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Multidimensional smoothness indicators for first-order
Hamilton-Jacobi equations

Maurizio Falcone∗ Giulio Paolucci∗ Silvia Tozza†

February 26, 2020

Abstract

The lack of smoothness is a common feature of weak solutions of nonlinear hyperbolic equa-
tions and is a crucial issue in their approximation. This has motivated several efforts to define
appropriate indicators, based on the values of the approximate solutions, in order to detect the
most troublesome regions of the domain. This information helps to adapt the approximation
scheme in order to avoid spurious oscillations when using high-order schemes. In this paper we
propose a genuinely multidimensional extension of the WENO procedure in order to overcome
the limitations of indicators based on dimensional splitting. Our aim is to obtain new regularity
indicators for problems in 2D and apply them to a class of “adaptive filtered” schemes for first
order evolutive Hamilton-Jacobi equations. According to the usual procedure, filtered schemes
are obtained by a simple coupling of a high-order scheme and a monotone scheme. The mixture
is governed by a filter function F and by a switching parameter εn = εn(∆t,∆x) > 0 which goes
to 0 as (∆t,∆x) is going to 0. The adaptivity is related to the smoothness indicators and allows
to tune automatically the switching parameter εnj in time and space. Several numerical tests
on critical situations in 1D and 2D are presented and confirm the effectiveness of the proposed
indicators and the efficiency of our scheme.

Keywords: High-order Filtered schemes, Hamilton-Jacobi equations, 2D-Smoothness indi-
cators, Front propagation

1 Introduction

The approximation of hyperbolic problems has to deal with non smooth or even discontinuous so-
lutions so high-order accurate schemes are often difficult to implement and the proofs of convergence
for accurate approximation schemes are limited to one dimensional cases, when they are available.
From the practical point of view, a big effort has been made to develop smoothness indicators to
detect the singularities and/or discontinuities of weak solutions in order to adapt the schemes and
obtain high-order accuracy in the regions where the solution is regular, see e.g. [21, 20, 30]. Most
of these indicators are based on 1D arguments and can be applied to multidimensional problems
by dimensional splitting [2]. However, the schemes based on dimensional splitting work on every
dimension by separation of variables and then they collect all the information. In this way, they are
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not able to detect truly multidimensional singularities that are not alligned with the axis. Our goal
is to develop genuinely multidimensional smoothness indicators and prove their properties in the
2D setting (for genuinely multidimensional smoothness indicators, see also [12]). Moreover, we will
show how these indicators are useful in the approximation of a class of first order time-dependent
Hamilton-Jacobi (HJ) equations, in the form{

vt +H(x, y, vx, vy) = 0, (t, x, y) ∈ [0, T ]× R2,
v(0, x, y) = v0(x, y), x ∈ R2,

(1)

where the Hamiltonian H and the initial data v0 are sufficiently regular functions (usually at least
Lipschitz continuous) in order to secure an existence and uniqueness result for the viscosity solution
(see e.g. [4]).
It is well-known that in general this problem does not admit classical solutions independently on
the regularity of the initial condition, since its solutions may develop discontinuities in the gradient
in finite time. This makes the development of accurate approximations rather challenging and
the definition of appropriate smoothness indicators a topic of primary interest, in order to prevent
spurious oscillations near discontinuities for high-order methods and to exploit the good properties
of the lower order (and convergent) monotone discretization.

Let us recall that starting from the pioneering works [17, 27] and [21, 20, 19] on high-order
Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) schemes respectively, for conser-
vation laws and related HJ equations, a lot of efforts has been made in the last two decades to
develop efficient smoothness indicators for grid valued functions. For the numerical approximation
of conservation laws, that typically uses cell averages in the reconstructions, many slightly different
versions of the indicators have been proposed and analyzed. We cite among the others the study
of Arandiga et al. [2], focusing on the role of the desingularization parameter and the definition of
optimal linear coefficients, and the proposals of Henrick et al. [18] and of Borges et al. [8], leading
respectively to the so-called WENO-M and WENO-Z schemes, where the goal is to increase the
accuracy at critical points. Moreover, a central version of the reconstruction, which is really an
ENO-type construction, has been first proposed in [22] and then improved later in [23] by the same
authors in a compact version, which cuts the dependence of nonlinear weights from the point of
reconstruction thus simplifying its application to adaptive grids.

WENO smoothness indicators have been applied to HJ equations with minor changes, as for
example in the work of Carlini et al. [9] where an application to semi-lagrangian schemes is presented,
but, at least to our knowledge, the theory has not been formally and rigorously extended. This fact
has caused some confusion in the related literature, since the scaling factor used in the definition of
the indicators, when working with non-differentiable functions, is usually mistaken. In order to fill
this gap, in [15, 28] the authors proposed a rather detailed analysis of the considered indicators and
then applied the constructions, in a slightly different setting, to define new Adaptive Filtered (AF)
schemes, renewing the definition of [7]. In our approach the smoothness indicators are necessary in
order to detect the regions in which it is safe to use the values of the numerical solution to compute
the switching parameter εn, which is automatically computed and does not depend on the problem,
differently from the scheme in [7]. The idea of filtering a high-order, possibly unstable, scheme
with a convergent monotone scheme was probably introduced in [24] and formulated in the present
setting by Abgrall [1], where a blending similar to the approach of this paper is used to obtain
a convergence result without error estimates. Filtered schemes belong to the class of ε-monotone
schemes (see [3] for an example) and can be proven convergent thanks to the results of Crandall
and Lions [11] and Barles and Souganidis [5]. We conclude mentioning also the works by Oberman
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and Salvador [25] and Bokanowski et al. [6] on first-order stationary HJ equations and by Froese
and Oberman [16] on the Monge-Ampère equation.

In this work we introduce a new definition of multidimensional smoothness indicators devised
for functions which may present some discontinuity in the gradient, we analyze their properties and
we extend our class of AF schemes [15] to more spatial dimensions. In particular, we propose a
natural extension of the definition in [20] to structured two-dimensional grids. For a first extension
of the WENO procedure to multidimensional unstructured grids we cite the work by Zhang and
Shu [31]. In our formulation we give a very compact explicit formula for the case r = 2, where r is
the order of the approximation of the function, which can be used for an easy implementation. The
construction of the scheme is rather simple and various examples for the composing schemes, up
to 4th-order accuracy, are presented in detail. Finally, all the proposed definitions are tested and
discussed on a series of benchmarks, which testify the reliability of our indicators and the properties
of high-order consistency and convergence of the adaptive filtering method.

The paper is organized as follows: in Sect. 2 we describe the construction of our new 2D-
indicators, designed to detect the regularity of the gradient of the solution. We prove there that
the new indicators are a natural extension of the 1D indicators used in the literature. We continue
in Sect. 3 exploiting the properties of the indicators to define our multidimensional AF scheme
and present in detail all its elementary blocks. In Sect. 4 we collect some numerical tests on the
newly defined smoothness indicators and on some applications for the AF scheme, comparing our
scheme with the state-of-the-art methods. Finally, Sect. 5 contains some conclusions and future
perspectives. In addition, A is devoted to a brief review of 1D indicators for reader convenience.

2 Construction and analysis of regularity indicators in high dimen-
sion

Let us start by giving a multidimensional extension of the smoothness indicators introduced in
[20] and analyzed in [15] for the 1D case, which are necessary for the definition of the AF scheme
that will be introduced in Sect. 3.

We consider a uniform grid in space (xj , yi) = (j∆x, i∆y), j, i ∈ Z, and a function f : R2 → R.
Before proceeding with the construction, let us recall some important features about multivariate
interpolation. As it is well known, there are many possibilities to define polynomials in two dimen-
sions. For example, we could fix the total degree r of the polynomial and consider a triangular
array of points (then using polynomials in Pr(R2)), or, as we will do in our approach, we can fix the
degree r in each variable and define the 2D-polynomial as the tensor product of one-dimensional
polynomials (P ⊗ Q ∈ Qr(R2), with P,Q ∈ Pr(R)). Clearly, using the last approach the number
of points involved in the stencil of the reconstruction increases exponentially (considering a square
grid, if n is the number of points of the 1D stencils, then n2 is the cardinality of the 2D stencil).
Note that in both cases the problem is well posed. In fact, we can define a unique polynomial
interpolating a given function f(x, y) on the points of the stencil with the desired degree. Clearly,
some assumptions on the disposition of the points must be made. For example, the points must not
lie on the same line, which is trivially the case for uniform Cartesian grids. This is indeed our case
of study, in which we are working on structured grids.

Let us consider the general case of a rectangular stencil S = {x0, . . . , xn}× {y0, . . . , ym}. Then,
using the Newton form, we can define the polynomial of degree n+m interpolating a given function
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f as

P (x, y) :=
n∑
s=0

m∑
t=0

ωxt−1(x)ωys−1(y)f [x0, . . . , xt; y0, . . . , ys], (2)

where ωρk(ρ) = ωρk−1(ρ−ρk), ωρ−1 = 1, for ρ = x, y, and the two-dimensional divided difference f [·; ·]
are computed as in the one-dimensional case, keeping each time one of the two variables fixed and
computing the divided difference with respect to the free variable, that is, for example

f [xt, ys] := f(xt, ys), t = 0, . . . ,m, s = 0, . . . , n

f [x0, . . . , xt; ys] :=
f [x1, . . . , xt; ys]− f [x0, . . . , xt−1; ys]

xt − x0
,

f [x0, . . . , xt; y0, . . . , ys] :=
f [x1, . . . , xt; y0, . . . , ys]− f [x0, . . . , xt−1; y0, . . . , ys]

xt − x0
.

The same can be done with respect to the second variable. Now, if we want to define a smoothness
indicator of a function f , as done in the one-dimensional case, we have to focus our attention
on a single cell of the grid. For example, in the cell [xj−1, xj ] × [yi−1, yi] we define the following
smoothness coefficients:

βk,w :=
∑
α∈A

∫ xj

xj−1

∫ yi

yi−1

∆xγ1∆yγ2
(
∂α1
x ∂α2

y Pk,w(x, y)
)2
dxdy, (3)

for k = 0, . . . , n− 1 and w = 0, . . . ,m− 1, where Pk,w is the interpolating polynomial on the stencil
Sk,w = {xj+k−n, . . . , xj+k} × {yi+w−m, . . . , yi+w}, α = (α1, α2) is a multi-index belonging to the
set A := {(α1, α2) : α1 = 0, . . . , n;α2 = 0, . . . ,m; |α|≥ 2}, and γ1, γ2 must be chosen (depending
on α1 and α2, respectively) in order to satisfy the following properties (see Prop. A.1 for the 1D
indicators):

• βk,w = O(∆2) if the function is smooth in Sk,w
• βk,w = O(1) if there is a singularity in Sk,w,

where Sk,w = [xj−n+k, xj+k]×[yi−m+w, yi+w] and ∆ := max{∆x,∆y}. Note that in (3) we restricted
the summation to multi-indices α such that |α|≥ 2 since the computation of lower order derivatives
can be avoided as they are not useful in detecting discontinuities in the gradient.

Before giving the proof of a rigorous result, showing how to correctly choose γ1 and γ2 in
the scaling factor in (3), let us first introduce some notations in the case of singularities located
along a curve Γ(s) = (x(s), y(s)), where s is a proper parametrization of the curve. For any point
ξ ∈ Γ we consider a ball Bδ(ξ) centered in ξ and of radius δ = O(∆), such that Sk,w ⊂ Bδ(ξ), for
k = 0, . . . , n− 1, w = 0, . . . ,m− 1, and the two parts in which is divided by Γ, namely B−δ (ξ) and
B+
δ (ξ), such that B−δ (ξ)

⋃
B+
δ (ξ) = Bδ(ξ) \ Γ, as illustrated in Fig. 1. In the sequel, we will drop

the dependence on ξ and δ, since it should not cause any confusion. Moreover, we define the right
(left) gradient with respect to Γ as the vector obtained passing to the limit from the right (left) of
Γ, which is

∇±f(ξ) := lim
(x,y)→ξ

(x,y)∈B±

∇f(x, y). (4)

Then, we can give the followings
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Γ

∂+η f
∂−η f

τ

B−

B+

ξ

Figure 1: The neighborhood B and the two parts in which it is divided by the curve Γ.

Definition 2.1. Let us consider a continuous curve Γ and a continuous function f . We say that Γ
is a singularity curve for f if, for any ξ ∈ Γ, f ∈ Ck (B \ Γ), for k ≥ 1, and we have

D(ξ) := ∇+f(ξ)−∇−f(ξ) 6= (0, 0). (5)

It is worth to recall that, if the curve Γ ∈ C1, then the tangent and normal unit vectors at a
point ξ, τ(ξ) and η(ξ), respectively, are well defined and can be computed as

τ(ξ) =

(
ẋ√

ẋ2 + ẏ2
,

ẏ√
ẋ2 + ẏ2

)
, η(ξ) = (−τ2, τ1). (6)

Consequently, we can rewrite the jump in the gradient D(ξ) in terms of the discontinuity of the
normal derivative of f at ξ, that is ∂ηf(ξ). More precisely, computing the left and right derivative
in the normal direction as

∂±η f(ξ) := lim
∆→0

f(ξ ± η∆)− f(ξ)

∆
= ±∇±f(ξ) · η(ξ), (7)

we can define the normal jump as

Dη(ξ) := D(ξ) · η(ξ) = ∂+
η f(ξ) + ∂−η f(ξ), (8)

which is a scalar quantity and more easily computed, involving only one-dimensional derivatives.
Moreover, keeping in mind that we are working with Cartesian structured grids, since the curve
is locally linearizable and it can be approximated by its tangent line, we have that the points of
the stencil around a specific point ξ ∈ Γ are definitely inside B+ or B−, or at least remain on the
tangent direction.

