, especially in the case of the WENO scheme. On the
other hand, the high-order convergence rate in L1 norm testi�es the reliability
of the schemes also in this situation. The best results in Tab. 9 are clearly
given by the WENO scheme, nevertheless, the AF-HC scheme performs better
in terms of error and orders in both norms with respect to its basic version with
ε = 5∆x, whereas the fourth order scheme presents the usual behavior in L∞

norm with respect to the second order AF-HC scheme, however maintaining
the same order of errors. If instead we look at the errors in regions of regularity
reported in Tab. 10, we can acknowledge that all the schemes achieve optimal
order in both norms, with best results now given by the AF-LW4ord scheme,
also with respect to the WENO scheme.

As already seen in the previous Example 3, in Fig. 9 we can recognize
the ability of the AF scheme to better localize the regions of singularity with
respect to the basic procedure which uses the monotone scheme way more than
necessary.

Fig. 9: (Example 4.) Regions of activity of SM (blue) and SA (yellow) for the F-HC scheme
(left) and AF-HC scheme (right) with ∆x = 0.025.

Example 5: Evolution in 2D by dimensional splitting. We con-
clude this section on numerical simulations showing a convenient procedure to
solve simple two-dimensional problems by making use of the one-dimensional
schemes de�ned in the previous sections. Let us consider a classical problem
similar to the Burgers' equation, which is strictly connected to (65),{

vt + (vx + 1)2 + (vy + 1)2 = 0 in (0, T )× Ω,
v(0, x, y) = −0.5 (cos(πx) + cos(πy)) ,

(66)

with Ω = [0, 2]2 and periodic boundary conditions. As done for problem (65),
we consider the �nal time T = 4

5π2 , when the solution is still smooth, and then
T = 3

2π2 , time at which an interesting set of singularities develops. The exact
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solution is computed by the Hopf-Lax formula,

v(t, x, y) =

(
min
a∈A

1

2
cos(x− at) +

1

4
a2 − a+ min

b∈A

1

2
cos(y − bt) +

1

4
b2 − b

)
,

with A = [−5, 5].
In this situation, since the Hamiltonian can be expressed as a sum of one-

dimensional Hamiltonians, depending on the evolution along the x and y di-
rection, respectively, we can use a dimensional splitting to solve the problem.
More precisely, if we write H(vx, vy) = H1(vx) +H2(vy), we can approximate
the solution by solving sequentially the problems in one space dimension

vt +H1(vx) = 0 and vt +H2(vy) = 0,

keeping each time the other space variable constant. Since the Hamiltonians
trivially commute, we can use the simple Lie-Trotter splitting

un+1 = S∆t
y

(
S∆t
x (un)

)
, (67)

where S∆t
x and S∆t

y are numerical schemes of time step ∆t for the problems
in the x and y direction, respectively, without introducing errors in the time
evolution. For more details about dimensional splitting techniques we refer the
reader to [23] and the references therein.

We use the same schemes as in Example 3 and a slightly more restrictive
CFL number with respect to problem (65) in order to use coarser grids, which
is set to λ = 4

5π2 ≈ 0.08 for the �rst test, and λ = 3
4π2 ≈ 0.076 for the latter.

Table 11: (Example 5.) T = 4/(5π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 10 7.45e-02 7.75e-02 9.35e-02 8.66e-02
40 20 3.38e-02 1.14 5.12e-02 0.60 3.44e-02 1.44 3.59e-02 1.27
80 40 1.49e-02 1.18 3.25e-02 0.66 5.98e-03 2.52 1.30e-02 1.47
160 80 6.42e-03 1.22 1.94e-02 0.75 1.78e-03 1.75 4.87e-03 1.41