We are now ready to prove the reliability of our definition in the case at hand, stating the
different behavior of the indicators βk,w depending on the local regularity of the function f , as
previously discussed, all thanks to the appropriate choice of the scaling factor in (3). For the reader
convenience, in A we recalled the 1D counterpart, namely Prop. A.1, which has been proved in [15].
To simplify the computations, we will consider the case of a uniform grid with square stencils, that
is ∆x = ∆y = ∆ and n = m = r, with r > 1.
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Proposition 2.2. Let us assume that f is a continuous function in its domain and sufficiently
regular outside Γ ∈ C1 that is a singularity curve for f . Moreover, let us assume that at least
one of the second derivatives of f is non-null for (x, y) ∈ B \ Γ and let βk,w be given by (3) with
γi = 2(αi − 1), for i = 1, 2. Then, for k = 0, . . . , r − 1, w = 0, . . . , r − 1, the followings are true:

i) If Γ
⋂Sk,w = ∅ ⇒ β(f)k,w = O(∆2);

ii) If Γ
⋂Sk,w 6= ∅ ⇒ β(f)k,w = O(1).

Proof. Let us consider r > 1 and a generic square stencil Sk,w = {xj+ν , . . . , xj+ν+r} ×
{yi+µ, . . . , yi+µ+r}, for k = 0, . . . , r − 1, w = 0, . . . , r − 1, where ν = k − r and µ = w − r,
around a point (xj , yi), j, i ∈ Z, which is not necessarily the center of the stencil. Before proceeding
with the proof, let us rewrite the integrals in (3) in order to highlight and isolate the dependence
of the various terms of the summation on the discretization parameters. Let us define

fh(θ) := f(xj + θ1∆x, yi + θ2∆y), for θ = (θ1, θ2) ∈ Z2, (9)

which allows to write

fh[ν, . . . , ν+ t;µ, . . . , µ+s]∗ := f [xj+ν , . . . , xj+ν+t; yi+µ, . . . , yi+µ+s] t! s! ∆xt∆ys for t, s = 0, . . . r,
(10)

where fh[·]∗ denotes the undivided difference of fh. Next, defining the polynomial

Qk,w(θ) := Pk,w(xj + θ1∆x, yi + θ2∆y)

=
r∑

s,t=0

ωxt−1(xj + θ1∆x)ωys−1(yi + θ2∆y)f [xj+ν , . . . , xj+ν+t; yi+µ, . . . , yi+µ+s]

=

r∑
s,t=0

qνt−1(θ1)qµs−1(θ2)
fh[ν, . . . , ν + t;µ, . . . , µ+ s]∗

t! s!
, (11)

where qρs (θi) = (θi − ρ) · · · (θi − ρ − s), qρ−1 = 1, for ρ = ν, µ, i = 1, 2, and using the change of
variable (θ1, θ2) := ((x− xj)/∆x, (y − yi)/∆y), we can compute

∂α1
x ∂α2

y Pk,w(x, y) = ∂α1
x ∂α2

y Qk,w

(
x− xj

∆x
,
y − yi

∆y

)
=

1

∆xα1∆yα2
∂α1
θ1
∂α2
θ2
Qk,w(θ1, θ2). (12)

Putting (12) in Eq. (3) with the restriction on α before mentioned, i.e. |α|≥ 2, we get

βk,w =

r∑
α1,α2=0
|α|≥2

∫ xj

xj−1

∫ yi

yi−1

∆x2(α1−1)∆y2(α2−1)
(
∂α1
x ∂α2

y Pk,w(x, y)
)2
dxdy

=

r∑
α1,α2=0
|α|≥2

∆x2α1−1∆y2α2−1

∆x2α1∆y2α2

∫ 0

−1

∫ 0

−1

(
∂α1
θ1
∂α2
θ2
Qk,w(θ1, θ2)

)2
dθ1dθ2

=
1

∆x∆y

r∑
α1,α2=0
|α|≥2

∫ 0

−1

∫ 0

−1

(
∂α1
θ1
∂α2
θ2
Qk,w(θ1, θ2)

)2
dθ1dθ2 (13)
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where

∂α1
θ1
∂α2
θ2
Qk,w(θ1, θ2) =

r∑
t=α1

r∑
s=α2

fh[ν, . . . , ν + t;µ, . . . , µ+ s]∗
t! s!

∂α1
θ1
qνt−1(θ1)∂α2

θ2
qµs−1(θ2). (14)

At this point, we divide our proof in several parts taking into account the different possible situa-
tions.

Proof of point (i). From (13)-(14) it is rather straightforward to conclude the thesis. In fact, since
the function f is regular by hypothesis, it is enough to apply in (10) the properties of the (forward)
divided differences, that is

f [xj+ν , . . . , xj+ν+t; yi+µ, . . . , yi+µ+s] = ∂tx∂
s
yf(xj , yi) +O(∆), (15)

which in turn gives

fh[ν, . . . , ν + t;µ, . . . , µ+ s]∗
t! s!

= ∆xt∆ys∂tx∂
s
yf(xj , yi) +O(∆t+s+1). (16)

Hence, the first point of the thesis follows by (13) and the hypotheses on the second derivatives of f .

Proof of point (ii). For the second part of the thesis, which clearly requires more effort, we focus
on a point ξ ∈ Γ

⋂Sk,w and consider a circular neighborhood B containing all the points of the
considered stencil, together with the two parts in which it is divided by Γ, B+ and B−. Moreover,
in order to lighten the notations, without loss of generality we can take ξ = (0, 0) and use only
∆ = ∆x = ∆y to denote the discretization parameters.
We consider separately the two cases:

(A) ξ ∈ Sk,w, i.e. the curve Γ has a point on the the grid;

(B) ξ ∈ Sk,w \ Sk,w.
Case A. Let us begin by recalling that for the 1D undivided differences the following equality holds

fh[µ, . . . , µ+ s]∗ =
s−l∑
j=0

(
s− l
j

)
(−1)s−l−jfh[µ+ j, . . . , µ+ j + l]∗, for l = 0, . . . , s, (17)

with s ≥ 0 (see Lemma A.1, p. 37 of [15]). Consequently, since the two-dimensional undivided
differences are obtained by successive one-dimensional computations, we can use (17) to rewrite the
various terms in (14) in order to focus only on second order undivided differences. More precisely,
if t, s > 0, using (17) with l = 1 we have

fh[ν, . . . ,ν + t;µ, . . . , µ+ s]∗ =
t−1∑
j=0

(
t− 1

j

)
(−1)t−j−1fh[ν + j, ν + j + 1;µ, . . . , µ+ s]∗ (18)

=

t−1∑
j=0

(
t− 1

j

)
(−1)t−j−1

s−1∑
i=0

(
s− 1

i

)
(−1)s−i−1fh[ν + j, ν + j + 1;µ+ i, µ+ i+ 1]∗

=
t−1∑
j=0

(
t− 1

j

) s−1∑
i=0

(
s− 1

i

)
(−1)s+t−(i+j)fh[ν + j, ν + j + 1;µ+ i, µ+ i+ 1]∗,

7
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B−

B+

ξ

k = 1, w = 1

k = 0, w = 0

τ

ξ

B−

B+

+

+−
−−

−−

− + +

Figure 2: Case A for r = 2. On the left, two possible stencils around the point ξ ∈ Sk,w. On the right, examples of
second order divided differences composing the stencils, for case A1 (darker blue square), case A3 (darker red square)
and the 3-points stencil for case A2 (marked with a thicker black line on the top).

whereas, if s = 0 or t = 0 we use directly (17) with l = 2 in the appropriate direction to have, for
example if t > 0,

fh[ν, . . . , ν + t;µ]∗ =
t−2∑
j=0

(
t− 2

j

)
(−1)t−jfh[ν + j, ν + j + 1, ν + j + 2;µ]∗. (19)

It is now clear that, using (18)-(19), we can restrict our study to 4-points square stencils {θ1, θ1 +
1} × {θ2, θ2 + 1} for θ such that θ∆ ∈ Sk,w, and to one-directional 3-points stencils. See Fig. 2 for
some examples in the case r = 2. Then, keeping in mind that the tangent line definitely partitions
the points of the stencil Sk,w in two sets (or at least some remain in the tangent direction) and
considering the possible configurations inside the ball B around ξ, we have at most three possible
situations:

A1) all the nodes of the stencil are inside B+ (or B−);

A2) some of the nodes are in B+ and some in B−;

A3) some nodes are on Γ.

Proof of case A1: It is clear that in the first case, since the function is regular by hypothesis, using
(16) for t, s such that t+ s = 2 we can conclude that the second order undivided differences are of
the order O(∆2).

Next, for the other two cases, the idea of the proof is to project the points of the stencil along
the normal direction to Γ using Taylor expansions, exploiting the orientation given by the tangent
line. More precisely, we project the points in B+ along η and those in B− along −η, in order to
split the different contributions. Then, using the obvious identity

θ∆ = ±η∆ + (θ ∓ η)∆, for θ : θ∆ ∈ Sk,w, (20)

and expanding in Taylor series, we have

f(θ∆) = f(±η∆) + (θ ∓ η)∆ · ∇f(±η∆) +O(∆2), for θ∆ ∈ B±. (21)

Proof of case A2: Considering the square stencils, the only possible configurations are:

8



• 2 points in B+ and 2 in B−;

• 3 points in B± and 1 in B∓,

whereas, for the 3-points stencils we can only have 2 points in B± and 1 in B∓. There are clearly
some redundant cases due to the symmetry of the construction, so we present the computations
only for some representative choices. For the square stencil, if 2 points are in B+ and 2 in B−, e.g.
{(θ1, θ2), (θ1, θ2 + 1)} ∈ B−, {(θ1 + 1, θ2), (θ1 + 1, θ2 + 1)} ∈ B+, we have

fh[θ1, θ1 + 1; θ2, θ2 + 1]∗ = f((θ1 + 1)∆, (θ2 + 1)∆)− f(θ1∆, (θ2 + 1)∆)

− f((θ2 + 1)∆, θ2∆) + f(θ1∆, θ2∆)

= f(η∆) + (θ1 + 1− η1)∆fx(η∆) + (θ2 + 1− η2)∆fy(η∆)

− f(−η∆)− (θ1 + η1)∆fx(−η∆)− (θ2 + 1 + η2)∆fy(−η∆) (22)
− f(η∆)− (θ1 + 1− η1)∆fx(η∆)− (θ2 − η2)∆fy(η∆)

+ f(−η∆) + (θ1 + η1)∆fx(−η∆) + (θ2 + η2)∆fy(−η∆) +O(∆2)

= ∆ (fy(η∆)− fy(−η∆)) +O(∆2).

Then, using forward and backward finite difference approximations, we can rewrite the last two
terms as

fy(η∆) =
f(η1∆, η2∆)− f(η1∆, 0)

η2∆
+O(∆2), fy(−η∆) =

f(−η1∆, 0)− f(−η1∆,−η2∆)

η2∆
+O(∆2),

(23)
and conclude that

∆ (fy(η∆)− fy(−η∆)) =
1

η2
(f(η1∆, η2∆)− f(η1∆, 0)− f(−η1∆, 0) + f(−η1∆,−η2∆))

=
1

η2

(
∆∂+

η f(0, 0)− η1∆fx(0, 0) + ∆∂−η f(0, 0) + η1∆fx(0, 0)
)

+O(∆2)

=
∆

η2

(
∂+
η f(0, 0) + ∂−η f(0, 0)

)
+O(∆2)

=
∆

η2
Dη(0, 0) +O(∆2) = O(∆), (24)

as we wanted. Repeating the computation in the case there are 3 points in B+ and 1 in B−, e.g.
θ∆ ∈ B−, we have that

fh[θ1, θ1 + 1; θ2, θ2 + 1]∗ = f(η∆) + (θ1 + 1− η1)∆fx(η∆) + (θ2 + 1− η2)∆fy(η∆)

− f(η∆)− (θ1 − η1)∆fx(η∆)− (θ2 + 1− η2)∆fy(η∆)

− f(η∆)− (θ1 + 1− η1)∆fx(η∆)− (θ2 − η2)∆fy(η∆) (25)

+ f(−η∆) + (θ1 + η1)∆fx(−η∆) + (θ2 + η2)∆fy(−η∆) +O(∆2)

= f(−η∆)− f(η∆) + ∆η · (∇f(−η∆) +∇f(η∆))︸ ︷︷ ︸
(I)

+ ∆θ · (∇f(−η∆)−∇f(η∆))︸ ︷︷ ︸
(II)

+O(∆2).