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 10 3.67e-02 4.42e-02 4.15e-02 3.71e-02
40 20 9.53e-03 1.94 1.21e-02 1.87 8.97e-03 2.21 1.00e-02 1.89
80 40 2.28e-03 2.06 4.29e-03 1.49 1.83e-03 2.29 1.95e-03 2.36
160 80 6.51e-04 1.81 1.70e-03 1.33 5.23e-04 1.81 4.50e-04 2.11

As we could expect, in this example we have analogous result with respect
to Example 3, with the AF scheme performing well in both situations and
better than the F scheme in the regular case (see Tabs. 11-12). Here again the
simple �ltered scheme has slightly better results after the singularities develop,
due to the action of the φ function in the regions of singularity, but the loss
of accuracy is in fact minimal. Moreover, our scheme performs as good as the
WENO scheme when the solution is still regular, whereas the latter performs
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Fig. 10: (Example 5.) Top: Initial datum (left) and exact solution at T = 3/(2π2) (right).
Bottom: solution at T = 4/(5π2) (left) and T = 3/(2π2) (right) computed by the AF-LWR
scheme with ∆x = 0.1 .

Table 12: (Example 5.) T = 3/(2π2). Errors and orders in L∞ and L1 norms.

LWR F-LWR (10∆x) AF-LWR WENO 2/3

Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 20 1.69e-01 9.49e-02 1.12e-01 8.68e-02
40 40 6.39e-02 1.40 3.67e-02 1.37 3.66e-02 1.61 2.27e-02 1.93
80 80 3.23e-02 0.98 1.41e-02 1.38 1.46e-02 1.33 9.08e-03 1.32
160 160 2.64e-02 0.29 3.73e-03 1.91 3.86e-03 1.92 2.22e-03 2.03

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 20 6.18e-02 4.62e-02 5.40e-02 3.60e-02
40 40 1.74e-02 1.83 8.19e-03 2.50 8.79e-03 2.62 4.68e-03 2.94
80 80 4.54e-03 1.94 1.88e-03 2.13 1.82e-03 2.27 6.92e-04 2.76
160 160 1.13e-03 2.00 3.73e-04 2.33 3.83e-04 2.25 7.62e-05 3.18

better in the second case. Concerning the CPU times, looking at Tab. 13 we
can see that, di�erently from the one-dimensional case, the WENO scheme is
faster than the AF scheme in the last two re�nements, whereas the F-LWR
scheme is comparable to the simple LWR high-order scheme and both are
three/four times faster than the other two considered schemes.
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Table 13: (Example 5.) T = 3/(2π2). CPU times in seconds.

Nx Nt LWR F-LWR AF-LWR WENO 2/3

20 20 0.002 s 0.002 s 0.009 s 0.010 s
40 40 0.015 s 0.016 s 0.055 s 0.054 s
80 80 0.108 s 0.127 s 0.427 s 0.324 s
160 160 0.867 s 0.902 s 3.642 s 2.569 s

6 Conclusions

We have presented a rather simple way to construct convergent schemes
coupling a monotone and a high-order scheme via a �lter function. A typical
feature of �ltered schemes is their high-order accuracy in the regions of reg-
ularity for the solution. In fact, the �lter function can stabilize an otherwise
unstable (high-order) scheme, still preserving its accuracy. The main novelty
here is the adaptive and automatic choice of the parameter εn which improves
the scheme in [6]. The computation of the switching parameter εn, although
more expensive, is still a�ordable in low dimension. The adaptive scheme is
able to reduce the oscillations which may appear choosing a constant ε and,
as shown by the numerical tests, gives always better results. Finally, we note
that the accuracy of adaptive �ltered schemes is close to WENO schemes of
the same order but �ltered schemes are easier to implement, give a rather
�exible way to couple di�erent schemes and, as we proved, converge to the
viscosity solution. A fully 2D scheme has been used in our recent paper [14],
in which new formulas for the 2D smoothness indicators are proposed, instead
of applying a splitting techniques, for the resolution of the image segmentation
problem. Thanks to recent computations, we are able to prove a result similar
to Prop. 1 for our new 2D smoothness indicators. Thanks to such a result, we
believe that the convergence and high-order consistency could be proven also
in fully two-dimensional problems, but this is a future work.
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A APPENDIX: Technical results

For completeness and reader's convenience we give the proofs of Prop. 1 and of the
properties of the undivided di�erences and the binomial coe�cients involved. This analysis
follows the ideas in [1] where a similar analysis is developed for conservation laws. Let us
begin by presenting the following technical lemma.

Lemma 3 Let us assume i ≥ 1 and write f [·] for the undivided di�erence of a function f .
Then, it holds

f [0, . . . , i] =

i−p∑
j=0

(i− p
j

)
(−1)i−p−jf [j, . . . , j + p], for p = 0, . . . , i. (68)

Moreover, we have that

n∑
j=0

(i
j

)
(−1)i−j =

{(i−1
n

)
(−1)i−n for n < i

0 for n = i.
(69)

Proof Let us start from the proof of (68) and let us proceed by induction on i.
Firstly, let us notice that for p = i the identity is trivially satis�ed, whence the case

i = 1 follows directly. Then, for any p = 0, . . . , i − 1, suppose that the statement holds for
i− 1 and for i > 0 let us compute,

f [0, . . . , i] = f [1, . . . , i]− f [0, . . . , i− 1] by de�nition off [·]

=

i−p−1∑
j=0

(i− p− 1

j

)
(−1)i−p−1−jf [j + 1, . . . , j + 1 + p]

−
i−p−1∑
j=0

(i− p− 1

j

)
(−1)i−p−1−jf [j, . . . , j + p] by inductive hyp.

= f [i− p, . . . , i] + (−1)i−pf [0, . . . , p]

+

i−p−1∑
j=1

(i− p− 1

j − 1

)
(−1)i−p−jf [j, . . . , j + p]

+

i−p−1∑
j=1

(i− p− 1

j

)
(−1)i−p−jf [j, . . . , j + p]

= f [i− p, . . . , i] + (−1)i−pf [0, . . . , p]

+

i−p−1∑
j=1

(i− p
j

)
(−1)i−p−jf [j, . . . , j + p]

(n− 1

k − 1

)
+
(n− 1

k

)
=
(n
k

)

=

i−p∑
j=0

(i− p
j

)
(−1)i−p−jf [j, . . . , j + p],

as we wanted.

Remark 6 To simplify the notation we have stated the result for f [0, . . . , i] but the proof
clearly holds for f [k, . . . , k + i], ∀k. In the second identity of the previous chain we have
assumed this fact applying the inductive hypothesis on both terms.

Let us focus now on the second relation of the lemma (69) and proceed again by induc-
tion, but this time on n : 0 ≤ n < i. For n = 0 we have (−1)i = (−1)i, then the identity
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holds. Suppose that (69) holds for n− 1 < i− 1 and compute

n∑
j=0

(i
j

)
(−1)i−j =

n−1∑
j=0

(i
j

)
(−1)i−j +

( i
n

)
(−1)1−n

=
( i− 1

n− 1

)
(−1)i+1−n +

( i
n

)
(−1)i−n by inductive hyp.

=
( i− 1

n− 1

)
(−1)i+1−n −

[(i− 1

n

)
+
( i− 1

n− 1

)]
(−1)i+1−n

=
(i− 1

n

)
(−1)i−n.