For the first part (I), using (7) we have that

f(±η∆) = f(0, 0) + ∆∂±η f(0, 0) +O(∆2), (26)
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which, together with the definition of directional derivative, leads to

f(−η∆)− f(η∆) + ∆η· (∇f(−η∆) +∇f(η∆))

= ∆
(
∂−η f(0, 0)− ∂+

η f(0, 0)
)

+ ∆
(
∂+
η f(η∆)− ∂−η f(−η∆)

)
= O(∆2), (27)

whereas for the second term (II), a computation similar to (24) directly gives

∆θ · (∇f(−η∆)−∇f(η∆)) = −∆

(
θ1

η1
+
θ2

η2

)
Dη(0, 0) +O(∆2) = O(∆). (28)

Using the same technique, we can get the same conclusion also in the case of the 3-points stencil.
In fact, if for example 2 points are in B− and 1 in B+, e.g. (θ1 + 2, θ2) ∈ B+, we have

fh[θ1, θ1 + 1, θ1 + 2; θ2]∗ = f((θ1 + 2)∆, θ2∆)− 2f((θ1 + 1)∆, θ2∆) + f(θ1∆, θ2∆)

= f(η∆) + (θ1 + 2− η1)∆fx(η∆) + (θ2 − η2)∆fy(η∆) (29)
− 2 (f(−η∆) + (θ1 + 1 + η1)∆fx(−η∆) + (θ2 + η2)∆fy(−η∆))

+ f(−η∆) + (θ1 + η1)∆fx(−η∆) + (θ2 + η2)∆fy(−η∆) +O(∆2)

= f(η∆)− f(−η∆)−∆η · (∇f(−η∆) +∇f(η∆))︸ ︷︷ ︸
(I)

+ ∆(θ + 2) · (∇f(η∆)−∇f(−η∆))︸ ︷︷ ︸
(II)

+O(∆2),

which analogously to the previous cases, leads to

fh[θ1, θ1 + 1, θ1 + 2; θ2]∗ = ∆

(
θ1 + 2

η1
− θ2 + 2

η2

)
Dη(0, 0) +O(∆2) = O(∆). (30)

Finally, exploiting relations (18)-(19), the previous computations directly imply that, if the stencil
of some undivided difference in (14) intersects the curve Γ, then the formula (13) gives

βk,w =
(O(∆))2

∆x∆y
= O(1), (31)

whence the thesis for Case A2.
Proof of Case A3: To complete the proof for Case A, we have to consider the situation in which
some point of the stencil of the second order undivided difference stays along the tangent line (case
A3) ), which happens in particular when ξ is one of the considered nodes belonging to the stencil.
For the square stencils we can have:

• 3 points in B± and 1 on Γ

• 2 points in B±, 1 in B∓ and 1 on Γ

• 1 point in B±, 1 in B∓ and 2 on Γ, that is when the curve is diagonal to the grid.

For the 3-points stencil we can only encounter:

• 2 points in B± and 1 on Γ

• 1 points in B±, 1 in B∓ and 1 on Γ.
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B−

B+

ξ

θξ∆

Γ

(xj , yi)

ω−−

Ii,j

Figure 3: On the left, two possible stencils around the point θξ∆ crossed by the singularity curve Γ (Case B). On
the right, stencils of the polynomials needed to compute ω−−.

When the singularity touches the stencil only at some vertex, then the undivided difference cannot
see the jump. In fact, computing for example in the case of the square stencil, if θ∆ ∈ Γ and the
other points are in B+,

fh[θ1, θ1 + 1; θ2, θ2 + 1]∗ = f(η∆) + (θ1 + 1− η1)∆fx(η∆) + (θ2 + 1− η2)∆fy(η∆)

− f(η∆)− (θ1 − η1)∆fx(η∆)− (θ2 + 1− η2)∆fy(η∆)

− f(η∆)− (θ1 + 1− η1)∆fx(η∆)− (θ2 − η2)∆fy(η∆)

+ f(η∆) + ∆(θ − η) · ∇+f(η∆) +O(∆2)

= ∆(θ − η) ·
(
∇+f(η∆)−∇f(η∆)

)
+O(∆2) = O(∆2). (32)

Using analogous reasoning it is straightforward to show that for the other two cases of the square
stencil we can obtain (25), (22), respectively. In fact, it is enough to develop the points on Γ
along ±η∆ using ∇±f , which are always well defined. In the same way, for the 3-points stencil, if
(θ1 + 1, θ2)∆ ∈ Γ, we get

fh[θ1, θ1 + 1, θ1 + 2; θ2]∗ = f(η∆) + (θ1 + 2− η1)∆fx(η∆) + (θ2 − η2)∆fy(η∆)

− f(η∆)−∆((θ1 + 1, θ2)− η) · ∇+f(η∆)− f(−η∆)

−∆((θ1 + 1, θ2) + η) · ∇−f(−η∆)

+ f(−η∆) + (θ1 + η1)∆fx(−η∆) + (θ2 + η2)∆fy(−η∆) +O(∆2)

= ∆
[
((θ1 + 1, θ2)− η) ·

(
∇f(η∆)−∇+f(η∆)

)
+(θ + η) ·

(
∇f(−η∆)−∇−f(−η∆)

)]
+ ∆

(
fx(η∆)− f−x (−η∆)

)
+O(∆2)

=
∆

η1
Dη(0, 0) +O(∆2) = O(∆). (33)

At this point, as it has been done in the previous case, it is enough to use (18)-(19) in (13) to obtain
the thesis also for case A3.
Case B. If the curve Γ does not intersect the points of the stencil Sk,w, but it is such that Sk,w

⋂
Γ 6=

∅, focusing on a particular point ξ = (0, 0) ∈ Γ, there always exists a vector θξ ∈ R2 such that
θξ∆ ∈ Sk,w, as shown in Fig. 3, on the left. Consequently, we can repeat the same computations of
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the previous case simply by defining the function

fh,ξ(θ) := f((θ − θξ)∆), (34)

using which we have

fh,ξ(θ) = f(±η∆) + (θ − θξ ∓ η)∆ · ∇f(±η∆) +O(∆2), for θ∆ ∈ B±, (35)

and the thesis for Case B follows with minor modifications.

Remark 2.3. It is good to notice that, if we remove the assumption on the second order derivatives
in regions of regularity, we can only obtain the inequality βk,w ≤ O(∆2) for case i). This fact, as
pointed out firstly in [2] in the one-dimensional case and then taken up in a multidimensional setting
several times, e.g. in the WENOZ schemes [12], may cause a loss of accuracy at critical points.
Nevertheless, it can be avoided by simply adding a small quantity σh = σ∆2, for some constant
σ > 0, to the smoothness coefficients βk,w, as we will assume in the sequel, choosing σ = 2.

2.1 Construction of a smoothness indicator function in 2D

We want to construct a smoothness indicator function φ such that

φi,j = φ(ωi,j) :=

{
1 if the function f is regular in Ii,j ,
0 if Ii,j contains a point of singularity, (36)

where Ii,j := [xj−1, xj+1] × [yi−1, yi+1] and ωi,j is the smoothness indicator at the node (xj , yi)
depending on the values of the function f . From here on, in order to obtain an easy and explicit
formula, we will focus on the case n = m = 2, which is also enough for our needs. Notice that
with this assumption we work with polynomials of second degree in each variable, constructed on a
stencil of nine points. Then, (3) simply reads

βk,w =

2∑
α1,α2=0
|α|≥2

∫ xj

xj−1

∫ yi

yi−1

∆x2(α1−1)∆y2(α2−1)
(
∂α1
x ∂α2

y Pk,w(x, y)
)2
dxdy, (37)

where we have made the choice γi = 2(αi − 1), i = 1, 2, as suggested by Prop. 2.2. From now on,
we modify a little bit the notation in order to easily change the integration domain in each subcase.
More in detail, referring to Fig. 3 on the right, we split the domain Ii,j := [xj−1, xj+1]× [yi−1, yi+1]
into four subcells. For each subdomain we inspect separately the regularity of the function f by
comparing only the information given by the “outer” (light blue in the figure) and the “inner” stencil
(yellow in the figure). Consequently, we need only one index to denote the respective stencil, using
‘0’ for the inner stencil, and ‘1’ for the outer one. We refer to these subcells with the superscripts
‘± ±, ± ∓’, according to the sign of the shift between the point (xj , yi) and its symmetrical edge
with respect to the center of the considered cell, in both x and y directions, respectively. For
example, if we focus on the cell [xj−1, xj ] × [yi−1, yi] as in Fig. 3, we use the superscript ‘− −’.
In this way, we define four indicators ω±± and ω±∓ for each point (xj , yi) which quantify the
regularity of the function in all the subcells around the point. Finally, we take ω = min{ω±±, ω±∓}
as the smoothness indicator for the domain Ii,j . In order to compute these indicators, we always
focus on the polynomial constructed on the central stencil S0 = {xj−1, xj , xj+1} × {yi−1, yi, yi+1}
and compare it with the polynomial constructed on the symmetrical stencil with respect to the
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considered subcell (where they overlap), denoting the respective smoothness coefficients by β0 and
β1. Note that with this approach even if we are using the “central” polynomial for all the four
indicators, we have to recompute β0 for each case because of the change in the integration domain.

Remark 2.4. Notice that the situation is slightly, but fundamentally, different from the one-
dimensional case, in which through our procedure we are able to measure the regularity only in
the open interval Ij = (xj−1, xj+1). That is indeed natural if we are focusing on the point xj, since
the integrals (103)-(104), with k = 0, are well-defined if the solution is regular in the open interval
(xj−1, xj+1). On the contrary, in the two-dimensional case, since the boundary of the domain Ii,j is
a rectangle, there are at least two possible directions, called v1 and v2, along which we can compute
the directional derivative at any point (x, y) ∈ Ii,j. Then, if there exists a point ξ = (xs, ys) ∈ Ii,j
such that

∇v1f(ξ) 6= ∇v2f(ξ), (38)

it seems reasonable to consider the interpolating polynomial P0(x, y) not well defined in the whole
domain, also in the case that ξ is one of the points of the boundary. Therefore, the function f should
be considered singular in Ii,j.

Now, we complete the construction for the case of ω−−, the other three follow the exact same
lines. Assuming without loss of generality that (xj , yi) = (0, 0), and using the function fh defined
by (9), we can write the polynomials as

P−−0 (x, y) = fh(−1,−1) + (x+ ∆x)
fh[−1, 0;−1]∗

∆x
+ (y + ∆y)

fh[−1;−1, 0]∗
∆y

(39)

+ x(x+ ∆x)
fh[−1, 0, 1;−1]∗

2∆x2
+ y(y + ∆y)

fh[−1;−1, 0, 1]∗
2∆y2

+ (x+ ∆x)(y + ∆y)
fh[−1, 0;−1, 0]∗

∆x∆y
+ x(x+ ∆x)(y −∆y)

fh[−1, 0, 1;−1, 0]∗
2∆x2∆y

+ y(x+ ∆x)(y + ∆y)
fh[−1, 0;−1, 0, 1]∗

2∆x∆y2
+ xy(x+ ∆x)(y + ∆y)

fh[−1, 0, 1;−1, 0, 1]∗
4∆x2∆y2

,

for the reference stencil, and

P−−1 (x, y) = fh(0, 0) + x
fh[0,−1; 0]∗

∆x
+ y

fh[0; 0,−1]∗
∆y

+ x(x+ ∆x)
fh[0,−1,−2; 0]∗

2∆x2
(40)

+ y(y + ∆y)
fh[0; 0,−1,−2]∗

2∆y2
+ xy

fh[0,−1; 0,−1]∗
∆x∆y

+ xy(x+ ∆x)
fh[0,−1,−2; 0,−1]∗

2∆x2∆y

+ xy(y + ∆y)
fh[0,−1; 0,−1,−2]∗

2∆x∆y2
+ xy(x+ ∆x)(y + ∆y)

fh[0,−1,−2; 0,−1,−2]∗
4∆x2∆y2

.

Whence, we plug these last two expressions in (37) and compute directly

β−−k =
1

∆x∆y

[
f [2, 0]∗

2 + f [0, 2]∗
2 + f [1, 1]∗

2 +
17

12

(
f [2, 1]∗

2 + f [1, 2]∗
2
)

+
317

720
f [2, 2]∗

2+

+f [2, 0]∗f [2, 1]∗ + f [0, 2]∗f [1, 2]∗ −
1

6
(f [2, 0]∗f [2, 2]∗ + f [0, 2]∗f [2, 2]∗)

− 1

12
(f [2, 1]∗f [2, 2]∗ + f [1, 2]∗f [2, 2]∗)

]
(41)
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where we have used the compact notation f [t, s]∗ to denote the multivariate undivided difference of
f of order t in x and s in y. Notice that we avoided to specify the points on which the undivided
difference are computed, aiming at writing a unique formulation for all cases. Before listing the
stencils to be used, it is worth to point out that to obtain this simplification we used the outer
stencil in a smart way, writing the Newton form of the polynomial starting from the origin in both
directions. More precisely, we have used the ordered stencils

S−−0 = {xj−1, xj , xj+1} × {yi−1, yi, yi+1}, S−−1 = {xj , xj−1, xj−2} × {yi, yi−1, yi−2}.

For all the other smoothness coefficients, β++
k , β+−

k , β−+
k , we advise the use of the following ordered

stencils:

• S+−
0 = {xj+1, xj , xj−1} × {yi−1, yi, yi+1}, S+−

1 = {xj , xj+1, xj+2} × {yi, yi−1, yi−2},

• S++
0 = {xj+1, xj , xj−1} × {yi+1, yi, yi−1}, S++

1 = {xj , xj+1, xj+2} × {yi, yi+1, yi+2},

• S−+
0 = {xj−1, xj , xj+1} × {yi+1, yi, yi−1}, S−+

1 = {xj , xj−1, xj−2} × {yi, yi+1, yi+2}.

Note that we are changing also the ordering of the reference stencil in each case. Then, if we
compute the integrals

βζ1ζ2k = (−1)|ζ|
2∑

α1,α2=0
|α|≥2

∫ 0

ζ1∆x

∫ 0

ζ2∆y
∆x2(α1−1)∆y2(α2−1)

(
∂α1
x ∂α2

y P ζ1ζ2k (x, y)
)2
dxdy, (42)

where |ζ| denotes the number of ‘−’ in (ζ1, ζ2), for ζ1, ζ2 = +,−, using the previous ordered stencils,
we obtain the same formula (41). From now on, the construction follows similar steps as in the
usual WENO procedure, but with a slightly different aim. Firstly, we define

α−−k =
1

(β−−k + σh)2
, (43)

then we take the information given by the reference polynomial computing

ω−− =
α−−0

α−−0 + α−−1

, (44)

which will measure the regularity of the function in the cell [xj−1, xj ] × [yi−1, yi]. Once we have
computed in the same way the other three indicators, we can finally define

ω = min{ω−−, ω+−, ω−+, ω++}, (45)

which has properties similar to its one-dimensional counterpart, that is

ωi,j =

{
O(∆4) if (xs, ys) ∈ Ii,j
1
2 +O(∆) otherwise. (46)

Consequently, in order to reduce the oscillations of order O(∆) around the optimal value in regions
of regularity, we can use one of the construction described in A, that is the mapping (111), which
directly gives ω∗i,j = g(ωi,j) = 1

2 + O(∆3), and the ‘WENO-Z’ procedure, which can be directly
generalized to the 2D-case. In fact it is sufficient to substitute the superscript ‘±’ with ‘ζ1ζ2’ in
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(112)-(113). Finally, what is left is to define a function φ such that (36) is satisfied, that is φ = 1
if ω is close to 1

2 and φ = 0, otherwise. The simplest choice is to take

φ(ω) = χ{ω≥M}, (47)

with M < 1
2 , a number possibly dependent on ∆x. Or we can choose a more regular function

φ(ω) =
e−Mω − 1

e−M − 1
, (48)

where now M must be big enough to have a quick transition from 1 to 0. Of course, in this case φ
will be only an approximation of the values 0 and 1 aroud the singularity.
It is worth to point out that, according to the described procedure, when using polynomials of
degree 2 the stencil of the smoothness indicator function φ is very compact, requiring only 5 × 5
points, as shown in Fig. 3 (right).