For n = i instead, from what we have just seen we can easily compute

i∑
j=0

(i
j

)
(−1)i−j =

i−1∑
j=0

(i
j

)
(−1)i−j + (−1)i−i

=
(i− 1

i− 1

)
(−1)i−i+1 + 1

= −1 + 1 = 0.

ut

Proof (of Proposition 1) Let us take r > 1 and without loss of generality, let xs = 0
(to simplify the notation). Moreover, we will use the convention h := ∆x. Let us start by
reminding that, using the Newton form of the interpolating polynomial, for k = 0, . . . , r− 1
and j ∈ Z, we get

Pk(x) = f(xj−r+k) +

r∑
i=1

f [xj−r+k, . . . , xj−r+k+i]ωi−1(x), (70)

where ωi(x) = (x− xj−r+k) · · · (x− xj−r+k+i) and f [·] denotes the divided di�erence of f .
We proceed with the proof of i). In this case it is su�cient to observe that, since the

function f is regular in Ω\{xs}, the properties of the interpolating polynomial directly give

P
(l)
k (x) = f (l)(x) +O(hr+1−l), for xj−1 ≤ x ≤ xj , k = 0, . . . , r − 1, l = 2, . . . , r.

Moreover, expanding with Taylor, it holds

f (l)(x) = f (m)(xj)O(h)m−l + o(hm−l), (71)

where m = max{s+ 1, l} and s = max{k : f (i)(xj) = 0, ∀i ≤ k} (s ≤ r). Then, integrating
(remembering that by hypothesis s ≤ 1⇒ m = l), we get

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h2l−2

(
f (l)(xj)

)2
+ o(h2l−2),

as we wanted.
Let us continue with the proof of ii). In this case the proof is a little more complicated

and it is better to treat separately the following two cases:

(a) 0 is a point of the grid {xi}, i ∈ Z;
(b) 0 ∈ Ii = (xi−1, xi) for some i ∈ Z.
Case a. By hypothesis 0 ∈ Sj+k for at least one k = 0, . . . , r − 1, then, for each �xed k,
there exists an integer js ∈ {k − r + 1, . . . , k − 1} such that xj = −jsh (for js = k − r and
js = k we fall in the case treated previously). Substituting in (70),

Pk(x) = f((−js + k − r)h) +

r∑
i=1

f [(−js + k − r)h, . . . , (−js + k − r + i)h]ωi−1(x),
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with ωi(x) = (x+(js−k+r)h) · · · (x+(js−k+r− i)h). Moreover, if we de�ne the function
fh(y) := f(xj + hy) = f(h(y − js)), we can write

f [xj−r+k, . . . , xj−r+k+i] = f [xj + (k − r)h, . . . , xj + (k − r + i)h]

=
fh[k − r, . . . , k − r + i]

i!hi
,

where fh[·] denotes the undivided di�erence of fh. Now, de�ning the polynomial

Qk(y) := Pk(xj + hy) = fh(k − r) +

r∑
i=1

fh[k − r, . . . , k − r + i]
qi−1(y)

i!
, (72)

where qi(y) = (y − (k − r)) · · · (y − (k − r − i)), fh(y) = f(xj + hy), we can rewrite

P
(l)
k (x) =

dl

dxl

(
Qk

(x
h

))
=

1

hl
Q

(l)
k (y), l = 2, . . . , r. (73)

Then, applying the change of variable y = (x− xj)/h in the integral in (31), we have

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h−2

∫ 0

−1

(
Q

(l)
k (y)

)2
dy, (74)

where

Q
(l)
k (y) =

r∑
i=l

fh[(k − r), . . . , (k − r + i)]
q
(l)
i−1(y)

i!
. (75)

At this point, it is useful to notice that (68) for p = 1 reads, for i = 1, . . . , r,

fh[k − r, . . . , (k − r + i)] =

i−1∑
j=0

(i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)].