3 Multidimensional Adaptive Filtered Scheme

The aim of this section is to present the detailed construction of the multidimensional AF scheme,
focusing on the 2D case. Information on each component of the scheme will be given, making the
implementation of the method rather straightforward, having also provided the explicit formulas
for the smoothness indicators in the previous section. Let us consider a uniform grid in space
(xj , yi) = (j∆x, i∆y), j, i ∈ Z, and in time tn = t0+n∆t, n ∈ [0, NT ], with (NT−1)∆t < T ≤ NT∆t.
A typical feature of a filtered scheme SF is that at the node (xj , yi) it is a mixture of a high-order
scheme SA and a monotone scheme SM according to a filter function F and a switching parameter
ε(∆t,∆x). Following this idea, we compute the numerical approximation uni,j = u(tn, xj , yi) of the
viscosity solution of (1) with the simple formula

un+1
i,j ≡ SAF (un)i,j := SM (un)i,j + φni,jε

n∆tF

(
SA(un)i,j − SM (un)i,j

εn∆t

)
, i, j ∈ Z, (49)

where εn is the switching parameter at time tn and φni,j is the smoothness indicator function at the
node (xj , yi) and time tn defined in (36) for a general function f , now depending on the values of the
approximate solution un. Filtered schemes are precisely designed in order to be high-order accurate
where the solution is smooth and monotone near singularities. This feature allows to naturally prove
convergence to the viscosity solution with error estimates, relying on the classical result of Crandall
and Lions [11], and to obtain the high-order consistency property with very mild assumptions on
the various components, as it has been shown in [15] for the one-dimensional version of the scheme.

3.1 Assumptions on the schemes

Let us describe the assumptions on the basic schemes SM and SA, which are direct generaliza-
tions in two space dimensions of those presented in [15].
Assumptions on SM .

(M1) The scheme can be written in differenced form

un+1
i,j ≡ SM (un)i,j := uni,j −∆t hM

(
xj , yi, D

−
x u

n
i,j , D

+
x u

n
i,j , D

−
y u

n
i,j , D

+
y u

n
i,j

)
(50)

for a function hM (x, y, p−, p+, q−, q+), withD±x uni,j := ±uni,j±1−uni,j
∆x andD±y uni,j := ±uni±1,j−uni,j

∆y ;
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(M2) hM is a Lipschitz continuous function;

(M3) (Consistency) ∀u, v, hM (·, ·, u, u, v, v) = H(·, ·, u, v);

(M4) (Monotonicity) for any functions u, v, u ≤ v ⇒ SM (u) ≤ SM (v).

Under assumption (M2), the consistency property (M3) is equivalent to say that for all functions
v ∈ C2([0, T ]× R), there exists a constant CM ≥ 0 independent on ∆ = (∆t,∆x,∆y) such that

EM (v)(t, x, y) :=

∣∣∣∣v(t+ ∆t, x, y)− SM (v(t, ·, ·))(x, y)

∆t

∣∣∣∣ ≤ CM (∆t||vtt||∞+∆x||vxx||∞+∆y||vyy||∞) ,

(51)
where EM is the consistency error. The last relation highlights the well-known first order bound on
the accuracy of the monotone schemes for regular solutions.

Remark 3.1. It is worth to notice that, under the Lipschitz assumption (M2), it can be shown that
the monotonicity property (M4) is equivalent to require, for a.e. (p−, p+) ∈ R2,

∂hM

∂p−
≥ 0,

∂hM

∂p+
≤ 0,

∂hM

∂q−
≥ 0,

∂hM

∂q+
≤ 0, (52)

and the Courant-Friedrichs-Lewy (CFL) condition

∆t

∆x

(
∂hM

∂p−
− ∂hM

∂p+

)
+

∆t

∆y

(
∂hM

∂q−
− ∂hM

∂q+

)
≤ 1. (53)

We define the constant ratios λx := ∆t
∆x , λy := ∆t

∆y , such that (53) is satisfied and we call the CFL
number as the maximum λ = max{λx, λy}.
Example 3.2. In this example we recall some monotone schemes in differenced form satisfying
(M1)-(M4), which will be used in the numerical tests. Further examples can be found in [28].

• For the eikonal equation,
vt +

√
v2
x + v2

y = 0, (54)

we can use the simple numerical hamiltonian

hM (p−, p+, q−, q+) :=

√
max{p−,−p+, 0}2 + max{q−,−q+, 0}2. (55)

• For general equations depending also on the space variables, instead, we can use the 2D-version
of the Local Lax-Friedrichs hamiltonian

hM (x, y, p−, p+, q−, q+) := H

(
x, y,

p− + p+

2
,
q− + q+

2

)
(56)

− αx(p−, p+)

2
(p+ − p−)− αy(q

−, q+)

2
(q+ − q−),

with

αx(p−, p+) = max
p∈I(p−,p+)

|Hp(x, y, p, q)| , αy(q
−, q+) = max

q∈I(q−,q+)
|Hq(x, y, p, q)| , (57)

where the maximum are computed uniformly in q and p, respectively, and I(a, b) repre-
sents the interval with endpoints a and b. The scheme is monotone under the restriction
λx max|Hp|+λy max|Hq|≤ 1.
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Assumptions on SA.

(A1) The scheme can be written in differenced form

un+1
j = SA(un)j := unj −∆thA

(
{x}j , {y}i, Dk,−

x ui,j , . . . , D
−
x u

n
i,j , D

+
x u

n
i,j , . . . , D

k,+
x uni,j ,

Dk,−
y ui,j , . . . , D

−
y u

n
i,j , D

+
y u

n
i,j , . . . , D

k,+
y uni,j

)
, (58)

for some function hA(xj , yi, p
−, p+, q−, q+) (in short), with Dk,±

x uni,j := ±uni,j±k−uni,j
k∆x and

Dk,±
y uni,j := ±uni±k,j−uni,j

k∆y , where with {x}j , {y}i, we denoted a stencil of points around the
node (xj , yi);

(A2) hA is a Lipschitz continuous function.

(A3) (High-order consistency) Fix k ≥ 2 order of the scheme (for all the variables), then for all
l = 1, . . . , k and for all functions v ∈ C l+1, there exists a constant CA,l ≥ 0 such that

EA(v)(t, x, y) :=

∣∣∣∣v(t+ ∆t, x, y)− SA(v(t, ·))(x, y)

∆t

∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞+∆yl||∂l+1

y v||∞
)
. (59)

In order to restate the consistency property in a more useful form, let us compute the Taylor
expansion

v(t+ ∆t, x, y) = v(t, x, y) + ∆tvt(t, x, y) +
∆t2

2
vtt(t, x, y) +O

(
∆t3

)
, (60)

which gives, dropping the dependence on (x, y) for brevity,

vtt =
∂

∂t
(−H(x, y, vx, vy)) = −Hp(x, y, vx, vy)vxt −Hq(x, y, vx, vy)vyt

= Hp(x, y, vx, vy)
∂

∂x
(H(x, y, vx, vy)) +Hq(x, y, vx, vy)

∂

∂y
(H(x, y, vx, vy))

= Hp (Hpvxx +Hx) +Hq (Hqvyy +Hy) + 2HpHqvxy, (61)

where in the last equality we dropped the functional dependence for brevity. Then, assuming (A1)-
(A2), it is straightforward to write the consistency property in terms of the numerical hamiltonian
hA, that is

(A3′) (High-order consistency) Fix k ≥ 2 order of the scheme (for all the variables), then for all
l = 1, . . . , k and for all functions v ∈ C l+1, there exists a constant CA,l ≥ 0 such that

EA(v)(t, x, y) :=
∣∣hA(x, y,D−x v,D

+
x v,D

−
y v,D

+
y v)−H(x, y, vx, vy)

+
∆t

2

[
Hp(x, y, vx, vy)

∂

∂x
(H(x, y, vx, vy)) +Hq(x, y, vx, vy)

∂

∂y
(H(x, y, vx, vy))

]∣∣∣∣
≤ CA,l

(
∆tl||∂l+1

t v||∞+∆xl||∂l+1
x v||∞+∆yl||∂l+1

y v||∞
)
. (62)

In the following examples we present some simple high-order schemes satisfying (A1)-(A3) with
l = 2, dropping the dependence on (i, j) (and also on n) in order to avoid cumbersome notations.
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Example 3.3. The easiest way is to consider a second order in space numerical hamiltonian hA∗

hA∗ (x, y,D−x v,D
+
x v,D

−
y v,D

+
y v) = H(x, y, vx, vy) +O

(
∆x2

)
+O

(
∆y2

)
, (63)

such as the simple second order Centered approximation

hA∗ (x, y,D−x u,D
+
x u,D

−
y u,D

+
y u) = H

(
x, y,

D−x u+D+
x u

2
,
D−y u+D+

y u

2

)
, (64)

and combine it with the second order Heun method,{
u∗ = un −∆thA∗ (x, y,D−x u

n, D+
x u

n, D−y u
n, D+

y u
n)

un+1 = 1
2u

n + 1
2u
∗ − ∆t

2 h
A
∗ (x, y,D−x u

∗, D+
x u
∗, D−y u

∗, D+
y u
∗).

(65)

Example 3.4. In this example we propose a series of numerical hamiltonians hA obtained dis-
cretizing directly the formula (61). The first is the most direct and simple discretization, named
Lax-Wendroff (LW) scheme

hA(x, y,D±x u,D
±
y u) = H(x, y,Dxu,Dyu)

− ∆t

2

[
Hp(x, y,Dxu,Dyu)

(
Hp(x, y,Dxu,Dyu)D2

xu+Hx(x, y,Dxu,Dyu)
)

+Hq(x, y,Dxu,Dyu)
(
Hq(x, y,Dxu,Dyu)D2

yu+Hy(x, y,Dxu,Dyu)
)

+2Hp(x, y,Dxu,Dyu)Hq(x, y,Dxu,Dyu)D2
xyu
]
, (66)

where D±x u, Dxu, D2
xu, D±x u, Dxu, D2

xu are, respectively, the usual one-sided and centered one-
dimensional finite difference approximations of the first and second derivative in the x and y direc-
tion, whereas for the mixed derivative we use

D2
xyui,j =

ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆x∆y
. (67)

Notice that the derivatives of H can be computed either analytically or by some second order nu-
merical approximation. In particular, to compute the derivative Hx, we can simply use

(Hx)i,j =
H(xj+1, yi, Dxui,j , Dyui,j)−H(xj−1, yi, Dxui,j , Dyui,j)

2∆x
, (68)

and analogously for Hy. This hamiltonian has been used in [14], where the authors propose a new
high-order accurate method for image segmentation.

Another possibility, which is more closely related to the one-dimensional Lax-Wendroff scheme,
is the following Lax-Wendroff (LW2) scheme

hA(x, y,D±x u,D
±
y u) =H(x, y,Dxu,Dyu)− ∆t

2
Hp(x, y,Dxu,Dyu) (H∗x +Hx(x, y,Dxu,Dyu))

− ∆t

2
Hq(Dxu,Dyu)

(
H∗y +Hy(x, y,Dxu,Dyu)

)
, (69)

where we have defined

H∗x =
1

∆x

[
H

(
xj , yi,

ui,j+1 − ui,j
∆x

,
ui+1,j+1 − ui−1,j+1 + ui+1,j − ui−1,j

4∆y

)
−H

(
xj , yi,

ui,j − ui,j−1

∆x
,
ui−1,j − ui−1,j + ui+1,j−1 − ui−1,j−1

4∆y

)]
(70)
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and

H∗y =
1

∆y

[
H

(
xj , yi,

ui+1,j+1 − ui+1,j−1 + ui,j+1 − ui,j−1

4∆x
,
ui+1,j − ui,j

∆y

)
−H

(
xj , yi,

ui,j+1 − ui,j−1 + ui−1,j+1 − ui−1,j−1

4∆x
,
ui−1,j − ui,j

∆y

)]
. (71)

This can be seen as a discretization of the third relation in (61).

The last example we propose, which can be used in the case the hamiltonian does not depend on the
space variables, is the Richtmyer form,

hA(D±x u,D
±
y u) = H

(
Dxu−

∆t

2
H∗x, Dyu−

∆t

2
H∗y

)
, (72)

where H∗x and H∗y are computed as in (70)-(71), without the dependence on (xj , yi). In particular,
it is worth to notice that this last scheme does not require any computation of Hp or Hq.

Example 3.5. Finally, we would like to show a simple way to define a scheme satisfying (A1)-(A3)
with l = 4, reminding that, in our approach, the high-order scheme has no need to be stable, in any
sense. Then, generalizing the construction of Example 3.3, we can define a fourth-order scheme by
combining the simple fourth-order central approximation

hA∗
(
xj , yi, D

−
x u,D

+
x u,D

−
y u,D

+
y u
)

= H
(
xj , yi, D

∗
xu,D

∗
yu
)
, (73)

where the approximated partial derivative are computed as

D∗xu =
ui,j−2 − 8ui,j−1 + 8ui,j+1 − ui,j+2

12∆x
, D∗yu =

ui−2,j − 8ui−1,j + 8ui+1,j − ui+2,j

12∆y
, (74)

with the classical fourth-order Runke-Kutta scheme

u(1) = un − ∆t
2 h

A
∗ (D±un)

u(2) = un − ∆t
2 h

A
∗
(
D±u(1)

)
u(3) = un −∆thA∗

(
D±u(2)

)
un+1 = un − ∆t

6

[
hA∗ (D±un) + 2hA∗

(
D±u(1)

)
+ 2hA∗

(
D±u(2)

)
+ hA∗

(
D±u(3)

)]
= 1

3

[
2u(2) + u(3) − ∆t

2

(
hA∗ (D±un) + hA∗

(
D±u(3)

))]
.

(75)

Note that, differently from the approach usually used when working with Hamilton-Jacobi equations
(e.g. WENO schemes of higher order), we do not require the time discretization to be Total Vari-
ation Diminishing (TVD), thus we can use the more efficient formula (75), which is also easier to
implement with respect to the TVD version (see [27] for more details). It is worth to point out that,
due to the Runke-Kutta procedure, the stencil of the scheme is not very compact, requiring 17× 17
points in total.

3.2 Filter function

In order to couple the schemes and their properties, we need to define a filter function F, such
that
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(F1) F (ρ) ≈ ρ for |ρ|≤ 1,

(F2) F (ρ) = 0 for |ρ|> 1,

which implies that

• If |SA − SM |≤ ∆tεn and φni,j = 1⇒ SAF ≈ SA

• If |SA − SM |> ∆tεn or φni,j = 0⇒ SAF = SM .

It is clear that several possible definitions for F satisfy these two requirements. In [15] the authors
presented some examples of filter functions satisfying the previous relations with different regularity
properties. In this work, also for comparison reasons, we use the filter function defined in [7] as

F (ρ) =

{
ρ if |ρ|≤ 1
0 otherwise, (76)

which is clearly discontinuous at ρ = −1, 1 and satisfies trivially the properties (F1)-(F2).

3.3 Tuning of εn

Finally, the last step is to compute the switching parameter εn. If we want the scheme (49) to
switch to the high-order scheme when some regularity is detected, we have to choose εn such that∣∣∣∣SA(vn)i,j − SM (vn)i,j

εn∆t

∣∣∣∣=
∣∣∣∣∣h

A
(
D±x v

n, D±y v
n
)
i,j
−hM

(
D±x v

n, D±y v
n
)
i,j

εn

∣∣∣∣∣ ≤ 1, for (∆t,∆x,∆y)→ 0,

(77)
in the region of regularity at time tn, that is Rn =

{
(xj , yi) : φni,j = 1

}
, where, for Ii,j =

[xj−1, xj+1]× [yi−1, yi+1],

φni,j =

{
1 if the solution un is regular in Ii,j ,
0 if Ii,j contains a point of singularity. (78)

In order to estimate the distance between the numerical hamiltonians, we first proceed by Taylor
expansions for the monotone scheme, obtaining

hM
(
x, y,D±x v

n, D±y v
n
)

=H
(
x, y, vnx , v

n
y

)
+

∆x

2
vnxx
(
∂p+h

M
i,j − ∂p−hMi,j

)
(79)

+
∆y

2
vnyy
(
∂q+h

M
i,j − ∂q−hMi,j

)
+O

(
∆x2

)
+O

(
∆y2

)
,

whereas for the high-order scheme, by using the consistency property,

hA
(
x, y,D±x v

n
i,j , D

±
y v

n
i,j

)
=H

(
x, y, vnx , v

n
y

)
− ∆t

2

[
H2
p

(
x, y, vnx , v

n
y

)
vnxx +H2

q

(
x, y, vnx , v

n
y

)
vnyy

+2Hp

(
x, y, vnx , v

n
y

)
Hq

(
x, y, vnx , v

n
y

)
vxy
]
+O

(
∆t2

)
+O

(
∆x2

)
+O

(
∆y2

)
.

(80)

Whence, from (77) we obtain

εn ≥
∣∣∣∣∆x2 vnxx

[
∂p+h

M−∂p−hM+λxH
2
p

(
x, y, vnx , v

n
y

)]
+

∆y

2
vnyy
[
∂q+h

M − ∂q−hM+λyH
2
q

(
x, y, vnx , v

n
y

)]
+∆tvnxyHp

(
x, y, vnx , v

n
y

)
Hq

(
x, y, vnx , v

n
y

)
+O

(
∆t2

)
+O

(
∆x2

)
+O

(
∆y2

)∣∣ , (81)
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that has to be satisfied in Rn. Then, we use a numerical approximation of the lower bound on the
right hand side of the previous inequality to obtain the formula for εn. In order to devise a simple
formula, we introduce the notation

h̃Mp+ = hM
(
x, y,Dxu

n, D+
x u

n, Dyu
n, Dyu

n
)
− hM

(
x, y,Dxu

n, D−x u
n, Dyu

n, Dyu
n
)
, (82)

with the other cases following analogously. Finally, the simplest discretization, which we use in the
numerical examples, is

εn = max
(xj ,yi)∈Rn

K

∣∣∣∣∆t2 [
Hp

(
Hx +HpD

2
xu

n
)

+Hq

(
Hy +HqD

2
yu

n
)

+ 2HpHqvxy)
]

+
(
h̃Mp+ − h̃Mp−

)
+
(
h̃Mq+ − h̃Mq−

)∣∣∣ , (83)

where all the derivatives of H are computed at (x, y,Dxu
n, Dyu

n) and the finite difference approx-
imations around the point (i, j), while K > 1

2 . Another possibility, which does not require the
computation of the derivatives of H and it is valid in the case the hamiltonian does not depend on
the space variables, is the following

εn = max
(xj ,yi)∈Rn

K

∣∣∣∣H (Dxu
n, Dyu

n)−H
(
Dxu

n − λx
2
H∗x, Dyu

n − λy
2
H∗y

)
+
(
h̃Mp+ − h̃Mp−

)
+
(
h̃Mq+ − h̃Mq−

)∣∣∣ , (84)

where H∗x and H∗y are defined by (70)-(71).

4 Numerical tests

In this section we want to validate, through several interesting numerical tests, the proposed
new smoothness indicators defined in Sect. 2, showing also their application in the construction
of AF schemes introduced in Sect. 3. We divided the tests into two parts. In the first part, we
focus on the smoothness indicators in one and two space dimensions, considering in both cases
singularities that fall on a grid point or inside some cell. In the second part, we solve some well-
known evolution problems by using AF schemes composed with different choices of the high-order
scheme. Moreover, we compare the results with other state-of-the-art schemes, as the basic filtered
scheme [7], an optimized version of the WENO scheme of second/third order [20], and of the WENO
3/5 with RK3 (TVD) and RK4 (not TVD) as time integrator. For each numerical test, we will
specify the parameters and the numerical schemes involved in the computations. All the numerical
tests have been implemented in language C++, with plots in MATLAB. The computer used for the
simulations is a Notebook Asus F556U Intel Core i7-6500U with speed of 2.59 GHz and 12 GB of
RAM.

4.1 Tests on the smoothness indicators

Before illustrating the numerical tests in 2D, we start this section with a 1D test in order to
show the good properties of the one-dimensional indicators, stated by Prop. A.1. For a more
extensive presentation of numerical tests, we refer the reader to [28]. For all the tests reported in
this subsection related to the smoothness indicators, we will consider the discontinuous function φ
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defined in (47) with M = 0.2 and we will use periodic Boundary Conditions (BCs) to implement
the indicators.
For the two dimensional tests, we compare the results obtained by using our smoothness coefficients
(41) with two other possible constructions. The first comes from (37) considering the restriction
|α|= 2 in the summation, arriving to define

βPk,w :=
∑
|α|=2

∫ xj

xj−1

∫ yi

yi−1

∆x2(α1−1)∆y2(α2−1)
(
∂α1
x ∂α2

y Pk,w(x, y)
)2
dxdy (85)

=
1

∆x∆y

[
f [2, 0]∗

2 + f [0, 2]∗
2 + f [1, 1]∗

2 +
5

12

(
f [2, 1]∗

2 + f [1, 2]∗
2
)

+
17

720
f [2, 2]∗

2

+f [2, 0]∗f [2, 1]∗ + f [0, 2]∗f [1, 2]∗ −
1

6
(f [2, 0]∗f [2, 2]∗ + f [0, 2]∗f [2, 2]∗)

− 1

12
(f [2, 1]∗f [2, 2]∗ + f [1, 2]∗f [2, 2]∗)

]
.

Due to the origin, we used the apex ’P’, which stands for Partial. The second construction considered
for comparison is the simplest and direct 2D-extension of the 1D smoothness indicators, which can
be obtained by dimensional splitting, that is,

ωsplit = min{ωx, ωy}, (86)

where ωx and ωy are the 1D smoothness indicators in x and y direction, respectively, computed
as the minimum between ω− and ω+ defined in (106), fixing each time the other variable. More
precisely, in the numerical simulations we use the construction with r = 2 presented in A, adding the
mapping (111) to reduce the oscillations in regular regions, as it is done for both 2D indicators. Note
that for the “genuine” 2D indicator which uses the smoothness coefficients (41) we use polynomials
in Q2(R2), whereas for the splitting indicator only couples of polynomials in P2(R). The latter
approach, although very simple and fast, has clearly some drawbacks in terms of reliability with
respect to the "full" 2D indicator that uses (41), especially because of the oscillations around the
optimal value in regions of regularity and the problems in localizing singularities which do not
fall on grid points, as will be exposed more clearly in the numerical tests. In order to distinguish
these slight different 2D indicators, we will denote by ωF2D, and ωP2D, the indicators that use the
smoothness coefficients (41) or (85), respectively.

Test 1. Let us consider a 1D case where the function, visible in Fig. 4, is defined as

f(x) =

 min
{

(1− x)2, (1 + x)2
}2 if − 1 ≤ x ≤ 1,

sin
(
π
2 (x− 3)

)
if 2 ≤ x ≤ 4,

0 otherwise,
(87)

with Ω = [−1.5, 4.5]. The first part of the function is clearly in C2 ([−1, 1] \ {0}), since it has a
discontinuity in the first derivative located at x = 0, whereas the second is in C∞ ((2, 4)) and it is
discontinuous at x = 2 and x = 4. We perform the test in two cases: when the singularity falls
on a grid point and when it falls inside a cell. In both cases we compare the mapped indicators
g(ω) defined in (111) and the new WENO-Z indicators ωZnew defined in (113) using τnew reported
in (115), both with r = 2, for φ defined by (47) with M = 0.2.

In Figs. 5-6 we can see the results obtained by the two indicators in the case the singularity falls
on a grid point. It is clear that both indicators perform very well, being able to detect the points of
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Figure 4: Test 1 in 1D. Piecewise regular function defined in (87) with a singularity in x = 0 and discontinuities in
x = 2 and x = 4.

singularity, the discontinuities and the regular regions. We can note that, as better explained in A,
ωZnew presents smaller oscillations around the optimal value 1

2 in regular regions. These oscillations
disappear rapidly as the grid is refined. It is good to point out that the stencil of the two indicators
is exactly the same, but in the case of ωZnew we make a clever use of the full stencil (composed
by 5 points) in order to increase the accuracy, reducing also the computational cost with respect
to the mappings g(ω). Moreover, we notice that around discontinuities the region detected by the
indicator is amplified. This is natural since a jump discontinuity corresponds to an interval where
the linear reconstruction has a very high derivative, as can be seen looking at Fig. 4.

In Figs. 7-8 we repeat the test shifting the computational domain in order to have the singularity
fall inside a cell, precisely on the left with respect to the center of the cell to break the underlying
symmetry of the setting. In this case we can observe that the mapped indicators have some problems
in detecting the right endpoint of the cell for ∆x = 0.1, problems which are solved as soon as the
grid is refined. On the other hand, the indicators ωZnew are able to correctly detect the singular cell
and have again smaller oscillations in smooth regions.

Figure 5: Test 1. Singularity on grid points. Results obtained using g(ω) (left) and ωZnew (right) both with r = 2,
for ∆x = 0.1 (first two columns) and ∆x = 0.05 (last two columns).

Test 2. Let us start the 2D tests considering a case where the singularities are located at a point
and on a circle. We thus consider the cone visible in Fig. 9a, defined by the following equation

f(x, y) =

{
1−

√
x2 + y2 if x2 + y2 ≤ 1

0 otherwise ,
(88)

in the square [−2, 2]2, which clearly has a point of singularity located in the origin and a singularity
circle at the base of the cone. We compare the results obtained using the splitting indicators
ωsplit, and the two indicators defined in (41) and (85), denoted by ωF2D (Full) and ωP2D (Partial),
respectively, in order to identify the best choice that will be used for the implementation of the AF

23



Figure 6: Test 1. Singularity on grid points. Results obtained using φ(g(ω)) (left) and φZnew (right) both with
r = 2, for ∆x = 0.1(first two columns) and ∆x = 0.05 (last two columns).

Figure 7: Test 1. Singularity inside a cell. Results obtained using g(ω) (left) and ωZnew (right) both with r = 2, for
∆x = 0.1 (first two columns) and ∆x = 0.05 (last two columns).

Figure 8: Test 1. Singularity inside a cell. Results obtained using φ(g(ω)) (left) and φZnew (right) both with r = 2,
for ∆x = 0.1 (first two columns) and ∆x = 0.05 (last two columns).