In order to simplify the notation let us call is := js − k + r, that is to say the index
is ∈ {1, . . . , r − 1} such that xj + (k − r + is)h = 0. Then, by hypothesis, we can write for
all i > t := max{is, l − 1},

fh[k − r, . . . , (k − r + i)] =

is−1∑
j=0

(i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)]

+

i−1∑
j=is

(i− 1

j

)
(−1)i−j−1fh[(k − r + j), (k − r + j + 1)],

and, noticing that for h→ 0

fh[z + js, z + js + 1] = h
f((z + 1)h)− f(zh)

h
→
{
hf ′(0+) if z ≥ 0
hf ′(0−) otherwise

we can conclude that

fh[k − r, . . . , (k − r + i)] ≈ h

is−1∑
j=0

(i− 1

j

)
(−1)i−j−1f ′(0−) +

i−1∑
j=is

(i− 1

j

)
(−1)i−j−1f ′(0+)


= h

[
f ′(0+)− f ′(0−)

] i−1∑
j=is

(i− 1

j

)
(−1)i−j−1

= h
[
f ′(0+)− f ′(0−)

] ( i− 2

is − 1

)
(−1)i−is+1 6= 0,
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having exploited the relations
∑i

j=0

(i
j

)
(−1)i−j = 0 and

∑n
j=0

(i
j

)
(−1)i−j =

(i−1
n

)
(−1)i−n,

for 0 ≤ n < i by Lemma 3. Furthermore for l ≤ i ≤ is, using the relation (69), we can
conclude

fh[k − r, . . . , (k − r + i)] ≈ h
i−1∑
j=0

(i− 1

j

)
(−1)i−j−1f ′(0−) = 0.

From what we have done so far we can deduce, recalling that t := max{is, l − 1},

h2l−3

∫ xj

xj−1

(
P

(l)
k (x)

)2
dx = h−2

∫ 0

−1

 r∑
i=t+1

fh[k − r, . . . , (k − r + i)]
q
(l)
i−1

i!

2

≈ Crk

[
f ′(0+)− f ′(0−)

]2
,

where Crk =
∫ 0
−1

(∑r
i=t+1

( i−2
is−1

)
(−1)i−is+1 q

(l)
i−1

i!

)2

, which is the thesis for Case a.

Case b. By hypothesis there exists an integer js ∈ {k−r+1, . . . , k} and a number 0 < as < 1
such that xj = (−js + as)h. It is clear now that we can repeat the same constructions of
the previous case de�ning the function fas,h(y) := f(h(y− js + as)) and using it in place of
fh; so, to obtain (74) it will su�ce to apply the change of variables y = x

h
+ js − as. Then,

naming is = js − k + r, for i ≥ t := max{is, l},

fas,h[k − r, . . . , (k − r + i)] =

is−2∑
j=0

(i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)]

+
( i− 1

is − 1

)
(−1)i−isfas,h[js − 1, js]

+

i−1∑
j=is

(i− 1

j

)
(−1)i−j−1fas,h[(k − r + j), (k − r + j + 1)],

(76)

whence, noticing that

fas,h[js − 1, js] = f(ash)− f((as − 1)h)

= ash

(
f(ash)− f(0)

ash

)
+ (1− as)h

(
f(0)− f((as − 1)h)

(1− as)h

)
≈ ashf ′(0+) + (1− as)hf ′(0−)

= ash
[
f ′(0+)− f ′(0−)

]
+ hf ′(0−),

and that

fas,h[z + js − 1, z + js]→
{
hf ′(0+) if z ≥ 1
hf ′(0−) if z ≤ −1,

we can infer that if i = is (in this case in (76) on the right side of the equation we have only
the second term), then fas,h[k − r, . . . , (k − r + i)] ≈ ash

[
f ′(0+)− f ′(0−)

]
6= 0, whereas if

i > is,

fas,h[k−r, . . . , (k−r+i)] ≈ h
[
f ′(0+)− f ′(0−)

] [( i− 2

is − 1

)
(−1)i−is+1 + as

( i− 1

is − 1

)
(−1)i−is

]
.

The last quantity, as it can be easily shown, it is null if and only if as = i−is
i−1

; more

precisely, for k �xed there exists an integer i ≥ t such that fas,h[k − r, . . . , (k − r + i)] ≈
Ch
[
f ′(0+)− f ′(0−)

]
with C 6= 0, whence the thesis even in the last case. ut
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