(a) (b) (c)

Figure 9: Tests in 2D. (a) Singularities at a point and on a circle, (b) A singularity at the origin, (c) Non differentiable
at the origin.

scheme considered in the numerical simulations reported in Sect. 4.2. We analyze both cases in
which the point of singularity in the origin falls on a grid point or inside a cell (again not in the
center but shifted toward the south/west node). First, we analyze the case of the central singularity
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falling on a grid point, using the contour plots to show precisely the behavior of the indicators with
respect to the location of the singularities. In order to highlight this fact, we plot also the points of
singularity, in red in Fig. 10, in green in Fig. 11.

From Fig. 10 we can see that all the indicators seem to detect the right regions of singularity and
have a very good behavior in regular regions (in light green), although ωF2D is evidently more precise.
Looking at the neighborhood of the origin we can note that both ωP2D and ωsplit have fluctuations
only in the diagonal direction, with the latter presenting wider oscillations and spreading too much
the singular area, whereas ωF2D has a more uniform behavior, also around the singularities on the
circle.

Figure 10: Test 2. Singularity on a grid point. Results obtained using g(ω) with ωsplit (left), ωP2D (middle) and
ωF2D (right), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Consequently, looking at Fig. 11, in which we have highlighted only the 0.1-level and the 1-level,
we have that φF2D recognizes with extreme precision all the cells and the grid nodes containing a
singularity, whereas φP2D seems to miss some points of the circle and localizes the singularity in
the center, consisting in this case of just the origin and the four points in the diagonal direction.
Similarly to the latter, φsplit seems to miss some points on the circle, whereas has better precision
in detecting the singularity in the origin, at least in the first refinement, although it spreads the
singular area in the diagonal direction when the grid is refined. This behavior is rather typical
and will be found also in the other simulations. The full indicator ωF2D is able to detect singular
cells even when the singularity just barely intersects the considered region, whereas ωP2D and ωsplit
recognize only “strong” singularities, that are close to a grid point or situated around the center of
the considered cell. Moreover, looking at the behavior of φP2D around the singularity in the center,
enlarging the detected singular region, which instead should consist of only one point, we are led
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Figure 11: Test 2. Singularity on a grid point. Results obtained using φsplit (left), φP2D (middle) and φF2D (right),
for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

to believe that the results of φF2D are more precise and, evidently, more stable with respect to mesh
refinements.

Next, we repeat the test using a grid staggered with respect to the singularity in the origin.
Figs. 12 and 13 confirm the impressions given by the previous simulation. In fact, the indicator
ωF2D and the function φF2D are able to recognize all the cells containing a singularity, in particular
those around the circle, which is always inside the 0-level set of φF2D (see Fig. 13 on the right).
Instead, ωP2D and ωsplit have a rather asymmetrical behavior on the circle. The portion of the circle
in the “South-West” direction is well detected, whereas on the other three directions the detected
regions degenerate into points (see Fig. 13 on the left and in the middle). Moreover, in Fig. 13
we can observe that the simple φsplit spreads unnaturally the singular region in the center. Notice
that in this case also the full indicator has a particular behavior around the origin in the second
refinement, spreading the detected singular region in the direction of the singularity.

Test 3. For this test we consider the nonlinear function visible in Fig. 9b, which is regular in the
whole domain except in the origin, where it presents a singularity, that is

f(x, y) = −e−(x2+y2) sin
(√

x2 + y2
)
, (x, y) ∈ [−2, 2]2. (89)

Since our aim is mainly to show the good behavior of the indicators also in non trivial regularity
regions, we perform the test only considering the point of singularity on a grid node. This is
also why, focusing on the singularity in the origin, the results are very similar to those of the
previous test, especially with the staggered grid. Figs. 14 and 15 (in which we have zoomed the
neighborhood of the singularity) follow the same line of the first test, at least regarding the behavior
of the multidimensional indicators around the point of singularity in the origin. In fact, we can
observe that ωF2D has again a more uniform behavior with respect to ωP2D in all directions, whereas
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Figure 12: Test 2. Singularity inside a cell. Results obtained using g(ω) with ωsplit (left), ωP2D (middle) and ωF2D
(right), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Figure 13: Test 2. Singularity on a grid point. Results obtained using φsplit (left), φP2D (middle) and φF2D (right),
for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.
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Figure 14: Test 3. Singularity on a grid point. Results obtained using g(ω) with ωsplit (left), ωP2D (middle) and
ωF2D (right), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Figure 15: Test 3. Singularity on a grid point. Results obtained using φsplit (left), φP2D (middle) and φF2D (right)),
for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.
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the results on the regular regions are practically the same. On the other hand, in this situation the
splitting indicator ωsplit gives evidently worse results, spreading the detected region in the diagonal
directions, which moreover does not shrink as the grid is refined (see Fig. 15 on the left). Note that,
because of the periodic boundary conditions, all the indicators correctly detect more singularities at
the borders, as can be seen in Fig. 14. We avoided to represent the corresponding detected regions
in order to highlight the behavior of the indicators around the singularity in the origin, which was
our primary interest.

Summarizing the previous observations on Tests 2 and 3, we can deduce that the formula (85)
is more suitable to localize singularities with high precision, since the corresponding indicator is
able to select the correct grid points or cells characterized by a strong discontinuity in the gradient.
Instead the splitting indicator, although faster and simpler to implement, presents various drawbacks
which makes it rather unreliable and unfit for our purposes. On the other hand, using the formula
(41), we are able to precisely detect the regularity of the function in the whole domain Ii,j =
[xj−1, xj+1] × [yi−1, yi+1], boundary included. Hence, it is clear that the correct indicators for the
construction of our AF scheme should be based on (41), instead of (85), since when constructing non
splitting 2D-numerical schemes we usually need at least a nine-point stencil Si,j = {xj−1, xj , xj+1}×
{yi−1, yi, yi+1}. This is why, when working with second order schemes in 2D, as the ones we have
defined as SA in Sect. 3, in order to verify the high-order consistency property using Taylor
expansion, we have to require the regularity of the function in the whole domain Ii,j .

Test 4. We conclude the present analysis on the smoothness indicators by considering a well known
example of a function which is differentiable everywhere except at the origin, visible in Fig. 9c, and
defined as

f(x, y) =

{
yx2

x2+y2
if (x, y) 6= (0, 0),

0 otherwise,
(90)

again in the square [−2, 2]2. In order to highlight the major drawback of the splitting indica-
tor ωsplit, based on one-directional reconstructions, we perform the test with the point of non-
differentiabilty falling on a grid point. The results obtained are collected in Figs. 16-17 and show
that both indicators, ωF2D and ωP2D are able to detect the singular point in the origin, although the
region is spread along the axes directions, especially in the case of φP2D, whereas φ

F
2D presents more

precise and symmetric results. On the other hand, as could be expected, the splitting indicator does
not recognize the low regularity in the origin, since both directional derivatives exist and are equal
to 0. Moreover, ωsplit shows a rather peculiar behavior in the region around the origin, detecting
more false positive than the other indicators.

These last results are rather promising and suggest that our definition is the correct one for
identifying the lack of regularity of functions, also when the gradient exists but it is not continuous.
Evidently, deeper investigations seem necessary in order to justify the enlargement of the detected
singular area along the axis directions and, in general, the differences between the two versions ωF2D
and ωP2D.

4.2 Tests on the Adaptive Filtered schemes with 2D smoothness indicators

Here we present some two-dimensional tests of evolution problems designed to show the prop-
erties of our AF scheme when the switching from one scheme to the other is regulated by the
smoothness indicators studied in Sect. 2. Our goal is also to compare the performance of our AF
schemes SAF with those of the Filtered Schemes SF proposed in [7], and of the WENO scheme
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Figure 16: Test 4. Singularity on a grid point. Results obtained using g(ω) with ωsplit (left), ωP2D (middle) and
ωF2D (right), for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.

Figure 17: Test 4. Singularity on a grid point. Results obtained using φsplit (left), φP2D (middle) and φF2D (right)),
for ∆x = ∆y = 0.1 and ∆x = ∆y = 0.05.
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of second/third order proposed in [20]. Regarding the WENO 2/3 scheme, here we use the same
efficient implementation suggested in [20] (Remark 1 on page 2130), adding the improvement sug-
gested in [2], that consists in choosing σ = ∆x2, instead of σ = 10−8 as done in the original paper
by [20]. Concerning the basic Filtered Scheme, we use the implementation suggested in [7], but
avoiding the use of the limiter correction in all the numerical tests. This is mainly because we want
to show that the unstability problems that have been fixed through the introduction of the limiter
in [7], can be solved by the adaptive procedure and the function φ proposed. Moreover, since the
main aim is to use even higher order schemes (fourth order schemes) and to show the reliability of
the adaptive tuning, the use of the limiter would be counterproductive, since it would inevitably
limit also the full accuracy of the resulting scheme. This fact has been proved in various forms in
literature (the scheme is TVD) and can be easily confirmed through some easy numerical tests, such
as the transport of a regular function, considered as Test 5. For further comparisons with higher
order schemes, we implemented also WENO 3/5 with RK3 (TVD) and RK4 (not TVD) as time
integrator, presenting the results in the first next test which considers a regular function since in
this case we can better appreciate the differences.

For each test we specify the monotone and high-order schemes composing the filtered schemes,
as well as the CFL number λ := max{λx, λy}. In particular, the CFL number will be chosen to
satisfy the CFL condition

max{λx max|Hp(p, q)|, λy max|Hq(p, q)|} ≤
1

2
, (91)

which is more easy to implement than (53). We also compute the errors and orders in L∞ and L1

norm. For all the following tests, we use homogeneous Neumann boundary conditions, except for
Test 9, for which periodic boundary conditions are needed.

Test 5. As a first example of evolution problem, we consider the transport of a very regular function
at constant velocity, that is {

vt + vx + vy = 0, in (0, T )× Ω,
v(0, x, y) = v0(x, y), in Ω

(92)

where Ω = [−2, 2]2 and T = 0.9, with the regular initial condition

v0(x, y) = max
{

0, 1− x2 − y2
}5
. (93)

The chosen CFL number is λ = 0.2 < 1
2 . For this regular test, we start considering the Heun-

Centered (HC) scheme, as defined in (64)-(65), in addition to the WENO scheme of second/third
order proposed in [20], and the AF schemes which use, as high-order method SA, the HC scheme
or the fourth-order central Runge-Kutta method defined in (73)-(75) and from now on denoted by
RKC4 for brevity. Looking at Tab. 1 we can note that the AF-HC basically coincides with the
simple HC scheme when the solution is regular, as expected, and the results clearly testify the
success of the filtering process, with both AF schemes achieving the optimal order of the high-order
scheme in both norms.
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Table 1: Test 5. Errors and orders in L∞ and L1 norms.

HC AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 30 9.39e-02 9.53e-02 6.32e-03 5.30e-02
80 60 2.23e-02 2.07 2.23e-02 2.10 4.26e-04 3.89 4.85e-03 3.45
160 120 5.52e-03 2.02 5.52e-03 2.02 2.65e-05 4.01 5.77e-04 3.07
320 240 1.38e-03 2.00 1.38e-03 2.00 1.96e-06 3.76 7.22e-05 3.00

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
40 30 7.11e-02 6.90e-02 7.97e-03 3.26e-02
80 60 1.71e-02 2.06 1.71e-02 2.02 5.43e-04 3.88 3.81e-03 3.10
160 120 4.18e-03 2.03 4.18e-03 2.03 3.48e-05 3.96 4.51e-04 3.08
320 240 1.04e-04 2.01 1.04e-04 2.01 2.14e-06 4.03 5.52e-05 3.03

Table 2: Test 5. CPU times in seconds.

Nx Nt HC AF-HC AF-
RKC4

WENO 2/3

40 30 0.009 s 0.052 s 0.057 s 0.119 s
80 60 0.049 s 0.376 s 0.446 s 0.784 s
160 120 0.392 s 3.097 s 3.630 s 6.266 s
320 240 2.377 s 26.28 s 28.52 s 51.65 s

Table 3: Test 5. Errors and orders in L∞ and L1 norms.

WENO 3/5-RK3 WENO 3/5-RK4 AF-RKC4
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord
40 30 1.00e-02 9.10e-03 6.32e-03
80 60 5.27e-04 4.25 5.34e-04 4.09 4.26e-04 3.89
160 120 2.74e-05 4.27 2.27e-05 4.55 2.65e-05 4.01
320 240 2.28e-06 3.59 8.97e-07 4.66 1.96e-06 3.76

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord
40 30 1.19e-02 1.15e-02 7.97e-03
80 60 5.65e-04 4.40 5.00e-04 4.53 5.43e-04 3.88
160 120 2.72e-05 4.38 1.69e-05 4.89 3.48e-05 3.96
320 240 2.11e-06 3.68 5.80e-07 4.86 2.14e-06 4.03

Table 4: Test 5. CPU times in seconds.

Nx Nt WENO 3/5-RK3 WENO 3/5-RK4 AF-RKC4
40 30 0.098 s 0.182 s 0.057 s
80 60 0.786 s 1.327 s 0.446 s
160 120 6.555 s 10.32 s 3.630 s
320 240 49.57 s 81.23 s 28.52 s
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From Tab. 2 we can see that the AF-HC and the AF-RKC4 schemes increase considerably the
computational cost of the simple HC scheme, due to the computation of the 2D-indicators which is
the heavier procedure, but they are both faster than the WENO scheme, requiring almost half time
for all refinements. This is because in our approach the computation of the indicators must be done
once for each iteration, independently on the chosen high-order scheme, whereas for the WENO
scheme it has to be repeated at each step of the Runge-Kutta integration. This imply that in our
case the stencil of the indicators is always 5 × 5 points. This is confirmed by the slight increase
in the computational cost of the AF-RKC4 scheme with respect to the AF-HC scheme, despite its
much more involved definition.
For this regular case, we also compare the performance of our fourth-order AF-RKC4 scheme with
those of the twoWENO 3/5 schemes. As visible in Tab. 3, the twoWENO 3/5 schemes implemented
give comparable results with respect to our AF-RKC4, but from Tab. 4 we can note the advantages
of the filtered scheme, which obtains comparable results in less time with respect to both WENO
3/5 schemes, especially refining the grid.

Test 6. In this second test we consider a slightly more challenging situation, in which the hamil-
tonian depends also on the space variables, that is{

vt − yvx + xvy = 0 in (0, 2π)× Ω,

v(0, x, y) = max
{

0, r0−(x+1)2−y2
r0

}4
, in Ω,

(94)

with r0 = 0.5 and Ω = [−2.5, 2.5]2. This problem models the rotation of a regular (but rather
steep) function around the origin. The initial datum is a regularized paraboloid centered in (−1, 0),
which is equal to 1 in the center and 0 on the circle of radius

√
r0. The CFL number is taken as

λ = π
16 ≈ 0.196 ≤ 1

2 max{H−1
p , H−1

q } = 0.2. For this test, we consider the basic filtered scheme of
[7] with the HC method as SA, called in the following as F-HC, and the AF-HC, AF-RKC4 and
WENO 2/3 schemes defined in the previous test.

Table 5: Test 6. Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 128 9.24e-01 8.31e-01 6.36e-01 7.73e-01
40 256 5.88e-01 0.65 6.27e-01 0.41 4.09e-01 0.64 4.98e-01 0.64
80 512 3.70e-01 0.67 3.71e-01 0.76 2.74e-02 3.90 1.39e-01 1.84
160 1024 1.02e-01 1.86 1.01e-01 1.88 1.63e-03 4.07 1.38e-02 3.34

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 128 1.47e+00 9.25e-01 4.66e-01 3.85e-01
40 256 7.00e-01 1.07 4.29e-01 1.11 1.58e-01 1.56 1.92e-01 1.00
80 512 3.56e-01 0.98 1.70e-01 1.33 1.83e-02 3.12 5.24e-02 1.87
160 1024 1.08e-01 1.72 5.02e-02 1.76 1.20e-03 3.93 7.38e-03 2.83

Looking at Fig. 18 we can clearly see the advantages provided by the automatic tuning of the
parameter εn and the stabilizing properties of the φ function. In fact, our AF schemes, especially
AF-RKC4, are able to almost completely nullify the oscillations caused by the unstable HC scheme,
whereas the simple F-HC scheme with ε = 20∆x is not able to do that, producing significant
visible oscillations. Moreover, for the F-HC scheme the oscillations keep on being amplified as time
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Figure 18: Test 6. Plots of the computed solutions at time T = 2π with ∆x = 0.05. First row: AF-HC
(left), F-HC (right). Second row: AF-RKC4 (left), WENO 2/3 (right).

Table 6: Test 6. CPU times in seconds.

Nx Nt F-HC AF-HC AF-
RKC4

WENO 2/3

20 128 0.009 s 0.048 s 0.057 s 0.124 s
40 256 0.052 s 0.394 s 0.457 s 0.845 s
80 512 0.365 s 3.348 s 3.793 s 6.779 s
160 1024 2.806 s 26.20 s 30.40 s 55.87 s

goes on, reducing the effective accuracy of the scheme. Despite this qualitative graphically evident
improvement, the errors and orders of the filtered schemes that use the HC method are rather
close (see Tab. 5), with the basic F-HC scheme obtaining equal or slightly different errors in L∞,
but losing evidently with respect to the adaptive version AF-HC in L1 norm, which gives a better
measure of the overall approximation. Looking at the results regarding the WENO 2/3 scheme
in the same Tab. 5, we can note that it performs better than the second order filtered schemes
in both norms, in terms of orders and errors, as it could be expected from the regularity of the
evolving function, but it performs worse when compared to the fourth order scheme AF-RKC4 in
terms of errors and resolution. This is visible also from Fig. 18, second row, since the WENO
2/3 scheme presents wider oscillations and flattens more the profile of the solution with respect to
the AF-RKC4. Regarding the CPU times, looking at Tab. 6 we can see that the basic filtered
scheme is much faster than the other proposed schemes, requiring computational times similar to
the simple high-order scheme. This fact is rather natural, since it does not require any computation
of smoothness indicators. Comparing the AF schemes with respect to WENO 2/3, we have a
confirmation of what already noted in the previous example, with almost half-time of AF schemes
with respect to WENO 2/3.

34



Test 7. In this test, we consider the following eikonal equation in two dimensions with constant
velocity {

vt +
√
v2
x + v2

y = 0 in (0, T )× Ω,

v(0, x, y) = v0(x, y),
(95)

where Ω = [−3, 3]2. This equation appears in front propagation problems through the level set
method (see [29, 26] for details). Here we focus on a simple expansion with constant velocity in the
case of a merging of two separate fronts and we compare the same schemes used in Test 6 in terms
of error and resolution of the 0-level set, varying the regularity of the representation function v0.
The CFL number is set to λ = 0.25 < 1

2 for both cases. In the first case (Case a) we consider two
collapsing regular representations, with the 0-level set composed by two circles, that is

v0(x, y) = 0.5− 0.5 max
(
max(0, f−)4,max(0, f+)4

)
, (96)

with

f± =
1−

(
x±

√
2

2

)2
−
(
y ±

√
2

2

)2

1− r2
0

, r0 = 0.5.

In the second case (Case b), we consider the evolution and then the merging of a sharper represen-
tation function, which initial 0-level set is composed by two squares, i.e.

v0(x, y) = min

{
f1 − r0, f2 − r0,

1

2
r2

0

}
, with f1 = max

{∣∣∣∣∣x−
√

2

2

∣∣∣∣∣ ,
∣∣∣∣∣y −

√
2

2

∣∣∣∣∣
}
, (97)

f2 = max

{∣∣∣∣∣
(
√
r0x+

√
2

2

)
+

(
√
r0y +

√
2

2

)∣∣∣∣∣ ,
∣∣∣∣∣
(
√
r0x+

√
2

2

)
−
(
√
r0y +

√
2

2

)∣∣∣∣∣
}
,

where now r0 = 0.5 is a parameter needed to control magnitude of the square 0-level front. For
Case a the final time is set to T = 0.6, whereas for Case b the solution is computed at T = 0.7, in
order to have the two fronts merge.

Our goal is to inspect the behavior of the schemes when varying the “number of singularities” in
the evolution. One is directly provided by the hamiltonian, since it is only Lipschitz continuous and
presents a saddle point in the origin, others may be already present in the initial datum or caused
by some merging. In this context, looking at Tab. 7 for Case a, we can see that the better results
are given by AF-RKC4 scheme in L1 norm in most situations, even with respect to the WENO 2/3
results, whereas the more compact AF-HC scheme gives the best results in L∞ among the three
filtered schemes, but still worse compared to the WENO 2/3 ones, which results more accurate. This
is probably due to the different stencils used by the schemes: the lower order schemes, F-HC and
AF-HC, use more compact stencils (3× 3 points, instead of 17× 17 points needed to the AF-RKC4
scheme), whereas the WENO 2/3 procedure uses an adaptive stencil, although pretty wide. This
implies that the fourth order AF-RKC4 scheme suffers more deeply the presence of singularities,
especially in L∞ norm.

This behavior is more evident in Case b, in which the singularities are already present in the
initial data, as visible in Fig. 19, in which we report also the merging through the 0-level sets for
the WENO 2/3 and the AF-RKC4 schemes. Looking at Tab. 9, we can note that the AF-RKC4 is
able to keep the sharpness of the edges also with respect to the WENO 2/3 scheme, although the
latter performs better in both norms. Moreover, the stabilizing properties of the adaptive filtering,
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Table 7: Test 7a. Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
30 12 2.31e-01 2.08e-01 1.96e-01 2.03e-01
60 24 8.84e-02 1.38 6.45e-02 1.69 1.06e-01 0.88 5.38e-02 1.92
120 48 5.42e-02 0.71 4.93e-02 0.39 6.02e-02 0.82 2.84e-02 0.92
240 96 4.71e-02 0.20 1.78e-02 1.47 3.34e-02 0.85 1.80e-02 0.66

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
30 12 1.29e+00 1.20e+00 9.25e-01 1.05e+00
60 24 4.07e-01 1.67 3.41e-01 1.82 1.57e-01 2.55 2.13e-01 2.31
120 48 1.27e-01 1.67 8.78e-02 1.96 5.68e-02 1.47 5.85e-02 1.86
240 96 5.24e-02 1.28 3.35e-02 1.39 3.39e-02 0.75 3.21e-02 0.86

Table 8: Test 7a. CPU times in seconds.

Nx Nt F-HC AF-HC AF-
RKC4

WENO 2/3

30 12 0.005 s 0.014 s 0.017 s 0.027 s
60 24 0.020 s 0.109 s 0.129 s 0.204 s
120 48 0.119 s 0.851 s 0.958 s 1.475 s
240 96 0.814 s 6.674 s 7.383 s 12.21 s

Figure 19: Test 7b. Initial front (left) and fronts at T = 0.7 using WENO 2/3 and AF-RKC4 schemes
(right).

provided by the indicator function φ visible in Fig. 20, are visible. In fact, the AF-HC prevents
the oscillating behavior (of the numerical order of convergence) of its non-adaptive version with
ε = 20∆x, although in this particular situation it produces often bigger errors. Finally, in Fig.
20 we present the results given by the smoothness indicator g(ωF2D) used in the simulation. It is
evident that our final choice of the indicators is able to localize the position of the singularities in the
initial condition with good precision, and to detect clearly the merging area of the representation
functions, also using a rather coarse grid. As last remark, looking at Tabs. 8 and 10, note that in
both cases the CPU times of the filtering schemes are lower than those of the WENO 2/3 scheme,
especially for finer grids.
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Figure 20: Test 7b. Contour plots of the function φ at the initial (left) and final (right) time, using the
smoothness indicators g(ωF

2D), for ∆x = ∆y = 0.1.

Table 9: Test 7b. Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
30 14 1.64e-01 1.06e-01 1.06e-01 7.79e-02
60 28 6.93e-02 1.24 8.35e-02 0.35 7.31e-02 0.54 4.59e-02 0.76
120 56 6.73e-02 0.04 4.76e-02 0.81 4.24e-02 0.79 2.50e-02 0.88
240 112 8.57e-02 −0.35 2.79e-02 0.77 2.41e-02 0.82 1.72e-02 0.54

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
30 14 6.11e-01 8.33e-01 5.20e-01 5.38e-01
60 28 3.18e-01 0.94 3.98e-01 1.07 3.60e-01 0.53 2.01e-01 1.42
120 56 1.65e-01 0.95 1.89e-01 1.08 1.73e-01 1.05 8.31e-02 1.28
240 112 1.22e-01 0.43 8.48e-02 1.15 7.57e-02 1.19 4.59e-02 0.85

Table 10: Test 7b. CPU times in seconds.

Nx Nt F-HC AF-HC AF-
RKC4

WENO 2/3

30 14 0.006 s 0.019 s 0.021 s 0.031 s
60 28 0.030 s 0.140 s 0.159 s 0.233 s
120 56 0.176 s 1.038 s 1.156 s 1.747 s
240 112 0.924 s 7.932 s 8.984 s 13.58 s

It is important to point out that for producing Fig. 20 a “fix” has been needed to obtain the correct
outcome by the indicators. That is because in the critical case in which two singularity curves
intersect in one point, as for the two pyramids considered in Case b, it can happen that all the
eight cases for formula (42) are such that βζ1ζ2k = O(1). This implies that the information given by
the function φ can not really be trusted. In order to solve the problem it is enough to consider the
information contained in the function φ computed on the eight points of the stencil S0 around the
considered point (xj , yi) and to control if there are at least two consecutive values different from 0.
In this way we can be sure that there is at least one sector which is not crossed by any singularity
curve and the resulting information can be used. Another possibility, slightly less formal, is to
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control that at least one of the values of φ on the corners of the cell Ii,j is equal to 1.

Test 8. In this last test we consider a problem similar to the Burgers’ equation in two dimensions,{
vt + (vx + 1)2 + (vy + 1)2 = 0 in (0, T )× Ω,
v(0, x, y) = −0.5 (cos(πx) + cos(πy)) ,

(98)

with Ω = [0, 2]2 and periodic boundary conditions. For that problem (98), we consider the final
time T = 3

4π2 , when the solution is still smooth, and then T = 3
2π2 , time at which an interesting

set of singularities develops. We use the same schemes of the previous example and a slightly more
restrictive CFL number in order to use coarser grids, which is set to λ = 3

4π2 ≈ 0.076 for both tests.
The exact solution is computed by the Hopf-Lax formula and is as

v(t, x, y) =

(
min
a∈A
−1

2
cos(π(x− at)) +

1

4
a2 − a+ min

b∈A
−1

2
cos(π(y − bt)) +

1

4
b2 − b

)
, (99)

withA = [−6, 6], where we used the fact that the evolution can be seen as the sum of one-dimensional
evolutions.

This test summarizes all the behaviors already seen in the previous cases. In fact, if the solution
is still regular (see Tab. 11) the AF-RKC4 scheme gives the best results and achieves the optimal
order in both norms, whereas when the singularity appears (see Tab. 12) it has the usual problems
in the L∞ errors, but better orders in the L1 norm with respect to the second order filtered schemes.
Regarding this second case, note that here the WENO 2/3 scheme gets the best results in terms of
both errors and orders with respect to all the three filtered schemes. Moreover, we can clearly

Table 11: Test 8. T = 3/(4π2). Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 10 4.66e-02 3.22e-02 4.22e-02 1.13e-02
40 20 2.40e-02 0.96 9.44e-03 1.77 1.65e-03 4.68 2.57e-03 2.14
80 40 1.38e-02 0.79 2.54e-03 1.89 1.73e-04 3.25 4.24e-04 2.60
160 80 7.21e-03 0.94 6.20e-04 2.04 1.19e-05 3.86 6.30e-05 2.75

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 10 2.66e-02 2.36e-02 1.22e-02 6.66e-03
40 20 6.62e-03 2.01 6.45e-03 1.87 2.69e-04 5.50 8.76e-04 2.93
80 40 1.81e-03 1.87 1.66e-03 1.96 2.00e-05 3.75 1.20e-04 2.86
160 80 5.15e-04 1.81 4.15e-04 2.00 1.43e-06 3.81 1.56e-05 2.95

see that the basic filtered scheme depends heavily on the choice of ε. In fact, choosing ε = 20∆x
leads to very good results in the singular case, whereas it has clear problems at exploiting the full
accuracy of the high-order scheme when the solution is still regular. This is the main advantage
of the adaptive εn, which is able to tune itself depending on the local (in time) regularity of the
solution, as shown in Fig. 23. There we reported the results obtained by formula (83) without
computing the maximum over Rn, in the case of the initial condition and the two considered final
times. We can notice that the value of εn can consistently vary when the solution is regular,
whereas it drops when the singularity appears, since all the high values are concentrated inside
the region detected by the function φ. In Fig. 22 we have collected some results given by the
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Table 12: Test 8.T = 3/(2π2). Errors and orders in L∞ and L1 norms.

F-HC (20∆x) AF-HC AF-RKC4 WENO 2/3
Nx Nt L∞ Err Ord L∞ Err Ord L∞ Err Ord L∞ Err Ord
20 20 1.12e-01 1.30e-01 1.51e-01 5.81e-02
40 40 6.03e-02 0.89 6.65e-02 0.96 7.22e-02 1.06 2.37e-02 1.29
80 80 2.82e-02 1.10 2.95e-02 1.17 3.13e-02 1.21 8.07e-03 1.55
160 160 1.10e-02 1.36 1.12e-02 1.40 1.17e-02 1.41 1.91e-03 2.08

Nx Nt L1 Err Ord L1 Err Ord L1 Err Ord L1 Err Ord
20 20 4.17e-02 4.37e-02 3.71e-02 2.10e-02
40 40 1.17e-02 1.84 1.04e-02 2.07 8.94e-03 2.05 4.28e-03 2.30
80 80 2.84e-03 2.04 2.56e-03 2.02 1.97e-03 2.19 8.49e-04 2.33
160 160 6.41e-04 2.15 6.05e-04 2.08 4.03e-04 2.29 1.28e-04 2.73

Figure 21: Test 8. Top: Initial data (left) and exact solution at T = 3/(2π2) (right). Bottom: solution at
T = 3/(4π2) (left) and T = 3/(2π2) (right) computed by the AF-RKC4 scheme with ∆x = ∆y = 0.025.

smoothness indicators using the AF-RKC4 scheme with ∆x = 0.025, which testify the reliability
of our definition. The indicators are able to recognize the regularity of the solution in the first
two cases (the φ function is identically equal to 1) and to precisely locate the singularity after its
development (right). Note that the formation of a singularity is already visible in the behavior of
g(ωF2D) (middle). The conclusions of these last two examples are rather promising, testifying the
good properties of the Adaptive Filtered Schemes also in more space dimensions (see [15, 28] for
the one-dimensional version). It is interesting to notice that, although the wideness of the stencil
seems to limit excessively the accuracy in the L∞ norm in presence of some singularity, the simple
AF-RKC4 gave very good responses, especially in terms of sharpness of the representation and of
accuracy in regions of regularity, achieving the optimal order in most of the simulations. Also in
this last example, similar comments on CPU times can be made looking at Tab. 13.
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Figure 22: Test 8. Results of the smoothness indicators (obtained using g(ωF2D)), for ∆x = ∆y = 0.025. Plots at
initial time (left), at time T = 3/(4π2), when the solution is still smooth (middle), and at the final time T = 3/(2π2),
when the singularity is fully developed (right).

Figure 23: Test 8. Results of εnij (obtained using formula (83), without computing the maximum on Rn), for
∆x = ∆y = 0.025. Plots at initial time (left), at time T = 3/(4π2), when the solution is still smooth (middle), and
at the final time T = 3/(2π2), when the singularity is fully developed (right).

Table 13: Test 8.T = 3/(2π2). CPU times in seconds.

Nx Nt F-HC AF-HC AF-
RKC4

WENO 2/3

20 20 0.004 s 0.011 s 0.012 s 0.019 s
40 40 0.012 s 0.082 s 0.084 s 0.194 s
80 80 0.077 s 0.636 s 0.723 s 1.796 s
160 160 0.531 s 4.883 s 5.091 s 8.363 s

5 Conclusions

In this paper we presented a novel formulation for smoothness indicators for non-differentiable
functions in two spatial dimensions generalizing the definition of [20], originally devised for the
construction of the well-known WENO schemes for Hamilton-Jacobi equations. We give a very
compact explicit formula for the computation of the indicators, which is straightforward to im-
plement. Moreover, we compared the results of two slightly different formulations and shown the
improvements with respect to simple indicators based on dimensional splitting.
We have applied the 2D indicators to the construction of our multidimensional AF schemes. The
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filtering process is able to stabilize an otherwise unstable (high-order) scheme, still preserving its
accuracy. The schemes in this paper are improvements of those presented in [7] where the switching
parameter ε has to be tuned by hand, moreover we generalize the adaptive construction presented
in [15, 13] to more spatial dimensions. The adaptive AF scheme is able to reduce the oscillations
which may appear choosing a constant ε and, as shown by the numerical tests, gives always better
results.
The main advantage of the filtered schemes relies in their simple implementation and in the extreme
generality allowed for the choice of the high-order scheme. In the latter context, the adaptive def-
inition of the parameter εn and the stabilization properties of the function φ, represent a relevant
improvement with respect to the basic scheme [7]. That is why no further limiting correction is
needed, thus preventing the risk of losing accuracy when using schemes of order of accuracy higher
than 2. The general applicability of our procedure has been testified by the successful implementa-
tion of simple and efficient fourth-order schemes in two space dimensions.
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A Brief review of one-dimensional indicators

Let us begin by considering the 1D case and show how to define a smoothness indicator function φ,
such that

φnj = φ(ωnj ) :=

{
1 if the solution un is regular in Ij ,
0 if Ij contains a point of singularity, (100)

where Ij = (xj−1, xj+1) and ωnj is the smoothness indicator at the node xj depending on the values
of the approximate solution un. We consider the indicators of [20], which basically exploit the
properties of the divided differences of the solution un as singularity detectors. More precisely, we
first define the main ingredients of the indicators, i.e.

βk = βk(u
n)j :=

r∑
l=2

∫ xj

xj−1

∆x2l−3
(
P

(l)
k (x)

)2
dx, (101)

for k = 0, . . . , r− 1, where Pk is the Lagrange polynomial of degree r interpolating the values of un

on the stencil Sj+k = {xj+k−r, . . . , xj+k}. Then, before proceeding with the construction of φ, let
us state a fundamental result on the behavior of the indicators (101), proved in [15], considering a
generic function f and dropping the superscript n in order to simplify the notation.

Proposition A.1. Assume f ∈ Cr+1 (Ω \ {ξ}), with Ω a neighborhood of ξ, and f ′(ξ−) 6= f ′(ξ+).
Moreover, let f ′′(x) 6= 0, ∀x ∈ (Ω \ {ξ}). Then, for k = 0, . . . , r − 1 and j ∈ Z, the followings are
true:

i) If xs ∈ Ω \
◦
Sj+k ⇒ β(f)k = O(∆x2);

ii) If xs ∈
◦
Sj+k ⇒ β(f)k = O(1),

where Sj+k = {xj−r+k, . . . , xj+k} and
◦
Sj+k= (xj−r+k, xj+k).
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Remark A.2. Notice that we could avoid the restrictions on f in the points of regularity by adding
a small quantity σh = σ∆x2, for some constant σ > 0, to the indicators βk and considering instead

β̃k := βk + σh, (102)

as it has been done in [2]. We will use this assumption in the sequel, choosing σ = 1.

Our aim is to identify the points (or the intervals) in which the approximate solution un presents
a singularity in the first derivative. To be precise, here with un we mean any continuous function
with nodal values unj , j ∈ Z. Let us focus the attention on a point xj of the grid and consider the
simplest case of r = 2, which is enough for our purpose. Let us consider separately the intervals
(xj−1, xj ] and [xj , xj+1) defining

β−k = ∆x

∫ xj

xj−1

(P ′′k (x))2dx =

(
fj−k − 2fj−1−k + fj−2−k

∆x

)2

, (103)

for k = 0, 1, where P0, P1 are the polynomials interpolating the solution, respectively, on the stencils
{xj−2, xj−1, xj} e {xj−1, xj , xj+1}; and symmetrically

β+
k = ∆x

∫ xj+1

xj

(P ′′k (x))2dx =

(
fj+k−1 − 2fj+k + fj+k+1

∆x

)2

, (104)

for k = 0, 1, where now P0, P1 are the interpolating polynomials on {xj−1, xj , xj+1} and
{xj , xj+1, xj+2}, respectively. From the definition it is clear that (β+)j = (β−)j+1 so we have
to compute the quantities just once. Then, we define as in [20]

α±k =
1

(β±k + σh)2
, (105)

with σh = σ∆x2 the parameter we introduced in Remark A.2, and focus on the information given
by the interpolating polynomial on {xj−1, xj , xj+1} defining

ω+ =
α+

0

α+
0 + α+

1

and ω− =
α−1

α−0 + α−1
(106)

to inspect the regularity on [xj , xj+1) and on (xj−1, xj ], respectively. Then, using Prop. A.1 and
Remark A.2, it can be shown that if the solution is regular enough in both stencils, then

ω± =
α±k

α±0 + α±1
=

1

2
+O(∆x), (107)

with k = 0 for the superscript “+” and k = 1 for “−”. On the other hand, if there is a singularity
in at least one of the stencils then

α±k =

{
O(1) if f is not smooth in Sj+k
O(∆x−4) if f is smooth in Sj+k.

(108)

Consequently, it is easy to verify that, defining ωj = min{ω−, ω+} we get

ωj =

{
O(∆x4) if xj−1 < xs < xj+1
1
2 +O(∆x) otherwise. (109)
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See [13, 15] for more details and the proofs. Unfortunately, we noticed through numerical tests
that the O(∆x) term in regular regions may produce heavy oscillations around the optimal value
ω = 1/2. To increase the accuracy, we can use higher order smoothness indicator (r > 2), but we
would need a bigger reconstruction stencil, or we can use the mappings defined in [18],

g(ω) =
ω(ω + ω2 − 3ωω + ω2)

ω2 + ω(1− 2ω)
, ω ∈ (0, 1) (110)

which have the properties that g(0) = 0, g(1) = 1, g(ω) = ω, g′(ω) = 0 and g′′(ω) = 0. Using Taylor
expansion around ω, this directly implies that, if we compute ω∗± = g(ω±) = ω + O(∆x3), then
the amplitude of the oscillations is drastically reduced. Notice that with respect to the definition
in [18] we avoided the second weighting which seems unnecessary in our case. More explicitly, the
mapping we use is

g(ω) = 4ω

(
3

4
− 3

2
ω + ω2

)
. (111)

Another useful technique to reduce the oscillations, which in particular does not require any
mapping, has been proposed in the context of hyperbolic conservation laws in [8] and further
generalized in [10], leading to the definition of the so-called WENO-Z schemes. This procedure can
be applied for our purpose without any relevant change. For example, for r = 2, it is implemented
first defining

τ± :=
∣∣β±0 − β±1 ∣∣ , (112)

which has the properties:

• If f is smooth in, respectively, S± := S±0
⋃S±1 , then τ± = O(∆x3);

• If f is smooth in some S±k , but not in S±, then τ± � β±k ;

• τ± ≤ maxk β
±
k .

Then, analogously to the usual WENO procedure, the final indicator is obtained computing

αZ,±k =
1

2

(
1 +

(
τ±

β±k + σh

)p)
, ωZ± =

αZ,±ν
αZ,±0 + αZ,±1

, (113)

for k = 0, 1, with p = 2, ν = 1 for the superscript ‘−’ and ν = 0 for ‘+’. Unfortunately, applying
directly the ‘WENO-Z’ procedure to Hamilton-Jacobi equations, in particular in our context, we do
not achieve improvements comparable to those obtained through the mapping (111). In fact, using
similar arguments of the previous lines, it is straightforward to show that the resulting smoothness
indicators are such that

ωZ± =
1

2
+O(∆x2), (114)

and thus produce slightly wider oscillations around the optimal value. This problem would probably
suggest to increase to power p in (113), but in doing so also the dependence on the magnitudes
of successive derivatives of f is increased, producing even wider oscillations for coarser grids, thus
discouraging such an approach.
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Remark A.3. It is worth of notice that, in the case r = 2, making use of the full stencil
{xj−2, . . . , xj+2} in defining τ± in (112)-(113) we can obtain better results in regular regions with
respect to those of the mapped indicators. More precisely, if for both cases we define

τnew =
∣∣β−0 − 2β−1 + β+

1

∣∣ , (115)

using Taylor expansions we have that

τnew = 2∆x4
(

(f ′′′j )2 + f ′′j f
(4)
j

)
+O(∆x5) = O(∆x4), (116)

if the function is smooth in the full stencil. Consequently, it can be shown that the indicators
computed through (113)-(115), are such that

ωZnew =
1

2
+O(∆x4), (117)

in regions of regularity and have similar behavior with respect to the previous constructions in the
remaining cases.

For more details about the computations as well as other possible constructions, e.g. indicators
with r > 2, we refer the interested reader to [28].
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